2019-2020学年江苏省无锡市江阴市九年级(上)期末数学试卷 (解析版)

合集下载

江阴市九年级上册期末数学试题(含答案)

江阴市九年级上册期末数学试题(含答案)

江阴市九年级上册期末数学试题(含答案)一、选择题1.已知⊙O 的半径是4,圆心O 到直线l 的距离d =6.则直线l 与⊙O 的位置关系是( ) A .相离 B .相切 C .相交 D .无法判断 2.已知圆锥的底面半径为5cm ,母线长为13cm ,则这个圆锥的全面积是( )A .265cm πB .290cm πC .2130cm πD .2155cm π3.如图,已知正五边形ABCDE 内接于O ,连结,BD CE 相交于点F ,则BFC ∠的度数是( )A .60︒B .70︒C .72︒D .90︒4.方程x 2﹣3x =0的根是( )A .x =0B .x =3C .10x =,23x =-D .10x =,23x =5.抛物线2(1)2y x =-+的顶点坐标是( ) A .(﹣1,2) B .(﹣1,﹣2) C .(1,﹣2) D .(1,2) 6.O 的半径为5,圆心O 到直线l 的距离为3,则直线l 与O 的位置关系是( )A .相交B .相切C .相离D .无法确定 7.一元二次方程x 2=-3x 的解是( )A .x =0B .x =3C .x 1=0,x 2=3D .x 1=0,x 2=-38.某同学在解关于x 的方程ax 2+bx +c =0时,只抄对了a =1,b =﹣8,解出其中一个根是x =﹣1.他核对时发现所抄的c 是原方程的c 的相反数,则原方程的根的情况是( ) A .有两个不相等的实数根 B .有两个相等的实数根 C .有一个根是x =1D .不存在实数根9.关于二次函数y =x 2+2x +3的图象有以下说法:其中正确的个数是( )①它开口向下;②它的对称轴是过点(﹣1,3)且平行于y 轴的直线;③它与x 轴没有公共点;④它与y 轴的交点坐标为(3,0). A .1B .2C .3D .410.如图,在矩形中,,,若以为圆心,4为半径作⊙.下列四个点中,在⊙外的是( )A.点B.点C.点D.点11.如图,在正方形 ABCD 中,E是BC的中点,F是CD上一点,AE⊥EF.有下列结论:①∠BAE=30°;②射线FE是∠AFC的角平分线;③CF=13 CD;④AF=AB+CF.其中正确结论的个数为()A.1 个B.2 个C.3 个D.4 个12.若二次函数y=x2+4x+n的图象与x轴只有一个公共点,则实数n的值是()A.1 B.3 C.4 D.613.如图1,一个扇形纸片的圆心角为90°,半径为4.如图2,将这张扇形纸片折叠,使点A与点O恰好重合,折痕为CD,图中阴影为重合部分,则阴影部分的面积为()A.4233π-B.8433π-C.8233π-D.843π-14.如图,□ABCD中,点E是边AD的中点,EC交对角线BD于点F,则EF:FC等于()A.3:2 B.3:1 C.1:1 D.1:215.已知函数2y x bx c =-++的部分图像如图所示,若0y >,则的取值范围是( )A .41x -<<B .21x -<<C .31x -<<D .31x x <->或二、填空题16.若m 是方程2x 2﹣3x =1的一个根,则6m 2﹣9m 的值为_____.17.如图,在平面直角坐标系中,将△ABO 绕点A 顺指针旋转到△AB 1C 1的位置,点B 、O 分别落在点B 1、C 1处,点B 1在x 轴上,再将△AB 1C 1绕点B 1顺时针旋转到△A 1B 1C 2的位置,点C 2在x 轴上,将△A 1B 1C 2绕点C 2顺时针旋转到△A 2B 2C 2的位置,点A 2在x 轴上,依次进行下去…,若点A (53,0)、B (0,4),则点B 2020的横坐标为_____.18.若线段AB=10cm ,点C 是线段AB 的黄金分割点,则AC 的长为_____cm.(结果保留根号)19.如图是二次函数2y ax bx c =++的部分图象,由图象可知不等式20ax bx c ++>的解集是_______.20.如图,由边长为1的小正方形组成的网格中,点,,,A B C D 为格点(即小正方形的顶点),AB 与CD 相交于点O ,则AO 的长为_________.21.将正整数按照图示方式排列,请写出“2020”在第_____行左起第_____个数.22.一天,小青想利用影子测量校园内一根旗杆的高度,在同一时刻内,小青的影长为2米,旗杆的影长为20米,若小青的身高为1.60米,则旗杆的高度为__________米.23.如图,五边形 ABCDE 是⊙O 的内接正五边形, AF 是⊙O 的直径,则∠ BDF 的度数是___________°.24.在平面直角坐标系中,抛物线2yx 的图象如图所示.已知A 点坐标为()1,1,过点A 作1AA x ∕∕轴交抛物线于点1A ,过点1A 作12A A OA ∕∕交抛物线于点2A ,过点2A 作23A A x ∕∕轴交抛物线于点3A ,过点3A 作34A A OA ∕∕交抛物线于点4A ……,依次进行下去,则点2019A 的坐标为_____.25.如图,点O 是△ABC 的内切圆的圆心,若∠A =100°,则∠BOC 为_____.26.如图,在边长为1的小正方形网格中,点A 、B 、C 、D 都在这些小正方形的顶点上,AB 、CD 相交于点O ,则tan ∠AOD=________.27.将抛物线y =-5x 2先向左平移2个单位长度,再向下平移3个单位长度后,得到新的抛物线的表达式是________.28.用配方法解一元二次方程2430x x +-=,配方后的方程为2(2)x n +=,则n 的值为______.29.设二次函数y =x 2﹣2x ﹣3与x 轴的交点为A ,B ,其顶点坐标为C ,则△ABC 的面积为_____.30.如图,AE 、BE 是△ABC 的两个内角的平分线,过点A 作AD ⊥AE .交BE 的延长线于点D .若AD =AB ,BE :ED =1:2,则cos ∠ABC =_____.三、解答题31.某商店专门销售某种品牌的玩具,成本为30元/件,每天的销售量y (件)与销售单价x (元)之间存在着如图所示的一次函数关系.(1)求y 与x 之间的函数关系式;(2)当销售单价为多少元时,每天获取的利润最大,最大利润是多少? (3)为了保证每天的利润不低于3640元,试确定该玩具销售单价的范围.32.如图,已知二次函数y =ax 2+4ax +c (a ≠0)的图象交x 轴于A 、B 两点(A 在B 的左侧),交y 轴于点C .一次函数y =﹣12x +b 的图象经过点A ,与y 轴交于点D (0,﹣3),与这个二次函数的图象的另一个交点为E ,且AD :DE =3:2. (1)求这个二次函数的表达式; (2)若点M 为x 轴上一点,求MD 5MA 的最小值.33.已知:△ABC在直角坐标平面内,三个顶点的坐标分别为A(0,3)、B(3,4)、C (2,2)(正方形网格中每个小正方形的边长是一个单位长度).(1)画出△ABC向下平移4个单位长度得到的△A1B1C1,点C1的坐标是;(2)以点B为位似中心,在网格内画出△A2B2C2,使△A2B2C2与△ABC位似,且位似比为2:1,点C2的坐标是;(3)△A2B2C2的面积是平方单位.34.2016年,某贫困户的家庭年人均纯收入为2500元,通过政府产业扶持,发展了养殖业后,到2018年,家庭年人均纯收入达到了3600元.(1)求该贫困户2016年到2018年家庭年人均纯收入的年平均增长率;(2)若年平均增长率保持不变,2019年该贫困户的家庭年人均纯收入是否能达到4200元?35.如图,直线y=x﹣1与抛物线y=﹣x2+6x﹣5相交于A、D两点.抛物线的顶点为C,连结AC.(1)求A,D两点的坐标;(2)点P为该抛物线上一动点(与点A、D不重合),连接PA、PD.①当点P的横坐标为2时,求△PAD的面积;②当∠PDA=∠CAD时,直接写出点P的坐标.四、压轴题36.在平面直角坐标系xOy中,对于任意三点A,B,C,给出如下定义:若矩形的任何一条边均与某条坐标轴平行,且A,B,C三点都在矩形的内部或边界上,则称该矩形为点A,B,C的外延矩形.点A,B,C的所有外延矩形中,面积最小的矩形称为点A,B,C的最佳外延矩形.例如,图中的矩形,,都是点A,B,C的外延矩形,矩形是点A,B,C的最佳外延矩形.(1)如图1,已知A(-2,0),B(4,3),C(0,).①若,则点A,B,C的最佳外延矩形的面积为;②若点A,B,C的最佳外延矩形的面积为24,则的值为;(2)如图2,已知点M(6,0),N(0,8).P(,)是抛物线上一点,求点M,N,P的最佳外延矩形面积的最小值,以及此时点P的横坐标的取值范围;(3)如图3,已知点D(1,1).E(,)是函数的图象上一点,矩形OFEG是点O,D,E的一个面积最小的最佳外延矩形,⊙H是矩形OFEG的外接圆,请直接写出⊙H的半径r的取值范围.37.如图,点A 和动点P 在直线l 上,点P 关于点A 的对称点为Q .以AQ 为边作Rt ABQ △,使90BAQ ∠=︒,:3:4AQ AB =,作ABQ △的外接圆O .点C 在点P 右侧,4PC =,过点C 作直线m l ⊥,过点O 作OD m ⊥于点D ,交AB 右侧的圆弧于点E .在射线CD 上取点F ,使32DF CD =,以DE 、DF 等邻边作矩形DEGF ,设3AQ x =(1)用关于x 的代数式表示BQ 、DF .(2)当点P 在点A 右侧时,若矩形DEGF 的面积等于90,求AP 的长. (3)在点P 的整个运动过程中,当AP 为何值时,矩形DEGF 是正方形.38.如图,在Rt △AOB 中,∠AOB =90°,tan B =34,OB =8. (1)求OA 、AB 的长;(2)点Q 从点O 出发,沿着OA 方向以1个单位长度/秒的速度匀速运动,同时动点P 从点A 出发,沿着AB 方向也以1个单位长度秒的速度匀速运动,设运动时间为t 秒(0<t ≤5)以P 为圆心,PA 长为半径的⊙P 与AB 、OA 的另一个交点分别为C 、D ,连结CD ,QC .①当t 为何值时,点Q 与点D 重合?②若⊙P 与线段QC 只有一个公共点,求t 的取值范围.39.如图,在正方形ABCD 中,P 是边BC 上的一动点(不与点B ,C 重合),点B 关于直线AP 的对称点为E ,连接AE ,连接DE 并延长交射线AP 于点F ,连接BF(1)若BAP α∠=,直接写出ADF ∠的大小(用含α的式子表示). (2)求证:BF DF ⊥.(3)连接CF ,用等式表示线段AF ,BF ,CF 之间的数量关系,并证明.40.如图,PA 切⊙O 于点A ,射线PC 交⊙O 于C 、B 两点,半径OD ⊥BC 于E ,连接BD 、DC 和OA ,DA 交BP 于点F ; (1)求证:∠ADC+∠CBD =12∠AOD ; (2)在不添加任何辅助线的情况下,请直接写出图中相等的线段.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【解析】【分析】根据直线和圆的位置关系的判定方法,即圆心到直线的距离大于半径,则直线与圆相离进行判断. 【详解】解:∵圆心O 到直线l 的距离d=6,⊙O 的半径R=4, ∴d>R , ∴直线和圆相离. 故选:A . 【点睛】本题考查直线与圆位置关系的判定.掌握半径和圆心到直线的距离之间的数量关系是解答此题的关键..2.B解析:B 【解析】 【分析】先根据圆锥侧面积公式:S rl π=求出圆锥的侧面积,再加上底面积即得答案. 【详解】解:圆锥的侧面积=251365cm ππ⨯⨯=,所以这个圆锥的全面积=2265590cm πππ+⨯=. 故选:B. 【点睛】本题考查了圆锥的有关计算,属于基础题型,熟练掌握圆锥侧面积的计算公式是解答的关键.3.C解析:C 【解析】 【分析】连接OA 、OB 、OC 、OD 、OE ,如图,则由正多边形的性质易求得∠COD 和∠BOE 的度数,然后根据圆周角定理可得∠DBC 和∠BCF 的度数,再根据三角形的内角和定理求解即可. 【详解】解:连接OA 、OB 、OC 、OD 、OE ,如图,则∠COD =∠AOB =∠AOE =360725︒=︒, ∴∠BOE =144°, ∴1362DBC COD ∠=∠=︒,1722BCE BOE ∠=∠=︒, ∴18072BFC DBC BCF ∠=︒-∠-∠=︒. 故选:C.【点睛】本题考查了正多边形和圆、圆周角定理和三角形的内角和定理,属于基本题型,熟练掌握基本知识是解题关键.4.D解析:D【解析】【分析】先将方程左边提公因式x ,解方程即可得答案.【详解】x 2﹣3x =0,x (x ﹣3)=0,x 1=0,x 2=3,故选:D .【点睛】本题考查解一元二次方程,解一元二次方程的常用方法有:配方法、直接开平方法、公式法、因式分解法等,熟练掌握并灵活运用适当的方法是解题关键.5.D解析:D【解析】【分析】根据顶点式2()y a x h k =-+,顶点坐标是(h ,k ),即可求解.【详解】∵顶点式2()y a x h k =-+,顶点坐标是(h ,k ),∴抛物线2(1)2y x =-+的顶点坐标是(1,2).故选D .6.A解析:A【解析】【分析】根据直线和圆的位置关系可知,圆的半径大于直线到圆距离,则直线l 与O 的位置关系是相交.【详解】∵⊙O 的半径为5,圆心O 到直线的距离为3,∴直线l 与⊙O 的位置关系是相交. 故选A .【点睛】本题考查了直线和圆的位置关系,直接根据直线和圆的位置关系解答即可.7.D解析:D【解析】【分析】先移项,然后利用因式分解法求解.【详解】解:(1)x 2=-3x ,x 2+3x=0,x (x+3)=0,解得:x 1=0,x 2=-3.故选:D .【点睛】本题考查了解一元二次方程-因式分解法,熟练掌握因式分解的方法是解题的关键.8.A解析:A【解析】【分析】直接把已知数据代入进而得出c 的值,再解方程根据根的判别式分析即可.【详解】∵x =﹣1为方程x 2﹣8x ﹣c =0的根,1+8﹣c =0,解得c =9,∴原方程为x 2-8x +9=0,∵24b ac ∆=-=(﹣8)2-4×9>0,∴方程有两个不相等的实数根.故选:A .【点睛】本题考查一元二次方程的解、一元二次方程根的判别式,解题的关键是掌握一元二次方程根的判别式,对于一元二次方程()200++=≠ax bx c a ,根的情况由24b ac ∆=-来判别,当24b ac ->0时,方程有两个不相等的实数根,当24b ac -=0时,方程有两个相等的实数根,当24b ac -<0时,方程没有实数根.9.B解析:B【解析】【分析】直接利用二次函数的性质分析判断即可.【详解】①y=x2+2x+3,a=1>0,函数的图象的开口向上,故①错误;②y=x2+2x+3的对称轴是直线x=221-⨯=﹣1,即函数的对称轴是过点(﹣1,3)且平行于y轴的直线,故②正确;③y=x2+2x+3,△=22﹣4×1×3=﹣8<0,即函数的图象与x轴没有交点,故③正确;④y=x2+2x+3,当x=0时,y=3,即函数的图象与y轴的交点是(0,3),故④错误;即正确的个数是2个,故选:B.【点睛】本题考查二次函数的特征,解题的关键是熟练掌握根据二次函数解析式求二次函数的开口方向、对称轴、与坐标轴的交点坐标.10.C解析:C【解析】【分析】连接AC,利用勾股定理求出AC的长度,即可解题.【详解】解:如下图,连接AC,∵圆A的半径是4,AB=4,AD=3,∴由勾股定理可知对角线AC=5,∴D在圆A内,B在圆上,C在圆外,故选C.【点睛】本题考查了圆的简单性质,属于简单题,利用勾股定理求出AC的长是解题关键.11.B解析:B【解析】【分析】根据点E 为BC 中点和正方形的性质,得出∠BAE 的正切值,从而判断①,再证明△ABE ∽△ECF ,利用有两边对应成比例且夹角相等三角形相似即可证得△ABE ∽△AEF ,可判断②③,过点E 作AF 的垂线于点G ,再证明△ABE ≌△AGE ,△ECF ≌△EGF ,即可证明④.【详解】解:∵E 是BC 的中点,∴tan ∠BAE=1=2BE AB , ∴∠BAE ≠30°,故①错误;∵四边形ABCD 是正方形,∴∠B=∠C=90°,AB=BC=CD ,∵AE ⊥EF ,∴∠AEF=∠B=90°,∴∠BAE+∠AEB=90°,∠AEB+FEC=90°,∴∠BAE=∠CEF ,在△BAE 和△CEF 中,==B C BAE CEF ∠∠⎧⎨∠∠⎩, ∴△BAE ∽△CEF , ∴==2AB BE EC CF, ∴BE=CE=2CF ,∵BE=CF=12BC=12CD , 即2CF=12CD , ∴CF=14CD , 故③错误;设CF=a ,则BE=CE=2a ,AB=CD=AD=4a ,DF=3a ,∴AE=,,AF=5a ,∴AE AF BE EF , ∴=AE BE AF EF, 又∵∠B=∠AEF ,∴△ABE ∽△AEF ,∴∠AEB=∠AFE,∠BAE=∠EAG,又∵∠AEB=∠EFC,∴∠AFE=∠EFC,∴射线FE是∠AFC的角平分线,故②正确;过点E作AF的垂线于点G,在△ABE和△AGE中,===BAE GAEB AGEAE AE∠∠⎧⎪∠∠⎨⎪⎩,∴△ABE≌△AGE(AAS),∴AG=AB,GE=BE=CE,在Rt△EFG和Rt△EFC中,==GE CEEF EF⎧⎨⎩,Rt△EFG≌Rt△EFC(HL),∴GF=CF,∴AB+CF=AG+GF=AF,故④正确.故选B.【点睛】此题考查了相似三角形的判定与性质和全等三角形的判定和性质,以及正方形的性质.题目综合性较强,注意数形结合思想的应用.12.C解析:C【解析】【分析】二次函数y=x2+4x+n的图象与x轴只有一个公共点,则240b ac=-=⊿,据此即可求得.【详解】∵1a=,4b=,c n=,根据题意得:2244410b ac n=-=⨯⨯=⊿﹣,解得:n=4,故选:C.【点睛】 本题考查了抛物线与x 轴的交点,二次函数2y ax bx c =++(a ,b ,c 是常数,a ≠0)的交点与一元二次方程20ax bx c ++=根之间的关系.24b ac =-⊿决定抛物线与x 轴的交点个数.⊿>0时,抛物线与x 轴有2个交点;0=⊿时,抛物线与x 轴有1个交点;⊿<0时,抛物线与x 轴没有交点.13.C解析:C【解析】【分析】连接OD ,根据勾股定理求出CD ,根据直角三角形的性质求出∠AOD ,根据扇形面积公式、三角形面积公式计算,得到答案.【详解】解:连接OD ,在Rt △OCD 中,OC =12OD =2, ∴∠ODC =30°,CD =2223OD OC +=∴∠COD =60°,∴阴影部分的面积=260418223=2336023π⨯-⨯⨯π- , 故选:C .【点睛】本题考查的是扇形面积计算、勾股定理,掌握扇形面积公式是解题的关键.14.D解析:D【解析】【分析】根据题意得出△DEF ∽△BCF ,进而得出=DE EF BC FC,利用点E 是边AD 的中点得出答案即可.【详解】解:∵▱ABCD ,故AD ∥BC ,∴△DEF ∽△BCF ,∴=DE EF BC FC, ∵点E 是边AD 的中点,∴AE=DE=12AD , ∴12EF FC . 故选D .15.C解析:C【解析】【分析】根据抛物线的对称性确定抛物线与x 轴的另一个交点为(−3,0),然后观察函数图象,找出抛物线在x 轴上方的部分所对应的自变量的范围即可.【详解】∵y =ax 2+bx +c 的对称轴为直线x =−1,与x 轴的一个交点为(1,0),∴抛物线与x 轴的另一个交点为(−3,0),∴当−3<x <1时,y >0.故选:C .【点睛】此题主要考查二次函数的图像与性质,解题的关键是根据函数对称轴找到抛物线与x 轴的交点.二、填空题16.3【解析】【分析】把m 代入方程2x2﹣3x =1,得到2m2-3m=1,再把6m2-9m 变形为3(2m2-3m ),然后利用整体代入的方法计算.【详解】解:∵m 是方程2x2﹣3x =1的一个根,解析:3【解析】【分析】把m 代入方程2x 2﹣3x =1,得到2m 2-3m=1,再把6m 2-9m 变形为3(2m 2-3m ),然后利用整体代入的方法计算.【详解】解:∵m 是方程2x 2﹣3x =1的一个根,∴2m2﹣3m=1,∴6m2﹣9m=3(2m2﹣3m)=3×1=3.故答案为3.【点睛】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.17.10100【解析】【分析】首先根据已知求出三角形三边长度,然后通过旋转发现,B、B2、B4…每偶数之间的B相差10个单位长度,根据这个规律可以求解.【详解】由图象可知点B2020在第一象限解析:10100【解析】【分析】首先根据已知求出三角形三边长度,然后通过旋转发现,B、B2、B4…每偶数之间的B相差10个单位长度,根据这个规律可以求解.【详解】由图象可知点B2020在第一象限,∵OA=53,OB=4,∠AOB=90°,∴AB133===,∴OA+AB1+B1C2=53+133+4=10,∴B2的横坐标为:10,同理:B4的横坐标为:2×10=20,B6的横坐标为:3×10=30,∴点B2020横坐标为:2020102⨯=10100.故答案为:10100.【点睛】本题考查了点的坐标规律变换,通过图形旋转,找到所有B点之间的关系是本题的关键.题目难易程度适中,可以考察学生观察、发现问题的能力.18.或【解析】根据黄金分割比为计算出较长的线段长度,再求出较短线段长度即可,AC 可能为较长线段,也可能为较短线段.【详解】解:AB=10cm ,C 是黄金分割点,当AC>BC 时,则有解析:5 或1555【解析】【分析】计算出较长的线段长度,再求出较短线段长度即可,AC 可能为较长线段,也可能为较短线段.【详解】解:AB=10cm ,C 是黄金分割点,当AC>BC 时,则有×10=5, 当AC<BC 时,则有×10=5-,∴AC=AB-BC=10-(5 )=15-,∴AC 长为5 cm 或1555 cm. 故答案为:55 或1555【点睛】本题考查了黄金分割点的概念.注意这里的AC 可能是较长线段,也可能是较短线段;熟记黄金比的值是解题的关键.19.【解析】【分析】求方程的解即是求函数图象与x 轴的交点坐标,因为图像具有对称性,知道一个坐标,就可求出另一个,分析x 轴上方的图象可得结果.【详解】由图像可知,二次函数的对称轴x=2,图像与x解析:15x -<<【解析】求方程的解即是求函数图象与x 轴的交点坐标,因为图像具有对称性,知道一个坐标,就可求出另一个,分析x 轴上方的图象可得结果.【详解】由图像可知,二次函数的对称轴x=2,图像与x 轴的一个交点为5,所以,另一交点为2-3=-1. ∴x 1=-1,x 2=5. ∴不等式20ax bx c ++>的解集是15x -<<.故答案为15x -<<【点睛】要了解二次函数性质与图像,由于图像的开口向下,所以,有两个交点,知一易求另一个,本题属于基础题.20.【解析】【分析】如图所示,由网格的特点易得△CEF ≌△DBF ,从而可得BF 的长,易证△BOF ∽△AOD ,从而可得AO 与AB 的关系,然后根据勾股定理可求出AB 的长,进而可得答案.【详解】解:【解析】【分析】如图所示,由网格的特点易得△CEF ≌△DBF ,从而可得BF 的长,易证△BOF ∽△AOD ,从而可得AO 与AB 的关系,然后根据勾股定理可求出AB 的长,进而可得答案.【详解】解:如图所示,∵∠CEB =∠DBF =90°,∠CFE =∠DFB ,CE=DB =1,∴△CEF ≌△DBF ,∴BF =EF =12BE =12, ∵BF ∥AD ,∴△BOF ∽△AOD , ∴11248BO BF AO AD ===, ∴89AO AB =,∵AB =∴AO =故答案为:817 9【点睛】本题以网格为载体,考查了全等三角形的判定和性质、相似三角形的判定和性质以及勾股定理等知识,属于常考题型,熟练掌握上述基本知识是解答的关键.21.4【解析】【分析】根据图形中的数字,可以写出前n行的数字之和,然后即可计算出2020在多少行左起第几个数字,本题得以解决.【详解】解:由图可知,第一行1个数,第二行2个数,第解析:4【解析】【分析】根据图形中的数字,可以写出前n行的数字之和,然后即可计算出2020在多少行左起第几个数字,本题得以解决.【详解】解:由图可知,第一行1个数,第二行2个数,第三行3个数,…,则第n行n个数,故前n个数字的个数为:1+2+3+…+n=(1)2n n+,∵当n=63时,前63行共有63642⨯=2016个数字,2020﹣2016=4,∴2020在第64行左起第4个数,故答案为:64,4.【点睛】本题考查了数字类规律探究,从已有数字确定其变化规律是解题的关键.22.16【解析】【分析】易得△AOB∽△ECD,利用相似三角形对应边的比相等可得旗杆OA的长度.【详解】解:∵OA⊥DA,CE⊥DA,∴∠CED=∠OAB=90°,∵CD∥OE,∴∠C解析:16【解析】【分析】易得△AOB∽△ECD,利用相似三角形对应边的比相等可得旗杆OA的长度.【详解】解:∵OA⊥DA,CE⊥DA,∴∠CED=∠OAB=90°,∵CD∥OE,∴∠CDA=∠OBA,∴△AOB∽△ECD,∴CE OA16OA==,,DE AB220解得OA=16.故答案为16.23.54【解析】【分析】连接AD,根据圆周角定理得到∠ADF=90°,根据五边形的内角和得到∠ABC=∠C=108°,求得∠ABD=72°,由圆周角定理得到∠F=∠ABD=72°,求得∠FAD=1解析:54【解析】【分析】连接AD ,根据圆周角定理得到∠ADF=90°,根据五边形的内角和得到∠ABC=∠C=108°,求得∠ABD=72°,由圆周角定理得到∠F=∠ABD=72°,求得∠FAD=18°,于是得到结论.【详解】连接AD ,∵AF 是⊙O 的直径,∴∠ADF=90°,∵五边形ABCDE 是⊙O 的内接正五边形,∴∠ABC=∠C=108°,∴∠ABD=72°,∴∠F=∠ABD=72°,∴∠FAD=18°,∴∠CDF=∠DAF=18°,∴∠BDF=36°+18°=54°,故答案为54.【点睛】本题考查正多边形与圆,圆周角定理等知识,解题的关键灵活运用所学知识解决问题.24.【解析】【分析】根据二次函数性质可得出点的坐标,求得直线为,联立方程求得的坐标,即可求得的坐标,同理求得的坐标,即可求得的坐标,根据坐标的变化找出变化规律,即可找出点的坐标.【详解】解:∵解析:2(1010,1010)-【解析】【分析】根据二次函数性质可得出点1A 的坐标,求得直线12A A 为2y x =+,联立方程求得2A 的坐标,即可求得3A 的坐标,同理求得4A 的坐标,即可求得5A 的坐标,根据坐标的变化找出变化规律,即可找出点2019A 的坐标.【详解】解:∵A 点坐标为()1,1,∴直线OA 为y x =,()11,1A -,∵12A A OA ∕∕,∴直线12A A 为2y x =+,解22y x y x =+⎧⎨=⎩得11x y =-⎧⎨=⎩或24x y =⎧⎨=⎩, ∴()22,4A ,∴()32,4A -,∵34A A OA ∕∕,∴直线34A A 为6y x =+,解26y x y x =+⎧⎨=⎩得24x y =-⎧⎨=⎩或39x y =⎧⎨=⎩, ∴()43,9A ,∴()53,9A -…,∴()220191010,1010A -,故答案为()21010,1010-. 【点睛】本题考查了二次函数图象上点的坐标特征、一次函数的图象以及交点的坐标,根据坐标的变化找出变化规律是解题的关键.25.140°.【解析】【分析】根据内心的定义可知OB 、OC 为∠ABC 和∠ACB 的角平分线,根据三角形内角和定理可求出∠OBC+∠OCB 的度数,进而可求出∠B OC 的度数.【详解】∵点O 是△ABC解析:140°.【解析】【分析】根据内心的定义可知OB 、OC 为∠ABC 和∠ACB 的角平分线,根据三角形内角和定理可求出∠OBC+∠OCB的度数,进而可求出∠BOC的度数.【详解】∵点O是△ABC的内切圆的圆心,∴OB、OC为∠ABC和∠ACB的角平分线,∴∠OBC=12∠ABC,∠OCB=12∠ACB,∵∠A=100°,∴∠ABC+∠ACB=180°-100°=80°,∴∠OBC+∠OCB=12(∠ABC+∠ACB)=40°,∴∠BOC=180°-40°=140°.故答案为:140°【点睛】本题考查了三角形内心的定义及三角形内角和定理,熟练掌握三角形内切圆的圆心是三角形三条角平分线的交点是解题关键.26.2【解析】【分析】首先连接BE,由题意易得BF=CF,△ACO∽△BKO,然后由相似三角形的对应边成比例,易得KO:CO=1:3,即可得OF:CF=OF:BF=1:2,在Rt△OBF中,即可求解析:2【解析】【分析】首先连接BE,由题意易得BF=CF,△ACO∽△BKO,然后由相似三角形的对应边成比例,易得KO:CO=1:3,即可得OF:CF=OF:BF=1:2,在Rt△OBF中,即可求得tan∠BOF的值,继而求得答案.【详解】如图,连接BE,∵四边形BCEK是正方形,∴KF=CF=12CK,BF=12BE,CK=BE,BE⊥CK,∴BF=CF,根据题意得:AC∥BK,∴△ACO∽△BKO,∴KO:CO=BK:AC=1:3,∴KO:KF=1:2,∴KO=OF=12CF=12BF,在Rt△PBF中,tan∠BOF=BFOF=2,∵∠AOD=∠BOF,∴tan∠AOD=2.故答案为2【点睛】此题考查了相似三角形的判定与性质,三角函数的定义.此题难度适中,解题的关键是准确作出辅助线,注意转化思想与数形结合思想的应用.27.y=-5(x+2)2-3【解析】【分析】根据向左平移横坐标减,向下平移纵坐标减求出新抛物线的顶点坐标,再利用顶点式解析式写出即可.【详解】解:∵抛物线y=-5x2先向左平移2个单位长度,再解析:y=-5(x+2)2-3【解析】【分析】根据向左平移横坐标减,向下平移纵坐标减求出新抛物线的顶点坐标,再利用顶点式解析式写出即可.【详解】解:∵抛物线y=-5x2先向左平移2个单位长度,再向下平移3个单位长度,∴新抛物线顶点坐标为(-2,-3),∴所得到的新的抛物线的解析式为y=-5(x+2)2-3.故答案为:y=-5(x+2)2-3.【点睛】本题考查了二次函数图象与几何变换,掌握平移的规律:左加右减,上加下减是关键.28.7【解析】【分析】根据配方法,先移项,然后两边同时加上4,即可求出n的值.【详解】解:∵,∴,∴,∴,∴;故答案为:7.【点睛】本题考查了配方法解一元二次方程,解题的关键是熟解析:7【解析】【分析】根据配方法,先移项,然后两边同时加上4,即可求出n 的值.【详解】解:∵2430x x +-=,∴243x x +=,∴2447x x ++=,∴2(2)7x +=,∴7n =;故答案为:7.【点睛】本题考查了配方法解一元二次方程,解题的关键是熟练掌握配方法的步骤. 29.8【解析】【分析】首先求出A 、B 的坐标,然后根据坐标求出AB 、CD 的长,再根据三角形面积公式计算即可.【详解】解:∵y =x2﹣2x ﹣3,设y =0,∴0=x2﹣2x ﹣3,解得:x1=3,解析:8【解析】【分析】首先求出A 、B 的坐标,然后根据坐标求出AB 、CD 的长,再根据三角形面积公式计算即可.【详解】解:∵y =x 2﹣2x ﹣3,设y =0,∴0=x2﹣2x﹣3,解得:x1=3,x2=﹣1,即A点的坐标是(﹣1,0),B点的坐标是(3,0),∵y=x2﹣2x﹣3,=(x﹣1)2﹣4,∴顶点C的坐标是(1,﹣4),∴△ABC的面积=12×4×4=8,故答案为8.【点睛】本题考查了抛物线与x轴的交点,二次函数的性质,二次函数的三种形式的应用,主要考查学生运用性质进行计算的能力,题目比较典型,难度适中.30.【解析】【分析】取DE的中点F,连接AF,根据直角三角形斜边中点的性质得出AF=EF,然后证得△BAF≌△DAE,得出AE=AF,从而证得△AEF是等边三角形,进一步证得∠ABC=60°,即可解析:3【解析】【分析】取DE的中点F,连接AF,根据直角三角形斜边中点的性质得出AF=EF,然后证得△BAF≌△DAE,得出AE=AF,从而证得△AEF是等边三角形,进一步证得∠ABC=60°,即可求得结论.【详解】取DE的中点F,连接AF,∴EF=DF,∵BE:ED=1:2,∴BE=EF=DF,∴BF=DE,∵AB=AD,∴∠ABD=∠D,∵AD⊥AE,EF=DF,∴AF=EF,在△BAF 和△DAE 中AB AD ABF D BF DE =⎧⎪∠=∠⎨⎪=⎩∴△BAF ≌△DAE (SAS ),∴AE =AF ,∴△AEF 是等边三角形,∴∠AED =60°,∴∠D =30°,∵∠ABC =2∠ABD ,∠ABD =∠D ,∴∠ABC =60°,∴cos ∠ABC =cos60°故答案为:2. 【点睛】 本题考查了全等三角形的判定和性质,等边三角形的判定和性质,正确的作出辅助线是解题的关键.三、解答题31.(1)10700y x =-+;(2)销售单价为50元时,每天获取的利润最大,最大利润是4000元;(3)44≤x ≤56【解析】【分析】(1)直接利用待定系数法求出一次函数解析式即可;(2)利用w=销量乘以每件利润进而得出关系式求出答案;(3)利用w=3640,进而解方程,再利用二次函数增减性得出答案.【详解】解:(1)y 与x 之间的函数关系式为:y kx b =+把(35,350),(55,150)代入得:由题意得:3503515055k b k b =+⎧⎨=+⎩解得:10700k b =-⎧⎨=⎩∴y 与x 之间的函数关系式为:10700y x =-+.(2)设销售利润为W 元则W=(x ﹣30)•y =(x ﹣30)(﹣10x +700),W =﹣10x 2+1000x ﹣21000W =﹣10(x ﹣50)2+4000∴当销售单价为50元时,每天获取的利润最大,最大利润是4000元.(3)令W =3640∴﹣10(x ﹣50)2+4000=3640∴x 1=44,x 2=56如图所示,由图象得:当44≤x ≤56时,每天利润不低于3640元.【点睛】此题主要考查了二次函数的应用以及待定系数法求一次函数解析式,正确掌握二次函数的性质是解题关键.32.(1)25552443y x x =--+;(2)1255. 【解析】【分析】(1)先把D 点坐标代入y =﹣12x +b 中求得b ,则一次函数解析式为y =﹣12x ﹣3,于是可确定A (﹣6,0),作EF ⊥x 轴于F ,如图,利用平行线分线段成比例求出OF =4,接着利用一次函数解析式确定E 点坐标为(4,﹣5),然后利用待定系数法求抛物线解析式; (2)作MH ⊥AD 于H ,作D 点关于x 轴的对称点D ′,如图,则D ′(0,3),利用勾股定理得到AD =5Rt △AMH ∽Rt △ADO ,利用相似比得到MH 5AM ,加上MD =MD ′,MD 5MA =MD ′+MH ,利用两点之间线段最短得到当点M 、H 、D ′共线时,MD 5的值最小,然后证明Rt △DHD ′∽Rt △DOA ,利用相似比求出D ′H 即可. 【详解】解:(1)把D (0,﹣3)代入y =﹣12x +b 得b =﹣3, ∴一次函数解析式为y =﹣12x ﹣3, 当y =0时,﹣12x ﹣3=0,解得x =﹣6,则A (﹣6,0), 作EF ⊥x 轴于F ,如图,。

江阴市北国中学九年级上册期末数学试卷(Word版含解析)

江阴市北国中学九年级上册期末数学试卷(Word版含解析)

江阴市北国中学九年级上册期末数学试卷(Word 版含解析)一、选择题1.如图,在□ABCD 中,E 、F 分别是边BC 、CD 的中点,AE 、AF 分别交BD 于点G 、H ,则图中阴影部分图形的面积与□ABCD 的面积之比为( )A .7 : 12B .7 : 24C .13 : 36D .13 : 722.已知二次函数y =ax 2+bx +c (a <0<b )的图像与x 轴只有一个交点,下列结论:①x <0时,y 随x 增大而增大;②a +b +c <0;③关于x 的方程ax 2+bx +c +2=0有两个不相等的实数根.其中所有正确结论的序号是( ) A .①②B .②③C .①③D .①②③3.在△ABC 中,若|sinA ﹣12|+(2﹣cosB )2=0,则∠C 的度数是( ) A .45° B .75°C .105°D .120°4.若关于x 的一元二次方程kx 2﹣2x ﹣1=0有两个不相等的实数根,则实数k 的取值范围是( ) A .k >﹣1 B .k <1且k≠0C .k≥﹣1且k≠0D .k >﹣1且k≠05.抛掷一枚质地均匀的硬币,若抛掷6次都是正面朝上,则抛掷第7次正面朝上的概率是( ) A .小于12B .等于12C .大于12D .无法确定6.如图,在△ABC 中,点D 、E 分别是AB 、AC 的中点,若△ADE 的面积为4,则△ABC 的面积为( )A .8B .12C .14D .167.如图,抛物线2144y x =-与x 轴交于A 、B 两点,点P 在一次函数6y x =-+的图像上,Q 是线段PA 的中点,连结OQ ,则线段OQ 的最小值是( )A .22B .1C .2D .28.如图,AB 是O 的直径,AC 切O 于点A ,若70C ∠=︒,则AOD ∠的度数为( )A .40°B .45°C .60°D .70°9.如图,四边形ABCD 中,90BAD ACB ∠=∠=,AB AD =,4AC BC =,设CD 的长为x ,四边形ABCD 的面积为y ,则y 与x 之间的函数关系式是( )A .2225y x = B .2425y x = C .225y x = D .245y x =10.如图1,在菱形ABCD 中,∠A =120°,点E 是BC 边的中点,点P 是对角线BD 上一动点,设PD 的长度为x ,PE 与PC 的长度和为y ,图2是y 关于x 的函数图象,其中H 是图象上的最低点,则a +b 的值为( )A .3B .234C 1433D 223311.如图,AC 是⊙O 的内接正四边形的一边,点B 在弧AC 上,且BC 是⊙O 的内接正六边形的一边.若AB 是⊙O 的内接正n 边形的一边,则n 的值为( )A .6B .8C .10D .1212.下列对于二次函数y =﹣x 2+x 图象的描述中,正确的是( )A .开口向上B .对称轴是y 轴C .有最低点D .在对称轴右侧的部分从左往右是下降的13.“一般的,如果二次函数y =ax 2+bx +c 的图象与x 轴有两个公共点,那么一元二次方程ax 2+bx +c =0有两个不相等的实数根.——苏科版《数学》九年级(下册)P 21”参考上述教材中的话,判断方程x 2﹣2x =1x﹣2实数根的情况是 ( ) A .有三个实数根B .有两个实数根C .有一个实数根D .无实数根14.已知点P 是线段AB 的黄金分割点(AP >PB ),AB=4,那么AP 的长是( ) A .252-B .25-C .251-D .52-15.如图,△ABC 中AB 两个顶点在x 轴的上方,点C 的坐标是(﹣1,0),以点C 为位似中心,在x 轴的下方作△ABC 的位似图形△A′B′C′,且△A′B′C′与△ABC 的位似比为2:1.设点B 的对应点B′的横坐标是a ,则点B 的横坐标是( )A .12a -B .1(1)2a -+ C .1(1)2a -- D .1(3)2a -+ 二、填空题16.若方程2410x x -+=的两根12,x x ,则122(1)x x x 的值为__________. 17.关于x 的一元二次方程20x a +=没有实数根,则实数a 的取值范围是 . 18.已知一组数据为1,2,3,4,5,则这组数据的方差为_____.19.将抛物线y =-5x 2先向左平移2个单位长度,再向下平移3个单位长度后,得到新的抛物线的表达式是________.20.二次函数y=x 2−4x+5的图象的顶点坐标为 .21.已知三点A (0,0),B (5,12),C (14,0),则△ABC 内心的坐标为____. 22.在泰州市举行的大阅读活动中,小明同学发现自己的一本书的宽与长之比为黄金比.已知这本书的长为20 cm ,则它的宽为________cm .(结果保留根号) 23.如图,∠C=∠E=90°,AC=3,BC=4,AE=2,则AD=_________ .24.二次函数2y ax bx c =++的图像开口方向向上,则a ______0.(用“=、>、<”填空)25.如图,在△ABC 中,AD 是BC 上的高,tan B =cos ∠DAC ,若sin C =1213,BC =12,则AD 的长_____.26.如图,123////l l l ,直线a 、b 与1l 、2l 、3l 分别相交于点A 、B 、C 和点D 、E 、F .若AB=3,BC=5,DE=4,则EF 的长为______.27.如图,在ABC ∆中,3AB =,4AC =,6BC =,D 是BC 上一点,2CD =,过点D 的直线l 将ABC ∆分成两部分,使其所分成的三角形与ABC ∆相似,若直线l 与ABC ∆另一边的交点为点P ,则DP =__________.28.若一个圆锥的侧面展开图是一个半径为3cm ,圆心角为120°的扇形,则该圆锥的底面半径为__________cm .29.一次安全知识测验中,学生得分均为整数,满分10分,这次测验中甲、乙两组学生人数都为6人,成绩如下:甲:7,9,10,8,5,9;乙:9,6,8,10,7,8. (1)请补充完整下面的成绩统计分析表:平均分 方差 众数 中位数甲组 89乙组5388(2)甲组学生说他们的众数高于乙组,所以他们的成绩好于乙组,但乙组学生不同意甲组学生的说法,认为他们组的成绩要好于甲组,请你给出一条支持乙组学生观点的理由_____________________________.30.如图,在△ABC 中,AC :BC :AB =3:4:5,⊙O 沿着△ABC 的内部边缘滚动一圈,若⊙O 的半径为1,且圆心O 运动的路径长为18,则△ABC 的周长为_____.三、解答题31.5G 网络比4G 网络的传输速度快10倍以上,因此人们对5G 产品充满期待.华为集团计划2020年元月开始销售一款5G 产品.根据市场营销部的规划,该产品的销售价格将随销售月份的变化而变化.若该产品第x 个月(x 为正整数)销售价格为y 元/台,y 与x 满足如图所示的一次函数关系:且第x 个月的销售数量p (万台)与x 的关系为1p x =+.(1)该产品第6个月每台销售价格为______元;(2)求该产品第几个月的销售额最大?该月的销售价格是多少元/台?(3)若华为董事会要求销售该产品的月销售额不低于27500万元,则预计销售部符合销售要求的是哪几个月?(4)若每销售1万台该产品需要在销售额中扣除m 元推广费用,当68x ≤≤时销售利润最大值为22500万元时,求m 的值.32.已知二次函数y=x2-22mx+m2+m-1(m为常数).(1)求证:不论m为何值,该二次函数的图像与x轴总有两个公共点;(2)将该二次函数的图像向下平移k(k>0)个单位长度,使得平移后的图像经过点(0,-2),则k的取值范围是.33.如图,分别以△ABC的边AC和BC为腰向外作等腰直角△DAC和等腰直角△EBC,连接DE.(1)求证:△DAC∽△EBC;(2)求△ABC与△DEC的面积比.34.已知抛物线y=x2﹣2x﹣3与x轴交于点A、B,与y轴交于点C,点D为OC中点,点P在抛物线上.(1)直接写出A、B、C、D坐标;(2)点P在第四象限,过点P作PE⊥x轴,垂足为E,PE交BC、BD于G、H,是否存在这样的点P,使PG=GH=HE?若存在,求出点P坐标;若不存在,请说明理由.(3)若直线y=13x+t与抛物线y=x2﹣2x﹣3在x轴下方有两个交点,直接写出t的取值范围.35.为了扎实推进精准扶贫工作,某地出台了民生兜底、医保脱贫、教育救助、产业扶持、养老托管和易地搬迁这六种帮扶措施,每户贫困户都享受了2到5种帮扶措施,现把享受了2种、3种4种和5种帮扶措施的贫困户分别称为A、B、C、D类贫困户,为检查帮扶措施是否落实,随机抽取了若干贫困户进行调查,现将收集的数据绘制成下面两幅不完整的统计图:请根据图中信息回答下面的问题:(1)本次抽样调查了户贫困户;(2)本次共抽查了户C类贫困户,请补全条形统计图;(3)若该地共有13000户贫困户,请估计至少得到4项帮扶措施的大约有多少户?四、压轴题36.已知P是⊙O上一点,过点P作不过圆心的弦PQ,在劣弧PQ和优弧PQ上分别有动点A、B(不与P,Q重合),连接AP、BP. 若∠APQ=∠BPQ.(1)如图1,当∠APQ=45°,AP=1,BP=22时,求⊙O的半径;(2)如图2,选接AB,交PQ于点M,点N在线段PM上(不与P、M重合),连接ON、OP,若∠NOP+2∠OPN=90°,探究直线AB与ON的位置关系,并证明.37.如图1,△ABC中,AB=AC=4,∠BAC=100,D是BC的中点.小明对图1进行了如下探究:在线段AD上任取一点E,连接EB.将线段EB绕点E逆时针旋转80°,点B的对应点是点F,连接BF,小明发现:随着点E在线段AD上位置的变化,点F的位置也在变化,点F可能在直线AD的左侧,也可能在直线AD上,还可能在直线AD的右侧.请你帮助小明继续探究,并解答下列问题:(1)如图2,当点F在直线AD上时,连接CF,猜想直线CF与直线AB的位置关系,并说明理由.(2)若点F落在直线AD的右侧,请在备用图中画出相应的图形,此时(1)中的结论是否仍然成立,为什么?(3)当点E在线段AD上运动时,直接写出AF的最小值.38.点P 为图形M 上任意一点,过点P 作PQ ⊥直线,l 垂足为Q ,记PQ 的长度为d . 定义一:若d 存在最大值,则称其为“图形M 到直线l 的限距离”,记作()max ,D M l ; 定义二:若d 存在最小值,则称其为“图形M 到直线l 的基距离”,记作()min ,D M l ; (1)已知直线1:2l y x =--,平面内反比例函数2y x=在第一象限内的图象记作,H 则()1,min D H l = .(2)已知直线2:33l y x =+,点()1,0A -,点()()1,0,,0B T t 是x 轴上一个动点,T 的半径为3,点C 在T 上,若()max 243,63,D ABC l ≤≤求此时t 的取值范围,(3)已知直线21211k k y x k k --=+--恒过定点1111,8484P a b c a b c ⎛⎫⎪⎝+-+⎭+,点(),D a b 恒在直线3l 上,点(),28E m m +是平面上一动点,记以点E 为顶点,原点为对角线交点的正方形为图形,K ()min 3,0D K l =,若请直接写出m 的取值范围.39.如图,函数y=-x 2+bx +c 的图象经过点A (m ,0),B (0,n )两点,m ,n 分别是方程x 2-2x -3=0的两个实数根,且m <n .(1)求m ,n 的值以及函数的解析式;(2)设抛物线y=-x 2+bx +c 与x 轴的另一交点为点C ,顶点为点D ,连结BD 、BC 、CD ,求△BDC 面积;(3)对于(1)中所求的函数y=-x 2+bx +c , ①当0≤x ≤3时,求函数y 的最大值和最小值;②设函数y 在t ≤x ≤t +1内的最大值为p ,最小值为q ,若p-q =3,求t 的值. 40.如图,抛物线2)12(0y ax x c a =-+≠交x 轴于,A B 两点,交y 轴于点C .直线122y x =-经过点,B C .(1)求抛物线的解析式;(2)点P 是抛物线上一动点,过P 作x 轴的垂线,交直线BC 于M .设点P 的横坐标是t .①当PCM ∆是直角三角形时,求点P 的坐标;②当点P 在点B 右侧时,存在直线l ,使点,,A C M 到该直线的距离相等,求直线解析式y kx b =+(,k b 可用含t 的式子表示).【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【解析】 【分析】根据已知条件想办法证明BG=GH=DH ,即可解决问题; 【详解】解:∵四边形ABCD 是平行四边形, ∴AB ∥CD ,AD ∥BC ,AB=CD ,AD=BC , ∵DF=CF ,BE=CE , ∴12DH DF HB AB ==,12BG BE DG AD ==, ∴13DH BG BD BD ==, ∴BG=GH=DH ,∴S △ABG =S △AGH =S △ADH , ∴S 平行四边形ABCD =6 S △AGH , ∴S △AGH :ABCD S 平行四边形=1:6,∵E、F分别是边BC、CD的中点,∴12EFBD=,∴14EFCBCDDSS=,∴18EFCABCDSS=四边形,∴1176824AGH EFCABCDS SS+=+=四边形=7∶24,故选B.【点睛】本题考查了平行四边形的性质、平行线分线段成比例定理、等底同高的三角形面积性质,题目的综合性很强,难度中等.2.C解析:C【解析】【分析】①根据对称轴及增减性进行判断;②根据函数在x=1处的函数值判断;③利用抛物线与直线y=-2有两个交点进行判断.【详解】解:∵a<0<b,∴二次函数的对称轴为x=2ba->0,在y轴右边,且开口向下,∴x<0时,y随x增大而增大;故①正确;根据二次函数的系数,可得图像大致如下,由于对称轴x=2ba-的值未知,∴当x=1时,y=a+b+c的值无法判断,故②不正确;由图像可知,y==ax2+bx+c≤0,∴二次函数与直线y=-2有两个不同的交点,∴方程ax 2+bx +c =-2有两个不相等的实数根.故③正确.故选C.【点睛】本题考查了二次函数的图像的性质,二次函数的图像与系数的关系,二次函数与方程的关系,借助图像解决问题是关键.3.C解析:C【解析】【分析】根据非负数的性质列出关系式,根据特殊角的三角函数值求出∠A 、∠B 的度数,根据三角形内角和定理计算即可.【详解】由题意得,sinA-12=0,即sinA=12, 解得,∠A=30°,∠B=45°,∴∠C=180°-∠A-∠B=105°,故选C .【点睛】本题考查的是非负数的性质的应用、特殊角的三角函数值的计算和三角形内角和定理的应用,熟记特殊角的三角函数值是解题的关键.4.D解析:D【解析】∵一元二次方程kx 2﹣2x ﹣1=0有两个不相等的实数根,∴△=b 2﹣4ac=4+4k >0,且k≠0.解得:k >﹣1且k≠0.故选D .考点:一元二次方程的定义,一元二次方程根的判别式,分类思想的应用.5.B解析:B【解析】【分析】利用概率的意义直接得出答案.【详解】解:抛掷一枚质地均匀的硬币,正面朝上概率等于12,前6次的结果都是正面朝上,不影响下一次抛掷正面朝上概率,则第7次抛掷这枚硬币,正面朝上的概率为:12, 故选:B .【点睛】此题主要考查了概率的意义,正确把握概率的定义是解题关键. 6.D解析:D【解析】【分析】直接利用三角形中位线定理得出DE ∥BC ,DE=12BC ,再利用相似三角形的判定与性质得出答案.【详解】解:∵在△ABC 中,点D 、E 分别是AB 、AC 的中点,∴DE ∥BC ,DE=12BC , ∴△ADE ∽△ABC , ∵DE BC =12, ∴14ADE ABC S S ∆∆=, ∵△ADE 的面积为4,∴△ABC 的面积为:16,故选D .【点睛】考查了三角形的中位线以及相似三角形的判定与性质,正确得出△ADE ∽△ABC 是解题关键.7.A解析:A【解析】【分析】先求得A 、B 两点的坐标,设()6P m m -,,根据之间的距离公式列出2PB 关于m 的函数关系式,求得其最小值,即可求得答案.【详解】令0y =,则21404x -=, 解得:4x =±,∴A 、B 两点的坐标分别为:()()4040A B -,、,, 设点P 的坐标为()6m m -,, ∴()()2222246220522(5)2PB m m m m m =-+-=-+=-+,∵20>,∴当5m =时,2PB 有最小值为:2,即PB ,∵A 、B 为抛物线的对称点,对称轴为y 轴,∴O 为线段AB 中点,且Q 为AP 中点,∴122OQ PB ==. 故选:A .【点睛】本题考查了二次函数与一次函数的综合问题,涉及到的知识有:两点之间的距离公式,三角形中位线的性质,二次函数的最值问题,利用两点之间的距离公式求得2PB 的最小值是解题的关键.8.A解析:A【解析】【分析】先依据切线的性质求得∠CAB 的度数,然后依据直角三角形两锐角互余的性质得到∠CBA 的度数,然后由圆周角定理可求得∠AOD 的度数.【详解】解:∵AC 是圆O 的切线,AB 是圆O 的直径,∴AB ⊥AC ,∴∠CAB=90°,又∵∠C=70°,∴∠CBA=20°,∴∠AOD=40°.故选:A .【点睛】本题主要考查的是切线的性质、圆周角定理、直角三角形的性质,求得∠CBA=20°是解题的关键.9.C解析:C【解析】【分析】四边形ABCD 图形不规则,根据已知条件,将△ABC 绕A 点逆时针旋转90°到△ADE 的位置,求四边形ABCD 的面积问题转化为求梯形ACDE 的面积问题;根据全等三角形线段之间的关系,结合勾股定理,把梯形上底DE,下底AC,高DF分别用含x的式子表示,可表示四边形ABCD的面积.【详解】作AE⊥AC,DE⊥AE,两线交于E点,作DF⊥AC垂足为F点,∵∠BAD=∠CAE=90°,即∠BAC+∠CAD=∠CAD+∠DAE∴∠BAC=∠DAE又∵AB=AD,∠ACB=∠E=90°∴△ABC≌△ADE(AAS)∴BC=DE,AC=AE,设BC=a,则DE=a,DF=AE=AC=4BC=4a,CF=AC-AF=AC-DE=3a,在Rt△CDF中,由勾股定理得,CF2+DF2=CD2,即(3a)2+(4a)2=x2,解得:a=5x,∴y=S四边形ABCD=S梯形ACDE=12×(DE+AC)×DF=12×(a+4a)×4a=10a2=25x2.故选C.【点睛】本题运用了旋转法,将求不规则四边形面积问题转化为求梯形的面积,充分运用了全等三角形,勾股定理在解题中的作用.10.C解析:C【解析】【分析】由A、C关于BD对称,推出PA=PC,推出PC+PE=PA+PE,推出当A、P、E共线时,PE+PC的值最小,观察图象可知,当点P与B重合时,PE+PC=6,推出BE=CE=2,AB=BC=4,分别求出PE+PC的最小值,PD的长即可解决问题.【详解】解:∵在菱形ABCD中,∠A=120°,点E是BC边的中点,∴易证AE ⊥BC ,∵A 、C 关于BD 对称,∴PA =PC ,∴PC +PE =PA +PE ,∴当A 、P 、E 共线时,PE +PC 的值最小,即AE 的长.观察图象可知,当点P 与B 重合时,PE +PC =6,∴BE =CE =2,AB =BC =4,∴在Rt △AEB 中,BE =∴PC +PE 的最小值为∴点H 的纵坐标a =∵BC ∥AD , ∴AD PD BE PB= =2,∵BD =∴PD =233⨯=∴点H 的横坐标b ,∴a +b ==; 故选C .【点睛】 本题考查动点问题的函数图象,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.11.D解析:D【解析】【分析】连接AO 、BO 、CO ,根据中心角度数=360°÷边数n ,分别计算出∠AOC 、∠BOC 的度数,根据角的和差则有∠AOB =30°,根据边数n =360°÷中心角度数即可求解.【详解】连接AO 、BO 、CO ,∵AC 是⊙O 内接正四边形的一边,∴∠AOC =360°÷4=90°,∵BC 是⊙O 内接正六边形的一边,∴∠BOC =360°÷6=60°,∴∠AOB =∠AOC ﹣∠BOC =90°﹣60°=30°,∴n =360°÷30°=12;故选:D.【点睛】本题考查正多边形和圆,解题的关键是根据正方形的性质、正六边形的性质求出中心角的度数.12.D解析:D【解析】【分析】根据题目中的函数解析式和二次函数的性质,可以判断各个选项中的结论是否正确,从而可以解答本题.【详解】解:∵二次函数y=﹣x2+x=﹣(x12)2+14,∴a=﹣1,该函数的图象开口向下,故选项A错误;对称轴是直线x=12,故选项B错误;当x=12时取得最大值14,该函数有最高点,故选项C错误;在对称轴右侧的部分从左往右是下降的,故选项D正确;故选:D.【点睛】本题考查了二次函数的性质,掌握函数解析式和二次函数的性质是解题的关键.13.C解析:C【解析】试题分析:由得,,即是判断函数与函数的图象的交点情况.因为函数与函数的图象只有一个交点所以方程只有一个实数根故选C.考点:函数的图象点评:函数的图象问题是初中数学的重点和难点,是中考常见题,在压轴题中比较常见,要特别注意.14.A解析:A【解析】根据黄金比的定义得:51APAB-=,得514252AP-== .故选A.15.D解析:D【解析】【分析】设点B的横坐标为x,然后表示出BC、B′C的横坐标的距离,再根据位似变换的概念列式计算.【详解】设点B的横坐标为x,则B、C间的横坐标的长度为﹣1﹣x,B′、C间的横坐标的长度为a+1,∵△ABC放大到原来的2倍得到△A′B′C,∴2(﹣1﹣x)=a+1,解得x=﹣12(a+3),故选:D.【点睛】本题考查了位似变换,坐标与图形的性质,根据位似变换的定义,利用两点间的横坐标的距离等于对应边的比列出方程是解题的关键.二、填空题16.5【解析】【分析】根据根与系数的关系求出,代入即可求解.【详解】∵是方程的两根∴=-=4,==1∴===4+1=5,故答案为:5.【点睛】此题主要考查根与系数的关系,解题的关键是解析:5【解析】【分析】根据根与系数的关系求出12x x +,12x x ⋅代入即可求解.【详解】∵12,x x 是方程2410x x -+=的两根∴12x x +=-b a =4,12x x ⋅=c a=1 ∴122(1)x x x =1122x x x x ++=1212x x x x ++=4+1=5,故答案为:5.【点睛】此题主要考查根与系数的关系,解题的关键是熟知12x x +=-b a ,12x x ⋅=c a的运用. 17.a >0.【解析】试题分析:∵方程没有实数根,∴△=﹣4a <0,解得:a >0,故答案为a >0. 考点:根的判别式.解析:a >0.【解析】试题分析:∵方程20x a +=没有实数根,∴△=﹣4a <0,解得:a >0,故答案为a >0. 考点:根的判别式.18.【解析】试题分析:先根据平均数的定义确定平均数,再根据方差公式进行计算即可求出答案.由平均数的公式得:(1+2+3+4+5)÷5=3,∴方差=[(1﹣3)2+(2﹣3)2+(3﹣3)2+(4解析:【解析】试题分析:先根据平均数的定义确定平均数,再根据方差公式进行计算即可求出答案. 由平均数的公式得:(1+2+3+4+5)÷5=3,∴方差=[(1﹣3)2+(2﹣3)2+(3﹣3)2+(4﹣3)2+(5﹣3)2]÷5=2.考点:方差.19.y =-5(x+2)2-3【解析】【分析】根据向左平移横坐标减,向下平移纵坐标减求出新抛物线的顶点坐标,再利用顶点式解析式写出即可.【详解】解:∵抛物线y=-5x2先向左平移2个单位长度,再解析:y =-5(x +2)2-3【解析】【分析】根据向左平移横坐标减,向下平移纵坐标减求出新抛物线的顶点坐标,再利用顶点式解析式写出即可.【详解】解:∵抛物线y=-5x 2先向左平移2个单位长度,再向下平移3个单位长度,∴新抛物线顶点坐标为(-2,-3),∴所得到的新的抛物线的解析式为y=-5(x+2)2-3.故答案为:y=-5(x+2)2-3.【点睛】本题考查了二次函数图象与几何变换,掌握平移的规律:左加右减,上加下减是关键.20.(2,1)【解析】【分析】将二次函数解析式化为顶点式,即可得到顶点坐标.【详解】将二次函数配方得则顶点坐标为(2,1)考点:二次函数的图象和性质.解析:(2,1)【解析】【分析】将二次函数解析式化为顶点式,即可得到顶点坐标.【详解】将二次函数245y x x =-+配方得22()1y x =-+则顶点坐标为(2,1)考点:二次函数的图象和性质.21.(6,4).【解析】【分析】作BQ⊥AC 于点Q ,由题意可得BQ=12,根据勾股定理分别求出BC 、AB 的长,继而利用三角形面积,可得△OAB 内切圆半径,过点P 作PD⊥AC 于D ,PF⊥AB 于F ,P解析:(6,4).【解析】【分析】作BQ ⊥AC 于点Q ,由题意可得BQ=12,根据勾股定理分别求出BC 、AB 的长,继而利用三角形面积,可得△OAB 内切圆半径,过点P 作PD ⊥AC 于D ,PF ⊥AB 于F ,PE ⊥BC 于E ,设AD=AF=x ,则CD=CE=14-x ,BF=13-x ,BE=BC-CE=15-(14-x )=1+x ,由BF=BE 可得13-x=1+x ,解之求出x 的值,从而得出点P 的坐标,即可得出答案.【详解】解:如图,过点B 作BQ ⊥AC 于点Q ,则AQ=5,BQ=12,∴AB=2213AQ BQ +=,CQ=AC-AQ=9,∴BC=2215BQ CQ +=设⊙P 的半径为r ,根据三角形的面积可得:r=14124141315⨯=++ 过点P 作PD ⊥AC 于D ,PF ⊥AB 于F ,PE ⊥BC 于E ,设AD=AF=x ,则CD=CE=14-x ,BF=13-x ,∴BE=BC-CE=15-(14-x )=1+x ,由BF=BE 可得13-x=1+x ,解得:x=6,∴点P 的坐标为(6,4),故答案为:(6,4).【点睛】本题主要考查勾股定理、三角形的内切圆半径公式及切线长定理,根据三角形的内切圆半径公式及切线长定理求出点P 的坐标是解题的关键.22.() 【解析】设它的宽为xcm .由题意得 . ∴ .点睛:本题主要考查黄金分割的应用.把一条线段分割为两部分,使其中较长部分与全长之比等于较短部分与较长部分之比,其比值是一个无理数,即,近似值约解析:(10) 【解析】设它的宽为x cm .由题意得1:202x =. ∴10x =.点睛:本题主要考查黄金分割的应用.把一条线段分割为两部分,使其中较长部分与全长之,近似值约为0.618. 23.. 【解析】试题分析:由∠C=∠E=90°,∠BAC=∠DAE 可得△ABC ∽△ADE ,根据相似三角形的对应边的比相等就可求出AD 的长. 试题解析:∵∠C=∠E=90°,∠BAC=∠DAE ∴△AB解析:103. 【解析】试题分析:由∠C=∠E=90°,∠BAC=∠DAE 可得△ABC ∽△ADE ,根据相似三角形的对应边的比相等就可求出AD 的长.试题解析:∵∠C=∠E=90°,∠BAC=∠DAE ∴△ABC ∽△ADE ∴AC :AE=BC :DE ∴DE=83∴103AD =考点: 1.相似三角形的判定与性质;2.勾股定理.24.> 【解析】 【分析】根据题意直接利用二次函数的图象与a 的关系即可得出答案. 【详解】解:因为二次函数的图像开口方向向上, 所以有>0. 故填>. 【点睛】本题主要考查二次函数的性质,掌握二次解析:> 【解析】 【分析】根据题意直接利用二次函数的图象与a 的关系即可得出答案. 【详解】解:因为二次函数2y ax bx c =++的图像开口方向向上, 所以有a >0. 故填>. 【点睛】本题主要考查二次函数的性质,掌握二次项系数a 与抛物线的关系是解题的关键,图像开口方向向上,a >0;图像开口方向向下,a <0.25.8 【解析】 【分析】在Rt△ADC 中,利用正弦的定义得sinC ==,则可设AD =12x ,所以AC =13x ,利用勾股定理计算出DC =5x ,由于cos∠DAC=sinC 得到tanB =,接着在Rt△A解析:8 【解析】 【分析】在Rt △ADC 中,利用正弦的定义得sin C =AD AC =1213,则可设AD =12x ,所以AC =13x ,利用勾股定理计算出DC =5x ,由于cos ∠DAC =sin C 得到tan B =1213,接着在Rt △ABD 中利用正切的定义得到BD =13x ,所以13x +5x =12,解得x =23,然后利用AD =12x 进行计算.在Rt△ADC中,sin C=ADAC=1213,设AD=12x,则AC=13x,∴DC=5x,∵cos∠DAC=sin C=12 13,∴tan B=12 13,在Rt△ABD中,∵tan B=ADBD=1213,而AD=12x,∴BD=13x,∴13x+5x=12,解得x=23,∴AD=12x=8.故答案为8.【点睛】本题主要考查解直角三角形,熟练掌握锐角三角函数的定义,是解题的关键.26.【解析】【分析】直接根据平行线分线段成比例定理即可得.【详解】,,,,解得,故答案为:.【点睛】本题考查了平行线分线段成比例定理,熟记平行线分线段成比例定理是解题关键.解析:20 3【解析】【分析】直接根据平行线分线段成比例定理即可得.123////l l l ,AB DEBC EF∴=, 3,5,4AB BC DE ===,345EF∴=, 解得203EF =, 故答案为:203.【点睛】本题考查了平行线分线段成比例定理,熟记平行线分线段成比例定理是解题关键.27.1,, 【解析】 【分析】根据P 的不同位置,分三种情况讨论,即可解答. 【详解】解:如图:当DP∥AB 时∴△DCP∽△BCA ∴即,解得DP=1如图:当P 在AB 上,即DP∥AC ∴△DC解析:1,83,32【解析】 【分析】根据P 的不同位置,分三种情况讨论,即可解答. 【详解】解:如图:当DP ∥AB 时∴△DCP ∽△BCA∴DC DP BC AB =即263DP=,解得DP=1 如图:当P 在AB 上,即DP ∥AC∴△DCP ∽△BCA∴BD DP BC AC =即6264DP -=,解得DP=83如图,当∠CPD=∠B ,且∠C=∠C 时,∴△DCP ∽△ACB ∴PD CD AB AC =即243DP =,解得DP=32故答案为1,83,32. 【点睛】本题考查了相似三角形的判定和性质,掌握分类讨论思想并全部找到不同位置的P 点是解答本题的关键.28.1 【解析】 【分析】(1)根据,求出扇形弧长,即圆锥底面周长; (2)根据,即,求圆锥底面半径. 【详解】该圆锥的底面半径= 故答案为:1. 【点睛】圆锥的侧面展开图是扇形,解题关键是理解扇解析:1 【解析】【分析】 (1)根据180n Rl π=,求出扇形弧长,即圆锥底面周长; (2)根据2C r π=,即2Cr π=,求圆锥底面半径. 【详解】 该圆锥的底面半径=()1203=11802cm ππ⋅⋅故答案为:1. 【点睛】圆锥的侧面展开图是扇形,解题关键是理解扇形弧长就是圆锥底面周长.29.(1),8.5,8;(2)两队的平均分相同,但乙组的方差小于甲组方差,所以乙组成绩更稳定. 【解析】 【分析】(1)根据方差、平均数的计算公式求出甲组方差和乙组平均数,根据中位数的定义,取出甲组中解析:(1)83,8.5,8;(2)两队的平均分相同,但乙组的方差小于甲组方差,所以乙组成绩更稳定. 【解析】 【分析】(1)根据方差、平均数的计算公式求出甲组方差和乙组平均数,根据中位数的定义,取出甲组中位数;(2)根据(1)中表格数据,分别从反应数据集中程度的中位数和平均分及反应数据波动程度的方差比较甲、乙两组,由此找出乙组优于甲组的一条理由. 【详解】 (1)甲组方差:()()()()()()22222218789810888589863⎡⎤-+-+-+-+-+-=⎣⎦ 甲组数据由小到大排列为:5,7,8,9,9,10 故甲组中位数:(8+9)÷2=8.5 乙组平均分:(9+6+8+10+7+8)÷6=8 填表如下:故答案为:83,8.5,8;两队的平均分相同,但乙组的方差小于甲组方差,所以乙组成绩更稳定. 【点睛】本题考查数据分析,熟练掌握反应数据集中趋势的中位数、众数和平均数以及反应数据波动程度的方差的计算公式和定义是解题关键.30.30 【解析】 【分析】如图,首先利用勾股定理判定△ABC 是直角三角形,由题意得圆心O 所能达到的区域是△DEG,且与△ABC 三边相切,设切点分别为G 、H 、P 、Q 、M 、N ,连接DH 、DG 、EP 、EQ解析:30 【解析】 【分析】如图,首先利用勾股定理判定△ABC 是直角三角形,由题意得圆心O 所能达到的区域是△DEG ,且与△ABC 三边相切,设切点分别为G 、H 、P 、Q 、M 、N ,连接DH 、DG 、EP 、EQ 、FM 、FN ,根据切线性质可得:AG =AH ,PC =CQ ,BN =BM ,DG 、EP 分别垂直于AC ,EQ 、FN 分别垂直于BC ,FM 、DH 分别垂直于AB ,继而则有矩形DEPG 、矩形EQNF 、矩形DFMH ,从而可知DE =GP ,EF =QN ,DF =HM ,DE ∥GP ,DF ∥HM ,EF ∥QN ,∠PEF =90°,根据题意可知四边形CPEQ 是边长为1的正方形,根据相似三角形的判定可得△DEF ∽△ACB ,根据相似三角形的性质可知:DE ∶EF ∶FD =AC ∶CB ∶BA =3∶4∶5,进而根据圆心O 运动的路径长列出方程,求解算出DE 、EF 、FD 的长,根据矩形的性质可得:GP 、QN 、MH 的长,根据切线长定理可设:AG =AH =x ,BN =BM =y ,根据线段的和差表示出AC 、BC 、AB 的长,进而根据AC ∶CB ∶BA =3∶4∶5列出比例式,继而求出x 、y 的值,进而即可求解△ABC 的周长. 【详解】∵AC ∶CB ∶BA =3∶4∶5,设AC =3a ,CB =4a ,BA =5a (a >0) ∴()()()222222=345AC CB a a a BA ++== ∴△ABC 是直角三角形,设⊙O 沿着△ABC 的内部边缘滚动一圈,如图所示, 连接DE 、EF 、DF ,设切点分别为G 、H 、P 、Q 、M 、N , 连接DH 、DG 、EP 、EQ 、FM 、FN ,。

2019年江阴市初三数学上期末模拟试题附答案

2019年江阴市初三数学上期末模拟试题附答案

2019年江阴市初三数学上期末模拟试题附答案一、选择题1.毕业前期,某班的全体学生互赠贺卡,共赠贺卡1980张.设某班共有x 名学生,那么所列方程为( )A .()1119802x x +=B .()1119802x x -= C .()11980x x +=D .()11980x x -= 2.关于x 的方程(m ﹣3)x 2﹣4x ﹣2=0有两个不相等的实数根,则实数m 的取值花围是( )A .m≥1B .m >1C .m≥1且m≠3D .m >1且m≠3 3.某人到瓷砖商店去购买一种多边形形状的瓷砖,用来铺设无缝地板,他购买的瓷砖形状不可以是( )A .正三角形B .矩形C .正八边形D .正六边形 4.若⊙O 的半径为5cm ,点A 到圆心O 的距离为4cm ,那么点A 与⊙O 的位置关系是A .点A 在圆外B .点A 在圆上C .点A 在圆内D .不能确定 5.下列说法正确的是( ) A .“任意画出一个等边三角形,它是轴对称图形”是随机事件B .某种彩票的中奖率为11000,说明每买1000张彩票,一定有一张中奖 C .抛掷一枚质地均匀的硬币一次,出现正面朝上的概率为13D .“概率为1的事件”是必然事件 6.如图,AC 是⊙O 的内接正四边形的一边,点B 在弧AC 上,且BC 是⊙O 的内接正六边形的一边.若AB 是⊙O 的内接正n 边形的一边,则n 的值为( )A .6B .8C .10D .127.如图,在方格纸中,随机选择标有序号①②③④⑤中的一个小正方形涂黑,与图中阴影部分构成轴对称图形的概率是( )A .15B .25C .35D .458.用配方法解方程x 2+2x ﹣5=0时,原方程应变形为( )A .(x ﹣1)2=6B .(x+1)2=6C .(x+2)2=9D .(x ﹣2)2=9 9.若关于x 的一元二次方程()26230a x x --+=有实数根,则整数a 的最大值是( )A .4B .5C .6D .710.“射击运动员射击一次,命中靶心”这个事件是( )A .确定事件B .必然事件C .不可能事件D .不确定事件11.以3942c x ±+=为根的一元二次方程可能是( ) A .230x x c --=B .230x x c +-=C .230-+=x x cD .230++=x x c 12.当ab >0时,y =ax 2与y =ax +b 的图象大致是( )A .B .C .D .二、填空题13.小明把如图所示的3×3的正方形网格纸板挂在墙上玩飞镖游戏(每次飞镖均落在纸板上,且落在纸板的任何一个点的机会都相等),则飞镖落在阴影区域(四个全等的直角三角形的每个顶点都在格点上)的概率是______________.14.直线y=kx +6k 交x 轴于点A ,交y 轴于点B ,以原点O 为圆心,3为半径的⊙O 与l 相交,则k 的取值范围为_____________.15.函数 2y 24x x =-- 的最小值为_____.16.如图,抛物线y =﹣2x 2+2与x 轴交于点A 、B ,其顶点为E .把这条抛物线在x 轴及其上方的部分记为C 1,将C 1向右平移得到C 2,C 2与x 轴交于点B 、D ,C 2的顶点为F ,连结EF .则图中阴影部分图形的面积为______.17.某地区2017年投入教育经费2 500万元,2019年计划投入教育经费3 025万元,则2017年至2019年,该地区投入教育经费的年平均增长率为_____.18.若点A(-3,y1)、B(0,y2)是二次函数y=-2(x-1)2+3图象上的两点,那么y1与y2的大小关系是________(填y1>y2、y1=y2或y1<y2).19.一个扇形的半径为6,弧长为3π,则此扇形的圆心角为___度.20.若实数a、b满足a+b2=2,则a2+5b2的最小值为_____.三、解答题21.如图所示,抛物线y=x2+bx+c经过A、B两点,A、B两点的坐标分别为(﹣1,0)、(0,﹣3).(1)求抛物线的函数解析式;(2)点E为抛物线的顶点,点C为抛物线与x轴的另一交点,点D为y轴上一点,且DC =DE,求出点D的坐标;(3)在第二问的条件下,在直线DE上存在点P,使得以C、D、P为顶点的三角形与△DOC相似,请你直接写出所有满足条件的点P的坐标.22.某童装店购进一批20元/件的童装,由销售经验知,每天的销售量y(件)与销售单价x(元)之间存在如图的一次函数关系.(1)求y与x之间的函数关系;(2)当销售单价定为多少时,每天可获得最大利润,最大利润是多少?23.如图,方格纸中每个小正方形的边长都是1个单位长度,Rt△ABC的三个顶点A(-2,2),B(0,5),C(0,2).(1)将△ABC以点C为旋转中心旋转180°,得到△A1B1C,请画出△A1B1C的图形.(2)平移△ABC,使点A的对应点A2坐标为(-2,-6),请画出平移后对应的△A2B2C2的图形.(3)若将△A1B1C绕某一点旋转可得到△A2B2C2,请直接写出旋转中心的坐标.24.已知关于x的一元二次方程(a+c)x2+2bx+(a﹣c)=0,其中a、b、c分别为△ABC三边的长.(1)如果x=﹣1是方程的根,试判断△ABC的形状,并说明理由;(2)如果方程有两个相等的实数根,试判断△ABC的形状,并说明理由;(3)如果△ABC是等边三角形,试求这个一元二次方程的根.25.解下列方程3(x-2)2=x(x-2).【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】根据题意得:每人要赠送(x-1)张贺卡,有x个人,然后根据题意可列出方程:(x-1)x=1980.【详解】解:根据题意得:每人要赠送(x-1)张贺卡,有x个人,∴全班共送:(x-1)x=1980,故选:D.【点睛】此题主要考查了由实际问题抽象出一元二次方程,本题要注意读清题意,弄清楚每人要赠送(x-1)张贺卡,有x个人是解决问题的关键.2.D解析:D【解析】【分析】根据二次项系数非零及根的判别式列出关于m 的一元一次不等式组,然后方程组即可.【详解】解:∵(m-3)x 2-4x-2=0是关于x 的方程有两个不相等的实数根,∴230(4)4(3)(2)0m m -≠⎧⎨∆=---⨯->⎩ 解得:m>1且m ≠3.故答案为D.【点睛】本题考查了根的判别式以及一元二次方程的定义,正确运用一元二次方程的定义和根的判别式解题是解答本题的关键.3.C解析:C【解析】因为正八边形的每个内角为135︒,不能整除360度,故选C.4.C解析:C【解析】【分析】要确定点与圆的位置关系,主要确定点与圆心的距离与半径的大小关系;利用d >r 时,点在圆外;当d=r 时,点在圆上;当d <r 时,点在圆内判断出即可.【详解】解:∵⊙O 的半径为5cm ,点A 到圆心O 的距离为4cm ,∴d <r ,∴点A 与⊙O 的位置关系是:点A 在圆内,故选C .5.D解析:D【解析】试题解析:A 、“任意画出一个等边三角形,它是轴对称图形”是必然事件,选项错误;B. 某种彩票的中奖概率为11000,说明每买1000张,有可能中奖,也有可能不中奖,故B 错误;C. 抛掷一枚质地均匀的硬币一次,出现正面朝上的概率为12.故C 错误; D. “概率为1的事件”是必然事件,正确.故选D. 6.D解析:D【分析】连接AO、BO、CO,根据中心角度数=360°÷边数n,分别计算出∠AOC、∠BOC的度数,根据角的和差则有∠AOB=30°,根据边数n=360°÷中心角度数即可求解.【详解】连接AO、BO、CO,∵AC是⊙O内接正四边形的一边,∴∠AOC=360°÷4=90°,∵BC是⊙O内接正六边形的一边,∴∠BOC=360°÷6=60°,∴∠AOB=∠AOC﹣∠BOC=90°﹣60°=30°,∴n=360°÷30°=12;故选:D.【点睛】本题考查正多边形和圆,解题的关键是根据正方形的性质、正六边形的性质求出中心角的度数.7.C解析:C【解析】【分析】【详解】解:根据题意,在方格纸中,随机选择标有序号①②③④⑤中的一个小正方形涂黑,共有5种等可能的结果,使与图中阴影部分构成轴对称图形的有②④⑤,3种情况,因此可知使与图中阴影部分构成轴对称图形的概率为3 355÷=故选C8.B解析:B【解析】x2+2x﹣5=0,x2+2x=5,x2+2x+1=5+1,(x+1)2=6,故选B.解析:B【解析】【分析】根据一元二次方程的定义和判别式的意义得到a-6≠0且△=(-2)2-4×(a-6)×3≥0,再求出两不等式的公共部分得到a ≤193 且a ≠6,然后找出此范围内的最大整数即可. 【详解】根据题意得a-6≠0且△=(-2)2-4×(a-6)×3≥0,解得a ≤193且a ≠6, 所以整数a 的最大值为5.故选B.【点睛】本题考查一元二次方程的定义和跟的判别式,一元二次方程的二次项系数不能为0;当一元二次方程有实数根时,△≥0.10.D解析:D【解析】试题分析:“射击运动员射击一次,命中靶心”这个事件是随机事件,属于不确定事件, 故选D .考点:随机事件.11.A解析:A【解析】【分析】根据一元二次方程根与系数的关系求解即可.【详解】设x 1,x 2是一元二次方程的两个根,∵x = ∴x 1+x 2=3,x 1∙x 2=-c ,∴该一元二次方程为:21212()0x x x x x x -++=,即230x x c --=故选A.【点睛】此题主要考查了根据一元二次方程的根与系数的关系列一元二次方程.12.D解析:D【分析】【详解】∵ab >0,∴a 、b 同号.当a >0,b >0时,抛物线开口向上,顶点在原点,一次函数过一、二、三象限,没有图象符合要求;当a <0,b <0时,抛物线开口向下,顶点在原点,一次函数过二、三、四象限,B 图象符合要求.故选B .二、填空题13.【解析】∵阴影部分的面积=4个小正方形的面积大正方形的面积=9个小正方形的面积∴阴影部分的面积占总面积的∴飞镖落在阴影区域(四个全等的直角三角形的每个顶点都在格点上)的概率是故答案为 解析:49【解析】∵阴影部分的面积=4个小正方形的面积,大正方形的面积=9个小正方形的面积, ∴阴影部分的面积占总面积的49, ∴飞镖落在阴影区域(四个全等的直角三角形的每个顶点都在格点上)的概率是49. 故答案为49. 14.且k≠0【解析】【分析】根据直线与圆相交确定k 的取值利用面积法求出相切时k 的取值再利用相切与相交之间的关系得到k 的取值范围【详解】∵交x 轴于点A 交y 轴于点B 当故B 的坐标为(06k );当故A 的坐标为(解析:k k ≠0. 【解析】【分析】根据直线与圆相交确定k 的取值,利用面积法求出相切时k 的取值,再利用相切与相交之间的关系得到k 的取值范围.【详解】∵6y kx k =+交x 轴于点A ,交y 轴于点B ,当0,6x y k ==,故B 的坐标为(0,6k );当0,6y x ==-,故A 的坐标为(-6,0);当直线y=kx +6k 与⊙O 相交时, 设圆心到直线的距离为h,根据面积关系可得:116|6|=22k h ⨯⨯ 解得h = ;∵直线与圆相交,即,3h r r =< ,3 解得k 且直线中0k ≠,则k 的取值范围为:k k ≠0.故答案为:33-k ,且k ≠0. 【点睛】 本题考查了直线与圆的位置关系,解题的关键在于根据相交确定圆的半径与圆心到直线距离的大小关系.15.-5【解析】【分析】将二次函数配方即可直接求出二次函数的最小值【详解】∵y =x2﹣2x ﹣4=x2﹣2x+1﹣5=(x ﹣1)2﹣5∴可得二次函数的最小值为﹣5故答案是:﹣5【点睛】本题考查了二次函数的解析:-5【解析】【分析】将二次函数配方,即可直接求出二次函数的最小值.【详解】∵y =x 2﹣2x ﹣4=x 2﹣2x+1﹣5=(x ﹣1)2﹣5,∴可得二次函数的最小值为﹣5.故答案是:﹣5.【点睛】本题考查了二次函数的最值问题,用配方法是解此类问题的最简洁的方法.16.4【解析】【分析】由S 阴影部分图形=S 四边形BDFE =BD×OE 即可求解【详解】令y =0则:x =±1令x =0则y =2则:OB =1BD =2OB =2S 阴影部分图形=S 四边形BDFE =BD×OE=2×2=解析:4【解析】【分析】由S 阴影部分图形=S 四边形BDFE =BD×OE ,即可求解. 【详解】令y =0,则:x =±1,令x =0,则y =2, 则:OB =1,BD =2,OB =2,S 阴影部分图形=S 四边形BDFE =BD×OE =2×2=4.故:答案为4.【点睛】本题考查的是抛物线性质的综合运用,确定S阴影部分图形=S四边形BDFE是本题的关键.17.10【解析】【分析】设年平均增长率为x则经过两次变化后2019年的经费为2500(1+x)2;2019年投入教育经费3025万元建立方程2500(1+x)2=3025求解即可【详解】解:设年平均增长解析:10%【解析】【分析】设年平均增长率为x,则经过两次变化后2019年的经费为2500(1+x)2;2019年投入教育经费3025万元,建立方程2500(1+x)2=3025,求解即可.【详解】解:设年平均增长率为x,得2500(1+x)2=3025,解得x=0.1=10%,或x=-2.1(不合题意舍去).所以2017年到2019年该地区投入教育经费的年平均增长率为10%.【点睛】本题考查一元二次方程的应用--求平均变化率的方法,能够列出式子是解答本题的关键. 18.y1<y2【解析】试题分析:根据题意可知二次函数的对称轴为x=1由a=-2可知当x>1时y随x增大而减小当x<1时y随x增大而增大因此由-3<0<1可知y1<y2故答案为y1<y2点睛:此题主要考查解析:y1<y2【解析】试题分析:根据题意可知二次函数的对称轴为x=1,由a=-2,可知当x>1时,y随 x增大而减小,当x<1时,y随x增大而增大,因此由-3<0<1,可知y1<y2.故答案为y1<y2.点睛:此题主要考查了二次函数的图像与性质,解题关键是求出其对称轴,然后根据对称轴和a的值判断其增减性,然后可判断.19.90【解析】【分析】根据弧长公式列式计算得到答案【详解】设这个扇形的圆心角为n°则=3π解得n=90故答案为:90【点睛】考核知识点:弧长的计算熟记公式是关键解析:90【解析】【分析】根据弧长公式列式计算,得到答案.【详解】设这个扇形的圆心角为n°,则6180nπ⋅=3π,解得,n =90,故答案为:90.【点睛】考核知识点: 弧长的计算.熟记公式是关键.20.4【解析】【分析】由a+b2=2得出b2=2-a 代入a2+5b2得出a2+5b2=a2+5(2-a )=a2-5a+10再利用配方法化成a2+5b2=(a-即可求出其最小值【详解】∵a+b2=2∴b2解析:4【解析】【分析】由a+b 2=2得出b 2=2-a ,代入a 2+5b 2得出a 2+5b 2=a 2+5(2-a )=a 2-5a+10,再利用配方法化成a 2+5b 2=(a-2515)24+,即可求出其最小值. 【详解】∵a+b 2=2,∴b 2=2-a ,a≤2,∴a 2+5b 2=a 2+5(2-a )=a 2-5a+10=(a-2515)24+, 当a=2时,a 2+b 2可取得最小值为4.故答案是:4.【点睛】考查了二次函数的最值,解题关键是根据题意得出a 2+5b 2=(a-2515)24+. 三、解答题21.(1)y=x 2﹣2x ﹣3;(2)D (0,﹣1);(3)P 点坐标(﹣13,0)、(13,﹣2)、(﹣3,8)、(3,﹣10).【解析】【分析】(1)将A,B 两点坐标代入解析式,求出b,c 值,即可得到抛物线解析式;(2)先根据解析式求出C 点坐标,及顶点E 的坐标,设点D 的坐标为(0,m ),作EF ⊥y 轴于点F ,利用勾股定理表示出DC,DE 的长.再建立相等关系式求出m 值,进而求出D 点坐标;(3)先根据边角边证明△COD ≌△DFE ,得出∠CDE=90°,即CD ⊥DE ,然后当以C 、D 、P 为顶点的三角形与△DOC 相似时,根据对应边不同进行分类讨论:①当OC 与CD 是对应边时,有比例式OC OD DC DP=,能求出DP 的值,又因为DE=DC,所以过点P 作PG ⊥y 轴于点G ,利用平行线分线段成比例定理即可求出DG ,PG 的长度,根据点P 在点D 的左边和右边,得到符合条件的两个P 点坐标;②当OC 与DP 是对应边时,有比例式OC OD DP DC =,易求出DP ,仍过点P 作PG ⊥y 轴于点G ,利用比例式DG PG DP DF EF DE==求出DG ,PG 的长度,然后根据点P 在点D 的左边和右边,得到符合条件的两个P 点坐标;这样,直线DE 上根据对应边不同,点P 所在位置不同,就得到了符合条件的4个P 点坐标.【详解】解:(1)∵抛物线y=x 2+bx+c 经过A (﹣1,0)、B (0,﹣3),∴10{3b c c -+==-,解得2{3b c =-=-, 故抛物线的函数解析式为y=x 2﹣2x ﹣3;(2)令x 2﹣2x ﹣3=0,解得x 1=﹣1,x 2=3,则点C 的坐标为(3,0),∵y=x 2﹣2x ﹣3=(x ﹣1)2﹣4,∴点E 坐标为(1,﹣4),设点D 的坐标为(0,m ),作EF ⊥y 轴于点F (如下图),∵DC 2=OD 2+OC 2=m 2+32,DE 2=DF 2+EF 2=(m+4)2+12,∵DC=DE ,∴m 2+9=m 2+8m+16+1,解得m=﹣1,∴点D 的坐标为(0,﹣1);(3)∵点C (3,0),D (0,﹣1),E (1,﹣4),∴CO=DF=3,DO=EF=1,根据勾股定理,,在△COD 和△DFE 中,∵{90CO DFCOD DFE DO EF=∠=∠=︒=,∴△COD ≌△DFE (SAS ),∴∠EDF=∠DCO ,又∵∠DCO+∠CDO=90°,∴∠EDF+∠CDO=90°,∴∠CDE=180°﹣90°=90°,∴CD ⊥DE ,①当OC 与CD 是对应边时,∵△DOC ∽△PDC ,∴OC ODDC DP=1DP ,解得 过点P 作PG ⊥y 轴于点G ,则DG PG DP DF EF DE ==,即31DG PG == 解得DG=1,PG=13, 当点P 在点D 的左边时,OG=DG ﹣DO=1﹣1=0,所以点P (﹣13,0), 当点P 在点D 的右边时,OG=DO+DG=1+1=2,所以,点P (13,﹣2); ②当OC 与DP 是对应边时,∵△DOC ∽△CDP , ∴OC ODDP DC=,即3DP ,解得,过点P 作PG ⊥y 轴于点G ,则DG PG DPDF EF DE ==,即31DG PG ==, 解得DG=9,PG=3,当点P 在点D 的左边时,OG=DG ﹣OD=9﹣1=8,所以,点P 的坐标是(﹣3,8),当点P 在点D 的右边时,OG=OD+DG=1+9=10,所以,点P 的坐标是(3,﹣10),综上所述,在直线DE 上存在点P ,使得以C 、D 、P 为顶点的三角形与△DOC 相似,满足条件的点P 共有4个,其坐标分别为(﹣13,0)、(13,﹣2)、(﹣3,8)、(3,﹣10).考点:1.相似三角形的判定与性质;2.二次函数动点问题;3.一次函数与二次函数综合题. 22.(1)y=﹣10x+700;(2)销售单价为45元时,每天可获得最大利润,最大利润为6250元【解析】【分析】(1)由一次函数的图象可知过(30,400)和(40,300),利用待定系数法可求得y与x的关系式;(2)利用x可表示出p,再利用二次函数的性质可求得p的最大值.【详解】(1)设一次函数解析式为y=kx+b(k≠0),由图象可知一次函数的过(30,400)和(40,300),代入解析式可得30400 40300k bk b+=⎧⎨+=⎩,解得:10700kb=-⎧⎨=⎩,∴y与x的函数关系式为y=﹣10x+700;(2)设利润为p元,由(1)可知每天的销售量为y千克,∴p=y(x﹣20)=(﹣10x+700)(x﹣20)=﹣10x2+900x﹣14000=﹣10(x﹣45)2+6250.∵﹣10<0,∴p=﹣10(x﹣45)2+6250是开口向下的抛物线,∴当x=45时,p有最大值,最大值为6250元,即销售单价为45元时,每天可获得最大利润,最大利润为6250元.【点睛】本题考查了二次函数的应用,求得每天的销售量y与x的函数关系式是解答本题的关键,注意二次函数最值的求法.23.(1)作图见解析;(2)作图见解析;(3)(0,-2).【解析】试题分析:(1)利用旋转的性质得出对应点坐标进而得出答案;(2)利用平移规律得出对应点位置,进而得出答案;(3)利用旋转图形的性质,连接对应点,即可得出旋转中心的坐标.试题解析:(1)如图所示:△A1B1C即为所求;(2)如图所示:△A2B2C2即为所求;(3)旋转中心坐标(0,﹣2).【考点】作图-旋转变换;作图-平移变换.24.(1) △ABC是等腰三角形;(2)△ABC是直角三角形;(3) x1=0,x2=﹣1.【解析】试题分析:(1)直接将x=﹣1代入得出关于a,b的等式,进而得出a=b,即可判断△ABC 的形状;(2)利用根的判别式进而得出关于a,b,c的等式,进而判断△ABC的形状;(3)利用△ABC是等边三角形,则a=b=c,进而代入方程求出即可.试题解析:(1)△ABC是等腰三角形;理由:∵x=﹣1是方程的根,∴(a+c)×(﹣1)2﹣2b+(a﹣c)=0,∴a+c﹣2b+a﹣c=0,∴a﹣b=0,∴a=b,∴△ABC是等腰三角形;(2)∵方程有两个相等的实数根,∴(2b)2﹣4(a+c)(a﹣c)=0,∴4b2﹣4a2+4c2=0,∴a2=b2+c2,∴△ABC是直角三角形;(3)当△ABC是等边三角形,∴(a+c)x2+2bx+(a﹣c)=0,可整理为:2ax2+2ax=0,∴x2+x=0,解得:x1=0,x2=﹣1.考点:一元二次方程的应用.25.x1=2,x2=3【解析】【分析】先移项,再利用提公因式法因式分解求出方程的根.【详解】3(x-2)2-x(x-2)=0(x-2)[3(x-2)-x]=0(x-2)(2x-6)=0x-2=0或2x-6=0∴x1=2,x2=3.【点睛】本题考查了用因式分解法解一元二次方程,用提公因式法因式分解可以求出方程的根.。

江阴市江阴二中2020年数学九年级上册期末试题及答案

江阴市江阴二中2020年数学九年级上册期末试题及答案

江阴市江阴二中2020年数学九年级上册期末试题及答案一、选择题1.抛物线2(1)2y x =-+的顶点坐标是( )A .(﹣1,2)B .(﹣1,﹣2)C .(1,﹣2)D .(1,2) 2.有一组数据5,3,5,6,7,这组数据的众数为( )A .3B .6C .5D .73.已知34a b=(0a ≠,0b ≠),下列变形错误的是( ) A .34a b = B .34a b =C .43b a = D .43a b =4.已知抛物线221y ax x =+-与x 轴没有交点,那么该抛物线的顶点所在的象限是( ) A .第一象限B .第二象限C .第三象限D .第四象限5.已知二次函数y =ax 2+bx +c 的图像如图所示,则下列结论正确的个数有( ) ①c >0;②b 2-4ac <0;③ a -b +c >0;④当x >-1时,y 随x 的增大而减小.A .4个B .3个C .2个D .1个 6.方程 x 2=4的解是( ) A .x 1=x 2=2 B .x 1=x 2=-2C .x 1=2,x 2=-2D .x 1=4,x 2=-47.如图,已知正五边形ABCDE 内接于O ,连结,BD CE 相交于点F ,则BFC ∠的度数是( )A .60︒B .70︒C .72︒D .90︒8.抛掷一枚质地均匀的硬币,若抛掷6次都是正面朝上,则抛掷第7次正面朝上的概率是( )A .小于12B .等于12C .大于12D .无法确定9.在一个不透明的口袋中装有3个红球和2个白球,它们除颜色不同外,其余均相同.把它们搅匀后从中任意摸出1个球,则摸到红球的概率是( ) A .14B .34C .15D .3510.在△ABC 中,∠C =90°,AC =8,BC =6,则sin B 的值是( ) A .45B .35C .43D .3411.不透明袋子中有2个红球和4个蓝球,这些球除颜色外无其他差别,从袋子中随机取出1个球是红球的概率是( ) A .13B .14C .15D .1612.学校“校园之声”广播站要选拔一名英语主持人,小莹参加选拔的各项成绩如下:若把读、听、写的成绩按5:3:2的比例计入个人的总分,则小莹的个人总分为( ) A .86B .87C .88D .8913.设()12,A y -,()21,B y ,()32,C y 是抛物线2(1)y x k =-++上的三点,则1y ,2y ,3y 的大小关系为( )A .123y y y >>B .132y y y >>C .231y y y >>D .312y y y >>14.cos60︒的值等于( )A .12B .2C .2D .315.下列说法正确的是( ) A .所有等边三角形都相似 B .有一个角相等的两个等腰三角形相似 C .所有直角三角形都相似D .所有矩形都相似二、填空题16.平面直角坐标系内的三个点A (1,-3)、B (0,-3)、C (2,-3),___ 确定一个圆.(填“能”或“不能”)17.已知∠A =60°,则tan A =_____.18.正方形ABCD 的边长为4,圆C 半径为1,E 为圆C 上一点,连接DE ,将DE 绕D 顺时针旋转90°到DE’,F 在CD 上,且CF=3,连接FE’,当点E 在圆C 上运动,FE’长的最大值为____.19.如图,在△ABC 中,AB =3,AC =4,BC =6,D 是BC 上一点,CD =2,过点D 的直线l 将△ABC 分成两部分,使其所分成的三角形与△ABC 相似,若直线l 与△ABC 另一边的交点为点P ,则DP =________.20.二次函数y =ax 2+bx +c (a ≠0)的图像如图所示,当y <3时,x 的取值范围是____.21.如图,ABC ∆是O 的内接三角形,45BAC ∠=︒,BC 的长是54π,则O 的半径是__________.22.把抛物线22(1)1y x =-+向左平移2个单位长度再向下平移3个单位长度后所得到的抛物线的函数表达式是__________.23.两个相似三角形的面积比为9:16,其中较大的三角形的周长为64cm ,则较小的三角形的周长为__________cm . 24.如图,O 的弦8AB =,半径ON 交AB 于点M ,M 是AB 的中点,且3OM =,则MN 的长为__________.25.二次函数2y x bx c =-++的部分图像如图所示,要使函数值3y >,则自变量x 的取值范围是_______.26.如图,港口A 在观测站 O 的正东方向,OA =4km ,某船从港口A 出发,沿北偏东15°方向航行一段距离后到达 B 处,此时从观测站O 处测得该船位于北偏东60°的方向,则该船与观测站之间的距离(即OB 的长)为 _____km.27.已知点P (x 1,y 1)和Q (2,y 2)在二次函数y =(x +k )(x ﹣k ﹣2)的图象上,其中k ≠0,若y 1>y 2,则x 1的取值范围为_____.28.设1x 、2x 是关于x 的方程2350x x +-=的两个根,则1212x x x x +-•=__________.29.若一个圆锥的侧面展开图是一个半径为3cm ,圆心角为120°的扇形,则该圆锥的底面半径为__________cm .30.如图,在△ABC 中,P 是AB 边上的点,请补充一个条件,使△ACP ∽△ABC ,这个条件可以是:___(写出一个即可),三、解答题31.现代城市绿化带在不断扩大,绿化用水的节约是一个非常重要的问题.如图1、图2所示,某喷灌设备由一根高度为0.64 m 的水管和一个旋转喷头组成,水管竖直安装在绿化带地面上,旋转喷头安装在水管顶部(水管顶部和旋转喷头口之间的长度、水管在喷灌区域上的占地面积均忽略不计),旋转喷头可以向周围喷出多种抛物线形水柱,从而在绿化带上喷灌出一块圆形区域.现测得喷的最远的水柱在距离水管的水平距离3 m 处达到最高,高度为1 m . (1)求喷灌出的圆形区域的半径;(2)在边长为16 m 的正方形绿化带上固定安装三个该设备,喷灌区域可以完全覆盖该绿化带吗?如果可以,请说明理由;如果不可以,假设水管可以上下调整高度,求水管高度为多少时,喷灌区域恰好可以完全覆盖该绿化带.(以上需要画出示意图,并有必要的计算、推理过程)32.如图1,在平面直角坐标系中,已知抛物线25y ax bx =++与x 轴交于()10A -,,()B 5,0两点,与y 轴交于点C .(1)求抛物线的函数表达式;(2)若点P 是位于直线BC 上方抛物线上的一个动点,求△BPC 面积的最大值; (3)若点D 是y 轴上的一点,且以B,C,D 为顶点的三角形与ABC 相似,求点D 的坐标;(4)若点E 为抛物线的顶点,点F (3,a )是该抛物线上的一点,在x 轴、y 轴上分别找点M 、N ,使四边形EFMN 的周长最小,求出点M 、N 的坐标.33.如图,AD 是⊙O 的直径,AB 为⊙O 的弦,OP ⊥AD ,OP 与AB 的延长线交于点P ,点C 在OP 上,满足∠CBP =∠ADB . (1)求证:BC 是⊙O 的切线;(2)若OA =2,AB =1,求线段BP 的长.34.如图,AB 为O 的直径,PD 切O 于点C ,交AB 的延长线于点D ,且2D A ∠=∠.(1)求D ∠的度数. (2)若O 的半径为2,求BD 的长.35.如图,点C 是线段AB 上的任意一点(C 点不与A B 、点重合),分别以AC BC 、为边在直线AB 的同侧作等边三角形ACD 和等边三角形BCE ,AE 与CD 相交于点M ,BD 与CE 相交于点N .(1)求证: DB AE =; (2)求证: //MN AB ;(3)若AB 的长为12cm ,当点C 在线段AB 上移动时,是否存在这样的一点C ,使线段MN 的长度最长?若存在,请确定C 点的位置并求出MN 的长;若不存在,请说明理由. 四、压轴题36.如图①,A (﹣5,0),OA =OC ,点B 、C 关于原点对称,点B (a ,a +1)(a >0). (1)求B 、C 坐标; (2)求证:BA ⊥AC ;(3)如图②,将点C 绕原点O 顺时针旋转α度(0°<α<180°),得到点D ,连接DC ,问:∠BDC 的角平分线DE ,是否过一定点?若是,请求出该点的坐标;若不是,请说明理由.37.研究发现:当四边形的对角线互相垂直时,该四边形的面积等于对角线乘积的一半,如图1,已知四边形ABCD 内接于O ,对角线AC BD =,且AC BD ⊥.(1)求证:AB CD =; (2)若O 的半径为8,弧BD 的度数为120︒,求四边形ABCD 的面积;(3)如图2,作OM BC ⊥于M ,请猜测OM 与AD 的数量关系,并证明你的结论. 38.如图,AB 是⊙O 的直径,AF 是⊙O 的弦,AE 平分BAF ∠,交⊙O 于点E ,过点E 作直线ED AF ⊥,交AF 的延长线于点D ,交AB 的延长线于点C .(1)求证:CD 是⊙O 的切线; (2)若10,6AB AF ==,求AE 的长.39.翻转类的计算问题在全国各地的中考试卷中出现的频率很大,因此初三(5)班聪慧的小菲同学结合2011年苏州市数学中考卷的倒数第二题对这类问题进行了专门的研究。

苏科新版初中数学九年级上册期末测试题(2019-2020学年江苏省无锡市江阴市

苏科新版初中数学九年级上册期末测试题(2019-2020学年江苏省无锡市江阴市

2019-2020学年江苏省无锡市江阴市澄西片九年级(上)期中数学试卷一、选择题(共10小题,每小题3分,满分30分)1.(3分)下列图形中对称轴最多的是()A.线段B.等边三角形C.圆D.正方形2.(3分)下列方程是一元二次方程的是()A.x+y2=1B.ax2+bx+c=0C.D.x2+1=03.(3分)关于x的方程x2+2x+c=0有两个相等的实数根,则c的值是()A.1B.﹣1C.2D.﹣24.(3分)如图,△ABC中,DE∥BC,=,AE=2cm,则AC的长是()A.2cm B.4cm C.6cm D.8cm5.(3分)如图,在△ABC外任取一点O,连接AO,BO,CO,并取它们的中点D,E,F,连接DE,EF,DF,得△DEF,则下列说法错误的是()A.△ABC与△DEF是位似图形B.△ABC与△DEF是相似图形C.△ABC与△DEF的周长比为1:2D.△ABC与△DEF的面积比为4:16.(3分)如图,点A1,A2,A3,A4在射线OA上,点B1,B2,B3在射线OB上,且A1B1∥A2B2∥A3B3,A2B1∥A3B2∥A4B3.若△A2B1B2,△A3B2B3的面积分别为2,8,则图中三个阴影三角形面积之和为()A.23B.19C.21D.127.(3分)如图,在平面直角坐标系中,点A,B,C的坐标为(1,4),(5,4),(1,﹣2),则△ABC外接圆的圆心坐标是()A.(2,3)B.(3,2)C.(1,3)D.(3,1)8.(3分)太阳光线与地面成60°的角,照射在地面上的一只皮球上,皮球在地面上的投影长是,则皮球的直径是()A.B.15C.10D.9.(3分)已知⊙O的直径CD=10cm,AB是⊙O的弦,AB⊥CD,垂足为M,且AB=8cm,则AC的长为()A.2cm B.4cm C.2cm或4cm D.2cm或4cm 10.(3分)如图,AC是矩形ABCD的对角线,⊙O是△ABC的内切圆,现将矩形ABCD 按如图所示的方式折叠,使点D与点O重合,折痕为FG.点F,G分别在边AD,BC 上,连结OG,DG.若OG⊥DG,且⊙O的半径长为1,则下列结论不成立的是()A.CD+DF=4B.CD﹣DF=2﹣3C.BC+AB=2+4D.BC﹣AB=2二、填空题(共8小题,每小题2分,满分16分)11.(2分)在比例尺为1:500000的某省地图上,量得A地到B地的距离约为20厘米,则A地到B地的实际距离约为千米.12.(2分)已知,则=.13.(2分)方程2x﹣4=0的解也是关于x的方程x2+mx+2=0的一个解,则m的值为.14.(2分)若关于x的方程x2+kx﹣12=0的两根均是整数,则k的值可以是.(只要求写出两个).15.(2分)在平行四边形ABCD中,E为靠近点D的AD的三等分点,连结BE,交AC于点F,AC=12,则AF为.16.(2分)如图,在直角三角尺ABC中,∠C=90°,把直角三角尺ABC放置在圆上,AB 经过圆心O,AC与⊙O相交于D,E两点,点C,D,E的刻度分别是0cm,2cm,5cm,BC与⊙O相切于F点,那么⊙O的半径是cm.17.(2分)有一圆锥,它的高为8cm,底面半径为6cm,则这个圆锥的侧面积是cm2.(结果保留π)18.(2分)如图,在△ABC中,AB=10,AC=8,BC=6,经过点C且与边AB相切的动圆与CA,CB分别相交于点P,Q,则线段PQ长度的最小值是.三、解答题(共10小题,满分84分)19.(9分)(1)(x﹣1)2=4;(2)(2x+3)2﹣2x﹣3=0(3)x2+4x﹣7=020.(8分)已知关于x的方程x2﹣5x﹣m2﹣2m﹣7=0.(1)若此方程的一个根为﹣1,求m的值;(2)求证:无论m取何实数,此方程都有两个不相等的实数根.21.(8分)如图,在矩形ABCD中,AB=2,BC=3,M是BC的中点,DE⊥AM于点E.(1)求证:△ADE∽△MAB;(2)求DE的长.22.(8分)在同一时刻两根木竿在太阳光下的影子如图所示,其中木竿AB=2m,它的影子BC=1.6m,木竿PQ落在地面上的影子PM=1.8m,落在墙上的影子MN=1.1m,求木竿PQ的长度.23.(8分)如图,AB为⊙O的直径,C为⊙O上一点,AD和过C点的直线互相垂直,垂足为D,且AC平分∠DAB.(1)求证:DC为⊙O的切线;(2)若⊙O的半径为3,AD=4,求AC的长.24.(8分)如图,AB为⊙O的直径,AC、DC为弦,∠ACD=60°,P为AB延长线上的点,∠APD=30°.(1)求证:DP是⊙O的切线;(2)若⊙O的半径为3cm,求图中阴影部分的面积.25.(7分)(1)如图1,Rt△ABC中,∠B=90°,AB=2BC,现以C为圆心、CB长为半(这径画弧交边AC于D,再以A为圆心、AD为半径画弧交边AB于E.求证:=.个比值叫做AE与AB的黄金比.)(2)如果一等腰三角形的底边与腰的比等于黄金比,那么这个等腰三角形就叫做黄金三角形.请你以图2中的线段AB为腰,用直尺和圆规,作一个黄金三角形ABC.(注:直尺没有刻度!作图不要求写作法,但要求保留作图痕迹,并对作图中涉及到的点用字母进行标注)26.(8分)今年深圳“读书月”期间,某书店将每本成本为30元的一批图书,以40元的单价出售时,每天的销售量是300本.已知在每本涨价幅度不超过10元的情况下,若每本涨价1元,则每天就会少售出10本,设每本书上涨了x元.请解答以下问题:(1)填空:每天可售出书本(用含x的代数式表示);(2)若书店想通过售出这批图书每天获得3750元的利润,应涨价多少元?27.(10分)在△ABC中,∠A=90°,AB=8cm,AC=6cm,点M,点N同时从点A出发,点M沿边AB以4cm/s的速度向点B运动,点N从点A出发,沿边AC以3cm/s的速度向点C运动,(点M不与A,B重合,点N不与A,C重合),设运动时间为xs.(1)求证:△AMN∽△ABC;(2)当x为何值时,以MN为直径的⊙O与直线BC相切?(3)把△AMN沿直线MN折叠得到△MNP,若△MNP与梯形BCNM重叠部分的面积为y,试求y关于x的函数表达式,并求x为何值时,y的值最大,最大值是多少?28.(10分)阅读理解:小明热爱数学,在课外书上看到了一个有趣的定理﹣﹣“中线长定理”:三角形两边的平方和等于第三边的一半与第三边上的中线的平方和的两倍.如图1,在△ABC中,点D为BC的中点,根据“中线长定理”,可得:AB2+AC2=2AD2+2BD2.小明尝试对它进行证明,部分过程如下:解:过点A作AE⊥BC于点E,如图2,在Rt△ABE中,AB2=AE2+BE2,同理可得:AC2=AE2+CE2,AD2=AE2+DE2,为证明的方便,不妨设BD=CD=x,DE=y,∴AB2+AC2=AE2+BE2+AE2+CE2=…(1)请你完成小明剩余的证明过程;理解运用:(2)①在△ABC中,点D为BC的中点,AB=6,AC=4,BC=8,则AD=;②如图3,⊙O的半径为6,点A在圆内,且OA=2,点B和点C在⊙O上,且∠BAC=90°,点E、F分别为AO、BC的中点,则EF的长为;拓展延伸:(3)小明解决上述问题后,联想到《能力训练》上的题目:如图4,已知⊙O的半径为5,以A(﹣3,4)为直角顶点的△ABC的另两个顶点B,C都在⊙O上,D为BC的中点,求AD长的最大值.请你利用上面的方法和结论,求出AD长的最大值.2019-2020学年江苏省无锡市江阴市澄西片九年级(上)期中数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.(3分)下列图形中对称轴最多的是()A.线段B.等边三角形C.圆D.正方形【分析】根据轴对称图形的定义即可判断.【解答】解:线段有2条对称轴;等边三角形有3条对称轴;圆有无数条对称轴;正方形有4个对称轴.对称轴最多的是圆.故选:C.【点评】本题考查轴对称图形,解题的关键是理解轴对称图形的定义,如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,这时,我们也可以说这个图形关于这条直线(成轴)对称.2.(3分)下列方程是一元二次方程的是()A.x+y2=1B.ax2+bx+c=0C.D.x2+1=0【分析】根据一元二次方程的定义对各选项进行逐一判断即可.【解答】解:A、∵方程x+y2=1中含有两个未知数,未知数的最高次数是2,故是二元二次方程,故本选项错误;B、∵方程ax2+bx+c=0中a、b、c是否是常数不确定,故此方程不能确定是几次,故本选项错误;C、∵方程中含有分式,是分式方程,故本选项错误;D、∵方程x2+1=0中含有一个未知数,并且未知数的最高次数是2,故此方程是一元二次方程.故选:D.【点评】本题考查的是一元二次方程的定义,即只含有一个未知数,并且未知数的最高次数是2的整式方程叫一元二次方程.3.(3分)关于x的方程x2+2x+c=0有两个相等的实数根,则c的值是()A.1B.﹣1C.2D.﹣2【分析】根据判别式的意义得到22﹣4c=0,然后解方程即可.【解答】解:根据题意得△=22﹣4c=0,解得c=1.故选:A.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac 有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.4.(3分)如图,△ABC中,DE∥BC,=,AE=2cm,则AC的长是()A.2cm B.4cm C.6cm D.8cm【分析】根据平行线分线段成比例定理得出=,代入求出即可.【解答】解:∵DE∥BC,∴=,∵,AE=2cm,∴=,∴AC=6(cm),故选:C.【点评】本题考查了平行线分线段成比例定理的应用,注意:一组平行线截两条直线,所截的线段对应成比例.5.(3分)如图,在△ABC外任取一点O,连接AO,BO,CO,并取它们的中点D,E,F,连接DE,EF,DF,得△DEF,则下列说法错误的是()A.△ABC与△DEF是位似图形B.△ABC与△DEF是相似图形C.△ABC与△DEF的周长比为1:2D.△ABC与△DEF的面积比为4:1【分析】根据位似的定义,以及相似的性质:周长的比等于相似比,面积的比等于相似比的平方,即可作出判断.【解答】解:根据位似的定义可得:△ABC与△DEF是位似图形,也是相似图形,位似比是2:1,则周长的比是2:1,因而面积的比是4:1,故A、B、D正确,C错误.故选:C.【点评】本题主要考查了位似的定义,位似是特殊的相似,以及相似三角形的性质.6.(3分)如图,点A1,A2,A3,A4在射线OA上,点B1,B2,B3在射线OB上,且A1B1∥A2B2∥A3B3,A2B1∥A3B2∥A4B3.若△A2B1B2,△A3B2B3的面积分别为2,8,则图中三个阴影三角形面积之和为()A.23B.19C.21D.12【分析】已知△A2B1B2,△A3B2B3的面积分别为2,8,且两三角形相似,因此可得出A2B2:A3B3=1:2,由于△A2B2A3与△B2A3B3是等高不等底的三角形,所以面积之比即为底之边比,因此这两个三角形的面积比为1:2,根据△A3B2B3的面积为8,可求出△A2B2A3的面积,同理可求出△A3B3A4和△A1B1A2的面积.即可求出阴影部分的面积.【解答】解:△A2B1B2,△A3B2B3的面积分别为2,8,又∵A2B2∥A3B3,A2B1∥A3B2,∴∠OB2A2=∠OB3A3,∠A2B1B2=∠A3B2B3,∴△B1B2A2∽△B2B3A3,∴=,∴,∵,△A3B2B3的面积是8,∴△A2B2A3的面积为=,同理可得:△A3B3A4的面积=2×S△A3B2B3=2×8=16;△A1B1A2的面积=S△A2B1B2==1∴三个阴影面积之和=4+16+1=21.故选:C.【点评】本题考查了平行线的性质、相似三角形的判定与性质、三角形的面积.解题的关键是利用平行线证明三角形相似,再根据已给的面积,求出相似比,从而求阴影部分的面积.7.(3分)如图,在平面直角坐标系中,点A,B,C的坐标为(1,4),(5,4),(1,﹣2),则△ABC外接圆的圆心坐标是()A.(2,3)B.(3,2)C.(1,3)D.(3,1)【分析】由已知点的坐标得出△ABC为直角三角形,∠BAC=90°,得出△ABC的外接圆的圆心是斜边BC的中点,即可得出结果.【解答】解:如图所示:∵点A,B,C的坐标为(1,4),(5,4),(1,﹣2),∴△ABC为直角三角形,∠BAC=90°,∴△ABC的外接圆的圆心是斜边BC的中点,∴△ABC外接圆的圆心坐标是(,),即(3,1).故选:D.【点评】本题考查了三角形的外接圆与外心、坐标与图形性质、直角三角形的外心特征;熟记直角三角形的外心特征,根据题意得出三角形是直角三角形是解决问题的关键.8.(3分)太阳光线与地面成60°的角,照射在地面上的一只皮球上,皮球在地面上的投影长是,则皮球的直径是()A.B.15C.10D.【分析】根据题意建立直角三角形DCE,然后根据∠CED=60°,DE=10可求出答案.【解答】解:由题意得:DC=2R,DE=10,∠CED=60°,∴可得:DC=DE sin60°=15.故选:B.【点评】本题考查平行投影的知识,属于基础题,解答本题的关键是建立直角三角形,然后利用三角函数值进行解答.9.(3分)已知⊙O的直径CD=10cm,AB是⊙O的弦,AB⊥CD,垂足为M,且AB=8cm,则AC的长为()A.2cm B.4cm C.2cm或4cm D.2cm或4cm【分析】先根据题意画出图形,由于点C的位置不能确定,故应分两种情况进行讨论.【解答】解:连接AC,AO,∵⊙O的直径CD=10cm,AB⊥CD,AB=8cm,∴AM=AB=×8=4(cm),OD=OC=5cm,当C点位置如图1所示时,∵OA=5cm,AM=4cm,CD⊥AB,∴OM===3(cm),∴CM=OC+OM=5+3=8(cm),∴AC===4(cm);当C点位置如图2所示时,同理可得OM=3cm,∵OC=5cm,∴MC=5﹣3=2(cm),在Rt△AMC中,AC===2(cm).故选:C.【点评】本题考查的是垂径定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.10.(3分)如图,AC是矩形ABCD的对角线,⊙O是△ABC的内切圆,现将矩形ABCD 按如图所示的方式折叠,使点D与点O重合,折痕为FG.点F,G分别在边AD,BC 上,连结OG,DG.若OG⊥DG,且⊙O的半径长为1,则下列结论不成立的是()A.CD+DF=4B.CD﹣DF=2﹣3C.BC+AB=2+4D.BC﹣AB=2【分析】设⊙O与BC的切点为M,连接MO并延长MO交AD于点N,证明△OMG≌△GCD,得到OM=GC=1,CD=GM=BC﹣BM﹣GC=BC﹣2.设AB=a,BC=b,AC =c,⊙O的半径为r,⊙O是Rt△ABC的内切圆可得r=(a+b﹣c),所以c=a+b﹣2.在Rt△ABC中,利用勾股定理求得(舍去),从而求出a,b的值,所以BC+AB=2+4.再设DF=x,在Rt△ONF中,FN=,OF=x,ON=,由勾股定理可得,解得x=4,从而得到CD﹣DF=,CD+DF=.即可解答.【解答】解:如图,设⊙O与BC的切点为M,连接MO并延长MO交AD于点N,∵将矩形ABCD按如图所示的方式折叠,使点D与点O重合,折痕为FG,∴OG=DG,∵OG⊥DG,∴∠MGO+∠DGC=90°,∵∠MOG+∠MGO=90°,∴∠MOG=∠DGC,在△OMG和△GCD中,∴△OMG≌△GCD,∴OM=GC=1,CD=GM=BC﹣BM﹣GC=BC﹣2.∵AB=CD,∴BC﹣AB=2.设AB=a,BC=b,AC=c,⊙O的半径为r,⊙O是Rt△ABC的内切圆可得r=(a+b﹣c),∴c=a+b﹣2.在Rt△ABC中,由勾股定理可得a2+b2=(a+b﹣2)2,整理得2ab﹣4a﹣4b+4=0,又∵BC﹣AB=2即b=2+a,代入可得2a(2+a)﹣4a﹣4(2+a)+4=0,解得(舍去),∴,∴BC+AB=2+4.再设DF=x,在Rt△ONF中,FN=,OF=x,ON=,由勾股定理可得,解得x=4,∴CD﹣DF=,CD+DF=.综上只有选项A错误,故选:A.【点评】本题考查了三角形的内切圆和内心,切线的性质,勾股定理,矩形的性质等知识点的综合应用,解决本题的关键是三角形内切圆的性质.二、填空题(共8小题,每小题2分,满分16分)11.(2分)在比例尺为1:500000的某省地图上,量得A地到B地的距离约为20厘米,则A地到B地的实际距离约为100千米.【分析】解答此题应根据图上距离、比例尺和实际距离三者的关系,进行分析解答即可得出结论.【解答】解:20÷=10000000厘米=100千米;故答案为100.【点评】此题考查比例线段,关键是根据图上距离、比例尺和实际距离三者的关系,进行分析解答即可得出结论.12.(2分)已知,则=﹣.【分析】根据合分比定理[如果a:b=c:d那么(a+b):(a﹣b)=(c+d):(c﹣d))(b、d、a﹣b、c﹣d≠0)]来解答即可.【解答】解:由已知,得,即=﹣.【点评】本题主要考查的是合分比定理:一个比例里,第一个前后项之和与它们的差的比,等于第二个比的前后项的和与它们的差的比.这叫做比例中的合分比定理.13.(2分)方程2x﹣4=0的解也是关于x的方程x2+mx+2=0的一个解,则m的值为﹣3.【分析】先求出方程2x﹣4=0的解,再把x的值代入方程x2+mx+2=0,求出m的值即可.【解答】解:2x﹣4=0,解得:x=2,把x=2代入方程x2+mx+2=0得:4+2m+2=0,解得:m=﹣3.故答案为:﹣3.【点评】此题主要考查了一元二次方程的解,先求出x的值,再代入方程x2+mx+2=0是解决问题的关键,是一道基础题.14.(2分)若关于x的方程x2+kx﹣12=0的两根均是整数,则k的值可以是4或﹣4,答案不唯一.(只要求写出两个).【分析】可以把12分解成几个因数的积的形式,然后利用根与系数的关系就可以确定k 的值【解答】解:∵﹣12=2×(﹣6)=6×(﹣2)=﹣3×4=﹣4×3等等,∴k=2+(﹣6)=﹣4,或6+(﹣2)=4,或k=±1,故填空答案:4或﹣4.答案不唯一.【点评】本题用到的知识点为:x2+(p+q)x+pq=(x+p)(x+q).15.(2分)在平行四边形ABCD中,E为靠近点D的AD的三等分点,连结BE,交AC于点F,AC=12,则AF为.【分析】根据平行四边形的对边相等可得AD=BC,然后求出AE=AD=BC,再根据平行线分线段成比例定理求出AF、FC的比,然后求解即可.【解答】解:在▱ABCD中,AD=BC,AD∥BC,∵E为AD的三等分点,∴AE=AD=BC,∵AD∥BC,∴,∵AC=12,∴AF=×12=.故答案为:.【点评】本题考查了平行线分线段成比例定理,平行四边形的对边平行且相等的性质,熟记定理并求出AF、FC的比是解题的关键.16.(2分)如图,在直角三角尺ABC中,∠C=90°,把直角三角尺ABC放置在圆上,AB 经过圆心O,AC与⊙O相交于D,E两点,点C,D,E的刻度分别是0cm,2cm,5cm,BC与⊙O相切于F点,那么⊙O的半径是 3.5cm.【分析】如图连接OF,作OM⊥DE于M.,由∠C=∠CFO=∠CMO=90°,推出四边形CFOM是矩形,推出OF=CM,求出CM即可解决问题.【解答】解:如图连接OF,作OM⊥DE于M.∵∠C=∠CFO=∠CMO=90°,∴四边形CFOM是矩形,∴OF=CM,由题意可知CD=2,DE=3,∵OM⊥DE,∴DM=ME=1.5,∴OF=CM=CD+DM=3.5,故答案为3.5【点评】本题考查切线的性质、垂径定理、矩形的判定和性质等知识,解题的关键是重合添加常用辅助线,灵活运用所学知识解决问题,属于中考常考题型.17.(2分)有一圆锥,它的高为8cm,底面半径为6cm,则这个圆锥的侧面积是60πcm2.(结果保留π)【分析】先根据圆锥的底面半径和高求出母线长,圆锥的侧面积是展开后扇形的面积,计算可得.【解答】解:圆锥的母线==10cm,圆锥的底面周长2πr=12πcm,圆锥的侧面积=lR=×12π×10=60πcm2.故答案为:60π.【点评】本题考查了圆锥的计算,圆锥的高和圆锥的底面半径圆锥的母线组成直角三角形,扇形的面积公式为lR.18.(2分)如图,在△ABC中,AB=10,AC=8,BC=6,经过点C且与边AB相切的动圆与CA,CB分别相交于点P,Q,则线段PQ长度的最小值是 4.8.【分析】设QP的中点为F,圆F与AB的切点为D,连接FD,连接CF,CD,则有FD ⊥AB;由勾股定理的逆定理知,△ABC是直角三角形FC+FD=PQ,由三角形的三边关系知,CF+FD>CD;只有当点F在CD上时,FC+FD=PQ有最小值为CD的长,即当点F在直角三角形ABC的斜边AB的高上CD时,PQ=CD有最小值,由直角三角形的面积公式知,此时CD=BC•AC÷AB=4.8.【解答】解:如图,∵AB=10,AC=8,BC=6,∴AB2=AC2+BC2,∴∠ACB=90°,∴PQ是⊙F的直径,设QP的中点为F,圆F与AB的切点为D,连接FD,连接CF,CD,则FD⊥AB.∴FC+FD=PQ,∴CF+FD>CD,∵当点F在直角三角形ABC的斜边AB的高上CD时,PQ=CD有最小值∴CD=BC•AC÷AB=4.8.故答案为4.8.【点评】本题利用了切线的性质,勾股定理的逆定理,三角形的三边关系,直角三角形的面积公式求解.三、解答题(共10小题,满分84分)19.(9分)(1)(x﹣1)2=4;(2)(2x+3)2﹣2x﹣3=0(3)x2+4x﹣7=0【分析】(1)根据直接开方法即可求出答案;(2)根据因式分解法即可求出答案;(3)根据配方法即可求出答案.【解答】解:(1)∵(x﹣1)2=4,∴x﹣1=±2,∴x=3或x=﹣1;(2)∵(2x+3)2﹣2x﹣3=0,∴(2x+3)(2x+3﹣1)=0,∴2x+3=0或2x+2=0,∴x=或x=﹣1;(3)∵x2+4x﹣7=0,∴x2+4x+4=11,∴(x+2)2=11,∴x=﹣2±;【点评】本题考查一元二次方程,解题的关键是熟练运用一元二次方程的解法,本题属于基础题型.20.(8分)已知关于x的方程x2﹣5x﹣m2﹣2m﹣7=0.(1)若此方程的一个根为﹣1,求m的值;(2)求证:无论m取何实数,此方程都有两个不相等的实数根.【分析】(1)把x=﹣1代入原方程得到关于m的一元二次方程,然后解关于m的一元二次方程即可;(2)进行判别式的值,利用完全平方公式变形得到△=4(m+1)2+49,然后利用非负数的性质可判断△>0,从而根据判别式的意义可判断方程根的情况.【解答】(1)解:把x=﹣1代入x2﹣5x﹣m2﹣2m﹣7=0得1+5﹣m2﹣2m﹣7=0,解得m1=m2=﹣1,即m的值为1;(2)证明:△=(﹣5)2﹣4(﹣m2﹣2m﹣7)=4(m+1)2+49,∵4(m+1)2≥0∴△>0,∴方程都有两个不相等的实数根.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:当△>0时,方程有两个不相等的两个实数根;当△=0时,方程有两个相等的两个实数根;当△<0时,方程无实数根.21.(8分)如图,在矩形ABCD中,AB=2,BC=3,M是BC的中点,DE⊥AM于点E.(1)求证:△ADE∽△MAB;(2)求DE的长.【分析】(1)要证△ADE∽△MAB,只要找出两个三角形相似的条件即可,根据题意和矩形的性质可以证明△ADE∽△MAB;(2)根据题意和(1)中△ADE∽△MAB,利用对应边的相似比相等和勾股定理可以解答本题.【解答】证明:(1)∵在矩形ABCD中,DE⊥AM于点E,∴∠B=90°,∠BAD=90°,∠DEA=90°,∴∠BAM+∠EAD=90°,∠EDA+∠EAD=90°,∴∠BAM=∠EDA,在△ADE和△MAB中,∵∠AED=∠B,∠EDA=∠BAM,∴△ADE∽△MAB;(2)∵在矩形ABCD中,AB=2,BC=3,M是BC的中点,∴BM=,∴AM==,由(1)知,△ADE∽△MAB,∴=,∴=,解得,DE=.【点评】本题考查相似三角形的判定与性质、矩形的性质,解答本题的关键是明确题意,找出所求问题需要的条件,利用三角形的相似和数形结合的思想解答.22.(8分)在同一时刻两根木竿在太阳光下的影子如图所示,其中木竿AB=2m,它的影子BC=1.6m,木竿PQ落在地面上的影子PM=1.8m,落在墙上的影子MN=1.1m,求木竿PQ的长度.【分析】先根据同一时刻物高与影长成正比求出QD的影长,再根据此影长列出比例式即可.【解答】解:过N点作ND⊥PQ于D,∴=,又∵AB=2m,BC=1.6m,PM=1.8m,NM=1.1m,∴QD==2.25,∴PQ=QD+DP=QD+NM=2.25+1.1=3.35(m).答:木竿PQ的长度为3.35米.【点评】本题考查了相似三角形的应用;在运用相似三角形的知识解决实际问题时,要能够从实际问题中抽象出简单的数学模型是解决问题的关键.23.(8分)如图,AB为⊙O的直径,C为⊙O上一点,AD和过C点的直线互相垂直,垂足为D,且AC平分∠DAB.(1)求证:DC为⊙O的切线;(2)若⊙O的半径为3,AD=4,求AC的长.【分析】(1)连接OC,由OA=OC可以得到∠OAC=∠OCA,然后利用角平分线的性质可以证明∠DAC=∠OCA,接着利用平行线的判定即可得到OC∥AD,然后就得到OC ⊥CD,由此即可证明直线CD与⊙O相切于C点;(2)连接BC,根据圆周角定理的推理得到∠ACB=90°,又∠DAC=∠OAC,由此可以得到△ADC∽△ACB,然后利用相似三角形的性质即可解决问题.【解答】(1)证明:连接OC∵OA=OC∴∠OAC=∠OCA∵AC平分∠DAB∴∠DAC=∠OAC∴∠DAC=∠OCA∴OC∥AD∵AD⊥CD∴OC⊥CD∴直线CD与⊙O相切于点C;(2)解:连接BC,则∠ACB=90°.∵∠DAC=∠OAC,∠ADC=∠ACB=90°,∴△ADC∽△ACB,∴,∴AC2=AD•AB,∵⊙O的半径为3,AD=4,∴AB=6,∴AC=2.【点评】此题主要考查了切线的性质与判定,解题时首先利用切线的判定证明切线,然后利用切线的想这已知条件证明三角形相似即可解决问题.24.(8分)如图,AB为⊙O的直径,AC、DC为弦,∠ACD=60°,P为AB延长线上的点,∠APD=30°.(1)求证:DP是⊙O的切线;(2)若⊙O的半径为3cm,求图中阴影部分的面积.【分析】(1)连接OD,求出∠AOD,求出∠DOB,求出∠ODP,根据切线判定推出即可;(2)求出OP、DP长,分别求出扇形DOB和三角形ODP面积,即可求出答案.【解答】(1)证明:连接OD,∵∠ACD=60°,∴由圆周角定理得:∠AOD=2∠ACD=120°,∴∠DOP=180°﹣120°=60°,∵∠APD=30°,∴∠ODP=180°﹣30°﹣60°=90°,∴OD⊥DP,∵OD为半径,∴DP是⊙O切线;(2)解:∵∠P=30°,∠ODP=90°,OD=3cm,∴OP=6cm,由勾股定理得:DP=3cm,∴图中阴影部分的面积S=S△ODP﹣S扇形DOB=×3×3﹣=(﹣π)cm2【点评】本题考查了扇形面积,三角形面积,切线的判定,圆周角定理等知识点的应用,主要考查学生的推理和计算能力.25.(7分)(1)如图1,Rt△ABC中,∠B=90°,AB=2BC,现以C为圆心、CB长为半(这径画弧交边AC于D,再以A为圆心、AD为半径画弧交边AB于E.求证:=.个比值叫做AE与AB的黄金比.)(2)如果一等腰三角形的底边与腰的比等于黄金比,那么这个等腰三角形就叫做黄金三角形.请你以图2中的线段AB为腰,用直尺和圆规,作一个黄金三角形ABC.(注:直尺没有刻度!作图不要求写作法,但要求保留作图痕迹,并对作图中涉及到的点用字母进行标注)【分析】(1)利用未知数表示出AB,AC,BC的长,进而得出AE的长,进而得出答案;(2)根据底与腰之比均为黄金比的等腰三角形,画图即可.【解答】(1)证明:∵Rt△ABC中,∠B=90°,AB=2BC,∴设AB=2x,BC=x,则AC=x,∴AD=AE=(﹣1)x,∴==.(2)解:底与腰之比均为黄金比的等腰三角形,如图:①过点B作EB⊥AB,作AB的垂直平分线交AB于点D,使BE=BD,②连接AE,以E为圆心,BE长为半径画弧,使EF=BE,③以B为圆心AF长为半径画弧,以A为圆心,AB长为半径画弧,交点为C,则△ABC即为所求..【点评】此题主要考查了黄金三角形的作法以及黄金三角形的性质,根据已知得出底边作法是解题关键.26.(8分)今年深圳“读书月”期间,某书店将每本成本为30元的一批图书,以40元的单价出售时,每天的销售量是300本.已知在每本涨价幅度不超过10元的情况下,若每本涨价1元,则每天就会少售出10本,设每本书上涨了x元.请解答以下问题:(1)填空:每天可售出书(300﹣10x)本(用含x的代数式表示);(2)若书店想通过售出这批图书每天获得3750元的利润,应涨价多少元?【分析】(1)由每本涨价1元则每天就会少售出10本,即可得出涨价x元时,每天售出书的本数;(2)设每本书上涨了x元(x≤10),根据每本书的利润×销售本数=总利润,即可得出关于x的一元二次方程,解之即可得出结论.【解答】解:(1)∵每本书上涨了x元,∴每天可售出书(300﹣10x)本.故答案为:(300﹣10x).(2)设每本书上涨了x元(x≤10),根据题意得:(40﹣30+x)(300﹣10x)=3750,整理,得:x2﹣20x+75=0,解得:x1=5,x2=15(不合题意,舍去).答:若书店想每天获得3750元的利润,每本书应涨价5元.【点评】本题考查了一元二次方程的应用以及列代数式,解题的关键是:(1)依照销售本数与涨价间的关系列出代数式;(2)找准等量关系,正确列出一元二次方程.27.(10分)在△ABC中,∠A=90°,AB=8cm,AC=6cm,点M,点N同时从点A出发,点M沿边AB以4cm/s的速度向点B运动,点N从点A出发,沿边AC以3cm/s的速度向点C运动,(点M不与A,B重合,点N不与A,C重合),设运动时间为xs.(1)求证:△AMN∽△ABC;(2)当x为何值时,以MN为直径的⊙O与直线BC相切?(3)把△AMN沿直线MN折叠得到△MNP,若△MNP与梯形BCNM重叠部分的面积为y,试求y关于x的函数表达式,并求x为何值时,y的值最大,最大值是多少?【分析】(1)欲证△AMN∽△ABC,可以通过应用两组对应边的比相等且相应的夹角相等的两个三角形相似,(AM:AN=AB:AC=4:3,∠A=∠A)得出;(2)MN为直径的⊙O与直线BC相切,则圆心O到直线BC的距离等于半径,列出函数关系式,求出x的值;(3)因为∠A=90°,△MNP与梯形BCNM重叠部分的面积分为两种情况:等于S△PMN,或等于S△MNP﹣S△PEF,列出y关于x的函数表达式,求出当时,y值最大,最大值是8.【解答】(1)证明:∵,∠A=∠A,∴△AMN∽△ABC.(4分)(2)解:在Rt△ABC中,BC==10.由(1)知△AMN∽△ABC.∴∴MN=5x,∴⊙O的半径r=可求得圆心O到直线BC的距离d=∵⊙O与直线BC相切∴=.解得x=当x=时,⊙O与直线BC相切.(8分)(3)解:当P点落在直线BC上时,则点M为AB的中点.(9分)故以下分两种情况讨论:①当0<x≤1时,y=S△PMN=6x2,∴当x=1时,y最大=6×12=6.(11分)②当1<x<2时,设MP交BC于E,NP交BC于FMB=8﹣4x,MP=MA=4x∴PE=4x﹣(8﹣4x)=8x﹣8y=S△MNP﹣S△PEF==(13分)∴当时,y最大=8.综上所述,当时,y值最大,最大值是8.(14分)【点评】考查了相似三角形的判断,结合切线的性质,及三角形的性质考查二次函数的综合应用.28.(10分)阅读理解:小明热爱数学,在课外书上看到了一个有趣的定理﹣﹣“中线长定理”:三角形两边的平方和等于第三边的一半与第三边上的中线的平方和的两倍.如图1,在△ABC中,点D为BC的中点,根据“中线长定理”,可得:AB2+AC2=2AD2+2BD2.小明尝试对它进行证明,部分过程如下:解:过点A作AE⊥BC于点E,如图2,在Rt△ABE中,AB2=AE2+BE2,同理可得:AC2=AE2+CE2,AD2=AE2+DE2,为证明的方便,不妨设BD=CD=x,DE=y,∴AB2+AC2=AE2+BE2+AE2+CE2=…(1)请你完成小明剩余的证明过程;理解运用:(2)①在△ABC中,点D为BC的中点,AB=6,AC=4,BC=8,则AD=;②如图3,⊙O的半径为6,点A在圆内,且OA=2,点B和点C在⊙O上,且∠BAC =90°,点E、F分别为AO、BC的中点,则EF的长为4;拓展延伸:(3)小明解决上述问题后,联想到《能力训练》上的题目:如图4,已知⊙O的半径为5,以A(﹣3,4)为直角顶点的△ABC的另两个顶点B,C都在⊙O上,D为BC的中点,求AD长的最大值.请你利用上面的方法和结论,求出AD长的最大值.【分析】(1)过点A作AE⊥BC于点E,如图2,在Rt△ABE中,AB2=AE2+BE2,同理可得:AC2=AE2+CE2,AD2=AE2+DE2,为证明的方便,不妨设BD=CD=x,DE=y,根据勾股定理即可证明;(2)①利用中线定理计算即可;②利用中线定理即可解决;(3)如图4中,连接OA,取OA的中点E,连接DE.利用中线定理求出DE,再利用三边关系即可解决问题;【解答】解:(1)过点A作AE⊥BC于点E,如图2,在Rt△ABE中,AB2=AE2+BE2,同理可得:AC2=AE2+CE2,AD2=AE2+DE2,为证明的方便,不妨设BD=CD=x,DE =y,。

江阴市初三数学上学期期末试卷及答案.doc

江阴市初三数学上学期期末试卷及答案.doc

江阴初三年级数学上学期期末试卷温馨提示:亲爱的同学,本试卷共5页,满分分值130分,考试时间120分钟.请仔细审题,细心答题,相信你一定会有出色的表现,祝你考出好成绩! 一、选择题:(每小题3分,计30分) 1. x 取什么值时,451+x 有意义( )A .x >﹣45 B. x >﹣54 C. x ≥54- D. x ≤54- 2.下列图形中,既是轴对称图形,又是中心对称图形的是( )A B C D3.关于x 的方程(a -5)2x -4x -1=0有实数根,则a 满足( ) A .a ≥1 B .a >1且a ≠5 C .a ≥1且a ≠5 D .a ≠54.在100张奖卷中,有4张中奖,小红从中任抽一张,她中奖的概率是( ) A.41 B.201 C.251 D.1001 5.已知扇形的半径是12cm ,圆心角的度数是60°,则扇形的弧长是( ) A.2πcm, B.4πcm, C.12πcm, D.14πcm6. ⊙O 的直径为10,圆心O 到直线l 的距离为6,则直线l 与⊙O 的位置关系是( )A . 相交B . 相切C . 相离D . 无法确定7. 若△ABC∽△DEF, △ABC与△DEF的相似比为1∶2,则△ABC与△DEF的周长比为………………………………………………………………()A.1∶2 B.1∶4 C.2∶1 D8. 在平面直角坐标系中,如果抛物线y=2x2不动,而把x轴、y轴分别向上、向右平移2个单位,那么在新坐标系下抛物线的解析式是……………( )A.y=2(x + 2)2-2 B.y=2(x-2)2 + 2C.y=2(x-2)2-2 D.y=2(x + 2)2 + 29. 2010年因干旱影响,凉山州政府鼓励居民节约用水,为了解居民用水情况,在某小区随机抽查了20户家庭的月用水量,结果如下表:则关于这20户家庭的月用水量,下列说法错误的是( )A.中位数是6吨B.平均数是5.8吨C.众数是6吨D.极差是4吨10.m是方程x2+x-1=0的根,则式子m3+2m2+2009的值为( )A.2008B.2009C.2010D.2011二、填空题:(每小题3分,计30分)11.方程x2= x 的根是_______________.12.口袋中放有3只红球和11只黄球,这两种球除颜色外没有任何区别,•随机从口袋中任取一只球,取得黄球的概率是_________.13. 化简:122432+--= .14. 如果圆锥的底面半径是3,高为4,那么他的侧面积是 。

九年级上册江阴数学期末试卷测试与练习(word解析版)

九年级上册江阴数学期末试卷测试与练习(word解析版)

九年级上册江阴数学期末试卷测试与练习(word 解析版)一、选择题1.在半径为3cm 的⊙O 中,若弦AB =32,则弦AB 所对的圆周角的度数为( ) A .30°B .45°C .30°或150°D .45°或135°2.如图,△ABC 中,AD 是中线,BC =8,∠B =∠DAC ,则线段 AC 的长为( )A .43B .42C .6D .43.已知点O 是△ABC 的外心,作正方形OCDE ,下列说法:①点O 是△AEB 的外心;②点O 是△ADC 的外心;③点O 是△BCE 的外心;④点O 是△ADB 的外心.其中一定不成立的说法是( ) A .②④B .①③C .②③④D .①③④4.小华同学某体育项目7次测试成绩如下(单位:分):9,7,10,8,10,9,10.这组数据的中位数和众数分别为( ) A .8,10 B .10,9 C .8,9 D .9,10 5.已知二次函数y =(a ﹣1)x 2﹣x+a 2﹣1图象经过原点,则a 的取值为( ) A .a =±1B .a =1C .a =﹣1D .无法确定6.如图,若二次函数y=ax 2+bx+c (a≠0)图象的对称轴为x=1,与y 轴交于点C ,与x 轴交于点A 、点B (﹣1,0),则 ①二次函数的最大值为a+b+c ; ②a ﹣b+c <0; ③b 2﹣4ac <0;④当y >0时,﹣1<x <3,其中正确的个数是( )A .1B .2C .3D .47.如图示,二次函数2y x mx =-+的图像与x 轴交于坐标原点和()4,0,若关于x 的方程20x mx t -+=(t 为实数)在15x <<的范围内有解,则t 的取值范围是( )A .53t -<<B .5t >-C .34t <≤D .54t -<≤8.下列条件中,一定能判断两个等腰三角形相似的是( ) A .都含有一个40°的内角 B .都含有一个50°的内角 C .都含有一个60°的内角D .都含有一个70°的内角9.抛物线y=(x ﹣2)2﹣1可以由抛物线y=x 2平移而得到,下列平移正确的是( ) A .先向左平移2个单位长度,然后向上平移1个单位长度 B .先向左平移2个单位长度,然后向下平移1个单位长度 C .先向右平移2个单位长度,然后向上平移1个单位长度 D .先向右平移2个单位长度,然后向下平移1个单位长度10.“一般的,如果二次函数y =ax 2+bx +c 的图象与x 轴有两个公共点,那么一元二次方程ax 2+bx +c =0有两个不相等的实数根.——苏科版《数学》九年级(下册)P 21”参考上述教材中的话,判断方程x 2﹣2x =1x﹣2实数根的情况是 ( ) A .有三个实数根B .有两个实数根C .有一个实数根D .无实数根11.如图,□ABCD 中,点E 是边AD 的中点,EC 交对角线BD 于点F ,则EF:FC 等于( )A .3:2B .3:1C .1:1D .1:2 12.一组数据10,9,10,12,9的平均数是( )A .11B .12C .9D .10二、填空题13.在一块边长为30 cm 的正方形飞镖游戏板上,有一个半径为10 cm 的圆形阴影区域,则飞镖落在阴影区域内的概率为__________.14.已知点11(,)A x y ,22(,)B x y 在二次函数2(1)1y x =-+的图象上,若121x x >>,则1y __________2y .(填“>”“<”“=”)15.如图,直线l 1∥l 2∥l 3,A 、B 、C 分别为直线l 1,l 2,l 3上的动点,连接AB ,BC ,AC ,线段AC 交直线l 2于点D .设直线l 1,l 2之间的距离为m ,直线l 2,l 3之间的距离为n ,若∠ABC =90°,BD =3,且12m n =,则m +n 的最大值为___________.16.已知一个圆锥底面圆的半径为6cm ,高为8cm ,则圆锥的侧面积为_____cm 2.(结果保留π)17.如图,五边形 ABCDE 是⊙O 的内接正五边形, AF 是⊙O 的直径,则∠ BDF 的度数是___________°.18.某一时刻,测得身高1.6m 的同学在阳光下的影长为2.8m ,同时测得教学楼在阳光下的影长为25.2m ,则教学楼的高为__________m . 19.一组数据3,2,1,4,x 的极差为5,则x 为______.20.二次函数2y x bx c =-++的部分图像如图所示,要使函数值3y >,则自变量x 的取值范围是_______.21.圆锥的底面半径是4cm ,母线长是6cm ,则圆锥的侧面积是______cm 2(结果保留π).22.把函数y =2x 2的图象先向右平移3个单位长度,再向下平移2个单位长度得到新函数的图象,则新函数的表达式是_____.23.如图,1ABB △,12AB B ,△A 2B 2B 3 是全等的等边三角形,点 B ,B 1,B 2,B 3 在同一条 直线上,连接 A 2B 交 AB 1 于点 P ,交 A 1B 1 于点 Q ,则 PB 1∶QB 1 的值为___.24.如图,在△ABC 中,AC :BC :AB =3:4:5,⊙O 沿着△ABC 的内部边缘滚动一圈,若⊙O 的半径为1,且圆心O 运动的路径长为18,则△ABC 的周长为_____.三、解答题25.如图,在矩形纸片ABCD 中,已知2AB =,6=BC ,点E 在边CD 上移动,连接AE ,将多边形ABCE 沿AE 折叠,得到多边形AB C E '',点B 、C 的对应点分别为点B ',C '.(1)连接AC .则AC =______,DAC ∠=______°; (2)当B C ''恰好经过点D 时,求线段CE 的长;(3)在点E 从点C 移动到点D 的过程中,求点C '移动的路径长.26.在矩形ABCD 中,AB =3,AD =5,E 是射线..DC 上的点,连接AE ,将△ADE 沿直线AE 翻折得△AFE .(1)如图①,点F 恰好在BC 上,求证:△ABF ∽△FCE ;(2)如图②,点F 在矩形ABCD 内,连接CF ,若DE =1,求△EFC 的面积; (3)若以点E 、F 、C 为顶点的三角形是直角三角形,则DE 的长为 .27.某商店专门销售某种品牌的玩具,成本为30元/件,每天的销售量y (件)与销售单价x (元)之间存在着如图所示的一次函数关系.(1)求y 与x 之间的函数关系式;(2)当销售单价为多少元时,每天获取的利润最大,最大利润是多少? (3)为了保证每天的利润不低于3640元,试确定该玩具销售单价的范围.28.京杭大运河是世界文化遗产.综合实践活动小组为了测出某段运河的河宽(岸沿是平行的),如图,在岸边分别选定了点A 、B 和点C 、D ,先用卷尺量得AB=160m ,CD=40m ,再用测角仪测得∠CAB=30°,∠DBA=60°,求该段运河的河宽(即CH 的长).29.九(3)班组织了一次经典朗读比赛,甲、乙两队各10人的比赛成绩如下表: 甲 7 8 9 7 10 10 9 10 10 10 乙10879810109109(1)计算乙队的平均成绩和方差;(2)已知甲队成绩的方差是1.4分2,则成绩较为整齐的是哪个队? 30.已知关于x 的一元二次方程()222140x m x m +++-=.(1)当m 为何值时,方程有两个不相等的实数根?(2)设方程两根分别为1x 、2x ,且21x 、22x 分别是边长为5的菱形的两条对角线,求m 的值.31.如图,AD 、A ′D ′分别是△ABC 和△A ′B ′C ′的中线,且AB BD ADA B B D A D==''''''.判断△ABC 和△A ′B ′C ′是否相似,并说明理由.32.如图,转盘A 中的6个扇形的面积相等,转盘B 中的3个扇形的面积相等.分别任意转动转盘A、B各1次,当转盘停止转动时,将指针所落扇形中的2个数字分别作为平面直角坐标系中一个点的横坐标、纵坐标.(1)用表格列出这样的点所有可能的坐标;(2)求这些点落在二次函数y=x2﹣5x+6的图象上的概率.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】根据题意画出图形,连接OA和OB,根据勾股定理的逆定理得出∠AOB=90°,再根据圆周角定理和圆内接四边形的性质求出即可.【详解】解:如图所示,连接OA,OB,则OA=OB=3,∵AB=2,∴OA2+OB2=AB2,∴∠AOB=90°,∴劣弧AB的度数是90°,优弧AB的度数是360°﹣90°=270°,∴弦AB对的圆周角的度数是45°或135°,故选:D.【点睛】此题主要考查圆周角的求解,解题的关键是根据图形求出圆心角,再得到圆周角的度数. 2.B【解析】 【分析】由已知条件可得ABC DAC ~,可得出AC BCDC AC=,可求出AC 的长. 【详解】解:由题意得:∠B =∠DAC ,∠ACB =∠ACD,所以ABC DAC ~,根据“相似三角形对应边成比例”,得AC BCDC AC=,又AD 是中线,BC =8,得DC=4,代入可得AC=42, 故选B. 【点睛】本题主要考查相似三角形的判定与性质.灵活运用相似的性质可得出解答.3.A解析:A 【解析】 【分析】根据三角形的外心得出OA=OC=OB ,根据正方形的性质得出OA=OC <OD ,求出OA=OB=OC=OE≠OD ,再逐个判断即可. 【详解】解:如图,连接OB 、OD 、OA ,∵O 为锐角三角形ABC 的外心, ∴OA =OC =OB , ∵四边形OCDE 为正方形, ∴OA =OC <OD , ∴OA =OB =OC =OE ≠OD ,∴OA =OC ≠OD ,即O 不是△ADC 的外心, OA =OE =OB ,即O 是△AEB 的外心, OB =OC =OE ,即O 是△BCE 的外心, OB =OA ≠OD ,即O 不是△ABD 的外心, 故选:A . 【点睛】本题考查了正方形的性质和三角形的外心.熟记三角形的外心到三个顶点的距离相等是解决此题的关键.4.D解析:D试题分析:把这组数据从小到大排列:7,8,9,9,10,10,10,最中间的数是9,则中位数是9;10出现了3次,出现的次数最多,则众数是10;故选D.考点:众数;中位数.5.C解析:C【解析】【分析】将(0,0)代入y=(a﹣1)x2﹣x+a2﹣1 即可得出a的值.【详解】解:∵二次函数y=(a﹣1)x2﹣x+a2﹣1 的图象经过原点,∴a2﹣1=0,∴a=±1,∵a﹣1≠0,∴a≠1,∴a的值为﹣1.故选:C.【点睛】本题考查了二次函数,二次函数图像上的点满足二次函数解析式,熟练掌握这一点是解题的关键,同时解题过程中要注意二次项系数不为0.6.B解析:B【解析】分析:直接利用二次函数图象的开口方向以及图象与x轴的交点,进而分别分析得出答案.详解:①∵二次函数y=ax2+bx+c(a≠0)图象的对称轴为x=1,且开口向下,∴x=1时,y=a+b+c,即二次函数的最大值为a+b+c,故①正确;②当x=﹣1时,a﹣b+c=0,故②错误;③图象与x轴有2个交点,故b2﹣4ac>0,故③错误;④∵图象的对称轴为x=1,与x轴交于点A、点B(﹣1,0),∴A(3,0),故当y>0时,﹣1<x<3,故④正确.故选B.点睛:此题主要考查了二次函数的性质以及二次函数最值等知识,正确得出A点坐标是解题关键.7.D解析:D【分析】首先将()4,0代入二次函数,求出m ,然后利用根的判别式和求根公式即可判定t 的取值范围. 【详解】将()4,0代入二次函数,得2440m -+=∴4m =∴方程为240x x t -+= ∴4164tx ±-=∵15x << ∴54t -<≤ 故答案为D . 【点睛】此题主要考查二次函数与一元二次方程的综合应用,熟练掌握,即可解题.8.C解析:C 【解析】试题解析:因为A,B,D 给出的角40,50,70可能是顶角也可能是底角,所以不对应,则不能判定两个等腰三角形相似;故A ,B ,D 错误;C. 有一个60的内角的等腰三角形是等边三角形,所有的等边三角形相似,故C 正确. 故选C.9.D解析:D 【解析】分析:抛物线平移问题可以以平移前后两个解析式的顶点坐标为基准研究.详解:抛物线y=x 2顶点为(0,0),抛物线y=(x ﹣2)2﹣1的顶点为(2,﹣1),则抛物线y=x 2向右平移2个单位,向下平移1个单位得到抛物线y=(x ﹣2)2﹣1的图象. 故选D .点睛:本题考查二次函数图象平移问题,解答时最简单方法是确定平移前后的抛物线顶点,从而确定平移方向.10.C解析:C 【解析】 试题分析:由得,,即是判断函数与函数的图象的交点情况.因为函数与函数的图象只有一个交点所以方程只有一个实数根故选C.考点:函数的图象点评:函数的图象问题是初中数学的重点和难点,是中考常见题,在压轴题中比较常见,要特别注意.11.D解析:D 【解析】 【分析】根据题意得出△DEF ∽△BCF ,进而得出=DE EFBC FC,利用点E 是边AD 的中点得出答案即可. 【详解】解:∵▱ABCD ,故AD ∥BC , ∴△DEF ∽△BCF , ∴=DE EFBC FC, ∵点E 是边AD 的中点, ∴AE=DE=12AD , ∴12EF FC . 故选D .12.D解析:D 【解析】 【分析】利用平均数的求法求解即可.【详解】这组数据10,9,10,12,9的平均数是1(10910129)105++++=故选:D .【点睛】本题主要考查平均数,掌握平均数的求法是解题的关键. 二、填空题13.【解析】【分析】分别计算半径为10cm 的圆的面积和边长为30cm 的正方形ABCD 的面积,然后计算即可求出飞镖落在圆内的概率;【详解】解:(1)∵半径为10cm 的圆的面积=π•102=100 解析:9π 【解析】【分析】 分别计算半径为10cm 的圆的面积和边长为30cm 的正方形ABCD 的面积,然后计算S S 半圆正方形即可求出飞镖落在圆内的概率;【详解】解:(1)∵半径为10cm 的圆的面积=π•102=100πcm 2,边长为30cm 的正方形ABCD 的面积=302=900cm 2, ∴P (飞镖落在圆内)=100==9009S S ππ半圆正方形,故答案为:9π. 【点睛】本题考查了几何概率,掌握概率=相应的面积与总面积之比是解题的关键.14.【解析】抛物线的对称轴为:x=1,∴当x>1时,y 随x 的增大而增大.∴若x1>x2>1 时,y1>y2 .故答案为>解析:12y y >【解析】抛物线()2y x 11=-+的对称轴为:x=1,∴当x>1时,y 随x 的增大而增大.∴若x 1>x 2>1 时,y 1>y 2 .故答案为>15.【解析】【分析】过作于,延长交于,过作于,过作于,设,,得到,,根据相似三角形的性质得到,,由,得到,于是得到,然后根据二次函数的性质即可得到结论.【详解】解:过作于,延长交于,过作于,过解析:274【解析】【分析】过B 作1BE l ⊥于E ,延长EB 交3l 于F ,过A 作2AN l ⊥于N ,过C 作2CM l ⊥于M ,设AE BN x ==,CF BM y ==,得到3DM y =-,4DN x =-,根据相似三角形的性质得到xy mn =,29y x =-+,由12m n =,得到2n m =,于是得到()3m n m +=最大,然后根据二次函数的性质即可得到结论.【详解】解:过B 作1BE l ⊥于E ,延长EB 交3l 于F ,过A 作2AN l ⊥于N ,过C 作2CM l ⊥于M ,设AE BN x ==,CF BM y ==,3BD =,3DM y ∴=-,3DN x =-,90ABC AEB BFC CMD AND ∠=∠=∠=∠=∠=︒,90EAB ABE ABE CBF ∴∠+∠=∠+∠=︒,EAB CBF ∴∠=∠,ABE BFC ∴∆∆∽,∴AE BE BF CF=,即x m n y =, xy mn ∴=,ADN CDM ∠=∠,CMD AND ∴∆∆∽,∴AN DN CM DM =,即3132m x n y -==-, 29y x ∴=-+,12m n =, 2n m ∴=,()3m n m ∴+=最大,∴当m 最大时,()3m n m +=最大,22(29)292mn xy x x x x m ==-+=-+=,∴当92(29)4x =-=⨯-时,28128mn m ==最大, 94m ∴=最大, m n ∴+的最大值为927344⨯=. 故答案为:274. 【点睛】本题考查了平行线的性质,相似三角形的判定和性质,二次函数的性质,正确的作出辅助线,利用相似三角形转化线段关系,得出关于m 的函数解析式是解题的关键.16.60π【解析】试题分析:先根据勾股定理求得圆锥的母线长,再根据圆锥的侧面积公式求解即可.由题意得圆锥的母线长∴圆锥的侧面积.考点:勾股定理,圆锥的侧面积点评:解题的关键是熟练掌握圆锥的侧解析:60π【解析】试题分析:先根据勾股定理求得圆锥的母线长,再根据圆锥的侧面积公式求解即可. 由题意得圆锥的母线长∴圆锥的侧面积. 考点:勾股定理,圆锥的侧面积点评:解题的关键是熟练掌握圆锥的侧面积公式:圆锥的侧面积底面半径×母线. 17.54【解析】连接AD,根据圆周角定理得到∠ADF=90°,根据五边形的内角和得到∠ABC=∠C=108°,求得∠ABD=72°,由圆周角定理得到∠F=∠ABD=72°,求得∠FAD=1解析:54【解析】【分析】连接AD,根据圆周角定理得到∠ADF=90°,根据五边形的内角和得到∠ABC=∠C=108°,求得∠ABD=72°,由圆周角定理得到∠F=∠ABD=72°,求得∠FAD=18°,于是得到结论.【详解】连接AD,∵AF是⊙O的直径,∴∠ADF=90°,∵五边形ABCDE是⊙O的内接正五边形,∴∠ABC=∠C=108°,∴∠ABD=72°,∴∠F=∠ABD=72°,∴∠FAD=18°,∴∠CDF=∠DAF=18°,∴∠BDF=36°+18°=54°,故答案为54.【点睛】本题考查正多边形与圆,圆周角定理等知识,解题的关键灵活运用所学知识解决问题.18.4【解析】【分析】根据题意可知,,代入数据可得出答案.【详解】解:由题意得出:,即,解得,教学楼高=14.4.故答案为:14.4.本题考查的知识点是相似三角形的应用以及平解析:4【解析】【分析】根据题意可知,1.62.8=身高教学楼高影长教学楼影长,代入数据可得出答案.【详解】解:由题意得出:1.62.8=身高教学楼高影长教学楼影长,即,1.62.825.2=教学楼高解得,教学楼高=14.4.故答案为:14.4.【点睛】本题考查的知识点是相似三角形的应用以及平行投影,熟记同一时刻物高与影长成正比是解此题的关键.19.-1或6【解析】【分析】由题意根据极差的公式即极差=最大值-最小值.可能是最大值,也可能是最小值,分两种情况讨论.【详解】解:当x是最大值,则x-(1)=5,所以x=6;当x是最小值,解析:-1或6【解析】【分析】由题意根据极差的公式即极差=最大值-最小值.x可能是最大值,也可能是最小值,分两种情况讨论.【详解】解:当x是最大值,则x-(1)=5,所以x=6;当x是最小值,则4-x=5,所以x=-1;故答案为-1或6.本题考查极差的定义,极差反映了一组数据变化范围的大小,求极差的方法是用一组数据中的最大值减去最小值,同时注意分类的思想的运用.20.【解析】【分析】根据,则函数图象在直线的上方,所以找出函数图象在直线的上方的取值范围即可.【详解】根据二次函数的图象可知:对称轴为,已知一个点为,根据抛物线的对称性,则点关于对称性对称解析:20x -<<【解析】【分析】根据3y >,则函数图象在直线3y =的上方,所以找出函数图象在直线3y =的上方x 的取值范围即可.【详解】根据二次函数的图象可知:对称轴为1x =-,已知一个点为()03,, 根据抛物线的对称性,则点()03,关于对称性对称的另一个点为()23-,, 所以3y >时,x 的取值范围是20x -<<.故答案为:20x -<<.【点睛】本题主要考查了二次函数的性质,主要利用了二次函数的对称性,读懂图象信息,利用对称轴求出点()03,的对称点是解题的关键. 21.24π【解析】【分析】根据圆锥的侧面展开图为扇形,先计算出圆锥的底面圆的周长,然后利用扇形的面积公式计算即可.【详解】解:∵圆锥的底面半径为4cm ,∴圆锥的底面圆的周长=2π•4=8π,解析:24π【解析】根据圆锥的侧面展开图为扇形,先计算出圆锥的底面圆的周长,然后利用扇形的面积公式计算即可.【详解】解:∵圆锥的底面半径为4cm,∴圆锥的底面圆的周长=2π•4=8π,∴圆锥的侧面积=12×8π×6=24π(cm2).故答案为:24π.【点睛】本题考查了圆锥的侧面积的计算:圆锥的侧面展开图为扇形,扇形的弧长为圆锥的底面周长,扇形的半径为圆锥的母线长.也考查了扇形的面积公式:S=12•l•R,(l为弧长).22.y=2(x﹣3)2﹣2.【解析】【分析】利用二次函数平移规律即可求出结论.【详解】解:由函数y=2x2的图象先向右平移3个单位长度,再向下平移2个单位长度得到新函数的图象,得新函数的表达解析:y=2(x﹣3)2﹣2.【解析】【分析】利用二次函数平移规律即可求出结论.【详解】解:由函数y=2x2的图象先向右平移3个单位长度,再向下平移2个单位长度得到新函数的图象,得新函数的表达式是y=2(x﹣3)2﹣2,故答案为y=2(x﹣3)2﹣2.【点睛】本题主要考查的是二次函数的图象与几何变换,熟知“上加下减,左加右减”的原则是解答此题的关键.23.【解析】【分析】根据题意说明PB1∥A2 B3,A1B1∥A2B2,从而说明△BB1P∽△BA2 B3,△BB1Q∽△BB2A2,再得到PB1 和A2B3的关系以及QB1和A2B2的关系,根据解析:23【解析】【分析】根据题意说明PB 1∥A 2 B 3,A 1B 1∥A 2B 2,从而说明△BB 1P ∽△BA 2 B 3,△BB 1Q ∽△BB 2A 2,再得到PB 1 和A 2B 3的关系以及QB 1和A 2B 2的关系,根据A 2B 3=A 2B 2,得到PB 1和QB 1的比值.【详解】解:∵△ABB 1,△A 1B 1B 2,△A 2B 2B 3是全等的等边三角形,∴∠BB 1P=∠B 3,∠A 1B 1 B 2=∠A 2B 2B 3,∴PB 1∥A 2B 3,A 1B 1∥A 2B 2,∴△BB 1P ∽△BA 2 B 3,△BB 1Q ∽△BB 2A 2, ∴112331==3PB BB A B BB ,112221==2QB BB A B BB , ∴1231=3PB A B ,1221=2QB A B , ∵2322=A B A B , ∴PB 1∶QB 1=13A 2B 3∶12A 2 B 2=2:3. 故答案为:23. 【点睛】本题考查了相似三角形的判定和性质,等边三角形的性质,平行线的判定,正确的识别图形是解题的关键. 24.30【解析】【分析】如图,首先利用勾股定理判定△ABC 是直角三角形,由题意得圆心O 所能达到的区域是△DEG,且与△ABC 三边相切,设切点分别为G 、H 、P 、Q 、M 、N ,连接DH 、DG 、EP 、EQ解析:30【解析】【分析】如图,首先利用勾股定理判定△ABC 是直角三角形,由题意得圆心O 所能达到的区域是△DEG ,且与△ABC 三边相切,设切点分别为G 、H 、P 、Q 、M 、N ,连接DH 、DG 、EP 、EQ 、FM 、FN ,根据切线性质可得:AG =AH ,PC =CQ ,BN =BM ,DG 、EP 分别垂直于AC ,EQ 、FN 分别垂直于BC ,FM 、DH 分别垂直于AB ,继而则有矩形DEPG 、矩形EQNF 、矩形DFMH ,从而可知DE =GP ,EF =QN ,DF =HM ,DE ∥GP ,DF ∥HM ,EF ∥QN ,∠PEF =90°,根据题意可知四边形CPEQ 是边长为1的正方形,根据相似三角形的判定可得△DEF ∽△ACB ,根据相似三角形的性质可知:DE ∶EF ∶FD =AC ∶CB ∶BA =3∶4∶5,进而根据圆心O 运动的路径长列出方程,求解算出DE 、EF 、FD 的长,根据矩形的性质可得:GP 、QN 、MH 的长,根据切线长定理可设:AG =AH =x ,BN =BM =y ,根据线段的和差表示出AC 、BC 、AB 的长,进而根据AC ∶CB ∶BA =3∶4∶5列出比例式,继而求出x 、y 的值,进而即可求解△ABC 的周长.【详解】∵AC ∶CB ∶BA =3∶4∶5,设AC =3a ,CB =4a ,BA =5a (a >0)∴()()()222222=345AC CB a a a BA ++==∴△ABC 是直角三角形,设⊙O 沿着△ABC 的内部边缘滚动一圈,如图所示,连接DE 、EF 、DF ,设切点分别为G 、H 、P 、Q 、M 、N ,连接DH 、DG 、EP 、EQ 、FM 、FN ,根据切线性质可得:AG =AH ,PC =CQ ,BN =BMDG 、EP 分别垂直于AC ,EQ 、FN 分别垂直于BC ,FM 、DH 分别垂直于AB ,∴DG ∥EP ,EQ ∥FN ,FM ∥DH ,∵⊙O 的半径为1∴DG =DH =PE =QE =FN =FM =1,则有矩形DEPG 、矩形EQNF 、矩形DFMH ,∴DE =GP ,EF =QN ,DF =HM ,DE ∥GP ,DF ∥HM ,EF ∥QN,∠PEF =90°又∵∠CPE =∠CQE =90°, PE =QE =1∴四边形CPEQ 是正方形,∴PC =PE =EQ =CQ =1,∵⊙O 的半径为1,且圆心O 运动的路径长为18,∴DE +EF +DF =18,∵DE ∥AC ,DF ∥AB ,EF ∥BC ,∴∠DEF =∠ACB ,∠DFE =∠ABC ,∴△DEF ∽△ABC ,∴DE :EF :DF =AC :BC :AB =3:4:5,设DE =3k (k >0),则EF =4k ,DF =5k ,∵DE +EF +DF =18,∴3k+4k+5k=18,解得k=32,∴DE=3k=92,EF=4k=6,DF=5k=152,根据切线长定理,设AG=AH=x,BN=BM=y,则AC=AG+GP+CP=x+92+1=x+5.5,BC=CQ+QN+BN=1+6+y=y+7,AB=AH+HM+BM=x+152+y=x+y+7.5,∵AC:BC:AB=3:4:5,∴(x+5.5):(y+7):(x+y+7.5)=3:4:5,解得x=2,y=3,∴AC=7.5,BC=10,AB=12.5,∴AC+BC+AB=30.所以△ABC的周长为30.故答案为30.【点睛】本题是一道动图形问题,考查切线的性质定理、相似三角形的判定与性质、矩形的判定与性质、解直角三角形等知识点,解题的关键是确定圆心O的轨迹,学会作辅助线构造相似三角形,综合运用上述知识点.三、解答题25.(1),30;(2)CE=;(3)CC'的长3=【解析】【分析】(1)直接利用勾股定理可求出AC的长,再利用特殊角的三角函数值可得出∠DAC的度数(2)设CE=x,则x,根据已知条件得出AD B DEC'',再利用相似三角形对应线段成比例求解即可.(3)点C?运动的路径长为´CC的长,求出圆心角,半径即可解决问题.【详解】解:(1)连接AC22AC 2622AB BC =+=+=∵21sin 30222AB AC ===︒ ∴ACB DAC 30∠∠==︒ (2)由已知条件得出,A 2B '=,D 2B '=,D 62C '=-易证AB D DC E ''∆∆∽ ∴C E DC B D AB''='' ∴6222CE -=∴2322CE =-(3)如图所示,C'运动的路径长为CC '的长由翻折得:30C AD DAC '∠=∠=︒ ∴60CAC '∠=︒ ∴CC '的长602222π⋅==【点睛】本题考查的知识点有相似三角形的判定与性质,特殊的三角函数值,弧长的相关计算等,解题的关键是弄清题意,综合利用各知识点来求解. 26.(1)证明见解析;(2)513;(3)53、5、15、345)3【解析】 【分析】(1)利用同角的余角相等,证明∠CEF=∠AFB,即可解决问题;(2)过点F作FG⊥DC交DC与点G,交AB于点H,由△FGE∽△AHF得出AH=5GF,再利用勾股定理求解即可;(3)分①当∠EFC=90°时; ②当∠ECF=90°时;③当∠CEF=90°时三种情况讨论解答即可.【详解】(1)解:在矩形ABCD中,∠B=∠C=∠D=90°由折叠可得:∠D=∠EFA=90°∵∠EFA=∠C=90°∴∠CEF+∠CFE=∠CFE+∠AFB=90°∴∠CEF=∠AFB在△ABF和△FCE中∵∠AFB=∠CEF,∠B=∠C=90°△ABF∽△FCE(2)解:过点F作FG⊥DC交DC与点G,交AB于点H,则∠EGF=∠AHF=90°在矩形ABCD中,∠D=90°由折叠可得:∠D=∠EFA=90°,DE=EF=1,AD=AF=5∵∠EGF=∠EFA=90°∴∠GEF+∠GFE=∠AFH+∠GFE=90°∴∠GEF=∠AFH在△FGE和△AHF中∵∠GEF=∠AFH,∠EGF=∠FHA=90°∴△FGE∽△AHF∴EFAF=GFAH∴15=GFAH∴AH=5GF在Rt△AHF中,∠AHF=90°∵AH2+FH2=AF2∴(5 GF)2+(5-GF)2=52∴GF=5 13∴△EFC的面积为12×513×2=513;(3)解:①当∠EFC=90°时,A 、F 、C 共线,如图所示:设DE=EF=x,则CE=3-x, ∵AC=22223534AD CD +=+=,∴CF=34-x, ∵∠CFE=∠D=90°, ∠DCA=∠DCA,∴△CEF ∽△CAD, ∴CE EFCA AD =,即534x =,解得:ED=x=5(345)-; ②当∠ECF=90°时,如图所示:∵AD=1AF =5,AB=3, ∴1BF 221AF AB -设1DE =x,则1E C =3-x,∵∠DCB=∠ABC=90°,111CF E F AB ∠=∠∴11CE F ∽1BF A ,∴11111E C E F F B F A =,即345x x -=,解得:x=1E D =53; 由折叠可得 :222E F E D = ,设2E C x =,则2223E F DE x ==+,2549CF =+=, 在RT △22E F C 中,∵2222222CF CE E F +=,即9²+x²=(x+3)²,解得x=2E C =12, ∴231215DE =+=;③当∠CEF=90°时,AD=AF,此时四边形AFED 是正方形,∴AF=AD=DE=5,综上所述,DE 的长为:53、5、155(345)-. 【点睛】本题考查了翻折的性质,相似三角形的判定与性质,勾股定理,掌握翻折的性质,分类探讨的思想方法是解决问题的关键.27.(1)10700y x =-+;(2)销售单价为50元时,每天获取的利润最大,最大利润是4000元;(3)44≤x ≤56 【解析】 【分析】(1)直接利用待定系数法求出一次函数解析式即可; (2)利用w=销量乘以每件利润进而得出关系式求出答案; (3)利用w=3640,进而解方程,再利用二次函数增减性得出答案. 【详解】解:(1)y 与x 之间的函数关系式为:y kx b =+ 把(35,350),(55,150)代入得:由题意得:3503515055k bk b =+⎧⎨=+⎩解得:10700k b =-⎧⎨=⎩∴y 与x 之间的函数关系式为:10700y x =-+. (2)设销售利润为W 元则W=(x ﹣30)•y =(x ﹣30)(﹣10x +700), W =﹣10x 2+1000x ﹣21000 W =﹣10(x ﹣50)2+4000∴当销售单价为50元时,每天获取的利润最大,最大利润是4000元. (3)令W =3640∴﹣10(x ﹣50)2+4000=3640 ∴x 1=44,x 2=56如图所示,由图象得:当44≤x ≤56时,每天利润不低于3640元. 【点睛】此题主要考查了二次函数的应用以及待定系数法求一次函数解析式,正确掌握二次函数的性质是解题关键.28.该段运河的河宽为303m . 【解析】 【分析】过D 作DE ⊥AB ,可得四边形CHED 为矩形,由矩形的对边相等得到两对对边相等,分别在直角三角形ACH 与直角三角形BDE 中,设CH=DE=xm ,利用锐角三角函数定义表示出AH 与BE ,由AH+HE+EB=AB 列出方程,求出方程的解即可得到结果. 【详解】解:过D 作DE AB ⊥,可得四边形CHED 为矩形,40HE CD m ∴==, 设CH DE xm ==,在Rt BDE ∆中,60DBA ∠=︒,33BE xm ∴=, 在Rt ACH ∆中,30BAC ∠=︒,3AH xm ∴=,由160AH HE EB AB m ++==,得到3340160x x ++=, 解得:303x =,即303CH m =, 则该段运河的河宽为303m .【点睛】考查了解直角三角形的应用,熟练掌握锐角三角函数定义是解本题的关键. 29.(1)9,1;(2)乙【解析】 【分析】(1)根据平均数与方差的定义即可求解; (2)根据方差的性质即可判断乙队整齐. 【详解】(1)乙队的平均成绩是:1(10482793)10⨯⨯+⨯++⨯=9 方差是:222214(109)2(89)(79)3(99)110⎡⎤⨯⨯-+⨯-+-+⨯-=⎣⎦ (2)∵乙队的方差<甲队的方差 ∴成绩较为整齐的是乙队. 【点睛】此题主要考查平均数与方差,解题的关键是熟知平均数与方差的求解公式及方差的性质. 30.(1)174m >-;(2)4m =- 【解析】 【分析】(1)由根的判别式2=40b ac ∆->即可求解;(2)根据菱形对角线互相垂直且平分,由勾股定理得222125x x +=,又由一元二次方程根与系数的关系1212, b c x x x x a a+=-=,所以有()2221212122x x x x x x +-=+,据此列出关于m 的方程求解. 【详解】(1)∵方程有两个不相等的实数根, ∴()()22=2144=417m m m ∆+--+>0解得:174m >- ∴当174m >-时,方程有两个不相等的实数根; (2)由题意得:2221212212521?4x x x x m x x m ⎧+=⎪+=--⎨⎪=-⎩ ∴()()()222222121212=2212424925x x x x x x m m m m ++-=----=++=解得:2m =或4m =-∵21x 、22x 分别是边长为5的菱形的两条对角线∴122 1 0x x m +=-->,即12m <- ∴4m =- 【点睛】本题考查一元二次方程根的判别式、结合菱形的性质考查勾股定理和韦达定理,熟知一元二次方程根与系数的关系是解题关键. 31.△ABC ∽△A 'B 'C ',理由见解析 【解析】 【分析】由题意知,根据相似三角形的判定定理:三边对应成比例的两个三角形相似,可证得△ABD ∽△A 'B 'D ',进而可得∠B =∠B ',再根据两边对应成比例及其夹角相等的两个三角形相似,即可得△ABC ∽△A 'B 'C '. 【详解】 △ABC ∽△A 'B 'C ',理由:∵==''''''AB BD ADA B B D A D ∴△ABD ∽△A 'B 'D ', ∴∠B =∠B ',∵AD 、A 'D '分别是△ABC 和△A 'B 'C '的中线 ∴12BD BC =,1''''2B D BC =, ∴12==1''''''2BCAB BCA B B C B C , 在△ABC 和△A 'B 'C '中∵=''''AB BCA B B C ,且∠B =∠B ' ∴△ABC ∽△A 'B 'C '. 【点睛】本题考查相似三角形的判定,解题的关键是熟练掌握相似三角形的判定定理:三边对应成比例的两个三角形相似;两边对应成比例及其夹角相等的两个三角形相似. 32.(1)见解析;(2)19【解析】 【分析】(1)根据题意列表,展示出所有等可能的坐标结果;(2)由(1)可求得点落在二次函数y =x 2﹣5x +6的图象上的结果数,再根据概率公式计算即可解答. 【详解】(1)根据题意列表如下:(2)由上表可知,点(1,2)、(4,2)都在二次函数y=x2﹣5x+6的图象上,所以P(这些点落在二次函数y=x2﹣5x+6的图象上)=218=19.【点睛】本题考查列表法或树状图法求概率,解题的关键是不重复不遗漏地列出所有等可能的结果.。

2019-2020学年江苏省无锡市江阴市九年级(上)期末数学试卷

2019-2020学年江苏省无锡市江阴市九年级(上)期末数学试卷
的长),在地面 A 处测得点 M 的仰角为 60°、点 N 的仰角为 45°,在 B 处测得点 M 的
仰角为 30°,AB=5m,MN⊥AB 于点 P,且 B、A、P 三点在同一直线上.求广告牌 MN
的长(结果保留根号).
25.(8 分)如图,AB 为⊙O 的直径,C、F 为⊙O 上两点,且点 C 为的中点,过点 C 作
22.(8 分)如图,在平面直角坐标系中,△ABC 的三个顶点都在格点上,点 A 的坐标为
(2,﹣1),请解答下列问题:
(1)画出△ABC 关于 x 轴对称的△A1B1C1,点 A1 的坐标为

(2)在网格内以点(1,1)为位似中心,把△A1B1C1 按相似比 2:1 放大,得到△
A2B2C2,请画出△A2B2C2;若边 AC 上任意一点 P 的坐标为(m,n),则两次变换后对应
19.(8 分)(1)计算:2sin60°﹣3tan45° + 9;
(2)解方程:x2﹣4x﹣1=0.
20.(8 分)某校为了深入学习社会主义核心价值观,对本校学生进行了一次相关知识的测
试,随机抽取了部分学生的测试成绩进行统计(根据成绩分为 A、B、C、D、E 五个组,x
表示测试成绩,A 组:90≤x≤100;B 组:80≤x<90;C 组:70≤x<80;D 组:60≤x<
【解答】解:由于方差能反映数据的稳定性,需要比较这两名学生了 5 次短跑训练成绩
的方差.
第 7 页(共 28 页)
故选:D.
4.(3 分)方程 x2﹣3x=0 的根是( )
A.x=3
C.x1 = 3,x2 = ― 3
B.x1=0,x2=3
D.x1=3,x2=﹣
3
【考点】解一元二次方程﹣因式分解法.

江苏无锡江阴市要塞片九年级上期末数学考试卷(解析版)(初三)期末考试.doc

江苏无锡江阴市要塞片九年级上期末数学考试卷(解析版)(初三)期末考试.doc

江苏无锡江阴市要塞片九年级上期末数学考试卷(解析版)(初三)期末考试姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题评卷人得分(每空xx 分,共xx分)【题文】﹣2的绝对值是()A. ﹣2B. 2C. ﹣D.【答案】B【解析】试题分析:|﹣2|=2.故选B.考点:绝对值.【题文】下列计算正确的是()A.2a﹣a=1 B.a2+a2=2a4 C.a2•a3=a5 D.(a﹣b)2=a2﹣b2【答案】C.【解析】试题分析:A.2a﹣a=a,故错误;B.a2+a2=2a2,故错误;C.a2•a3=a5,正确;D.(a﹣b)2=a2﹣2ab+b2,故错误;故选C.考点:1.完全平方公式;2.合并同类项;3.同底数幂的乘法.【题文】已知x=2是关于x的一元二次方程x2﹣x﹣2a=0的一个解,则a的值为()A.0 B.﹣1 C.1 D.2【答案】C.【解析】试题分析:∵x=2是方程的解,∴4﹣2﹣2a=0∴a=1.故本题选C.考点:1.一元二次方程的解;2.一元二次方程的定义.【题文】将161000用科学记数法表示为()A.0.161×106 B.1.61×105C.16.1×104 D.161×103【答案】B.【解析】试题分析:161000=1.61×105.故选B.考点:科学记数法—表示较大的数.【题文】三角形的两边长分别为3米和6米,第三边的长是方程x2﹣6x+8=0的一个根,则这个三角形的周长为()A.11 B.12 C.11或 13 D.13【答案】D.【解析】试题分析:∵x2﹣6x+8=0,即(x﹣2)(x﹣4)=0,∴x﹣2=0或x﹣4=0,解得:x=2或x=4,若x=2,则三角形的三边2+3<6,构不成三角形,舍去;当x=4时,这个三角形的周长为3+4+6=13,故选D.考点:1.解一元二次方程-因式分解法;3.三角形三边关系.【题文】九(2)班“环保小组”的5位同学在一次活动中捡废弃塑料袋的个数分别为:4,6,8,16,16.这组数据的中位数、众数分别为()A.16,16 B.10,16 C.8,8 D.8,16【答案】D.【解析】试题分析:在这一组数据中16是出现次数最多的,故众数是16;而将这组数据从小到大的顺序排列后,处于中间位置的数是8,那么由中位数的定义可知,这组数据的中位数是8.故选D.考点:1.众数;2.中位数.【题文】已知圆锥的底面半径为4cm,母线长为5cm,则这个圆锥的侧面积是()A.20 cm B.20πcm2 C.40πcm2 D.40cm2【答案】B.【解析】试题分析:这个圆锥的侧面积=×2π×4×5=20π(cm2).故选B.考点:圆锥的计算.【题文】如图,点D是△ABC的边AC的上一点,且∠ABD=∠C;如果,那么=()A. B. C. D.【答案】A.【解析】试题分析:∵点D是△ABC的边AC的上一点,且∠ABD=∠C,且∠BAD=∠CAB,∴△ABD∽△ACB,如果∴∵,∴AD=x,CD=3x,∴AB2=AC•AD,∴AB=2x∴故选A考点:相似三角形的判定与性质.【题文】如图,已知⊙O的半径OD与弦AB互相垂直,垂足为点C,若AB=16cm,CD=6cm,则⊙O的半径为()A.cm B.10cm C.8cm D.cm【答案】A.【解析】试题分析:连结OA,如图,设⊙O的半径为r,∵OD⊥AB,∴AC=BC=AB=8,在Rt△OAC中,∵OA=r,OC=OD﹣CD=r﹣6,AC=8,∴(r﹣6)2+82=r2,解得r=,即⊙O的半径为cm.故选A.考点:1.垂径定理;2.勾股定理.【题文】如图,Rt△ABC中,AC⊥BC,AD平分∠BAC交BC于点D,DE⊥AD交AB于点E,M为AE的中点,BF⊥BC交CM的延长线于点F,BD=4,CD=3.下列结论①∠AED=∠ADC;②;③AC•BE=12;④3BF=4AC ,其中结论正确的个数有()A.1个 B.2个 C.3个 D.4个【答案】C.【解析】试题分析:①∠AED=90°﹣∠EAD,∠ADC=90°﹣∠DAC,∵∠EAD=∠DAC,∴∠AED=∠ADC.故本选项正确;②∵AD平分∠BAC,∴,∴设AB=4x,则AC=3x,在直角△ABC中,AC2+BC2=AB2,则(3x)2+49=(4x)2,解得:x=,∵∠EAD=∠DAC,∠ADE=∠ACD=90°,∴△ADE∽△ACD,得DE:DA=DC:AC=3:,故不正确;③由①知∠AED=∠ADC,∴∠BED=∠BDA,又∵∠DBE=∠ABD,∴△BED∽△BDA,∴DE:DA=BE:BD,由②知DE:DA=DC:AC,∴BE:BD=DC:AC,∴AC•BE=BD•DC=12.故本选项正确;④连接DM,在Rt△ADE中,MD为斜边AE的中线,则DM=MA.∴∠MDA=∠MAD=∠DAC,∴DM∥BF∥AC,由DM∥BF得FM:MC=BD:DC=4:3;由BF∥AC得△FMB∽△CMA,有BF:AC=FM:MC=4:3,∴3BF=4AC.故本选项正确.综上所述,①③④正确,共有3个.故选C.考点:相似三角形的判定与性质.【题文】因式分解:a2﹣3a= .【答案】a(a﹣3).【解析】试题分析:a2﹣3a=a(a﹣3).考点:因式分解-提公因式法.【题文】函数y=中,自变量x的取值范围是.【答案】x≠2【解析】试题分析:要使分式有意义,即:x﹣2≠0,解得:x≠2.考点:1.函数自变量的取值范围;2.分式有意义的条件.【题文】已知x1、x2是一元二次方程x2﹣3x﹣2=0的两根,则x1+x2=.【答案】3.【解析】试题分析:∵x1、x2是一元二次方程x2﹣3x﹣2=0的两根,∴x1+x2=﹣=3.考点:根与系数的关系.【题文】如图,在△ABC中,DE∥BC,AD=1,AB=3,DE=2,则BC=.【答案】6.【解析】试题分析:∵DE∥BC,∴△ADE∽△ABC,∴,即解得:BC=6.考点:相似三角形的判定与性质.【题文】如图,在⊙O中,AB为⊙O的弦,点C为圆上异于A、B的一点,∠OAB=25°,则∠ACB=.【答案】65°【解析】试题分析:∵OA=OB,∠OAB=25°,∴∠AOB=180°﹣25°﹣25°=130°,∴∠ACB=∠AOB=65°考点:圆周角定理.【题文】某电动自行车厂三月份的产量为1000辆,由于市场需求量不断增大,五月份的产量提高到1210辆,则该厂四、五月份的月平均增长率为 %.【答案】10【解析】试题分析:设四、五月份的月平均增长率为x,根据题意得,1000(1+x)2=1210,解得x1=0.1,x2=﹣2.1(负值舍去),所以该厂四、五月份的月平均增长率为10%.考点:一元二次方程的应用.【题文】一个扇形的圆心角为60°,它所对的弧长为2πcm,则这个扇形的半径为.【答案】6cm【解析】试题分析:由扇形的圆心角为60°,它所对的弧长为2πcm,即n=60°,l=2π,根据弧长公式l=,得2π=,即r=6cm.考点:弧长的计算.【题文】如图,Rt△ABC中,∠BAC=90°,将△ABC绕点C逆时针旋转,旋转后的图形是△A′B′C,点A 的对应点A′落在中线AD上,且点A′是△ABC的重心,A′B′与BC相交于点E,那么BE:CE=.【答案】4:3【解析】试题分析:∵∠BAC=90°,A′是△ABC重心,∴BD=DC=AD,DA′=AA′=AD=BC,∵△A′CB′S是由△ABC旋转得到,∴CA′=CA,BC=CB′,∠ACB=∠A′CB′=∠DAC,∠CA′B′=90°,∴∠CAA′=∠CA′A=∠DAC,∠DA′B′+′CA′A=90°,∠B′+∠A′CB′=90°,∴∠DA′B′=∠B′∴DA′∥CB′,∴,设DE=k,则EC=6k,BE=DC=7k,BE=8k,∴BE:CE=8k:6k=4:3.考点:1.旋转的性质;2.三角形的重心.【题文】解方程:(1)x2+2x=0(2)x2﹣4x+3=0.【答案】(1)x1=0,x2=﹣2;(2)x1=3,x2=1.【解析】试题分析:(1)利用因式分解法把方程化为x=0或x+2=0,然后解两个一次方程即可;(2)利用十字相乘法把要求的式子进行因式分解,得到两个一元一次方程,然后求解即可.试题解析:(1)x2+2x=0,x(x+2)=0,x1=0,x2=﹣2;(2)x2﹣4x+3=0,(x﹣3)(x﹣1)=0,x1=3,x2=1.考点:解一元二次方程-因式分解法.【题文】已知关于x的一元二次方程x2+3x+1﹣m=0有两个不相等的实数根.(1)求m的取值范围;(2)若m为负整数,求此时方程的根.【答案】(1)m>﹣.(2)x1=﹣1和x2=﹣2.【解析】试题分析:(1)由方程有两个不等实数根可得b2﹣4ac>0,代入数据即可得出关于m的一元一次不等式,解不等式即可得出结论;(2)根据m为负整数以及(1)的结论可得出m的值,将其代入原方程,利用分解因式法解方程即可得出结论.试题解析:(1)∵关于x的一元二次方程x2+3x+1﹣m=0有两个不相等的实数根,∴△=b2﹣4ac=32﹣4(1﹣m)>0,即5+4m>0,解得:m>﹣.∴m的取值范围为m>﹣.(2)∵m为负整数,且m>﹣,∴m=﹣1.将m=﹣1代入原方程得:x2+3x+2=(x+10)(x+2)=0,解得:x1=﹣1,x2=﹣2.故当m=﹣1时,此方程的根为x1=﹣1和x2=﹣2.考点:根的判别式.【题文】扬州市中小学全面开展“体艺2+1”活动,某校根据学校实际,决定开设A:篮球,B:乒乓球,C :声乐,D:健美操等四中活动项目,为了解学生最喜欢哪一种活动项目,随机抽取了部分学生进行调查,并将调查结果绘制了两幅不完整的统计图.请回答下列问题:(1)这次被调查的学生共有人.(2)请你将统计图1补充完整.(3)统计图2中D项目对应的扇形的圆心角是度.(4)已知该校学生2400人,请根据调查结果估计该校最喜欢乒乓球的学生人数.【答案】(1)200;(2)补图见解析;(3)72;(4)960人【解析】试题分析:(1)分析统计图可知,喜欢篮球的人数为20人,所占百分比为10%,进而得出总人数即可;(2)根据条形图可以得出喜欢C音乐的人数=200﹣20﹣80﹣40=60,即可补全条形图;(3)根据喜欢D:健美操的人数为:40人,得出统计图2中D项目对应的扇形的圆心角是:40÷200×360°=72°;(4)用全校学生数×最喜欢乒乓球的学生所占百分比即可得出答案.试题解析:(1)根据喜欢篮球的人数为20人,所占百分比为10%,故这次被调查的学生共有:20÷10%=200;(2)根据喜欢C音乐的人数=200﹣20﹣80﹣40=60,故C对应60人,如图所示:(3)根据喜欢D:健美操的人数为:40人,则统计图2中D项目对应的扇形的圆心角是:40÷200×360°=72°;故答案为:72;(4)根据样本中最喜欢乒乓球的学生人数为80人,故该校学生2400人中最喜欢乒乓球的学生人数为:×2400=960人.答:该校最喜欢乒乓球的学生人数大约为960人.考点:1.条形统计图;2.用样本估计总体;3.扇形统计图.【题文】如图矩形ABCD中,E为BC上一点,DF⊥AE于F.(1)求证:△ABE∽△DFA;(2)若AB=6,AD=12,BE=8,求DF的长.【答案】(1)证明见解析;(2)7.2【解析】试题分析:(1)△ABE和△DFA都是直角三角形,还需一对角对应相等即可.根据AD∥BC可得∠DAF=∠AEB ,问题得证;(2)运用相似三角形的性质求解.试题解析:(1)∵DF⊥AE,∴∠AFD=90°.∴∠B=∠AFD=90°.又∵AD∥BC,∴∠DAE=∠AEB.∴△ABE∽△DFA.(2)∵AB=6,BE=8,∠B=90°,∴AE=10.∵△ABE∽△DFA,∴.即.∴DF=7.2.考点:1.正方形的性质;2.相似三角形的判定与性质.【题文】如图,已知AB=DC,AC=DB,AC与DB交于点M.过点C作CN∥BD,过点B作BN∥AC,CN与BN交于点N.(1)求证:△ABC≌△DCB;(2)求证:四边形BNCM是菱形.【答案】(1)证明见解析;(2)证明见解析【解析】试题分析:(1)利用SSS定理可直接判定△ABC≌△DCB;(2)首先根据CN∥BD、BN∥AC,可判定四边形BNCM是平行四边形,再根据△ABC≌△DCB可得∠1=∠2,进而可得BM=CM,根据邻边相等的平行四边形是菱形可得结论.试题解析:(1)∵在△ABC和△DCB中,∴△ABC≌△DCB(SSS);(2)∵CN∥BD、BN∥AC,∴四边形BNCM是平行四边形,∵△ABC≌△DCB,∴∠1=∠2,∴BM=CM,∴四边形BNCM是菱形.考点:1.菱形的判定;2.全等三角形的判定与性质.【题文】如图,四边形ABCD 内接于⊙O,BD是⊙O的直径,过点A作⊙O的切线AE交CD的延长线于点E ,DA平分∠BDE.(1)求证:AE⊥CD;(2)已知AE=4cm,CD=6cm,求⊙O的半径.【答案】(1)证明见解析;(2)5cm.【解析】试题分析:(1)连接OA,因为点A在⊙O上,所以只要证明OA⊥AE即可;由同圆的半径相等得:OA=OD,则∠ODA=∠OAD,根据角平分线可知:∠OAD=∠EDA,所以EC∥OA,由此得OA⊥AE,则AE是⊙O 的切线;(2)过点O作OF⊥CD,垂足为点F,证明四边形AOFE是矩形,得OF=AE=4cm,由垂径定理得:DF=3,根据勾股定理求半径OD的长.试题解析:(1)连结OA,∵OA=OD,∴∠ODA=∠OAD,∵DA平分∠BDE,∴∠ODA=∠EDA,∴∠OAD=∠EDA,∴EC∥OA,∵AE⊥CD,∴OA⊥AE,∵点A在⊙O上,∴AE是⊙O的切线;(2)过点O作OF⊥CD,垂足为点F,∵∠OAE=∠AED=∠OFD=90°,∴四边形AOFE是矩形,∴OF=AE=4cm,又∵OF⊥CD,∴DF=CD=3cm,在Rt△ODF中,OD==5cm,即⊙O的半径为5cm.【考点】切线的判定;圆周角定理.【题文】某大型水果超市销售无锡水蜜桃,根据前段时间的销售经验,每天的售价x(元/箱)与销售量y (箱)有如表关系:每箱售价x(元)68676665…40每天销量y(箱)40455055…180已知y与x之间的函数关系是一次函数.(1)求y与x的函数解析式;(2)水蜜桃的进价是40元/箱,若该超市每天销售水蜜桃盈利1600元,要使顾客获得实惠,每箱售价是多少元?(3)七月份连续阴雨,销售量减少,超市决定采取降价销售,所以从7月17号开始水蜜桃销售价格在(2)的条件下,下降了m%,同时水蜜桃的进货成本下降了10%,销售量也因此比原来每天获得1600元盈利时上涨了2m%(m<100),7月份(按31天计算)降价销售后的水蜜桃销售总盈利比7月份降价销售前的销售总盈利少7120元,求m的值.【答案】(1) y与x之间的函数关系是:y=﹣5x+380;(2) 要使顾客获得实惠,每箱售价是56元;(3)20. 【解析】试题分析:(1)直接利用待定系数法求出一次函数解析式进而得出答案;(2)直接根据题意表示每箱的利润进而得出总利润等式求出答案;(3)根据题意分别表示出降价前后的利润进而得出等式求出答案.试题解析:(1)设y与x之间的函数关系是:y=kx+b,根据题意可得:,解得:,故y与x之间的函数关系是:y=﹣5x+380;(2)由题意可得:(x﹣40)(﹣5x+380)=1600,解得:x1=56,x2=60,顾客要得到实惠,售价低,所以x=60舍去,所以x=56,答:要使顾客获得实惠,每箱售价是56元(3)在(2)的条件下,x=56时,y=100,由题意得到方程:1600×16=[56×(1﹣m%)﹣40×(1﹣10%)]×100×(1+2m%)×15+7120,解得:m1=20,m2=﹣(舍去),答:m的值为20.考点:1.一元二次方程的应用;2.一次函数的应用.【题文】如图,△ABC中,∠ACB=90°,BC=6,AB=10.点Q与点B在AC的同侧,且AQ⊥AC.(1)如图1,点Q不与点A重合,连结CQ交AB于点P.设AQ=x,AP=y,求y关于x的函数解析式,并写出自变量x的取值范围;(2)是否存在点Q,使△PAQ与△ABC相似,若存在,求AQ的长;若不存在,请说明理由;(3)如图2,过点B作BD⊥AQ,垂足为D.将以点Q为圆心,QD为半径的圆记为⊙Q.若点C到⊙Q上点的距离的最小值为8,求⊙Q的半径.【答案】(1) ;(2) 存在点Q,使△ABC∽△QAP,此时AQ=;(3) ⊙Q的半径为9或.【解析】试题分析:(1)先由平行线分线段成比例得出,代值即可得出结论;(2)先判断出要使△PAQ与△ABC相似,只有∠QPA=90°,进而由相似得出比例式即可得出结论;(3)分点C在⊙O内部和外部两种情况,用勾股定理建立方程求解即可.试题解析:(1)∵AQ⊥AC,∠ACB=90°,∴AQ∥BC,∴,∵BC=6,AC=8,∴AB=10,∵AQ=x,AP=y,∴,∴;(2)∵∠ACB=90°,而∠PAQ与∠PQA都是锐角,∴要使△PAQ与△ABC相似,只有∠QPA=90°,即CQ⊥AB,此时△ABC∽△QAC,则,∴AQ=.故存在点Q,使△ABC∽△QAP,此时AQ=;(3)∵点C必在⊙Q外部,∴此时点C到⊙Q上点的距离的最小值为CQ﹣DQ.设AQ=x.①当点Q在线段AD上时,QD=6﹣x,QC=6﹣x+8=14﹣x,∴x2+82=(14﹣x)2,解得:x=,即⊙Q的半径为.②当点Q在线段AD延长线上时,QD=x﹣6,QC=x﹣6+8=x+2,∴x2+82=(x+2)2,解得:x=15,即⊙Q的半径为9.∴⊙Q的半径为9或.考点:圆的综合题.【题文】如果一个三角形的三边a,b,c能满足a2+b2=nc2(n为正整数),那么这个三角形叫做“n阶三角形”.如三边分别为1、2、的三角形满足12+22=1×()2,所以它是1阶三角形,但同时也满足()2+22=9×12,所以它也是9阶三角形.显然,等边三角形是2阶三角形,但2阶三角形不一定是等边三角形.(1)在我们熟知的三角形中,何种三角形一定是3阶三角形?(2)若三边分别是a,b,c(a<b<c)的直角三角形是一个2阶三角形,求a:b:c.(3)如图1,直角△ABC是2阶三角形,AC<BC<AB,三条中线BD、AE、CF所构成的三角形是何种三角形?四位同学作了猜想:A同学:是2阶三角形但不是直角三角形;B同学:是直角三角形但不是2阶三角形;C同学:既是2阶三角形又是直角三角形;D同学:既不是2阶三角形也不是直角三角形.请你判断哪位同学猜想正确,并证明你的判断.(4)如图2,矩形OACB中,O为坐标原点,A在y轴上,B在x轴上,C点坐标是(2,1),反比例函数y=(k>0)的图象与直线AC、直线BC交于点E、D,若△ODE是5阶三角形,直接写出所有可能的k的值.【答案】(1)等腰直角三角形一定是3阶三角形,(2)a:b:c=1::;(3)C同学猜想正确,(4)满足题意k的值为1,4,7,.【解析】试题分析:(1)等腰直角三角形为3阶三角形,根据题中的新定义验证即可;(2)根据题中的新定义列出关系式,再利用勾股定理列出关系式,即可确定出a,b,c的比值;(3)C同学猜想正确,由直角△ABC是2阶三角形,根据(2)中的结论得出AC,BC,AB之比,设出三边,表示出AE,BD,CF,利用题中的新定义判断即可;(4)根据图形设出E与D坐标,利用勾股定理表示出OE2,OD2以及ED2,由△ODE是5阶三角形,分类讨论列出关于k的方程,求出方程的解即可得到k的值试题解析:(1)等腰直角三角形一定是3阶三角形,理由为:设等腰直角三角形两直角边为a,a,根据勾股定理得:斜边为a,则有a2+(a)2=3a2,即等腰直角三角形一定是3阶三角形;(2)∵△ABC为一个2阶直角三角形,∴c2=a2+b2,且c2+a2=2b2,两式联立得:2a2+b2=2b2,整理得:b=a,c=a,则a:b:c=1::;(3)C同学猜想正确,证明如下:如图,∵△ABC为2阶直角三角形,∴AC:BC:AB=1::,设BC=2,AC=2,AB=2,∵AE,BD,CF是Rt△ABC的三条中线,∴AE2=6,BD2=9,CF2=3,∴BD2+CF2=2AE2,AE2+CF2=BD2,∴BD,AE,CF所构成的三角形既是直角三角形,又是2阶三角形;(4)根据题意设E(k,1),D(2,),则AE=k,EC=2﹣k,BD=,CD=1﹣,OA=1,OB=2,根据勾股定理得:OE2=1+k2,OD2=4+,ED2=(2﹣k)2+(1﹣)2,由△ODE是5阶三角形,分三种情况考虑:当OE2+OD2=5ED2时,即1+k2+4+=5[(2﹣k)2+(1﹣)2],整理得:k2﹣5k+4=0,即(k﹣1)(k﹣4)=0,解得:k=1或k=4;当OE2+ED2=5OD2时,(2﹣k)2+(1﹣)2+1+k2=5(4+),整理得:k2﹣5k﹣14=0,即(k﹣7)(k+2)=0,解得:k=7或k=﹣2(舍去);当OD2+ED2=5OE2时,4++(2﹣k)2+(1﹣)2=5(1+k2),整理得:7k2+10k﹣8=0,即(7k﹣4)(k+2)=0,解得:k=或k=﹣2(舍去),综上,满足题意k的值为1,4,7,.考点:反比例函数综合题.【题文】已知:如图1,菱形ABCD的边长为6,∠DAB=60°,点E是AB的中点,连接AC、EC.点Q从点A 出发,沿折线A﹣D﹣C运动,同时点P从点A出发,沿射线AB运动,P、Q的速度均为每秒1个单位长度;以PQ为边在PQ的左侧作等边△PQF,△PQF与△AEC重叠部分的面积为S,当点Q运动到点C时P、Q同时停止运动,设运动的时间为t.(1)当等边△PQF的边PQ恰好经过点D时,求运动时间t的值;当等边△PQF的边QF 恰好经过点E时,求运动时间t的值;(2)在整个运动过程中,请求出S与t之间的函数关系式和相应的自变量t的取值范围;(3)如图2,当点Q到达C点时,将等边△PQF绕点P旋转α°(0<α<360),直线PF分别与直线AC 、直线CD交于点M、N.是否存在这样的α,使△CMN为等腰三角形?若存在,请直接写出此时线段CM的长度;若不存在,请说明理由.【答案】(1)6s,9s;(2)当0<t≤3时,S=;当3<t≤6时,S=;当6<t≤9时,S=,9<t≤12时,S=;(3)2或6或12+6.【解析】试题分析:(1)根据题意求出运动的距离,再除以速度即可求出时间;(2)分当0<t≤3时,当3<t≤6时,当6<t≤9时,当9<t≤12时,四种情况,分别求出重叠部分面积即可;(3)分交点都在BC左侧,顶角为120°,交点都在BC右侧时,顶角可能为30°和120°;交点在BC两侧时,顶角为150°进行讨论求解即可.试题解析:(1)当等边△PQF的边PQ恰好经过点D时,如图1AQ=AD=6,∴t=6÷1=6(秒);当等边△PQF的边QF 恰好经过点E时,如图2由菱形ABCD的边长为6,∠DAB=60°,P、Q的速度均为每秒1个单位长度,知:∠APQ=60°,∠QEB=60°,∴QE∥AD,∵点E是AB的中点,∴此时点Q是CD的中点,可求:AD+DQ=6+3=9,所以t=9÷1=9(秒);(2)如图3当0<t≤3时,由菱形ABCD的边长为6,∠DAB=60°,可求:∠PAG=30°,∵∠APQ=60°,∴∠AGP=90°,由AP=t,可求:PG=t,AG=t,∴S=PG×AG=;当3<t≤6时,如图4AE=3,AP=t,∴PE=t﹣3,过点C作AB的垂线,垂足为H,由菱形ABCD的边长为6,∠DAB=60°,可求:CH=3,BH=3,EH=6,tan∠KEB=,过点K作KM⊥AB,可求KM=,∴S△PEK=,可求∠QAG=30°,又∠AQG=60°,AQ=t,可求∠AGQ=90°,DG=t,GQ=t,∴S△AGQ=,等边三角形APD的面积为:∴S=当6<t≤9时,如图5与前同理可求:S△FQP=,S△GQN=,S△KEP=,∴S=﹣﹣=,当9<t≤12时,如图6求出:S△PQF=,S△QGH=Sl②α=105°,如图8此时,易求CM=CN,∠CMN=∠CNM=∠APM=75°,∴AM=AP=12,在菱形ABCD中,AD=CD=6,∠D=120°,可求AC=6,所以,CM=12=6;③α=60°,如图9此时,易求∠CMN=∠MCN=∠ACB=30°,∴BC∥PM,由AB=BP=6可得,CM=AC=6所以:CM=6.④α=15°,如图10此时,易求∠APM=∠M=15°,∴AM=AP=12,所以:CM=AM+AC,CM=12+6.考点:四边形综合题.。

江苏省无锡市江阴市九年级(上)期末数学试卷

江苏省无锡市江阴市九年级(上)期末数学试卷

九年级(上)期末数学试卷一、选择题(本大题共10小题,共30.0分)1.cos60°的值为()A. 13B. 12C. 22D. 322.下列说法正确的是()A. 长度相等的弧是等弧B. 三点确定一个圆C. 圆周角是圆心角的一半D. 直径所对的圆周角是直角3.关于x的方程x2+3x+a=0有一个根为-1,则a的值为()A. 1B. −1C. 2D. −24.若x:(x+y)=3:5,则x:y=()A. 32B. 38C. 23D. 855.如图,点A、B、C在⊙O上,若∠AOB=130°,则∠C的度数为()A. 150∘B. 130∘C. 115∘D. 120∘6.⊙O的直径为4,圆心O到直线l上的距离为3,则直线l与⊙O()A. 相离B. 相切C. 相交D. 相切或相交7.已知二次函数y=x2+mx+n的图象经过点(-1,-3),则代数式mn+1有()A. 最小值−3B. 最小值3C. 最大值−3D. 最大值38.关于二次函数y=(x-1)2+2,下列说法正确的是()A. 图象与y轴的交点坐标为(0,2)B. 图象的对称轴在y轴的左侧C. y的最大值为2D. 当x>1时,y的值随x值的增大而增大9.如图,已知半径为5的⊙O是△ABC的外接圆,若∠ABC=25°,则劣弧AC的长为()A. 5π36B. 25π36C. 125π36D. 25π1810.如图,在网格中,小正方形的边长均为1,点A,B,C都在格点上,则∠ABC的正切值为()A. 105B. 2C. 12D. 2二、填空题(本大题共8小题,共16.0分)11.已知一组数据:3,3,4,5,5,6,6,6.这组数据的众数是______.12.将二次函数y=3x2的图象向左移1个单位后所得图象的函数表达式为______.13.经过两次连续降价,某药品销售单价由原来的50元降到32元,设该药品平均每次降价的百分率为x,根据题意可列方程是______.14.在△ABC中,∠C=90°,若tan A=12,则sin A=______.15.已知圆锥的底面半径是3cm,母线长是5cm,则圆锥的侧面积为______cm2.(结果保留π)16.如图,在四边形ABCD中,点E在AD上,EC∥AB,EB∥DC,若△ABE面积为5,△ECD的面积为1,则△BCE的面积是______.17.如图,AD是△ABC的中线,点E在AC上,BE交AD于点F,AFAD=14,则AEAC=______.18.如图,在平面直角坐标系中,⊙O的圆心A的坐标为(1,0),半径为1,点P为直线y=34x+3上的动点,过点P作⊙A的切线,且点为B,则PB的最小值是______.三、计算题(本大题共1小题,共8.0分)19.(1)计算:2cos30°+3sin245°-4tan30°;(2)解方程:x2-8x+3=0.四、解答题(本大题共9小题,共76.0分)20.某区举行“庆祝改革开放40周年”征文比赛,已知每篇参赛征文成绩记m分(60≤m≤100),组委会从1000篇征文中随机抽取了部分参赛征文,统计了他们的成绩,并绘制了如下不完整的两幅统计图表:请根据以上信息,解决下列问题:(1)征文比赛成绩频数分布表中c的值是______;(2)补全征文比赛成绩频数分布直方图;(3)若80分以上(含80分)的征文将被评为一等奖,试估计全市获得一等奖征文的篇数.21.在一个不透明的布袋里装有4个标有数字为-3、-1、2、4的小球,它们的材质、形状、大小完全相同,小明从布袋里随机取出一个小球,记下数字为x,小红从剩下的3个小球中随机取出一个小球,记下数字为y,这样确定了点P的坐标(x,y).(1)请你运用画树状图或列表的方法,写出点P所有可能的坐标;(2)求出点P(x,y)满足x+y>1的概率.22.如图所示,在8×11的网格图内,建立如图平面直角坐标系,格点三角形的三个顶点为:A(-3,-1),B(1,1),C(-3,1).以坐标原点O为位似中心,将△ABC 按相似比2:1放大,A、B、C的对应点分别为A'、B'、C',(对应点在网格图内).(1)画出△A'B'C';(2)若△ABC的外接圆的圆心为P,⊙P以每秒1个单位的速度沿x轴正方向移动,t秒时,⊙P与A'C'第一次相切,求此时的t值.23.如图,AC是⊙O的直径,弦BD⊥AO于E,连接BC,过点O作OF⊥BC于F,若BD=8cm,AE=2cm,(1)求⊙O的半径;(2)求O到弦BC的距离.24.如图,A,B两地被大山阻隔,由A地到B地需要绕行C地,若打通穿山隧道,建成A,B两地的直达高铁,可以缩短从A地到B地的路程.已知:∠CAB=30°,∠CBA=45°,AC=580公里,求隧道打通后与打通前相比,从A地到B地的路程将约缩短多少公里?(参考数据:3≈1.7,2≈1.4)25.如图,以AB为直径的⊙O外接于△ABC,点D在BC的延长线上,∠ABC的角平分线与AD交于E点,与AC交于F点,且AE=AF.(1)证明直线AD是⊙O的切线;(2)若AD=16,sin D=45,求BC的长.26.某公司投产一种电子玩具,每件制造成本为18元,试销过程中发现,每月销售量y(万件)与销售单价x(元)之间的关系可以近似看作一次函数y=-2x+100.(1)写出每月的利润w(万元)与销售单价x(元)之间的函数解析式(利润=售价-制造成本);(2)该公司在经营中,每月销售单价始终保持在25与36之间,问:公司获得利润的范围.27.如图,二次函数y=ax2-8ax+c(a<0)的图象与x、y轴的正半轴分别交于A、B两点,顶点为D,一次函数y=-mx+c的图象过A、B两点,且sin∠OAB=35,BD平分∠ABY(Y在点B上方).(1)求m的值;(2)求二次函数的表达式.28.如图,一次函数y=-34x+3m(m>0)的图象与x轴、y轴分别交于A、B两点,矩形OEDC的三个顶点分别为O(0,0)、C(0,12)、E(4m+5,0),将△OAB 沿AB翻折,得到△FAB,连结OF.(1)若AB=AD,求OF的长;(2)以AF为直径作⊙M,问是否存在m值,使得⊙M与CD相切,若存在,求出m值,若不存在,说明理由.答案和解析1.【答案】B【解析】解:cos60°=,故选:B.直接根据特殊角的函数值写出答案即可.本题考查了特殊角的三角函数值的知识,解题的关键是熟记特殊角的函数值,难度较小.2.【答案】D【解析】解:A、长度相等的弧不一定是等弧,故错误,不符合题意;B、不在同一直线上的三点确定一个圆,故错误,不符合题意;C、同圆或等圆中,同弧所对的圆周角是圆心角的一半,故错误,不符合题意;D、直径所对的圆周角是直角,故正确,符合题意;故选:D.利用等弧的定义、确定圆的条件、圆周角定理等知识分别判断后即可确定正确的选项.本题考查了确定圆的条件、圆的认识及圆周角定理的知识,解题的关键是了解有关的定义及定理,难度不大.3.【答案】C【解析】解:把x=-1代入方程得1-3+a=0,解得a=2.故选:C.直接把x=-1代入方程x2+3x+a=0得到关于a的方程,然后解关于a的方程即可.本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.4.【答案】A【解析】解:由=得5x=3x+3y,即2x=3y,所以=.故选A.由比例的基本性质,把比例式转换为等积式后,能用其中一个字母表示另一个字母,达到约分的目的即可.灵活运用比例的基本性质,即可解答.5.【答案】C【解析】解:如图,在优弧上取一点D,连接AD,BD.∵∠ADB=∠AOB=65°,又∵∠ADB+∠C=180°,∴∠C=115°,故选:C.如图,在优弧上取一点D,连接AD,BD.利用圆周角定理以及圆内接四边形的性质即可解决问题.本题考查圆周角定理,圆内接四边形的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.6.【答案】A【解析】解:∵⊙O的直径是4,∴⊙O的半径r=2,∵圆心O到直线l的距离为3,3>2,∴直线l与⊙O相离.故选:A.先求出⊙O的半径,再根据圆心O到直线l的距离为3即可得出结论.本题考查的是直线与圆的位置关系,若圆的半径为r,圆心到直线的距离为d,d>r时,圆和直线相离;d=r时,圆和直线相切;d<r时,圆和直线相交.7.【答案】A【解析】解:把(-1-3)代入y=x2+mx+n得-3=-1-m+n∴n=m-4∴mn+1=m(m-4)+1=m2-4m+1=(m-2)2-3所以mn+1有最小值-3,故选:A.把(-1-3)代入y=x2+mx+n确定m,n之间的数量关系,代入mn+1讨论.本题考查二次函数图象上点的特征.根据二次函数性质确定m,n的数量关系是解答关键.8.【答案】D【解析】解:∵y=(x-1)2+2,∴当x=0时,y=3,故选项A错误,该函数的对称轴是直线x=1,对称轴在y轴的右侧,故选项B错误,当x=1时,y取得最小值,此时y=2,故选项C错误;当x>1时,y随x的增大而减小,故选项D正确,故选:D.根据题目中的函数解析式可以判断各个选项中的结论是否成立,从而可以解答本题.本题考查二次函数的性质、二次函数的最值,解答本题的关键是明确题意,利用二次函数的性质解答.9.【答案】D【解析】解:连接OA、OC,由圆周角定理得,∠AOC=2∠ABC=50°,∴劣弧的长==,故选:D.连接OA、OC,根据圆周角定理求出∠AOC,根据弧长公式计算,得到答案.本题考查的是圆周角定理、弧长的计算,掌握弧长公式是解题的关键.10.【答案】C【解析】解:如图,过C作CD⊥BA交BA的延长线于D,∴CD=,BD=2,∴∠ABC的正切值==,故选:C.过C作CD⊥BA交BA的延长线于D,根据勾股定理得到CD=,BD=2,于是得到结论.本题考查的是勾股定理及解直角三角形,解题的关键是明确题意,构造直角三角形,利用锐角三角函数解答问题.11.【答案】6【解析】解:6出现的次数最多,所以众数是6.故填6.根据众数的定义就可以解决.主要考查了众数的概念.注意众数是指一组数据中出现次数最多的数据,它反映了一组数据的多数水平,一组数据的众数可能不是唯一的.12.【答案】y=3(x+1)2【解析】解:∵将二次函数y=3x2的图象向左移1个单位,∴所得抛物线的关系式为:y=3(x+1)2.故答案为:y=3(x+1)2.利用二次函数平移规律,左加右减,上加下减,进而得出答案.此题主要考查了二次函数平移变换,正确把握平移规律是解题关键.13.【答案】50(1-x)2=32【解析】解:由题意可得,50(1-x)2=32,故答案为:50(1-x)2=32.根据某药品经过连续两次降价,销售单价由原来50元降到32元,平均每次降价的百分率为x,可以列出相应的方程即可.本题考查由实际问题抽象出一元二次方程,解题的关键是明确题意,找出题目中的等量关系,列出相应的方程.14.【答案】55【解析】解:在Rt△ABC中,∠C=90°,∵tanA==,∴设a=x,则b=2x,则c==x.∴sinA===.根据tanA=,设出关于两边的代数表达式,再根据勾股定理求出第三边长的表达式即可推出sinA的值.求锐角的三角函数值的方法:利用锐角三角函数的定义,通过设参数的方法求三角函数值,或者利用同角(或余角)的三角函数关系式求三角函数值.15.【答案】15π【解析】解:底面圆的半径为3cm,则底面周长=6πc,侧面面积=×6π×5=15πcm2.圆锥的侧面积=底面周长×母线长÷2.本题利用了圆的周长公式和扇形面积公式求解.16.【答案】5【解析】解:∵EC∥AB,∴∠A=∠CED,∵EB∥DC∴∠AEB=∠D,∴△ABE∽△ECD,∴,∴,,∵△ABE以AB为底边的高与△BCE以CE为底的高相等,∴,故答案为:由EC∥AB,EB∥DC,可得∠A=∠CED,∠AEB=∠D,证得△ABE与△ECD相似,由△ABE的面积为5,△CDE的面积为1,可得AB:CE=又由EC∥AB,可得△ABE与△BCE等高,然后由等高三角形的面积比等于对应底的比,求得△BCE的面积.此题考查了相似三角形的判定与性质.注意相似三角形的面积比等于相似比的平方、等高三角形面积的比等于其对应底的比.17.【答案】17【解析】解:如图,过点D作DG∥BE,交AC于点G;∴,∵AD是△ABC的中线,∴BD=DC,∴,∴,故答案为:.根据平行线分线段成比例定理、三角形的中位线定理进行解答.该题主要考查了平行线分线段成比例定理、三角形的中位线定理及其应用问题;解题的关键是作辅助线,灵活运用有关定理来分析、判断.18.【答案】22【解析】解:如图,作AP⊥直线y=x+3,垂足为P,作⊙A的切线PB,切点为B,此时切线长PB最小,∵A的坐标为(1,0),设直线与x轴,y轴分别交于D,C,∴D(0,3),C(-4,0),∴OD=3,AC=5,∴DC==5,∴AC=DC,在△APC与△DOC中,,∴△APC≌△DOC,∴AP=OD=3,∴PB=.故答案为:2连接AP,PB,当AP最小时,PB最小,当AP⊥直线y=x+3时,PB最小,根据全等三角形的性质得到AP=3,根据勾股定理即可得到结论.本题主要考查切线的性质,掌握过切点的半径与切线垂直是解题的关键,用切线的性质来进行计算或论证,常通过作辅助线连接圆心和切点,利用垂直构造直角三角形解决有关问题.19.【答案】解:(1)原式=2×32+3×(22)2-4×33=3+32-433=36;(2)x2-8x+3=0,x2-8x=-3,x2-8x+16=-3+16,即(x-4)2=13,∴x-4=±13,∴x−4=13或x−4=−13,∴原方程的解为x1=4+13,x2=4−13.【解析】(1)分别把各特殊角的三角函数值代入进行计算即可;(2)移项后两边都加上一次项系数一半的平方,写成完全平方式利用配方法即可.本题主要考查配方法解一元二次方程,熟练掌握完全平方公式是解题的关键.20.【答案】0.2【解析】解:(1)1-0.38-0.32-0.1=0.2,故答案为:0.2;(2)10÷0.1=100,100×0.32=32,100×0.2=20,补全征文比赛成绩频数分布直方图:(3)全市获得一等奖征文的篇数为:1000×(0.2+0.1)=300(篇).(1)依据1-0.38-0.32-0.1,即可得到c的值;(2)求得各分数段的频数,即可补全征文比赛成绩频数分布直方图;(3)利用80分以上(含80分)的征文所占的比例,即可得到全市获得一等奖征文的篇数.本题考查了频数(率)分布直方图和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.21.【答案】解:(1)根据题意画图如下:以上事件都是等可能事件,共12种,分别是(-3,-1),(-3,2),(-3,4),(-1,-3),(-1,2),(-1,4),(2,-3),(2,-1),(2,4),(4,-3),(4,-1),(4,2);(2)其中满足条件x+y>1的点有:(-1,4),(2,4),(4,-1),(4,2),∴P(x+y>1)=412=13.【解析】(1)先画树状图展示所有12种等可能的结果数,然后写出12个点的坐标即可;(2)根据所列结果,找到满足x+y>1的结果数,然后根据概率公式即可得出答案.本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.22.【答案】解:(1)如图,△A'B'C'为所作;(2)如图,D点为AB的中点,⊙P与A'C'相切于E,DB=12AB=1222+42=5,∵△ABC为直角三角形,∴D点为△ABC的外接圆的圆心,半径为5,∵DE=7,PE=5,∴DP=7-5,∴t=7−51=7-5,即此时t的值为7-5.【解析】(1)把A、B、C的横纵坐标分别乘以-2得到点A'、B'、C',然后描点得到△A'B'C';(2)如图,D点为AB的中点,⊙P与A'C'相切于E,DB=,先判断D点为△ABC的外接圆的圆心,半径为,利用PE=时,⊙P与A′C′相切,然后利用DE=7,PE=得到DP=7-,从而得到此时t的值.本题考查了作图-位似变换:利用以原点为位似中心的对应点的坐标关系写出对应点的坐标,然后描点画位似图形.也考查了切线的判断.23.【答案】解:(1)连结OB,设半径为r,则OE=r-2,∵AC是⊙O的直径,弦BD⊥AO于E,BD=8cm,∴BE=DE=4,在Rt△OBE中,∵OE2+BE2=OB2 ,∴(r-2)2+42=r2∴r=5.(2)∵r=5,∴AC=10,EC=8,BE=DE=4cm,∴BC=BE2+EC2=45(cm)∵OF⊥BC,∴S△BCO=12BC⋅OF=12OC⋅BE∴45⋅OF=5×4,∴OF=5.【解析】(1)连结OB,设半径为r,则OE=r-2,构建方程即可解决问题.(2)根据S△BCO=BC⋅OF=OC⋅BE,求解即可.本题考查圆周角定理,垂径定理,勾股定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.24.【答案】解:过点C作CH⊥AB于H,∵在Rt△CHA中,∠A=30°,AC=580,∴CH=290,AH=2903,∵在Rt△CHB中,∠B=45°,CH=290,∴BH=290,BC=2902,∴AC+BC=580+2902≈986,AB=AH+BH=2903+290≈783,∴986-783=203公里,答:隧道打通后与打通前相比,从A地到B地的路程将约缩短203公里.【解析】过点C作CH⊥AB于H,利用特殊角的三角函数值计算出AH和BH的长,进而可得AB的长,然后可得答案.此题主要考查了解直角三角形的应用,关键是掌握直角三角形中特殊角的三角函数值.25.【答案】(1)证明:∵AB为⊙O的直径,∴∠ACB=90°,∵AF=AE,∴∠AEF=∠AFE,∵BE平分∠ABC,∴∠ABE=∠CBF,∵∠CFB=∠AFE,∴∠CFB=∠AEB.∵∠CFB+∠FBC=90°,∴∠ABE+∠AEB=90°,即∠BAE=90°,∵AB是⊙O的直径,∴直线AD是⊙O的切线;(2)解:设AB=4k,BD=5k,∴AD=3k.∵AD=16,∴k=163,∴AB=643,∵∠BAD=∠ACB=90°,∴∠D+∠CAD=∠CAD+∠BAC=90°,∴∠D=∠BAC,∴sin∠BAC=sin D=45.∵sin∠BAC=45=BCAB,∴BC=25615.【解析】(1)根据圆周角定理得到∠ACB=90°,根据等腰三角形的性质得到∠AEF=∠AFE,根据角平分线的定义得到∠ABE=∠CBF,求得∠BAE=90°,于是得到结论;(2)设AB=4k,BD=5k,得到AD=3k.求得AB=,根据三角函数的定义即可得到结论.本题考查了切线的判定和性质,解直角三角形,正确的识别图形是解题的关键.26.【答案】解:(1)由题意可得:w=(x-18)y=(x-18)(-2x+100)=-2x2+136x-1800;(2)w=-2x2+136x-1800=-2(x-34)2+512.∴当x=34 时,w最大值=512万元,当x<34 时,w随着x的增大而增大;当x≥34时,w随着x的增大而减小,∵当x=25 时,w=-2×252+136×25-1800=350万元;当x=36 时,w=-2×362+136×36-1800=504万元,∴350万元≤利润≤512万元.【解析】(1)直接利用总利润=销量×每件商品的利润,进而得出函数关系式;(2)直接利用配方法进而得出二次函数的最值,再结合二次函数增减性得出答案.此题主要考查了二次函数的应用,正确掌握二次函数的增减性是解题关键.27.【答案】解:(1)∵sin∠OAB=35=OBAB,B(0,c),∴OB=c,AB=5c3,OA=4c3.∵A(4c3,0)在直线:y=-mx+c上,∴m=34;(2)∵二次函数y=ax2-8ax+c(a<0)的图象顶点为D,∴D(4,-16a+c).过点D作DF⊥x轴于点F,交AB于点C,过点B作BE⊥DF于点E,∴BE∥AF,BE=4.∴sin∠EBC=sin∠BAO=35=ECBC.∴EC=3,BC=5.∵BD平分∠ABY,∴∠YBD=∠DBC.∵∠YBD=∠BDC,∴∠BDC=∠DBC.∴DC=BC=5.∴DE=2.∵直线AB:y=-mx+c与y轴交于点B(0,c),∴OB=EF=c,DF=c+2.∴D(4,c+2).∴c+2=-16a+c.∴a=-18.∴二次函数表达式为:y=-18x2+x+c.∵二次函数图象过A(4c3,0),∴-18×16c29+4c3+c=0.∴c1=212,c2=0(舍去).∴二次函数表达式为:y=-18x2+x+212.【解析】(1)利用锐角三角函数的定义和一次函数图象上点的坐标特征求得OB=c,AB=,OA=.然后将点A的坐标代入一次函数解析式,求得m的值即可.(2)由二次函数解析式求得点D的坐标.过点D作DF⊥x轴于点F,交AB于点C,过点B作BE⊥DF于点E,构造等腰△BCD.结合平行线的判定与性质以及锐角三角函数定义得到:EC=3,BC=5.故DE=2.易得B(0,c),D(4,c+2).则c+2=-16a+c.所以a=-.再把点A的坐标代入二次函数解析式求得c的值即可.综合考查了平行线的判定与性质待定系数法确定函数解析式,二次函数图象上点的坐标特征,二次函数图象的性质以及一次函数图象上点的坐标特征等知识点,综合性较强,难度较大,注意点的坐标与图形性质的合理运用和辅助线的作法.28.【答案】解:(1)设AB与OF交于点K,∵一次函数y=-34x+3m(m>0)的图象与x轴、y轴分别交于A、B两点,∴A(4m,0),B(0,3m).∴AB=5m=AD,∵A(4 m,0),E(4m+5,0),∴AE=5.∵C(0,12),∴DE=OC=12,在Rt△ADE中,DE2+AE2=AD2,∴122+52=(5m)2.∴m=135,∵翻折,∴AF=AO,∠OAB=∠FAB.∴AB⊥OF,OF=2OK.∵S△BOA=12OB⋅OA=12AB⋅OK,∴OK=12m5=125×135=15625,∴OF=2OK=31225,(2)过点F作FT⊥OC,FG⊥OA,分别取AF、AG中点M、Q,连结QM并延长交CD 于点H,∵∠BOF+∠FOA=∠FOA+∠BAO=90°,∴∠BOF=∠BAO.∴sin∠BOF=sin∠BAO=35=TFOF.∵OF=2OK=245m.∴TF=72m25=OG,∵⊙M与CD相切,∴MH=12AF=2m,MQ=12-2m,∵M、Q分别为AF、AG中点,∴MQ为△FGA的中位线,FG=2MQ=24-4m,在Rt△FOG中,FG2+OG2=OF2,∴(24-4m)2+(72m25)2=(24m5)2.∴m1=15049,m2=150(舍)【解析】(1)设AB与OF交于点K,利用一次函数的性质和勾股定理解答即可;(2)过点F作FT⊥OC,FG⊥OA,分别取AF、AG 中点M、Q,连结QM并延长交CD于点H,利用三角函数和勾股定理解答即可.本题主要考查了一次函数的综合题,关键是根据待定系数法求一次函数解析式以及一次函数的综合应用解答.第21页,共21页。

江苏省无锡市2019-2020学年九年级上期末数学试卷

江苏省无锡市2019-2020学年九年级上期末数学试卷

无锡市2019-2020学年九年级上期末数学试卷(考试时长90分钟,全卷满分120分)一、选择题(本大题共10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的.1.如图,点O 是△ABC 的内切圆的圆心,若∠BAC=80°,则∠BOC 等于A.130°B.100°C.50°D.65°2.已知反比例函数()0>k xk y =的图象经过点()(),,、,b B a A 31则a 与b 的关系正确的是 A.b a = B.b a -= C.b a < D.b a >3.如图,AD ∥BE ∥CF ,直线21l l 、与这三条平行线分别交于点A 、B 、C 和点D 、E 、F ,已知AB=1,BC=3,DE=2,则EF 的长为A.4B.5C.6D.84.△ABC 在网格中的位置如图所示,则B cos 的值为A.55B.552C.21 D.25.两个全等的等腰直角三角形,斜边长为2,按如图放置,其中一个三角形45°角的项点与另一个三角形的直角顶点A 重合,若三角形ABC 固定,当另一个三角形绕点A 旋转时,它的角边和斜边所在的直线分别与边BC 交于点E 、F ,设BF=,x CE=,y 则y 关于x 的函数图象大致是6.下列四个图形中,既是轴对称图形,又是中心对称图形的是( )A. B. C. D. 7.方程x (x ﹣1)=0的解是( )A .x =1B .x =0C .x 1=1,x 2=0D .没有实数根8.下列说法错误的是( )A. 必然事件发生的概率是1B. 通过大量重复试验,可以用频率估计概率C. 概率很小的事件不可能发生D. 投一枚图钉,“钉尖朝上”的概率不能用列举法求得9.将抛物线y=x 2+4x+3向左平移1个单位,再向下平移3个单位的所得抛物线的表达式是( )A. y=(x+1)2-4B. y=-(x+1)2-4C. y=(x+3)2-4D. y=-(x+3)2-410.不透明袋子中装有红、绿小球各一个,除颜色外无其他差别,随机摸出一个小球后,放回并摇匀,再随机摸出一个,两次都摸到红球的概率为( )。

2019届江苏无锡江阴市要塞片九年级上期末数学试卷【含答案及解析】

2019届江苏无锡江阴市要塞片九年级上期末数学试卷【含答案及解析】

2019届江苏无锡江阴市要塞片九年级上期末数学试卷【含答案及解析】姓名___________ 班级____________ 分数__________一、单选题1. ﹣2的绝对值是()A. ﹣2B. 2C. ﹣D.二、选择题2. 下列计算正确的是()A.2a﹣a=1 B.a2+a2=2a4 C.a2•a3=a5 D.(a﹣b)2=a2﹣b23. 已知x=2是关于x的一元二次方程x2﹣x﹣2a=0的一个解,则a的值为()A.0 B.﹣1 C.1 D.24. 将161000用科学记数法表示为()A.0.161×106 B.1.61×105C.16.1×104 D.161×1035. 三角形的两边长分别为3米和6米,第三边的长是方程x2﹣6x+8=0的一个根,则这个三角形的周长为()A.11 B.12 C.11或 13 D.136. 九(2)班“环保小组”的5位同学在一次活动中捡废弃塑料袋的个数分别为:4,6,8,16,16.这组数据的中位数、众数分别为()A.16,16 B.10,16 C.8,8 D.8,167. 已知圆锥的底面半径为4cm,母线长为5cm,则这个圆锥的侧面积是()A.20 cm B.20πcm2 C.40πcm2 D.40cm28. 如图,点D是△ABC的边AC的上一点,且∠ABD=∠C;如果,那么=()A. B. C. D.9. 如图,已知⊙O的半径OD与弦AB互相垂直,垂足为点C,若AB=16cm,CD=6cm,则⊙O的半径为()A.cm B.10cm C.8cm D.cm10. 如图,Rt△ABC中,AC⊥BC,AD平分∠BAC交BC于点D,DE⊥AD交AB于点E,M为AE的中点,BF⊥BC交CM的延长线于点F,BD=4,CD=3.下列结论①∠AED=∠ADC;②;③AC•BE=12;④3BF=4AC,其中结论正确的个数有()A.1个 B.2个 C.3个 D.4个三、填空题11. 因式分【解析】 a2﹣3a= .12. 函数y=中,自变量x的取值范围是.13. 已知x1、x2是一元二次方程x2﹣3x﹣2=0的两根,则x1+x2= .14. 如图,在△ABC中,DE∥BC,AD=1,AB=3,DE=2,则BC= .15. 如图,在⊙O中,AB为⊙O的弦,点C为圆上异于A、B的一点,∠OAB=25°,则∠ACB= .16. 某电动自行车厂三月份的产量为1000辆,由于市场需求量不断增大,五月份的产量提高到1210辆,则该厂四、五月份的月平均增长率为 %.17. 一个扇形的圆心角为60°,它所对的弧长为2πcm,则这个扇形的半径为.18. 如图,Rt△ABC中,∠BAC=90°,将△ABC绕点C逆时针旋转,旋转后的图形是△A′B′C,点A的对应点A′落在中线AD上,且点A′是△ABC的重心,A′B′与BC相交于点E,那么BE:CE= .四、解答题19. 解方程:(1)x2+2x=0(2)x2﹣4x+3=0.20. 已知关于x的一元二次方程x2+3x+1﹣m=0有两个不相等的实数根.(1)求m的取值范围;(2)若m为负整数,求此时方程的根.21. 扬州市中小学全面开展“体艺2+1”活动,某校根据学校实际,决定开设A:篮球,B:乒乓球,C:声乐,D:健美操等四中活动项目,为了解学生最喜欢哪一种活动项目,随机抽取了部分学生进行调查,并将调查结果绘制了两幅不完整的统计图.请回答下列问题:(1)这次被调查的学生共有人.(2)请你将统计图1补充完整.(3)统计图2中D项目对应的扇形的圆心角是度.(4)已知该校学生2400人,请根据调查结果估计该校最喜欢乒乓球的学生人数.22. 如图矩形ABCD中,E为BC上一点,DF⊥AE于F.(1)求证:△ABE∽△DFA;(2)若AB=6,AD=12,BE=8,求DF的长.23. 如图,已知AB=DC,AC=DB,AC与DB交于点M.过点C作CN∥BD,过点B作BN∥AC,CN与BN交于点N.(1)求证:△ABC≌△DCB;(2)求证:四边形BNCM是菱形.五、判断题24. 如图,四边形ABCD 内接于⊙O,BD是⊙O的直径,过点A作⊙O的切线AE交CD的延长线于点E,DA平分∠BDE.(1)求证:AE⊥CD;(2)已知AE=4cm,CD=6cm,求⊙O的半径.六、解答题25. 某大型水果超市销售无锡水蜜桃,根据前段时间的销售经验,每天的售价x(元/箱)与销售量y(箱)有如表关系:26. 每箱售价x(元)68676665…40每天销量y(箱)40455055…180td27. 如图,△ABC中,∠ACB=90°,BC=6,AB=10.点Q与点B在AC的同侧,且AQ⊥AC.(1)如图1,点Q不与点A重合,连结CQ交AB于点P.设AQ=x,AP=y,求y关于x的函数解析式,并写出自变量x的取值范围;(2)是否存在点Q,使△PAQ与△ABC相似,若存在,求AQ的长;若不存在,请说明理由;(3)如图2,过点B作BD⊥AQ,垂足为D.将以点Q为圆心,QD为半径的圆记为⊙Q.若点C到⊙Q上点的距离的最小值为8,求⊙Q的半径.28. 如果一个三角形的三边a,b,c能满足a2+b2=nc2(n为正整数),那么这个三角形叫做“n阶三角形”.如三边分别为1、2、的三角形满足12+22=1×()2,所以它是1阶三角形,但同时也满足()2+22=9×12,所以它也是9阶三角形.显然,等边三角形是2阶三角形,但2阶三角形不一定是等边三角形.(1)在我们熟知的三角形中,何种三角形一定是3阶三角形?(2)若三边分别是a,b,c(a<b<c)的直角三角形是一个2阶三角形,求a:b:c.(3)如图1,直角△ABC是2阶三角形,AC<BC<AB,三条中线BD、AE、CF所构成的三角形是何种三角形?四位同学作了猜想:A同学:是2阶三角形但不是直角三角形;B同学:是直角三角形但不是2阶三角形;C同学:既是2阶三角形又是直角三角形;D同学:既不是2阶三角形也不是直角三角形.请你判断哪位同学猜想正确,并证明你的判断.(4)如图2,矩形OACB中,O为坐标原点,A在y轴上,B在x轴上,C点坐标是(2,1),反比例函数y=(k>0)的图象与直线AC、直线BC交于点E、D,若△ODE是5阶三角形,直接写出所有可能的k的值.29. 已知:如图1,菱形ABCD的边长为6,∠DAB=60°,点E是AB的中点,连接AC、EC.点Q从点A出发,沿折线A﹣D﹣C运动,同时点P从点A出发,沿射线AB运动,P、Q的速度均为每秒1个单位长度;以PQ为边在PQ的左侧作等边△PQF,△PQF与△AEC重叠部分的面积为S,当点Q运动到点C时P、Q同时停止运动,设运动的时间为t.(1)当等边△PQF的边PQ恰好经过点D时,求运动时间t的值;当等边△PQF的边QF 恰好经过点E时,求运动时间t的值;(2)在整个运动过程中,请求出S与t之间的函数关系式和相应的自变量t的取值范围;(3)如图2,当点Q到达C点时,将等边△PQF绕点P旋转α°(0<α<360),直线PF分别与直线AC、直线CD交于点M、N.是否存在这样的α,使△CMN为等腰三角形?若存在,请直接写出此时线段CM的长度;若不存在,请说明理由.参考答案及解析第1题【答案】第2题【答案】第3题【答案】第4题【答案】第5题【答案】第6题【答案】第7题【答案】第8题【答案】第9题【答案】第10题【答案】第12题【答案】第13题【答案】第14题【答案】第16题【答案】第17题【答案】第18题【答案】第19题【答案】第20题【答案】第21题【答案】第22题【答案】第23题【答案】第24题【答案】第25题【答案】第26题【答案】第27题【答案】第28题【答案】。

【35套试卷合集】江苏省无锡市名校2019-2020学年数学九上期末模拟试卷含答案

【35套试卷合集】江苏省无锡市名校2019-2020学年数学九上期末模拟试卷含答案

2019-2020学年九上数学期末模拟试卷含答案(分数:120分 时间120分钟)一、选择题(本题共32分,每小题4分)下面各题均有四个选项,其中只有一个是符合题意的.1x 的取值范围是A .12x ≠B .12x ≥C .12x ≤D .12x ≠-2.将抛物线2y x =平移得到抛物线25y x =+,下列叙述正确的是A .向上平移5个单位B .向下平移5个单位C .向左平移5个单位D .向右平移5个单位:AED CEBS S △△3.如图,AC 与BD 相交于点E ,AD ∥BC .若AEEC =12,则为A .B .12C .13D .144.下列一元二次方程中,有两个相等的实数根是A .2210x x -+= B .2240x x +-=C .2250x x --=D .2240x x ++=5.如图,⊙O 是△ABC 的外接圆,∠A =40°,则∠OCB 等于A .60°B .50°C .40°D .30°6.如图,平面直角坐标系中的二次函数图象所对应的函数解析式可能为A .212y x =-B .21(1)2y x =-+ C .21(1)12y x =--- D .21(1)12y x =-+-7.已知a <0,那么|2|a 可化简为A .-aB .aC .-3aD .3a8.如图,以G (0,1)为圆心,半径为2的圆与x 轴交于A 、B 两点,与y 轴交于C 、D 两点,点E 为⊙G 上一动点,CF ⊥AE 于F .当点E 从点B 出发顺时针运动到点D 时,点F 所经过的路径长为A .2 B .3C D二、填空题(本题共16分,每小题4分)9=________________.10.若二次函数223y x =-的图象上有两个点A (-3,m )、B (2,n ),则m________n (填“<”或“=”或“>”).11.如图,将半径为2cm 的圆形纸片折叠后,圆弧恰好经过圆心O ,则折痕AB 的长为________cm .12.小聪用描点法画出了函数y =的图象F ,如图所示.结合旋转的知识,他尝试着将图象F 绕原点逆时针旋转90°得到图象F 1,再将图象F 1绕原点逆时针旋转90°得到图象F 2,如此继续下去,得到图象n F .在尝试的过程中,他发现点P (-4,-2)在图象________上(写出一个正确的即可);若点P (a ,b )在图象F 127上,则a =________(用含b 的代数式表示).三、解答题(本题共30分,每小题5分)13.计算:201|1()(3)3π-+--14.解方程:2280x x +-=.15.已知a+b =3,求代数式22285a b a b -+++的值.16.如图,正方形格中,△ABC 的顶点及点O 在格点上.(1)画出与△ABC 关于点O 对称的△A 1B 1C 1;(2)画出一个..以点O 为位似中心的△A 2B 2C 2,使得△A 2B 2C 2与△A 1B 1C 1的相似比为2.17.如图,在△ABC 与△ADE 中,∠C =∠E ,∠1=∠2,AC =AD =2AB =6,求AE 的长.18.如图,二次函数223y x x =-++的图象与x 轴交于A 、B 两点,与y 轴交于点C ,顶点为D ,求△BCD的面积.四、解答题(本题共20分,每小题5分) 19.已知关于x 的方程23304mx x ++=有两个不相等的实数根. (1)求m 的取值范围;(2)若m 为符合条件的最大整数,求此时方程的根.20.已知:二次函数2(0)y ax bx c a =++≠中的x 和y 满足下表:(2)求出这个二次函数的解析式;(3)当0<x <3时,则y 的取值范围为________________.21.图中是抛物线形拱桥,当水面宽为4米时,拱顶距离水面2米;当水面高度下降1米时,水面宽度为多少米?22.如图,AB 为⊙O 的直径,BC 切⊙O 于点B ,AC 交⊙O 于点D ,E 为BC 中点.求证:(1)DE 为⊙O 的切线;(2)延长ED 交BA 的延长线于F ,若DF =4,AF =2,求BC 的长.五、解答题(本题共22分,第23题7分,第24题8分,第25题7分) 23.小明利用等距平行线解决了二等分线段的问题.(1)在e 上任取一点C ,以点C 为圆心,AB 长为半径画弧交c 于点D ,交d 于点E ; (2)以点A 为圆心,CE 长为半径画弧交AB 于点M ;∴ 点M 为线段AB 的二等分点.解决下列问题:(尺规作图,保留作图痕迹)(1)依照小明的作法,在图2中作出线段AB 的三等分点;(2)点P 是∠AOB 内部一点,过点P 作PM ⊥OA 于M ,PN ⊥OB 于N ,请找出一个满足下列条件的点P .(可以利用图1中的等距平行线)①在图3中作出点P ,使得PM =PN ; ②作图4中作出点P ,使得PM =2PN .24.抛物线2(3)3(0)y mx m x m =+-->与x 轴交于A 、B 两点,且点A 在点B 的左侧,与y 轴交于点C ,OB =OC .(1)求这条抛物线的解析式;(2)若点1(,)P x b 与点2(,)Q x b 在(1)中的抛物线上,且12x x <,PQ =n .①求2124263x x n n -++的值;②将抛物线在PQ 下方的部分沿PQ 翻折,抛物线的其它部分保持不变,得到一个新图象.当这个新图象与x 轴恰好只有两个公共点时,b 的取值范围是________________.25.如图1,两个等腰直角三角形ABC 和DEF 有一条边在同一条直线l 上,DE =2,AB =1.将直线EB 绕点E 逆时针旋转45°,交直线AD 于点M .将图1中的三角板ABC 沿直线l 向右平移,设C 、E 两点间的距离为k .解答问题:(1)①当点C 与点F 重合时,如图2所示,可得AMDM的值为________. ②在平移过程中,AMDM的值为________(用含k 的代数式表示); (2)将图2中的三角板ABC 绕点C 逆时针旋转,原题中的其他条件保持不变.当点A 落在线段DF上时,如图3所示,请补全图形,计算AMDM的值; (3)将图1中的三角板ABC 绕点C 逆时针旋转α度,090α<≤,原题中的其他条件保持不变.计算AMDM的值(用含k 的代数式表示).第4题图2019-2020学年九上数学期末模拟试卷含答案(满分:150分 测试时间:120分钟)一、选择题:(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填写在题后的括号内.) 1.下列事件是随机事件的是( )A .两个奇数之和为偶数,B .三条线段围成一个三角形C .广州市在八月份下了雪,D .太阳从东方升起。

【初三数学】江阴市九年级数学上期末考试测试题(解析版)

【初三数学】江阴市九年级数学上期末考试测试题(解析版)

人教版九年级第一学期期末模拟数学试卷(含答案)一、选择题(每小题3分,共24分)1.(3分)﹣的相反数是()A.3B.﹣3C.D.﹣2.(3分)钓鱼岛是中国的固有领土,位于中国东海,面积约4400000平方米,数据4400000用科学记数法表示为()A.44×105B.4.4×106C.0.44×107D.4.4×1053.(3分)不等式组的解集为()A.x<﹣2B.x≤﹣1C.x≤1D.x<34.(3分)如图中几何体的主视图是()A.B.C.D.5.(3分)方程x2﹣3x﹣2=0的根的情况是()A.有两个相等的实数根B.只有一个实数根C.没有实数根D.有两个不相等的实数根6.(3分)如图为一次函数y=kx+b(k≠0)的图象,则下列正确的是()A.k>0,b>0B.k>0,b<0C.k<0,b>0D.k<0,b<07.(3分)下列命题中,正确的是()A.所有的等腰三角形都相似B.所有的直角三角形都相似C.所有的等边三角形都相似D.所有的矩形都相似8.(3分)如图,在平面直角坐标系中,一次函数y=kx﹣2的图象分别与x轴、y轴交于A、B两点,与函数y=(x>0)的图象交于点C.若点A为线段BC的中点,则k的值为()A.1B.C.2D.3二、填空题(每小题3分,共18分)9.(3分)分解因式:2m2﹣8=.10.(3分)一次函数y=3x+2的图象与x轴交点的坐标是.11.(3分)在比例尺为1:2500000的地图上,一条路长度约为8cm,那么这条路它的实际长度约为km.12.(3分)顺次连接矩形各边中点所得四边形为形.13.(3分)如图,在⊙O中,半径OA垂直弦于点D.若∠ACB=33°,则∠OBC的大小为度.14.(3分)如图,在平面直角坐标系中,正方形OABC的顶点A在y轴正半轴上,顶点C 在x轴正半轴上,抛物线y=a(x﹣1)2+c(a<0)的顶点为D,且经过点A、B.若△ABD为等腰直角三角形,则a的值为.三、解答题(本大题共10小题,共78分)15.(10分)解方程:(1)2x﹣5=3(x﹣2)(2)x2﹣3x+2=0.16.(6分)先化简,再求值:(a+2)(a﹣2)+a(4﹣a),其中a=.17.(6分)为了美化环境,某地政府计划对辖区内60km2的土地进行绿化,为了尽快完成任务,实际平均每月的绿化面积是原计划的1.5倍,结果提前2个月完成任务,求原计划平均每月的绿化面积.18.(6分)如图,某地修建高速公路,要从A地向B地修一座隧道(A、B在同一水平面上),为了测量A、B两地之间的距离,某工程师乘坐热气球从B地出发,垂直上升100米到达C处,在C处观察A地的俯角为39°,求A、B两地之间的距离.(结果精确到1米)【参考数据:sin39°=0.63,cos39°=0.78,tan39°=0.81】19.(7分)某校学生会为了解本校学生每天做作业所用时间情况,采用问卷的方式对一部分学生进行调查,在确定调查对象时,大家提出以下几种方案:(A)对各班班长进行调查;(B)对某班的全体学生进行调查;(C)从全校每班随机抽取5名学生进行调查.在问卷调查时,每位被调查的学生都选择了问卷中适合自己的一个时间,学生会收集到的数据整理后绘制成如图所示的条形统计图.(1)为了使收集到的数据具有代表性,学生会在确定调查对象时选择了方案(填A、B或C);(2)被调查的学生每天做作业所用时间的众数为小时;(3)根据以上统计结果,估计该校800名学生中每天做作业用1.5小时的人数.20.(7分)如图,在▱ABCD中,点O是对角线AC、BD的交点,点E是边CD的中点,点F在BC的延长线上,且CF=BC,求证:四边形OCFE是平行四边形.21.(8分)甲、乙两车分别从A、B两地同时出发,甲车匀速前往B地,到达B地立即以另一速度按原路匀速返回到A地;乙车匀速前往A地,设甲、乙两车距A地的路程为y (千米),甲车行驶的时间为x(时),y与x之间的函数图象如图所示.(1)求甲车从A地到达B地的行驶时间;(2)求甲车返回时y与x之间的函数关系式,并写出自变量x的取值范围;(3)求乙车到达A地时甲车距A地的路程.22.(9分)问题情境:小明和小丽共同探究一道数学题:如图①,在△ABC中,点D是边BC的中点,∠BAD=65°,∠DAC=50°,AD=2,求AC的长为多少.探索发现;小明的思路是:延长AD至点E,使DE=AD,构造全等三角形.小丽的思路是:过点C作CE∥AB,交AD的延长线于点E,构造全等三角形.选择小明、小丽其中一人的方法解决问题情境中的问题.类比应用:如图②,在四边形ABCD中,对角线AC、BD相交于点O,点O是BD的中点,AB⊥AC.若∠CAD=45°,∠ADC=67.5°,AO=2,则BC的长为.23.(9分)如图①,在Rt△ABC中,∠C=90°,AB=10,BC=6.点P从点A出发,沿折线AB﹣BC向终点C运动,在AB上以每秒5个单位长度的速度运动,在BC上以每秒3个单位长度的速度运动.点Q从点C出发,沿CA方向以每秒个单位长度的速度运动.点P、Q两点同时出发,当点P停止时,点Q也随之停止.设点P运动的时间为t秒.(1)求线段AQ的长.(用含t的代数式表示).(2)当PQ与△ABC的一边平行时,求t的值.(3)如图②,过点P作PE⊥AC于点E,以PE、QE为邻边作矩形PEQF,点D为AC 的中点,连接DF.直接写出DF将矩形PEQF分成两部分的面积比为1:2时t的值.24.(10分)对于给定的两个函数y=k1x+b1(k1≠0)和y=k2x+b2(k2≠0),在这里我们把y=(k1x+b1)(k2x+b2)叫做这两个函数的积函数,把直线y=k1x+b1和y=k2x+b2叫做抛物线y=(k1x+b1)(k2x+b2)的母线.(1)直接写出函数y=x﹣3和y=﹣x﹣1的积函数,然后写出这个积函数的图象与x轴交点的坐标.(2)点P在(1)中的抛物线上,过点P垂直于x轴的直线分别交此抛物线的母线于M、N两点,设点P的横坐标为m,求PM=PN时m的值.(3)已知函数y=x﹣2n和y=﹣x.当它们的积函数自变量的取值范围是﹣1≤x≤2,且当n≥2时,这个积函数的最大值是8,求n的值以及这个积函数的最小值.2018-2019学年吉林省长春外国语学校九年级(上)期末数学试卷参考答案与试题解析一、选择题(每小题3分,共24分)1.【解答】解:﹣的相反数是,故选:C.2.【解答】解:4 400 000=4.4×106.故选:B.3.【解答】解:解不等式①得:x≤1,解不等式②得:x<3,∴不等式组的解集为x≤1,故选:C.4.【解答】解:从正面看易得左排3层,中间排是2九年级(上)数学期末考试试题(含答案)一、选择题:(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑)1.(4分)在有理数﹣6,3,0,﹣7中,最小的数是()A.﹣6B.3C.0D.﹣72.(4分)如图是由几个相同的小正方体堆砌成的几何体,它的左视图是()A.B.C.D.3.(4分)在函数y=中,自变量x的取值范围是()A.x>2B.x≤2且x≠0C.x<2D.x>2且x≠04.(4分)下列图形都是由同样大小的地砖按照一定规律所组成的,其中第①个图形中有4块地砖,第②个图形中有9块地砖,第③个图形中有16块地砖,…,按此规律排列下去,第9个图形中地砖的块数为()A.81B.99C.100D.1215.(4分)如图,△ABC中,DE∥BC且=,若△ABC的面积等于,则四边形DBCE 的面积为()A.B.C.D.46.(4分)下列命题是真命题的是()A.一组对边平行,且另一组对边相等的四边形是平行四边形B.对角线互相垂直的四边形是菱形C.四边都相等的矩形是正方形D.对角线相等的四边形是矩形7.(4分)估计(﹣)的值应在()A.0和1之间B.1和2之间C.2和3之间D.3和4之间8.(4分)按如图所示的程序运算,如果输出y的结果是4,则输入x的值可能是()A.±2B.2或3C.﹣2或3D.±2或39.(4分)如图,以Rt△ABC的直角边AB为直径作⊙O交BC于点D,连接AD,若∠DAC =30°,DC=1,则⊙O的半径为()A.2B.C.2﹣D.110.(4分)如图,小明站在某广场一看台C处,测得广场中心F的俯角为21°,若小明身高CD=1.7米,BC=1.9米,BC平行于地面F A,台阶AB的坡度为i=3:4,坡长AB=10.5米,则看台底端A点距离广场中心F点的距离约为()米.(参考数据:sin21°≈0.36,cos21°≈0.93,tan21°≈0.38)A.8.9B.9.7C.10.8D.11.911.(4分)若数a使关于x的二次函数y=x2+(a﹣1)x+b,当x<﹣1时,y随x的增大而减小;且使关于y的分式方程+=2有非负数解,则所以满足条件的整数a 的是()A.﹣2B.1C.0D.312.(4分)如图,已知Rt△ABC的直角顶点A落在x轴上,点B、C在第一象限,点B的坐标为(,4),点D、E分别为边BC、AB的中点,且tan B=,反比例函数y=的图象恰好经过D、E,则k的值为()A.B.8C.12D.16二、填空题:(本大题共6个小题,每小题4分,共24分)在每个小题中,请将正确答案书写在答题卡(卷)中对应的位置上13.(4分)计算:|1﹣|+(π﹣3.14)0+=.14.(4分)如图,等腰Rt△ABC中,∠ACB=90°,AC=BC=2,以BC为直径的半圆O 交AB于点D,则图中阴影部分的面积为(结果保留π).15.(4分)如图,在4×4正方形网格中,有4个涂成黑色的小方格,现在任意选取一个白色的小方格涂成黑色,则使得黑色部分的图形构成轴对称图形的概率为.16.(4分)如图,在Rt△ABC中,∠ABC=90°,把△ABC沿斜边AC折叠,使点B落在B’,点D,点E分别为BC和AB′上的点,连接DE交AC于点F,把四边形ABDE沿DE折叠,使点B与点C重合,点A落在A′,连接AA′交B′C于点H,交DE于点G.若AB=3,BC=4,则GE的长为.17.(4分)一天学生小明早上从家去学校,已知小明家离学校路程为2280米(小明每次走的路程),小明从家匀速步行了105分钟后,爸爸发现小明的一科作业忘带,爸爸立刻拿起小明忘带的作业匀速跑步追赶小明,追上小明后爸爸立即将作业交给小明,小明继续以原速向学校行走(假定爸爸将作业交给小明的时间忽略不计),爸爸将作业带给小明后,原地接了2分钟的电话后,立即以更快的速度匀速返回家中.小明和爸爸两人相距的路程y(米)与小明出发的时间x(分钟)之间的关系如图所示,则爸爸到达家时,小明与学校相距的路程是米.18.(4分)某水果销售商在年末准备购进一批水果进行销售,经过市场调查,发现芒果、车厘子、奇异果、火龙果比较受顾客的喜爱,于是制定了进货方案.其中芒果、车厘子的进货量与奇异果、火龙果的进货量分别相同,而芒果、车厘子的单价与火龙果、奇异果的单价分别相同,已知芒果和车厘子的单价和为每千克180元,且芒果和车厘子的进货总价比奇异果和火龙果的进货总价多863元.由于年末资金周转不开,所以临时决定只购进芒果和车厘子,芒果和车厘子的进货量与原方案相同,且进货量总数不超过300kg,则该水果商最多需要准备元进货资金.三、解答题:(本大题2个小题,第19小题8分,第20小题8分,共16分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答书写在答题卡卷)中对应的位置上19.(8分)先化简,再求值:÷(a﹣2﹣)+,其中a2﹣2a﹣6=0 20.(8分)如图,直线AB∥CD,EF平分∠AEG,∠DFH=13°,∠H=21°,求∠EFG 的度数.四、解答题:(本大题5个小题,每小题10分,共50分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答书写在答题卡卷)中对应的位置上21.(10分)如图,在平面直角坐标系中,直线l1与x轴交于点B,与y轴交于点C,直线l1与直线l2:y=﹣x交于点A,将直线l2:y=﹣x沿射线AB的方向平移得到直线l3,当l3经过点B时,与y轴交点记为D点,已知A点的纵坐标为2,sin∠ABO=.(1)求直线BC的解析式;(2)求△ABD的面积.22.(10分)距离中考体考时间越来越近,年级想了解初三年级2200名学生周末进行体育锻炼的情况,在初三年级随机抽查了20名男生和20名女生周末每天的运动时间进行了调查并收集到了以下数据(单位:min)男生:20 30 40 45 60 120 80 50 100 45 85 90 9070 90 50 90 50 70 40女生:75 30 120 70 60 100 90 40 75 60 75 75 8090 70 80 50 80 100 90根据统计数据制作了如下统计表:两组数据的极差、平均数、中位数、众数如下表所示:(1)请将上面两个表格补充完整:a=,b=,c=;(2)请根据抽样调查的数据估计初三年级周末每天运动时间在100分钟以上的同学大约有多少人?(3)李老师看了表格数据后认为初三年级的女生周末体锻坚持得比男生好,请你结合统计数据,写出支持李老师观点的理由.23.(10分)春节即将来临,根据习俗每家每户都会在门口挂红灯笼和贴对联.某商店看准了商机,准备购进一批红灯笼和对联进行销售,已知对联的进价比红灯笼的进价少10元,若用720元购进对联的数量比用720元购进红灯笼的数量多50件.(1)对联和红灯笼的单价分别为多少?(2)由于销售火爆,第一批售完后,该商店以相同的进价再购进300幅对联和200个红灯笼,已知对联的销售价格为12元一幅,红灯笼的销售价格为24元一个销售一段时间后发现对联售出了总数的,红灯笼售出了总数的,为了清仓,该店老板决定对剩下的红灯笼和对联以相同的折扣数打折销售,并很快全部售出,问商店最低打几折,才能使总的利润率不低于20%?24.(10分)已知平行四边形ABCD,过点A作BC的垂线,垂足为E,且满足AE=EC,过点C作AB的垂线,垂足为F,交AE于点G,连接BG,(1)如图1,若AC=,CD=4,求EG的长度;(2)如图2,取BE的中点K,在EC上取一点H,使得点K和点E为BH的三等分点,连接AH,过点K作AH的垂线,交AC于点Q,求证:BG=2CQ.25.(10分)阅读材料,解决问题:某数学学习小组在阅读数学史时,发现了一个有趣的故事;古希腊神话中的米诺斯王嫌别人为他建造的坟墓太小,命令将其扩大一倍,并说只要将每边扩大一倍就行,这当然是错误的,但这类问题却引出了著名的几何问题:倍立方问题.此时他们刚好学习了平面几何,所以甲同学提出:“任意给定一个正方形,是否存在另外一个正方形,它的周长和面积分别是已知正方形周长和面积的2倍呢?”,对于这个问题小组成员很快给出了解答:设原正方形的边长为a,则周长为4a,面积为a2∵另一个正方形的周长为2×4a=8a∴此时边长为2a,面积为(2a)2=4a2≠2a2∴不存在这样的正方形,它的周长和面积分别是已知正方形周长和面积的2倍.虽然甲同学的问题得到了很快的解决,但这一问题的提出触发了其他小组成员的积极思考,进一步乙同学提出:“任意给定一个矩形,是否存在另外一个矩形,它的周长和面积分别是已知矩形周长和面积的2倍呢?”通过讨论,他们决定先研究:“已知矩形的长和宽分别为m和1,是否存在另外一个矩形,它的周长和面积分别是已知矩形周长和面积的2倍呢?”,并给出了如下解答过程:设所求矩形的长为x,则根据题意可表示出所求矩形的宽为2(m+1)﹣x那么可建立方程:x•[2(m+1)﹣x]=2m∵判别式△=4m2+4>0∴原方程有解,即结论成立.根据材料解决下列问题(1)若已知一个矩形的长和宽分别为3和1,则是否存在另一个矩形,它的周长和面积分别是已知矩形周长和面积的一半呢?若存在,请求出此矩形的长和宽;若不存在,请说明理由;(2)若已知一个矩形的长和宽分别为m和1,且一定存在另一个矩形的周长和面积分别是已知矩形周长和面积的k倍,求k的取值范围(写明解答过程).五、解谷题:(本大题1个小题,共12分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答过程书写在答题卡中对应的位置上.26.(12分)如图1,抛物线y=﹣x2+x+6与x轴交于A、B(B在A的左侧)两点,与y轴交于点C,将直线AC沿y轴正方向平移2个单位得到直线A′C′,将抛物线的对称轴沿x轴正方向平移最新人教版九年级(上)期末模拟数学试卷及答案一、选择题(本大题共12小题,共48.0分)1.计算:A. 3B.C.D. 【答案】C【解析】解:,故选:C.根据算术平方根和二次根式的性质化简可得.本题主要考查算术平方根,解题的关键是掌握算术平方根的定义和二次根式的性质.2.下列计算正确的是A. B. C. D.【答案】B【解析】解:A、不能化简,所以此选项错误;B、,所以此选项正确;C、,所以此选项错误;D、,所以此选项错误;本题选择正确的,故选B.A、和不是同类二次根式,不能合并;B、二次根式相乘,系数相乘作为积的系数,被开方数相乘,作为积中的被开方数;C、二次根式的乘方,把每个因式分别平方,再相乘;D、二次根式的除法,把分母中的根号化去.本题考查了二次根式的混合运算,熟练掌握二次根式的计算法则是关键,要注意:①二次根式的运算结果要化为最简二次根式;②与有理数的混合运算一致,运算顺序先乘方再乘除,最后加减,有括号的先算括号里面的;③灵活运用二次根式的性质,选择恰当的解题途径.3.在中,,则是的A. 正弦B. 余弦C. 正切D. 以【答案】A【解析】解:在中,,则是正弦,故选:A.根据锐角三角函数的定义即可得到结论.本题考查了锐角三角函数的定义,熟记三角函数的定义是解题的关键.4.用配方法解方程,则方程可变形为A. B. C. D. 【答案】D【解析】解:原方程为,二次项系数化为1,得,即,所以故选D.本题考查分配方法解一元二次方程.配方法的一般步骤:把常数项移到等号的右边;把二次项的系数化为1;等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.此题考查了配方法解一元二次方程,解题时要注意解题步骤的准确应用.5.已知 ∽,的面积为6,周长为周长的一半,则的面积等于A. B. 3 C. 12 D. 2【答案】D【解析】解: ∽,的周长为周长的一半,,,的面积为6,,故选:D.利用相似三角形的面积比等于相似比的平方即可解决问题.本题考查相似三角形的性质,记住相似三角形的周长比等于相似比,面积比等于相似比的平方.6.某中学开展“阳光体育一小时”活动,根据学校实际情况,如图决定开设“A:踢毽子,B:篮球,C:跳绳,D:乒乓球”四项运动项目每位同学必须选择一项,为了解学生最喜欢哪一项运动项目,随机抽取了一部分学生进行调查,并将调查结果绘制成如图的统计图,则参加调查的学生中最喜欢跳绳运动项目的学生数为A. 240B. 120C. 80D. 4【答案】D【解析】解:调查的总人数是:人,则参加调查的学生中最喜欢跳绳运动项目的学生数是:人.故选:D.根据A项的人数是80,所占的百分比是即可求得调查的总人数,然后李用总人数减去其它组的人数即可求解.本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.7.在和中,已知,,在下面判断中错误的是A. 若添加条件,则 ≌B. 若添加条件,则 ≌C. 若添加条件,则 ≌D. 若添加条件,则 ≌【答案】B【解析】解:A,正确,符合SAS判定;B,不正确,因为边BC与不是与的一边,所以不能推出两三角形全等;C,正确,符合AAS判定;D,正确,符合ASA判定;故选:B.根据全等三角形的判定方法对各个选项进行分析,从而得到答案.此题主要考查学生对全等三角形的判定方法的理解及运用,常用的判定方法有:AAS,SAS,SSS,HL等要根据已知与判断方法进行思考.8.在网格中的位置如图所示每个小正方形边长为,于D,下列四个选项中,错误的是A.B.C.D.【答案】C【解析】解:观察图象可知,是等腰直角三角形,,,,,,,故A正确,,故B正确,,故D正确,,,,故C错误.故选:C.观察图形可知,是等腰直角三角形,,,,,,利用锐角三角函数一一计算即可判断.本题考查锐角三角函数的应用等腰直角三角形的判定和性质、勾股定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.9.如图,中,AD是中线,,,则线段AC的长为A. 4B.C. 6D. 【答案】B【解析】解:,,在和中,,,∽ ,,,;故选:B.根据AD是中线,得出,再根据AA证出 ∽ ,得出,求出AC即可.此题考查了相似三角形的判断与性质,关键是根据AA证出 ∽ ,是一道基础题.10.若关于x的一元二次方程有实数根,则k的取值范围在数轴上表示正确的是A. B. C.D.【答案】A【解析】解:关于x的一元二次方程有实数根,,解得:.故选:A.根据一元二次方程的定义结合根的判别式,即可得出关于k的一元一次不等式组,解之即可得出k的取值范围,将其表示在数轴上即可得出结论.本题考查了根的判别式、一元二次方程的定义以及在数轴上表示不等式的解集,根据一元二次方程的定义结合根的判别式,找出关于k的一元一次不等式组是解题的关键.11.我们知道方程的解是,,现给出另一个方程,它的解是A. ,B. ,C. ,D. ,【答案】D【解析】解:把方程看作关于的一元二次方程,所以或,所以,.故选:D.先把方程看作关于的一元二次方程,利用题中的解得到或,然后解两个一元一次方程即可.本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.12.如图小王在长江边某瞭望台D处,测得江面上的渔船A的俯角为,若米,,米,CE平行于AB,迎水坡BC的坡角的正切值为,坡长米,则AB的长约为参考数据:,,A. 米B. 米C. 米D. 米【答案】A【解析】解:如图,延长DE交AB延长线于点P,作于点Q,,,四边形CEPQ为矩形,米,,,设、,由可得,解得:或舍,则米,米,米,在中,米,米.故选:A.延长DE交AB延长线于点P,作,可得、,由,可设、,根据求得x的值,即可知,由,结合可得答案.此题考查了俯角与坡度的知识注意构造所给坡度和所给锐角所在的直角三角形是解决问题的难点,利用坡度和三角函数求值得到相应线段的长度是解决问题的关键.二、填空题(本大题共6小题,共24.0分)13.的相反数是______.【答案】【解析】解:的相反数是,故答案为:.根据只有符号不同的两个数互为相反数,可得一个数的相反数.本题考查了相反数,在一个数的前面加上负号就是这个数的相反数.14.方程的解是______.【答案】,【解析】解:,,或,所以,.故答案是:,.先移项,然后利用因式分解法解方程.本题考查了解一元二次方程因式分解法:先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了数学转化思想.15.在实数范围内分解因式:______.【答案】【解析】解:,,,故答案为:先把前面两项配成完全平方式,然后根据平分差公式进行因式分解即可.本题考查了利用公式进行因式分解的方法:把整式先配成完全平分式或平分差的形式,然后利用公式法进行因式分解.16.某商品四天内每天每斤的进价与售价的信息如图所示,则售出这种商品每斤利润最大的是第______天【答案】二【解析】解:由图象中的信息可知,利润售价进价,利润最大的天数是第二天,故答案为:二.根据图象中的信息即可得到结论.本题考查了折线统计图,有理数大小的比较,正确的把握图象中的信息,理解利润售价进价是解题的关键.17.如图,在直角坐标系中,有两点、以原点O为位似中心,相似比为,在第一象限内把线段AB缩小后得到线段CD,则点C的坐标为______.【答案】【解析】解:由题意得, ∽ ,相似比是,,又,,,,点C的坐标为:,故答案为:.根据位似变换的性质可知, ∽ ,相似比是,根据已知数据可以求出点C的坐标.本题考查的是位似变换,掌握位似变换与相似的关系是解题的关键,注意位似比与相似比的关系的应用.18.若数a使关于x的不等式组有且只有四个整数解,且使关于y的方程的解为非负数,则符合条件的正整数a的值为______.【答案】2【解析】解:①②,解不等式①得:,解不等式②得:,该不等式组有且只有四个整数解,该不等式组的解集为:,且,解得:,,方程两边同时乘以得:,去括号得:,移项得:,该方程的解为非负数,且,解得:且,综上可知:符合条件的正整数a的值为2,故人教版数学九年级上册期末考试试题及答案一、选择题(每小题3分,共30分)1.下列设计的图案中,是中心对称图形但不是轴对称图形的是()A.B.C.D.2.经过某路口的行人,可能直行,也可能左拐或右拐,假设这三种可能性相同,现在有一个人经过该路口,恰好直行的概率是()A.B.C.D.3.若关于x的一元二次方程mx2﹣x=有实数根,则实数m的取值范围是()A.m≥﹣1 B.m≥﹣1且m≠0 C.m>﹣1且m≠0 D.m≠0=4,4.如图,点A是反比例函数图象的一点,自点A向y轴作垂线,垂足为T,已知S△AOT 则此函数的表达式为()A.B.C.D.5.如图,将线段AB绕点P按顺时针方向旋转90°,得到线段A'B',其中点A、B的对应点分别是点A'、B',则点A'的坐标是()A.(﹣1,3)B.(4,0)C.(3,﹣3)D.(5,﹣1)6.一元二次方程x2﹣6x﹣6=0配方后化为()A.(x﹣3)2=15 B.(x﹣3)2=3 C.(x+3)2=15 D.(x+3)2=3 7.如图,AB是⊙O的直径,弦CD交AB于点P,AP=2,BP=6,∠APC=30°,则CD的长为()A.B.2C.2D.88.若点(﹣2,y1),(﹣1,y2),(3,y3)在双曲线y=(k<0)上,则y1,y2,y3的大小关系是()A.y1<y2<y3B.y3<y2<y1C.y2<y1<y3D.y3<y1<y29.如图,在网格中,小正方形的边长均为1,点A,B,C都在格点上,则∠ABC的正切值是()A.2 B.C.D.10.如图,⊙M的半径为2,圆心M的坐标为(3,4),点P是⊙M上的任意一点,PA⊥PB,且PA、PB与x轴分别交于A、B两点,若点A、点B关于原点O对称,则AB的最小值为()。

江苏省江阴市2019—2020学年九年级上期末调研考试数学试卷含答案

江苏省江阴市2019—2020学年九年级上期末调研考试数学试卷含答案

江阴市2019-2020学年第一学期九年级期末调研考试数学试卷(本试卷满分为130分,考试时间为120分钟)2020.01一、选择题(本大题共有10小题,每小题3分,共30分,在每小题所给出的四个选项中,只有一项是正确的,请把正确选项前的字母代号填在题后的括号内)1.sin60°的值是(▲)A .12B .33C .32D .32.若△ABC ∽△DEF ,相似比为1∶2,则△ABC 与△DE F 的周长比为(▲)A .2∶1B .1∶2C .4∶1D .1∶43.体育课上,某班两名同学分别进行5次短跑训练,要判断哪一名同学的成绩比较稳定,通常需要比较这两名学生成绩的(▲)A .平均数B .频数C .中位数D .方差4.方程x 2-3x =0的解为(▲)A .x 1=0,x 2=―3B .x 1=0,x 2=3C .x =0D .x =35.如图,AB 是⊙O 的直径,弦CD ⊥AB 于点E ,OC =5cm ,CD =8cm ,则AE =(▲)A .2cmB .3cmC .5cmD .8cm(第5题)(第8题)(第9题)6.把抛物线y =x 2向上平移1个单位后得到的抛物线是(▲)A .y =x 2+1B .y =x 2-1C .y =(x +1)2D .y =(x -1)27.某人沿着坡度为1∶2.4的斜坡向上前进了130m ,那么他的高度上升了(▲)A .50mB .100mC .120mD .130m8.如图,在Rt △ABC 中,∠ACB =90°,AC =3,BC =4,将△ABC 绕点A 逆时针方向旋转40°得到△ADE ,点B 经过的路径为⌒BD ,则图中阴影部分的面积为(▲)A .143π-6B .259πC .338π-3D .33+πBACDOE xyO ﹣121ABCED9.已知二次函数y =ax 2+bx +c (a ≠0)图像如图所示,对称轴为过点(-12,0)且平行于y轴的直线,则下列结论中正确的是(▲)A .abc >0B .a +b =0C .2b +c >0D .4a +c <2b10.如图,⊙O 是△ABC 的外接圆,∠A =60°,点P 是△ABC 外一点,BP =6,CP =3,则线段OP 的最大值为(▲)A .9B .4.5C .33D .3(第10题)(第17题)(第18题)二、填空题(本大题共8小题,每小题2分,共16分.不需要写出解答过程,只需把答案直接填写在题中的横线上)11.如果在比例尺为1∶1000000的地图上,甲、乙两地的图上距离是5.8cm ,那么甲、乙两地的实际距离是▲km .12.已知x =1是关于x 的一元二次方程2x 2-x +a =0的一个根,则a 的值是▲.13.已知二次函数y =x 2-2x +m 的图像与x 轴只有一个公共点,则m =▲.14.已知某小区的房价在两年内从每平方米8100元增加到每平方米12500元,设该小区房价平均每年增长的百分率为x ,根据题意可列方程为▲.15.若圆锥的底面圆半径为2cm ,圆锥的母线长为5cm ,则圆锥的侧面积为▲cm 2.16.已知二次函数y =ax 2+bx +c (a ≠0)中,函数y 与自变量x 的部分对应值如下表:x …-2-1012…y…105212…则当y <5时,x 的取值范围是▲.17.如图,□ABCD 中,点E 、F 分别是边AD 、CD 的中点,EC 、EF 分别交对角线BD于点H 、G ,则DG ∶GH ∶HB =▲.18.如图,已知射线BP ⊥BA ,点O 从B 点出发,以每秒1个单位长度沿射线BA 向右运动;同时射线BP 绕点B 顺时针旋转一周,当射线BP 停止运动时,点O 随之停止运动.以O 为圆心,1个单位长度为半径画圆,若运动两秒后,射线BP 与⊙O 恰好有且只有一个公共点,则射线BP 旋转的速度为每秒▲度.三、解答题(本大题共10小题,共84分,解答时应写出文字说明、证明过程或演算步骤)PBCOAPAB (O )HGFE DAC B19.(本题满分8分)(1)计算:2sin60°-3tan45°+9;(2)解方程:x 2-4x -1=0.20.(本题满分8分)某校为了深入学习社会主义核心价值观,对本校学生进行了一次相关知识的测试,随机抽取了部分学生的测试成绩进行统计(根据成绩分为A 、B 、C 、D 、E 五个组,x 表示测试成绩,A 组:90≤x ≤100;B 组:80≤x <90;C 组:70≤x <80;D 组:60≤x <70;E 组:x <60),通过对测试成绩的分析,得到如图所示的两幅不完整的统计图,请你根据图中提供的信息解答以下问题:(1)抽取的学生共有▲人,请将两幅统计图补充完整;(2)抽取的测试成绩的中位数落在▲组内;(3)本次测试成绩在80分以上(含80分)为优秀,若该校初三学生共有1200人,请估计该校初三测试成绩为优秀的学生有多少人?21.(本题满分8分)现有A 、B 两个不透明的盒子,A 盒中装有红色、黄色、蓝色卡片各1张,B 盒中装有红色、黄色卡片各1张,这些卡片除颜色外都相同.现分别从A 、B 两个盒子中任意摸出一张卡片.(1)从A 盒中摸出红色卡片的概率为▲;(2)用画树状图或列表的方法,求摸出的两张卡片中至少有一张红色卡片的概率.调查测试成绩条形统计图调查测试成绩扇形统计图A B 30%E 10%D 15%C 100806040120100806040200A B C D E成绩(分)人数22.(本题满分8分)如图,在平面直角坐标系中,△ABC 的三个顶点都在格点上,点A的坐标为(2,-1),请解答下列问题:(1)画出△ABC 关于x 轴对称的△A 1B 1C 1,点A 1的坐标为▲;(2)在网格内以点(1,1)为位似中心,把△A 1B 1C 1按相似比2∶1放大,得到△A 2B 2C 2,请画出△A 2B 2C 2;若边AC 上任意一点P 的坐标为(m点P 2的坐标为▲.23.(本题满分8分)如图,Rt △ABC 中,∠ACB =90°,D 是(1)求证:CD 2=DE ·DA ;(2)当∠BED =47°时,求∠ABC 的度数.24.(本题满分8分)如图,某数学社团成员想利用所学的知识测量广告牌的高度(即图中线段MN 的长),在地面A 处测得点M 的仰角为60°、点N 的仰角为45°,在B 处测得点M 的仰角为30°,AB =5m ,MN ⊥AB 于点P ,且B 、A 、P 三点在同一直线上.求广告牌MN 的长(结果保留根号).EACBDB A M NP广告牌25.(本题满分8分)如图,AB 为⊙O 的直径,C 、F 为⊙O 上两点,且点C 为⌒BF 的中点,过点C 作AF 的垂线,交AF 的延长线于点E ,交AB 的延长线于点D .(1)求证:DE 是⊙O 的切线;(2)当BD =2,sin D =35时,求AE 的长.26.(本题满分8分)某商场将进货单价为30元的商品以每个40元的价格售出时,平均每月能售出600个,调查表明:这种商品的售价每上涨1元,其销售量就减少10个.(1)为了使平均每月有10000元的销售利润且尽快售出,这种商品的售价应定为每个多少元?(2)当该商品的售价为每个多少元时,商场销售该商品的平均月利润最大?最大利润是多少?C27.(本题满分10分)如图,已知二次函数y =x 2-2x +m 的图像与x 轴交于点A 、B ,与y 轴交于点C ,直线AC 交二次函数图像的对称轴于点D ,若点C 为AD 的中点.(1)求m 的值;(2)若二次函数图像上有一点Q ,使得tan ∠ABQ =3,求点Q 的坐标;(3)对于(2)中的Q 点,在二次函数图像上是否存在点P ,使得△QBP ∽△COA ?若存在,求出点P 的坐标;若不存在,请说明理由.28.(本题满分10分)已知矩形ABCD 中,AB =1,BC =2,点E 、F 分别在边BC 、AD上,将四边形ABEF 沿直线EF 翻折,点A 、B 的对称点分别记为A′、B′.(1)当BE =23时,若点B′恰好落在线段AC 上,求AF 的长;(2)设BE =m ,若翻折后存在点B′落在线段AC 上,则m 的取值范围是▲.AB CDE FA 'B '江阴市2019—2020学年第一学期九年级期末调研考试数学试卷参考答案及评分标准2020.1一、选择题(本大题共10小题,每小题3分,共30分)1.C 2.B 3.D 4.B 5.D 6.A 7.A 8.B 9.D 10.C 二、填空题(本大题共8小题,每小题2分,共16分)11.5812.-113.114.8100(1+x )2=1250015.10π16.-1<x <317.3∶1∶818.30或60(答对一半不得分)三、解答题(本大题共10小题,共84分.解答时应写出文字说明、证明过程或演算步骤)19.解:(1)原式=2×32-3×1+3……………………………………………………(3分)=3.…………………………………………………………………(4分)(2)(x -2)2=5……………………………………………………………………(2分)∴x 1=2+5,x 2=2-5.…………………………………………………(4分)(方法不唯一,若用求根公式,求出根的判别式给2分)20.解:(1)400,扇形统计图25%、20%,条形统计图120.………………………(4分)(2)B ……………………………………………………………………………(6分)(3)660人.……………………………………………………………………(8分)21.解:(1)13……………………………………………………………………………(2分)(2)树状图或列表(略)…………………………………………………………(6分)共有6种等可能的情况,符合条件的情况有4种(缺掉一半,1分全扣)(7分)∴P(至少一张红色卡片)=23.……………………………………………(8分)22.解:(1)图略…………………………………………………………………………(2分)(2,1)………………………………………………………………………(4分)(2)图略…………………………………………………………………………(6分)(-2m +3,2n +3)…………………………………………………………(8分)23.解:(1)在△ACD 和△CED 中,∵∠ADC =∠CDE ,∠ACD =∠CED =90°,∴△ACD ∽△CED .………………………………………………………(2分)∴CD DE =ADCD,∴CD 2=DE ·DA .…………………………………………(3分)(2)∵D 是BC 中点,∴BD =CD ,∴BD DE =ADBD.……………………………(4分)∵∠BDE =∠ADB ,∴△BED ∽△ABD .…………………………………(6分)∴∠BED =∠ABC .…………………………………………………………(7分)∵∠BED =47°,∴∠ABC =47°.………………………………………(8分)24.解:∵∠BPM =90°,∠PBM =30°,∠PAM =60°,∴∠PMB =60°,∠PMA =30°.∴∠BMA =30°.∴∠BMA =∠ABM .∴AM=AB=5.………………………………………………………………………(3分)∴在Rt△APM中,AP=AM·sin∠AMP=5×sin30°=5 2,…………………………(4分)∴PM=53 2,…………………………………………………………………………(5分)∵在Rt△APN中,∠NAP=45°,∴PN=AP=5 2.………………………………(6分)∴MN=PM-PN=532-52.…………………………………………………………(7分)答:广告牌MN的长为(532-52)m.……………………………………………………(8分)(此题方法不唯一,酌情给分.)25.解:(1)连接OC,∵点C为⌒BF的中点,∴⌒BC=⌒CF.∴∠CAF=∠BAC.∵AF⊥CD,∴∠E=90°.∵OA=OC,∴∠OCA=∠OAC.∴∠CAF=∠OCA.∴OC∥AE.………………………………………………………………(2分)∴∠DCO=∠E=90°.∴OC⊥DE.……………………………………(3分)∴DE是⊙O的切线.……………………………………………………(4分)(2)在Rt△DCO中,sin D=OCOD=35,设OC=3x,OD=5x,则5x=3x+2,解之得:x=1.…………………………………………(5分)∴OC=3,OD=5,AD=8.……………………………………………(6分)∵在Rt△DEA中,sin D=AEAD=AE8=35,∴AE=245.…………………(8分)26.解:(1)设该商品的售价是每个x元,根据题意,得:(x-30)[600-10(x-40)]=10000………………………(2分)解之得:x1=50,x2=80.………………………………………………(3分)答:为了尽快售出,这种商品的售价应定为每个50元.………………(4分)(2)该商品的利润y=(x-30)[600-10(x-40)]=-x2+130x-3000=-10(x-65)2+12250…………………………………………………(6分)∴当x=65时,利润y最大,最大利润是12250元.答:最大利润是12250元,此时售价是每个65元.……………………(8分)27.解:(1)设对称轴与x轴交于点E,与直线AC交于点D.∵y轴∥ED,∴AC∶CD=AO∶OE.∴AO=OE=1.∴A(-1,0).………………………………………(2分)∴将点A (-1,0)代入函数表达式得:1+2+m =0,∴m =-3.…(3分)(2)设Q (n ,n 2-2n -3),①点Q 在x 轴上方时,n <0,此时n ²-2n -33-n=3,解得:n =-4,n =3(舍),∴Q (-4,21)…………………………(5分)②点Q 在x 轴下方时,点Q 与点C 关于直线x =1对称,∴Q (2,-3).……………………………………………………………(7分)(3)①当点Q 为(-4,21)时,可以求得此时P (-23,-119),∵BP ∶BQ ≠OA ∶OC ,∴P 不存在.…………………………………(8分)②当点Q 为(2,-3)时,可以求得此时P (-43,139),∵BP ∶BQ ≠OA ∶OC ,∴P 不存在.…………………………………(9分)综上所述,不存在满足条件的点P ,使得△QBP ∽△COA .…………(10分)(第(3)问也可以利用K 型相似,不需要求出P 点坐标,但要有具体的过程说明.如果第(3)问没有任何解答过程只有“不存在”,则只给1分.)28.(1)过B'作B'H ⊥BC 于H ,延长HB'交AD 于点Q ,设B'H =m ,由△ACB ∽△B'CH ,可得CH =2m ,∴EH =43-2m .…………………………………………………………………(2分)在Rt △EB'H 中,EH ²+BH ²=EB'²,∴(43-2m)2+m ²=49,∴m =25或23(舍).∴B'H =25,EH =815.……………………………………………………………(4分)∴B'Q =1-25=35,设AF =n ,则FQ =65-n .在Rt △FB'Q 中:n ²+1=(65-n )2+925.………………………………………(6分)解得:n =13.∴AF =13.………………………………………………………(7分)(2)5-12<m ≤1.………………………………………………………………(10分)。

2019-2020学年九年级数学上学期期末原创卷B卷(江苏)(全解全析)

2019-2020学年九年级数学上学期期末原创卷B卷(江苏)(全解全析)

2019-2020学年上学期期末原创卷B 卷九年级数学·全解全析1.【答案】D【解析】因为22=4=(-2)41240b ac ∆--⨯⨯=-<,所以方程无实数根.故选D . 2.【答案】C【解析】∵DE ∥BC ,∴AD AE DB EC =,即643EC=,解得:EC =2,∴AC =AE +EC =4+2=6;故选C . 3.【答案】A 【解析】如图:共有16种结果,小明和小红分在同一个班的结果有4种,故小明和小红分在同一个班的机会=416=14.故选A . 4.【答案】C【解析】根据题意,AB ,sin A =A ∠的对边斜边=BC AB .故选C .5.【答案】B【解析】∵函数2y x =的图象沿x 轴向左平移2个单位长度,得2(2)y x =+;然后沿y 轴向下平移1个单位长度,得2(2)1y x =+-;故可以得到函数2(2)1y x =+-的图象.所以B选项是正确的.故选B . 6.【答案】D【解析】把A (–3,0),B (1,0)代入y =ax 2+bx +c 得到0930a b c a b c ++=⎧⎨-+=⎩,消去c 得到2a –b =0,故①②正确;∵抛物线的对称轴是直线x =–1,开口向下,∴x =–1时,y 有最大值,最大值=a –b +c ,∵m ≠–1,∴a –b +c >am 2+bm +c ,∴a –b >am 2+bm ,故③正确;当△ABC 是等腰直角三角形时,C (–1,2),可设抛物线的解析式为y =a (x +1)2+2,把(1,0)代入解得a =–12,故④正确, 如图,连接AD 交抛物线的对称轴于P ,连接PB ,则此时△BDP 的周长最小,最小值=PD+PB+BD =PD+PA+BD =AD+BD ,∵AD ,BD ,∴△PBD 周长最小值为 故选D .7.【答案】y =2(x –32)2–12【解析】y =2x 2–6x +4=2(x 2–3x )+4=2(x 2–3x +94–94)+4=2(x –32)2–92+4=2(x –32)2–12,故答案为:y =2(x –32)2–12.8.【答案】【解析】∵sin 45tan 6022︒=︒=︒==22⨯+=案为9.【答案】80【解析】设正方形瓷砖的实际边长为x ,则5:x =1:16,解得:x =80,故答案为:80. 10.【答案】20()101A +︒=,∴()tan 103A +︒=,∴∠A +10°=30°,∴∠A =20°,故答案为:20.11.【答案】1【解析】由题意得:240b ac ∆=-=,2(4)4(3)0m m m ∴--+=且0m ≠,解得m =1,故答案为:1.12.【答案】3【解析】∵∠BAC =∠ACD =90°,∴AB ∥CD ,∴△ABE ∽△DCE ,∴BE ABEC CD=,∵在Rt △ACB 中,∠B =45°,∴AB =AC ,∵在Rt △ACD 中,∠D =30°,∴CD =tan 30AC ︒,∴BE EC =3.故答案为3. 13.【答案】10%【解析】设药品成本的年平均下降率是x ,根据现在生产1t 药品的成本=两年前生产1t 药品的成本×1–下降率的平方,即可得出关于x 的一元二次方程:6000×()21x -=4860,解得:1x =10%,2x =190%(舍去).故答案为:10%. 14.【答案】0【解析】∵二次函数2y ax bx c =++的图象开口向上,对称轴为直线1x =,图象经过()3,0,∴图象还经过()1,0-,则a b c -+的值是1x =-时,对应y 的值为0,故答案为0. 15.【答案】π–1【解析】如图,延长DC ,CB 交⊙O 于M ,N ,则图中阴影部分的面积=14×(S 圆O –S 正方形ABCD )=14×(4π–4)=π–1,故答案为:π–1.16.【答案】【解析】以BC 为直角边在BC 上方作等腰直角三角形BOC ,如图,连接AO 、OE .则BE BOBD BC ==EBD =∠OBC ,∴∠EBO =∠DBC ,∴△EBO ∽△DB C .∴OECD=.∵CD =3,∴OE ,∵AB =9,AC =3,∴BC =OC =6,在Rt △ACO 中,∵∠ACO =90°,AC =3,OC =6,∴OA AE ≤OA +OE ,∴AE ≤,∴AE的最大值为.故答案为. 17.【解析】(1)∵(x +3)2=(1–3x )2,∴x +3=1–3x 或x +3=–1+3x , 解得:x =–0.5或x =2.(3分)(2)原式=7–+2×12=7–=57分)18.【解析】(1)2[(1)]4(1)k k ∆=-+--2(1)4k =-+,2(1)0,k -≥2(1)40,k ∴-+>即0,∆>方程有两个不相等的实数根.(3分) (2)设两个方程的一个公共根为α,则有22(1)102(3)60k k k k αααα⎧-++-=⎨--+-=⎩, 相减得2450αα+-=, 解得:125,1αα=-=,当5α=-时,255(1)10k k +++-=,解得:296k =-, 经验证296k =-符合题意;当1α=时,21)110k k αα-++-=-≠(, 1α∴=不符合题意,舍去,综上,296k =-.(7分) 19.【解析】∵DE ∥BC ,DF ∥AC ,∴四边形DECF 是平行四边形. ∴FC =DE =5cm .(4分) ∵DF ∥AC ,∴BF FC =BDDA ,即5BF =86, ∴BF =203cm .(7分) 20.【解析】如图,过B 作BE ⊥CD 垂足为E ,设BE =x 米,在Rt △ABE 中,tan A =BEAE, AE =tan BE A =tan 37BE ︒=43x ,在Rt △CBE 中,tan ∠BCD =BECE, CE =tan BE BCD ∠=tan 45x︒=x ,AC =AE –CE , ∴43x –x =150, 解得x =450.答:小岛B 到河边公路AD 的距离为450米.(8分) 21.【解析】(1)∵∠ABC =120°,弦BM 平分∠ABC ,∴∠ABM =∠CBM =60°,∴∠MAC =∠MBC =60°,∠MCA =∠MBA =60°, ∴AMC 为等边三角形;(3分)(2)如图,过点O 作OH ⊥AC 于H ,连接AO ,CO .∵AMC 为等边三角形,∴∠AMC =60°,∴∠AOC =2∠AMC =120°,∵OH ⊥AC ,OA =OC ,∴∠AOH =60°,AH =12AC 5分) 在Rt AOH 中,sin ∠AOH =AHAO,∴AO =sin AHAOH∠=2, ∴⊙O 的半径为2.(8分)22.【解析】(1)∵四边形ABCD 是矩形,∴AD =BC ,AD ∥BC ,∠B =90°,∴∠AEB =∠DAE ,∵DF ⊥AE ,∴∠AFD =90°=∠B ,∴△ABE ∽△DFA .(4分) (2)∵△ABE ∽△DFA ,∴AF ADBE AE =, 又BE =BC –CE =8,AE =10,∴21810AF =,∴AF =9.6.(7分) 23.【解析】(1)小明从中随机抽取一张卡片是足球社团B 的概率=14;(3分) (2)列表如下:(6分)由表可知共有12种等可能结果,小明两次抽取的卡片中有一张是科技社团D 的结果数为6种, 所以小明两次抽取的卡片中有一张是科技社团D 的概率为61=122.(8分) 24.【解析】(1)故答案为:(20−x ),10x ;(4分)(2)设每件商品降价x 元时,利润为w 元,根据题意得:22(20)(10010)10100200010(5)2250w x x x x x =-+=-++=--+, ∵−10<0,∴w 有最大值,当x =5时,商场日盈利最大,最大值是2250元.答:每件商品降价5元时,商场日盈利最大,最大值是2250元.(8分) 25.【解析】(1)86981079788810x +++++++++==甲,86108981096741010m m x ++++++++++==乙,若选派乙去参加比赛更合适,则74810m+>,解得:6m >, 因为m 为正整数,所以7m =,8,9,10;(4分) (2)当6m =时,8x x ==甲乙,()()()()()22222214886829827810810S ⎡⎤∴=⨯-+-+⨯-+-+-⎣⎦甲 1.2=,()()()()222223683882982108S 10-+-+-+-=乙 2.2=, ∴因为甲、乙两名同学射击环数的平均数相同,乙同学射击的方差大于甲同学的方差, ∴甲同学的成绩较稳定,应选甲参加比赛.(8分)26.【解析】(1)∵DE ⊥AC ,∠AED =90°=∠ACB ,又∠A 为公共角,∴△ADE ∽△ABC ,∴AE DEAC BC =,即161164CE -=,∴CE =12.(3分) (2)分两种情况:①△DEP ∽△BCP ,此时EP DE CP BC=,即1214a a -=,∴a =485;②△DEP ∽△PCB ,此时EP DE BC CP =,即1214a a-=,∴16a =+26a =-∴a 的值为485或或6–.(6分)(3)延长BC 至点F ,使CF =CB ,连接DF 交CE 于点P ,如图:∠DPE =∠CPF ,∠DEP =∠PCF ,则△DEP ∽△FCP ,于是EP DE CP FC =,得a =485. 此时BP =52FP 5=,DP =135,最小值为13.(9分)27.【解析】(1)y =213442x x +-,令y =0,则2134042x x +-=,解得x =2或–8,令x =0,则y =–4,所以点A 、B 、C 的坐标分别为:(–8,0)、(2,0)、(0,–4), 设直线AC 的表达式为y =kx +b ,将点A 、C 的坐标代入一次函数表达式:y =kx +b 得:084k b b =-+⎧⎨=-⎩,解得:124k b ⎧=-⎪⎨⎪=-⎩,故直线AC 的表达式为:y =12-x –4; 故答案为:(2,0),y =12-x –4;(2分) (2)如图,∵CE 平分∠OEP ,∴∠OEC =∠CEP ,∵PD ∥y 轴,∴∠CEP =∠ECO =∠OEC ,∴OE =OC =4,(5分) 设点E 的坐标为(m ,12-m –4), 则在Rt △ODE 中,根据勾股定理,得2221(4)42m m +--=, 解得:m =–165或0(不符合题意,舍去), 由于P 、E 的横坐标相等,所以点P (–165,–15625);(9分)(3)点M的坐标为:(0)或(5–14,0)或(–2,0).(11分)设点M(s,0),N(m,n),则n=14m2+32m–4,①当AC是平行四边形的边时,则点A向右平移8个单位,再向下平移4个单位得到C,同理N(M)向右平移8个单位,再向下平移4个单位得到M(N),即m+8=s,n–4=0或m–8=s,n+4=0,而n=14m2+32m–4,当m+8=s,n–4=0时,4=14m2+32m–4,解得:3m=-±,所以s;当m–8=s,n+4=0时,–4=14m2+32m–4,解得:m=–6或0(舍去),所以s=–14;②当AC是平行四边形的对角线时,利用中点坐标公式得:–8=m+s,–4=n,而n=14m2+32m–4,解得:m=–6或0(舍去),所以s=–2;综上,s或–14或–2;故点M的坐标为:(,0)或(5–14,0)或(–2,0).。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019-2020学年江苏省无锡市江阴市九年级(上)期末数学试卷一、选择题(共10小题). 1.(3分)sin 60(︒= ) A .12B .33C .32D .32.(3分)若ABC DEF ∆∆∽,相似比为1:2,则ABC ∆与DEF ∆的周长比为( ) A .2:1B .1:2C .4:1D .1:43.(3分)体育课上,某班两名同学分别进行了5次短跑训练,要判断哪一名同学的成绩比较稳定,通常需要比较这两名学生成绩的( ) A .平均数B .频数分布C .中位数D .方差4.(3分)方程230x x -=的根是( ) A .3x =B .10x =,23x =C .13x =,23x =-D .13x =,23x =-5.(3分)如图,AB 是O 的直径,弦CD AB ⊥于点E ,5OC cm =,8CD cm =,则(AE = )A .2cmB .3cmC .5cmD .8cm6.(3分)将抛物线2y x =向上平移1个单位,就得到抛物线( ) A .21y x =+B .2(1)y x =+C .21y x =-D .2(1)y x =-7.(3分)某人沿着坡度为1:2.4的斜坡向上前进了130m ,那么他的高度上升了( ) A .50mB .100mC .120mD .130m8.(3分)如图,在ABC ∆中,5AB =,3AC =,4BC =,将ABC ∆绕A 逆时针方向旋转40︒得到ADE ∆,点B 经过的路径为弧BD ,是图中阴影部分的面积为( )A .1463π- B .259π C .3338π- D .33π+9.(3分)已知二次函数2(0)y ax bx c a =++≠图象如图所示,对称轴为过点1(2-,0)且平行于y 轴的直线,则下列结论中正确的是( )A .0abc >B .0a b +=C .20b c +>D .42a c b +<10.(3分)如图,O 是ABC ∆的外接圆,60A ∠=︒,点P 是ABC ∆外一点,6BP =,3CP =,则线段OP 的最大值为( )A .9B .4.5C .33D 3二、填空题(本大题共8小题,每小题2分,共16分.不需要写出解答过程,只需把答案直接填写在题中的横线上)11.(2分)如果在比例尺为1:1000000的地图上,A 、B 两地的图上距离是5.8cm ,那么A 、B 两地的实际距离是 km .12.(2分)已知1x =是关于x 的一元二次方程220x x a -+=的一个根,则a 的值是 . 13.(2分)二次函数22y x x m =-+的图象与x 轴只有一个公共点,则m 的值为 . 14.(2分)已知某小区的房价在两年内从每平方米8100元增加到每平方米12500元,设该小区房价平均每年增长的百分率为x ,根据题意可列方程为 .15.(2分)若圆锥的底面半径为2cm ,母线长为5cm ,则此圆锥的侧面积是 2cm .16.(2分)已知二次函数2(0)y ax bx c a =++≠中,函数y 与自变量x 的部分对应值如表:x⋯ 2- 1- 0 1 2 ⋯ y⋯10 5212⋯则当5y <时,x 的取值范围是 .17.(2分)如图,ABCD 中,点E 、F 分别是边AD 、CD 的中点,EC 、EF 分别交对角线BD 于点H 、G ,则::DG GH HB = .18.(2分)如图,已知射线BP BA ⊥,点O 从B 点出发,以每秒1个单位长度沿射线BA 向右运动;同时射线BP 绕点B 顺时针旋转一周,当射线BP 停止运动时,点O 随之停止运动.以O 为圆心,1个单位长度为半径画圆,若运动两秒后,射线BP 与O 恰好有且只有一个公共点,则射线BP 旋转的速度为每秒 度.三、解答题(本大题共10小题,共84分,解答时应写出文字说明、证明过程或演算步骤) 19.(8分)(1)计算:2sin 603tan 459︒-︒+; (2)解方程:2410x x --=.20.(8分)某校为了深入学习社会主义核心价值观,对本校学生进行了一次相关知识的测试,随机抽取了部分学生的测试成绩进行统计(根据成绩分为A 、B 、C 、D 、E 五个组,x 表示测试成绩,A 组:90100x ;B 组:8090x <;C 组:7080x <;D 组:6070x <;E 组:60)x <,通过对测试成绩的分析,得到如图所示的两幅不完整的统计图,请你根据图中提供的信息解答以下问题:(1)抽取的学生共有 人,请将两幅统计图补充完整; (2)抽取的测试成绩的中位数落在 组内;(3)本次测试成绩在80分以上(含80分)为优秀,若该校初三学生共有1200人,请估计该校初三测试成绩为优秀的学生有多少人?21.(8分)现有A 、B 两个不透明的盒子,A 盒中装有红色、黄色、蓝色卡片各1张,B 盒中装有红色、黄色卡片各1张,这些卡片除颜色外都相同.现分别从A 、B 两个盒子中任意摸出一张卡片.(1)从A 盒中摸出红色卡片的概率为 ;(2)用画树状图或列表的方法,求摸出的两张卡片中至少有一张红色卡片的概率. 22.(8分)如图,在平面直角坐标系中,ABC ∆的三个顶点都在格点上,点A 的坐标为(2,1)-,请解答下列问题:(1)画出ABC ∆关于x 轴对称的△111A B C ,点1A 的坐标为 ;(2)在网格内以点(1,1)为位似中心,把△111A B C 按相似比2:1放大,得到△222A B C ,请画出△222A B C ;若边AC 上任意一点P 的坐标为(,)m n ,则两次变换后对应点2P 的坐标为 .23.(8分)如图,Rt ABC ∆中,90ACB ∠=︒,D 是BC 的中点,CE AD ⊥于E . (1)求证:2CD DE DA =;(2)当47BED∠=︒时,求ABC∠的度数.24.(8分)如图,某数学社团成员想利用所学的知识测量广告牌的高度(即图中线段MN的长),在地面A处测得点M的仰角为60︒、点N的仰角为45︒,在B处测得点M的仰角为30︒,5AB m=,MN AB⊥于点P,且B、A、P三点在同一直线上.求广告牌MN的长(结果保留根号).25.(8分)如图,AB为O的直径,C、F为O上两点,且点C为BF的中点,过点C 作AF的垂线,交AF的延长线于点E,交AB的延长线于点D.(1)求证:DE是O的切线;(2)当2BD=,3sin5D=时,求AE的长.26.(8分)某商场将进货单价为30元的商品以每个40元的价格售出时,平均每月能售出600个,调查表明:这种商品的售价每上涨1元,其销售量就减少10个.(1)为了使平均每月有10000元的销售利润且尽快售出,这种商品的售价应定为每个多少元?(2)当该商品的售价为每个多少元时,商场销售该商品的平均月利润最大?最大利润是多少?27.(10分)如图,已知二次函数22y x x m =-+的图象与x 轴交于点A 、B ,与y 轴交于点C ,直线AC 交二次函数图象的对称轴于点D ,若点C 为AD 的中点. (1)求m 的值;(2)若二次函数图象上有一点Q ,使得tan 3ABQ ∠=,求点Q 的坐标;(3)对于(2)中的Q 点,在二次函数图象上是否存在点P ,使得QBP COA ∆∆∽?若存在,求出点P 的坐标;若不存在,请说明理由.28.(10分)已知矩形ABCD 中,1AB =,2BC =,点E 、F 分别在边BC 、AD 上,将四边形ABEF 沿直线EF 翻折,点A 、B 的对称点分别记为A '、B '. (1)当23BE =时,若点B '恰好落在线段AC 上,求AF 的长; (2)设BE m =,若翻折后存在点B '落在线段AC 上,则m 的取值范围是 .参考答案一、选择题(本大题共有10小题,每小题3分,共30分,在每小题所给出的四个选项中,只有一项是正确的,请把正确选项前的字母代号填在题后的括号内) 1.(3分)sin 60(︒= )A .12B C D解:sin 60︒=. 故选:C .2.(3分)若ABC DEF ∆∆∽,相似比为1:2,则ABC ∆与DEF ∆的周长比为( ) A .2:1B .1:2C .4:1D .1:4解:ABC DEF ∆∆∽,ABC ∆与DEF ∆的相似比为1:2, ABC ∴∆与DEF ∆的周长比为1:2.故选:B .3.(3分)体育课上,某班两名同学分别进行了5次短跑训练,要判断哪一名同学的成绩比较稳定,通常需要比较这两名学生成绩的( ) A .平均数B .频数分布C .中位数D .方差解:由于方差能反映数据的稳定性,需要比较这两名学生了5次短跑训练成绩的方差. 故选:D .4.(3分)方程230x x -=的根是( )A .3x =B .10x =,23x =C .1x =,2x =D .13x =,23x =-解:230x x -=, (3)0x x -=, 0x =,30x -=,10x =,23x =,故选:B .5.(3分)如图,AB 是O 的直径,弦CD AB ⊥于点E ,5OC cm =,8CD cm =,则(AE = )A .2cmB .3cmC .5cmD .8cm解:弦CD AB ⊥于点E ,8CD cm =, 142CE CD cm ∴==.在Rt OCE ∆中,5OC cm =,4CE cm =, 2222543()OE OC CE cm ∴=-=-=,538()AE AO OE cm ∴=+=+=.故选:D .6.(3分)将抛物线2y x =向上平移1个单位,就得到抛物线( ) A .21y x =+B .2(1)y x =+C .21y x =-D .2(1)y x =-解:将抛物线2y x =向上平移1个单位得到的抛物线是21y x =+. 故选:A .7.(3分)某人沿着坡度为1:2.4的斜坡向上前进了130m ,那么他的高度上升了( ) A .50m B .100mC .120mD .130m解:如图,根据题意知130AB =米,tan 1:2.4ACB BC==, 设AC x =,则 2.4BC x =, 则222(2.4)130x x +=,解得50x =或50x =-(负值舍去), 即他的高度上升了50m , 故选:A .8.(3分)如图,在ABC ∆中,5AB =,3AC =,4BC =,将ABC ∆绕A 逆时针方向旋转40︒得到ADE ∆,点B 经过的路径为弧BD ,是图中阴影部分的面积为( )A .1463π- B .259π C .3338π- D .33π+解:5AB =,3AC =,4BC =,ABC ∴∆为直角三角形,由题意得,AED ∆的面积ABC =∆的面积,由图形可知,阴影部分的面积AED =∆的面积+扇形ADB 的面积ABC -∆的面积,∴阴影部分的面积=扇形ADB 的面积2405253609ππ⨯==, 故选:B .9.(3分)已知二次函数2(0)y ax bx c a =++≠图象如图所示,对称轴为过点1(2-,0)且平行于y 轴的直线,则下列结论中正确的是( )A .0abc >B .0a b +=C .20b c +>D .42a c b +<解:由图象可得, 0a >,0b >,0c <,故0abc <,故选项A 错误; 对称轴为直线12x =-,122b a ∴-=-,得a b =,0a b -=,故选项B 错误; 当1x =时,0y a b c =++<, 20b c ∴+<,故选项C 错误;对称轴为直线12x =-,当1x =时,0y <,2x ∴=-时的函数值与1x =时的函数值相等, 2x ∴=-时,420y a b c =-+<,42a c b ∴+<,故选项D 正确; 故选:D .10.(3分)如图,O 是ABC ∆的外接圆,60A ∠=︒,点P 是ABC ∆外一点,6BP =,3CP =,则线段OP 的最大值为( )A .9B .4.5C .33D .3解:如图,连接OB ,OC ,60A ∠=︒, 120BOC ∴∠=︒,∴将POC ∆绕点O 顺时针旋转120︒,得到HOB ∆,连接PH ,过点O ,作OE PH ⊥,3PC BH ∴==,OH OP =,120POH ∠=︒, 30OHP OPH ∴∠=∠=︒,且OE PH ⊥,PE EH ∴==,PH ∴,在BPH ∆中,9PH BP BH +=,33OP ∴=,OP ∴的最大值为故选:C .二、填空题(本大题共8小题,每小题2分,共16分.不需要写出解答过程,只需把答案直接填写在题中的横线上)11.(2分)如果在比例尺为1:1000000的地图上,A 、B 两地的图上距离是5.8cm ,那么A 、B 两地的实际距离是 58 km .解:根据题意,15.858000001000000÷=(厘米)58=(千米). 即实际距离是58千米. 故答案为:58.12.(2分)已知1x =是关于x 的一元二次方程220x x a -+=的一个根,则a 的值是 1- . 解:将1x =代入方程得:210a -+=, 解得:1a =-, 故答案为:1-.13.(2分)二次函数22y x x m =-+的图象与x 轴只有一个公共点,则m 的值为 1 . 解:根据题意得△2(2)40m =--=, 解得1m =. 故答案为1.14.(2分)已知某小区的房价在两年内从每平方米8100元增加到每平方米12500元,设该小区房价平均每年增长的百分率为x ,根据题意可列方程为 28100(1)12500x += . 解:设该小区房价平均每年增长的百分率为x , 依题意,得:28100(1)12500x +=.故答案为:28100(1)12500x +=.15.(2分)若圆锥的底面半径为2cm ,母线长为5cm ,则此圆锥的侧面积是 10π 2cm . 解:圆锥的底面周长4cm π=,圆锥的侧面积211451022lr cm ππ==⨯⨯=,故答案为10π.16.(2分)已知二次函数2(0)y ax bx c a =++≠中,函数y 与自变量x 的部分对应值如表:x⋯ 2- 1- 0 1 2 ⋯ y⋯10 5212⋯则当5y <时,x 的取值范围是 13x -<< . 解:由表格可知,二次函数2(0)y ax bx c a =++≠的对称轴是直线1x =,该函数开口向上, 则当5y =-对应的x 的值是1x =-或3x =-, 故当5y <时,x 的取值范围是13x -<<, 故答案为:13x -<<.17.(2分)如图,ABCD 中,点E 、F 分别是边AD 、CD 的中点,EC 、EF 分别交对角线BD 于点H 、G ,则::DG GH HB = 3:1:8 .解:连接AC 交BD 于O ,如图所示: 四边形ABCD 是平行四边形,OA OC ∴=,OB OD =,AD BC =,//AD BC , BCH DEH ∴∆∆∽, ∴DH DE HB BC=, 点E 、F 分别是边AD 、CD 的中点, 2BC AD DE ∴==,EF 是ACD ∆的中位线,∴12DH DE HB BC ==,//EF AC ,12EF AC OA OC ===, DG OG ∴=,EG 是AOD ∆的中位线,EGH COH ∆∆∽,1122EG OA OC ∴==,12GH EG OH OC ==,2OH GH ∴=,3DG OG GH ==,6OB OD GH ==, 8HB GH ∴=,::3:1:8DG GH HB ∴=;故答案为:3:1:8.18.(2分)如图,已知射线BP BA ⊥,点O 从B 点出发,以每秒1个单位长度沿射线BA 向右运动;同时射线BP 绕点B 顺时针旋转一周,当射线BP 停止运动时,点O 随之停止运动.以O 为圆心,1个单位长度为半径画圆,若运动两秒后,射线BP 与O 恰好有且只有一个公共点,则射线BP 旋转的速度为每秒 30或60 度.解:射线BP 与O 恰好有且只有一个公共点, ∴射线BP 与O 相切,如图,当BP '与O 相切于D ,连接OD , 则1OD =,2OB =,OD BP ⊥', 30OBD ∴∠=︒,BP BA ⊥, 90ABP ∴∠=︒, 60PBP ∴∠'=︒,60302︒=︒, ∴射线BP 与O 恰好有且只有一个公共点,则射线BP 旋转的速度为每秒30︒,当BP ''与O 相切于E ,连接OE , 同理30ABP ∠''=︒, 120PBP ∴∠''=︒,120602︒=︒, ∴射线BP 与O 恰好有且只有一个公共点,则射线BP 旋转的速度为每秒60︒,综上所述,射线BP 与O 恰好有且只有一个公共点,则射线BP 旋转的速度为每秒30︒或60︒,故答案为:30或60.三、解答题(本大题共10小题,共84分,解答时应写出文字说明、证明过程或演算步骤) 19.(8分)(1)计算:2sin 603tan 459︒-︒+; (2)解方程:2410x x --=. 解:(1)原式323332=-+= (2)2410x x --=,2445x x ∴-+=,2(2)5x ∴-=,25x ∴=20.(8分)某校为了深入学习社会主义核心价值观,对本校学生进行了一次相关知识的测试,随机抽取了部分学生的测试成绩进行统计(根据成绩分为A 、B 、C 、D 、E 五个组,x 表示测试成绩,A 组:90100x ;B 组:8090x <;C 组:7080x <;D 组:6070x <;E 组:60)x <,通过对测试成绩的分析,得到如图所示的两幅不完整的统计图,请你根据图中提供的信息解答以下问题:(1)抽取的学生共有400人,请将两幅统计图补充完整;(2)抽取的测试成绩的中位数落在组内;(3)本次测试成绩在80分以上(含80分)为优秀,若该校初三学生共有1200人,请估计该校初三测试成绩为优秀的学生有多少人?解:(1)本次抽取的学生共有:4010%400÷=(人),故答案为:400;A所占的百分比为:100400100%25%÷⨯=,÷⨯=,C所占的百分比为:80400100%20%B组的人数为:40030%120⨯=,补全的统计图如下图所示;(2)由扇形统计图可知,抽取的测试成绩的中位数落在B组内,故答案为:B;(3)1200(25%30%)660⨯+=(人),答:该校初三测试成绩为优秀的学生有660人.21.(8分)现有A、B两个不透明的盒子,A盒中装有红色、黄色、蓝色卡片各1张,B盒中装有红色、黄色卡片各1张,这些卡片除颜色外都相同.现分别从A、B两个盒子中任意摸出一张卡片.(1)从A 盒中摸出红色卡片的概率为13; (2)用画树状图或列表的方法,求摸出的两张卡片中至少有一张红色卡片的概率. 解:(1)从A 盒中摸出红色卡片的概率为13,故答案为:13.(2)画树状图如下:由树状图知,共有6种等可能结果,其中摸出的两张卡片中至少有一张红色卡片的有4种结果,∴摸出的两张卡片中至少有一张红色卡片概率为23. 22.(8分)如图,在平面直角坐标系中,ABC ∆的三个顶点都在格点上,点A 的坐标为(2,1)-,请解答下列问题:(1)画出ABC ∆关于x 轴对称的△111A B C ,点1A 的坐标为 (2,1) ;(2)在网格内以点(1,1)为位似中心,把△111A B C 按相似比2:1放大,得到△222A B C ,请画出△222A B C ;若边AC 上任意一点P 的坐标为(,)m n ,则两次变换后对应点2P 的坐标为 .解:(1)如图所示,△111A B C 即为所求;点1A 的坐标为(2,1);故答案为:(2,1);(2)如图所示,△222A B C 即为所求;2P 的坐标为(23,23)m n -++. 故答案为:(23,23)m n -++.23.(8分)如图,Rt ABC ∆中,90ACB ∠=︒,D 是BC 的中点,CE AD ⊥于E . (1)求证:2CD DE DA =;(2)当47BED ∠=︒时,求ABC ∠的度数.【解答】证明(1)CE AD ⊥, 90CED ACB ∴∠=∠=︒, CDE ADC ∠=∠, CDE ADC ∴∆∆∽, ::CD AD DE CD ∴=,2CD DE AD ∴=.(2)D 是BC 的中点,BD CD ∴=;2CD DE AD =,2BD DE AD ∴=,::BD AD DE BD ∴=;又ADB BDE ∠=∠, BDE ADB ∴∆∆∽, BED ABC ∴∠=∠, 47BED ∠=︒, 47ABC ∴∠=︒.24.(8分)如图,某数学社团成员想利用所学的知识测量广告牌的高度(即图中线段MN 的长),在地面A 处测得点M 的仰角为60︒、点N 的仰角为45︒,在B 处测得点M 的仰角为30︒,5AB m =,MN AB ⊥于点P ,且B 、A 、P 三点在同一直线上.求广告牌MN 的长(结果保留根号).解:在Rt APN ∆中,45NAP ∠=︒, PA PN ∴=,在Rt APM ∆中,tan MPMAP AP∠=, 设PA PN x ==米, 60MAP ∠=︒,tan 3MP AP MAP ∴=∠=,在Rt BPM ∆中,tan MPMBP BP∠=, 30MBP ∠=︒,5AB =, ∴3335xx =+, 52x ∴=,符合题意,53532MN MP NP x x -∴=-=-=(米), 答:广告牌MN 的长为5352-米. 25.(8分)如图,AB 为O 的直径,C 、F 为O 上两点,且点C 为BF 的中点,过点C 作AF 的垂线,交AF 的延长线于点E ,交AB 的延长线于点D . (1)求证:DE 是O 的切线; (2)当2BD =,3sin 5D =时,求AE 的长.【解答】(1)证明:连接OC ,如图, 点C 为弧BF 的中点, ∴弧BC =弧CF .BAC FAC ∴∠=∠, OA OC =, OCA OAC ∴∠=∠. OCA FAC ∴∠=∠, //OC AE ∴,AE DE ⊥, OC DE ∴⊥.DE ∴是O 的切线;(2)3sin 5OC D OD ==, ∴设3OC x =,5OD x =,则532x x =+, 1x ∴=,3OC ∴=,5OD =,8AD ∴=,3sin 85AE AE D AD ===, 245AE ∴=.26.(8分)某商场将进货单价为30元的商品以每个40元的价格售出时,平均每月能售出600个,调查表明:这种商品的售价每上涨1元,其销售量就减少10个.(1)为了使平均每月有10000元的销售利润且尽快售出,这种商品的售价应定为每个多少元?(2)当该商品的售价为每个多少元时,商场销售该商品的平均月利润最大?最大利润是多少?解:(1)设该商品售价x 元,根据题意得: (30)[60010(40)]10000x x ---=,解得150x =,280x =(不合题意舍去),答:为了尽快售出,这种商品的售价应定为每个50元;(2)设该商品的利润为y 元,根据题意得: (30)[60010(40)]y x x =--- 210130030000x x =-+-;210(65)12250x =--+当售价为65元时,可得最大利润12250元.27.(10分)如图,已知二次函数22y x x m =-+的图象与x 轴交于点A 、B ,与y 轴交于点C ,直线AC 交二次函数图象的对称轴于点D ,若点C 为AD 的中点. (1)求m 的值;(2)若二次函数图象上有一点Q ,使得tan 3ABQ ∠=,求点Q 的坐标;(3)对于(2)中的Q 点,在二次函数图象上是否存在点P ,使得QBP COA ∆∆∽?若存在,求出点P 的坐标;若不存在,请说明理由.解:(1)设对称轴交x 轴于点E ,直线AC 交抛物线对称轴于点D ,函数的对称轴为:1x =,点C 为AD 的中点,则点(1,0)A -, 将点A 的坐标代入抛物线表达式并解得:3m =-, 故抛物线的表达式为:223y x x =--⋯①;(2)tan 3ABQ ∠=,点(3,0)B ,则AQ 所在的直线为:3(3)y x =±-⋯②,联立①②并解得:4x =-或3(舍去)或2,故点(4,21)Q -或(2,3)-;(3)不存在,理由:QBP COA ∆∆∽,则90QBP ∠=︒①当点(2,3)Q -时,则BP 的表达式为:1(3)3y x =--⋯③, 联立①③并解得:3x =(舍去)或43-,故点4(3P -,13)9, 此时::BP PQ OA AC ≠,故点P 不存在;②当点(4,21)Q -时,同理可得:点2(3P -,11)9, 此时::BP PQ OA OB ≠,故点P 不存在;综上,点P 不存在.28.(10分)已知矩形ABCD 中,1AB =,2BC =,点E 、F 分别在边BC 、AD 上,将四边形ABEF 沿直线EF 翻折,点A 、B 的对称点分别记为A '、B '.(1)当23BE =时,若点B '恰好落在线段AC 上,求AF 的长; (2)设BE m =,若翻折后存在点B '落在线段AC 上,则m 的取值范围是 5112m - .解:(1)由翻折的性质得:1AB A B =''=,23BE B E ='=,AF A F =', 90A BAD ∠'=∠=︒, 过点B '作B H BC '⊥于H ,延长HB '交AD 于Q ,连接B F ',如图1所示: 则四边形ABHQ 与四边形CDQH 是矩形,1HQ AB ∴==,90EHB B QF ∠'=∠'=︒,//B H AB ', CHB CBA ∴∆'∆∽,∴B H CH AB BC'=, 设B H a '=,即12a CH =, 2CH a ∴=,2422233EH BC BE CH a a ∴=--=--=-,在Rt EHB ∆'中,222EH B H B E +'=', 即22242(2)()33a a -+=, 解得:25a =或23a =(不合题意舍去), 25B H ∴'=,815EH =,23155B Q HQ B H '=-'=-=, 设AF x =,四边形ABCD 与四边形CDQH 是矩形, 2AD BC ∴==,45DQ CH ==, 46255FQ AD DQ AF x x ∴=--=--=-, 22221B F A F A B x '='+''=+,在Rt FQB ∆'中,222631()()55x x +=-+, 解得:13x =, 13AF ∴=; (2)当F 与A 重合时,如图2所示: 四边形ABCD 是矩形,90B ∴∠=︒,AC ∴===, 由折叠的性质得:B E BE m '==,1AB AB '==,90AB E B '∠=∠=︒, 2CE BC BE m ∴=-=-,90CB E '∠=︒,1CB AC AB ''∴=-=-,在Rt CEB '∆中,由勾股定理得:2221)(2)m m +-=-,解得:m =; 当B '与C 重合时,E 为BC 的中点,如图3所示: 112m BC ==;若翻折后存在点B '落在线段AC 上,m 1m ;故答案为:5112m .。

相关文档
最新文档