《数学分析》(II)期末考试试题(A卷)参考答案及评分标准
西华师范大学数学分析大二期末试题(含答案)
西华师范大学数学分析(2)期末试题课程名称数学分析(Ⅱ)适用时间试卷类别1适用专业、年级、班应用、信息专业一、单项选择题(每小题3分,3×6=18分)1、下列级数中条件收敛的是().A .1(1)nn ∞=−∑B .nn ∞=C .21(1)nn n∞=−∑D .11(1)nn n ∞=+∑2、若f 是(,)−∞+∞内以2π为周期的按段光滑的函数,则f 的傅里叶(Fourier )级数在它的间断点x 处().A .收敛于()f xB .收敛于1((0)(0))2f x f x −++C .发散D .可能收敛也可能发散3、函数)(x f 在],[b a 上可积的必要条件是().A .有界B .连续C .单调D .存在原函数4、设()f x 的一个原函数为ln x ,则()f x ′=()A .1xB .ln x xC .21x −D .xe5、已知反常积分20 (0)1dxk kx +∞>+∫收敛于1,则k =()A .2πB .22πC .2D .24π6、231ln (ln )(ln )(1)(ln )n nx x x x −−+−+−+⋯⋯收敛,则()A .x e<B .x e>C .x 为任意实数D .1e x e−<<二、填空题(每小题3分,3×6=18分)1、已知幂级数1nn n a x∞=∑在2x =处条件收敛,则它的收敛半径为.2、若数项级数1n n u ∞=∑的第n 个部分和21n nS n =+,则其通项n u =,和S =.3、曲线1y x=与直线1x =,2x =及x 轴所围成的曲边梯形面积为.4、已知由定积分的换元积分法可得,10()()bxxaef e dx f x dx =∫∫,则a =,b =.5、数集(1)1, 2 , 3, 1nn n n ⎧⎫−=⎨⎬+⎩⎭⋯的聚点为.6、函数2()x f x e =的麦克劳林(Maclaurin )展开式为.65三、计算题(每小题6分,6×5=30分)1、(1)dxx x +∫.2、2ln x x dx ∫.3、 0(0)dx a >∫.4、 2 0cos limsin xx t dt x→∫.5、dx ∫.四、解答题(第1小题6分,第2、3小题各8分,共22分)1、讨论函数项级数21sin n nxn ∞=∑在区间(,)−∞+∞上的一致收敛性.2、求幂级数1nn x n ∞=∑的收敛域以及收敛区间内的和函数.3、设()f x x =,将f 在(,)ππ−上展为傅里叶(Fourier )级数.五、证明题(每小题6分,6×2=12分)1、已知级数1nn a∞=∑与1nn c∞=∑都收敛,且, 1, 2, 3 n n n a b c n ≤≤=⋯,证明:级数1nn b∞=∑也收敛.2、证明:22 00sin cos nn x dx x dx ππ=∫∫.66试题参考答案与评分标准课程名称数学分析(Ⅱ)适用时间试卷类别1适用专业、年级、班应用、信息专业一、单项选择题(每小题3分,3×6=18分)⒈B⒉B⒊A⒋C⒌D⒍D二、填空题(每小题3分,3×6=18分)⒈2⒉2, =2(1)n u S n n =+⒊ln 2⒋1, a b e ==⒌1±⒍201, (,)!nn x x n ∞=∈−∞+∞∑三、计算题(每小题6分,6×5=30分)1.解111(1)1x x x x=−++∵1(1)dxx x ∴+∫(3分)11(1dxx x=−+∫ ln ln 1.x x C =−++(3分)2.解由分部积分公式得231ln ln 3x xdx xdx =∫∫3311ln ln 33x x x d x =−∫(3分)33111ln 33x x x dx x =−⋅∫3211ln 33x x x dx =−∫3311ln 39x x x C =−+(3分)3.解令sin , [0, ]2x a t t π=∈由定积分的换元积分公式,得0∫2220cos atdtπ=∫(3分)6768220(1cos 2)2a t dtπ=+∫221(sin 2)22a t t π=+2.4a π=(3分)4.解由洛必达(L 'Hospital)法则得200cos limsin xx tdtx →∫20cos x x →=4分)lim cos x x→=1=(2分)5.解=(2分)20 sin cos x x dxπ=−∫4204(cos sin ) (sin cos )x x dx x x dx πππ=−+−∫∫(2分)244(sin cos )(sin cos )x x x x πππ=+−+2.=−(2分)四、解答题(第1小题6分,第2、3小题各8分,共22分)1.解(, ), x n ∀∈−∞∞∀+(正整数)22sin nx n n ≤(3分)而级数211n n ∞=∑收敛,故由M 判别法知,21sin n nxn ∞=∑在区间(,)−∞+∞上一致收敛.(3分)2.解幂级数1nn x n∞=∑的收敛半径111lim nn R n→∞==,收敛区间为(1,1)−.(2分)易知1nn x n ∞=∑在1x =−处收敛,而在1x =发散,故1nn x n∞=∑的收敛域为[1,1)−.(2分)01, (1, 1)1n n x x x ∞==∈−−∑(2分)逐项求积分可得0001, (1,1)1xx nn dt t dt x t ∞==∈−−∑∫∫.即101ln(1), (1,1).1n nn n x x x x n n+∞∞==−−==∈−+∑∑(2分)3.解函数f 及其周期延拓后的图形如下函数f 显然是按段光滑的,故由收敛性定理知它可以展开为Fourier 级数。
浙江大学大二数学专业《数学分析(二)》考试A卷及答案
数学分析(二)课程考试A 卷适用专业 考试日期:试卷所需时间120分钟 闭卷 试卷总分100分一、判断题:(对的打√,错的打×,每小题2分,共12分)1、若lim 0n n na a →∞=≠,则级数n a ∑收敛。
( )2、若()f x 在[,]a b 上连续,2()0baf x dx =⎰,则[,]x a b ∀∈,()0f x ≡。
( )3、若00(,)(,)lim(,)x y x y f x y a →=,则00lim lim (,)x x y y f x y a →→=。
( )4、级数2(1)sin nn n x ∞=-+∑在[0,2]x π∈上一致收敛。
( )5、级数,n n a b ∑∑均发散,则级数min(,)n n a b ∑也发散。
( )6、若在可积,则在可积。
( )二、填空题:(共6小题,每小题2分,共12分)1、函数1x e x-在0x =处的幂级数展开式为 。
2、函数222(,)y f x y x y=+在点(0,0)的重极限和累次极限分别为 、 、 。
3、定积分211(sin 2)x ex dx --+⎰等于 。
4、若反常积分11x dx xα+∞-+⎰收敛时,则α的取值范围是 。
5、幂级数2nn x n∑的收敛半径和收敛区域分别为 、 。
6、函数2x 在(,)ππ-上展开成傅立叶级数为 。
三、计算题:(共4小题,每小题5分,共20分)1、1ln eex dx ⎰ 2、1201x dx -3、1xe + 4、!lim lnnn n n→∞四、(10分)计算由sin ,0,2,0y x x x y π====所围成的平面图形,绕x 轴旋转一周所得旋转体的体积。
院系: 专业班级: 姓名: 学号:装 订 线五、(10分)求幂级数1nn nx ∞=∑的和函数()s x ,并利用该结果求级数12nn n∞=∑的值。
六、(10分)判别:(1)级数3!n n n n∑是否收敛;(2)级数2nx n n+∑在[0,1]x ∈上是否一致收敛。
数学分析试题及答案解析
2014 -——2015学年度第二学期《数学分析2》A试卷学院班级学号(后两位)姓名一.判断题(每小题3分,共21分)(正确者后面括号内打对勾,否则打叉)1。
若在连续,则在上的不定积分可表为().2.若为连续函数,则()。
3。
若绝对收敛,条件收敛,则必然条件收敛().4。
若收敛,则必有级数收敛( )5. 若与均在区间I上内闭一致收敛,则也在区间I上内闭一致收敛().6. 若数项级数条件收敛,则一定可以经过适当的重排使其发散于正无穷大().7. 任何幂级数在其收敛区间上存在任意阶导数,并且逐项求导后得到的新幂级数收敛半径与收敛域与原幂级数相同().二.单项选择题(每小题3分,共15分)1.若在上可积,则下限函数在上( )A.不连续B. 连续C。
可微D。
不能确定2。
若在上可积,而在上仅有有限个点处与不相等,则()A。
在上一定不可积;B. 在上一定可积,但是;C。
在上一定可积,并且;D. 在上的可积性不能确定。
3.级数A。
发散 B.绝对收敛 C.条件收敛 D. 不确定4。
设为任一项级数,则下列说法正确的是( )A.若,则级数一定收敛;B。
若,则级数一定收敛;C。
若,则级数一定收敛;D. 若,则级数一定发散;5。
关于幂级数的说法正确的是( )A. 在收敛区间上各点是绝对收敛的;B. 在收敛域上各点是绝对收敛的;C。
的和函数在收敛域上各点存在各阶导数;D。
在收敛域上是绝对并且一致收敛的;三.计算与求值(每小题5分,共10分)1。
2。
四. 判断敛散性(每小题5分,共15分)1.2.3.五. 判别在数集D上的一致收敛性(每小题5分,共10分)1。
2。
六.已知一圆柱体的的半径为R,经过圆柱下底圆直径线并保持与底圆面角向斜上方切割,求从圆柱体上切下的这块立体的体积。
(本题满10分)七. 将一等腰三角形铁板倒立竖直置于水中(即底边在上),且上底边距水表面距离为10米,已知三角形底边长为20米,高为10米,求该三角形铁板所受的静压力。
数学分析(二)期末考试解答及评分标准
座位号
专业
学院
_____________ ________
华南理工大学期末考试
《数学分析(二)》试卷 A 参考答案
注意事项:1. 考前请将密封线内填写清楚;
⎝a ⎠ a
a
所以,综上所得
∫ e ax
cos bxdx
=
⎧ b sin bx
⎪ ⎨
a2
+ a cos bx + b2
e ax
+
C,
当a 2
+
b2
≠
0时
⎪⎩C , 当a 2 + b2 = 0时
其中 C 为任意常数。…………………7 分
2
2
2
2、计算星形线 x 3 + y 3 = a 3 (a > 0) 的弧长。(第 2 小题 8 分)
a
i =1 ui −1
∑ ∫ ∑ ∫ =
n i =1
ui [ψ (u) −
ui −1
mi ]sin
pudu +
n i =1
ui ui −1
mi
sin
pudu
∑ ∫ ∑ ∫ n
≤
i =1
ui ψ (u) −
ui −1
mi
n
du +
i =1
mi
ui sin pudu
ui −1
∑ ∑ ≤
n
ωi ∆ui
i =1
⎬⎫,当q ⎭
>
1时, ,
⎪ ⎪
数学分析报告2期末考精彩试题库
数学分析2期末试题库 《数学分析II 》考试试题(1)一、叙述题:(每小题6分,共18分)1、 牛顿-莱不尼兹公式2、∑∞=1n na收敛的cauchy 收敛原理3、 全微分 二、计算题:(每小题8分,共32分)1、4202sin limx dt t x x ⎰→2、求由曲线2x y =和2y x =围成的图形的面积和该图形绕x 轴旋转而成的几何体的体积。
3、求∑∞=+1)1(n nn n x 的收敛半径和收敛域,并求和4、已知zy x u = ,求yx u∂∂∂2三、(每小题10分,共30分)1、写出判别正项级数敛散性常用的三种方法并判别级数2、讨论反常积分⎰+∞--01dx e x x p 的敛散性3、讨论函数列),(1)(22+∞-∞∈+=x n x x S n 的一致收敛性四、证明题(每小题10分,共20分)1、设)2,1(11,01 =->>+n n x x x n n n ,证明∑∞=1n n x 发散 2、证明函数⎪⎩⎪⎨⎧=+≠++=000),(222222y x y x y x xy y x f 在(0,0)点连续且可偏导,但它在该点不可微。
,一、叙述题:(每小题5分,共10分)1、 叙述反常积分a dx x f ba,)(⎰为奇点收敛的cauchy 收敛原理2、 二元函数),(y x f 在区域D 上的一致连续 二、计算题:(每小题8分,共40分) 1、)212111(lim nn n n +++++∞→ 2、求摆线]2,0[)cos 1()sin (π∈⎩⎨⎧-=-=t t a y t t a x 与x 轴围成的面积3、求⎰∞+∞-++dx x xcpv 211)(4、求幂级数∑∞=-12)1(n nn x 的收敛半径和收敛域 5、),(yxxy f u =, 求y x u ∂∂∂2三、讨论与验证题:(每小题10分,共30分)1、yx y x y x f +-=2),(,求),(lim lim ),,(lim lim 0000y x f y x f x y y x →→→→;),(lim )0,0(),(y x f y x →是否存在?为什么?2、讨论反常积分⎰∞+0arctan dx x xp的敛散性。
数学分析试题及答案解析
WORD 格式整理2014 ---2015 学年度第二学期 《数学分析 2》A 试卷学院 班级学号(后两位)姓名题号一二三四五六七八总分核分人得分一. 判断题(每小题 3 分,共 21 分)( 正确者后面括号内打对勾,否则打叉 )1.若 f x 在 a,b 连续,则 f x 在 a,b 上的不定积分 f x dx 可表为x af t dt C ( ).2. 若 f x ,g x 为连续函数,则 f x g x dx f x dx g x dx ( ).3. 若f x dx 绝对收敛,g x dx 条件收敛,则 [ f x g x ]dx 必aaa然条件收敛().4. 若f x dx 收敛,则必有级数f n 收敛( ) 1n 15. 若 f n 与 g n 均在区间 I 上内闭一致收敛,则 f ng n 也在区间 I上内闭一致收敛().6. 若数项级数a 条件收敛,则一定可以经过适当的重排使其发散 n n 1于正无穷大( ).7. 任何幂级数在其收敛区间上存在任意阶导数, 并且逐项求导后得到的新幂级数收敛半径与收敛域与原幂级数相同().专业资料值得拥有WORD 格式整理二. 单项选择题(每小题 3 分,共 15 分)8.若 f x 在 a,b 上可积,则下限函数axf x dx 在 a,b 上()A.不连续B. 连续C. 可微D. 不能确定9.若g x 在 a,b 上可积,而f x 在 a,b 上仅有有限个点处与g x 不相等,则()A. f x 在 a,b 上一定不可积;B. f x 在 a,b 上一定可积, 但是babf x dxg x dx;aC. f x 在 a,b 上一定可积,并且babf x dxg x dx;aD. f x 在 a,b 上的可积性不能确定 .10.级数n1 1 12nn 1nA. 发散B. 绝对收敛C. 条件收敛D. 不确定11.设u n 为任一项级数,则下列说法正确的是()uA. 若lim u n 0 ,则级数nn一定收敛;un 1B. 若lim 1,则级数u n 一定收敛;n unun 1C. 若N,当n N时有,1,则级数u n 一定收敛;un专业资料值得拥有WORD 格式整理u n 1D. 若 N,当nN 时有, 1,则级数u n 一定发散;u n12. 关于幂级数na n x 的说法正确的是()A. na n x 在收敛区间上各点是绝对收敛的; B. na n x 在收敛域上各点是绝对收敛的;C. na n x 的和函数在收敛域上各点存在各阶导数;D.na n x 在收敛域上是绝对并且一致收敛的;三. 计算与求值(每小题 5 分,共 10分)1 1.lim nnnn 1 n 2nn专业资料值得拥有WORD 格式整理ln sin x13.dx2cos x四. 判断敛散性(每小题 5 分,共 15 分)3 x 12.dx0 1 2x x专业资料值得拥有14.n1 n! n n15.n 1nn1 2nn 1 2专业资料值得拥有五. 判别在数集D上的一致收敛性(每小题 5 分,共 10 分)sin nx16.f n , 1,2 , ,x n Dn专业资料值得拥有WORD 格式整理2n17. D , 2 2,nx六.已知一圆柱体的的半径为R,经过圆柱下底圆直径线并保持与底圆面30 角向斜上方切割,求从圆柱体上切下的这块立体的体积。
兰州文理学院2018-2019学年第二学期 期末考试《数学分析Ⅱ》(A)卷
二、判断题(每题1分,共8分)11. 函数)(xf在[a,b]上可积的必要条件是连续. ( )12. 函数项级数一致收敛的必要条件是通项收敛. ( )13. 若)(xf在[a,b]上可积,则|)(xf|在[a,b]上必可积. ( ) 14. dxxfa⎰+∞)(收敛,则0)(lim=∞→xfx. ( )15.nnn1)1(1∑+∞=-收敛,∑+∞=11nn也收敛. ( )16. 在收敛级数的项中任意加括号,既不改变级数的收敛性,也不改变它的和.( )17. 设级数∑n u与∑n v都发散,则∑+)(nnvu也一定发散. ( )18.311x+的幂级数展开式为∑+∞=03nnx. ( )三、选择题(每题2分,共12分)19. 设xexf-=)(,则:=⎰dxxxf)(ln( )A cx+1B cx+ln C cx+-1D cx+-ln20. 设)(xf是[a,b]上可积的奇函数,则dttf x⎰0)(是( )A 连续的奇函数B 连续的偶函数C 未必连续的奇函数D 未必连续的偶函数21.nnxn)1(11-∑+∞=的收敛域为( )A (-1,1)B [-1,1)C (0,2]D [0,2)22. 下列说法错误的是 ( )A 函数列{fn}收敛的全体收敛点集合,称为函数列{fn}的收敛域B 若函数列{fn}在区间I 上一致收敛且每项都连续,则其极限函数在I 上也连续C 若连续函数列{fn}在区间I 上内闭一致收敛,则极限函数在I 上连续D 一致收敛性是极限运算与求导运算的交换的充要条件23. xe xf =)(在[0,1]上绕x 旋转一周生成体的体积是 ( ) A22e πBe 2πC)1(22-e πD 12-e24. ∑=3sin )(n nxx f 在),(+∞-∞上 ( )A f 连续但f '不连续B f 连续且f '连续C f 不连续D f 不可导四、计算题(每题10分,共20分)25. 计算 1) 620sin limx dt t xx ⎰→(5分) 2) dx e e xx ⎰+-1(5分).26. 求由摆线]2,0[)cos 1()sin (π∈⎩⎨⎧-=-=t t a y t t a x 与x 轴围成的平面图形的面积.五、证明题(每题10分,共20分)27. 证明:若正项级数∑+∞=1n na收敛,且数列n a 单调,则n n na 0lim →=0.41.10分,共20分). 30. 将x x f =)(在[0,2]上展开成余弦级数,并由此推出++++=222271513118π.。
数学分析(2)评分标准
09--10(1)数学分析(1)期末考试(A 卷)评分标准一、定积分部分(每小题6分,共36 分): 1.计算122100(14)x x dx -⎰.解:1212102102201(14)(14)(14)8x x dx x d x -=---⎰⎰3分 121121(14)88x =--5分 188=.6分2.计算x x dx 206[]⎰,其中[]表示取整.解:623456222222012345[]2345x x dx x dx x dx x dx x dx x dx=++++⎰⎰⎰⎰⎰⎰5分 285=.6分3.设⎪⎩⎪⎨⎧<+≥=-.0,11,0,)(2x e x xe x f xx 计算⎰-=41)2(dx x f I .解: 令2t x =-,1分则21()I f t dt -=⎰22021101()()1t t f t dt f t dt dt te dte ---=+=++⎰⎰⎰⎰4分d 202210(1)112t t t d e e dt e ----+=-++⎰⎰ 411ln(1)22e e -+=+-.6分4.求⎰⎰⎪⎭⎫ ⎝⎛+∞→x u xu x due du e 022022lim .解:()222222002202limlimx x u x u x x x x u e duee duee du→+∞→+∞=⎰⎰⎰求导3分222lim02x x x e xe→+∞==.6分注:知道利用罗必达法则但求导时有错给2分. 5.记V ()ξ是曲线y xx =+12在x ∈[,]0ξ的弧段绕x 轴旋转一周所围成的旋转体的体积,求常数a 使得满足V a V ()lim ()=→+∞12ξξ. 解: 由)1(2)1()(22022a a dx x x a V a+=+=⎰ππ,3分 可知2)(lim πξξ=+∞→V ,于是得到21122=+aa ,解得 1=a .6分注:求出1a =±,不舍去1-不扣分;没求a 给4分.6.讨论下列函数在 [0,1] 的可积性f x ()1,,1,.x x -⎧=⎨⎩为有理数为无理数解: 因为对[0,1]的任意划分P ,总有 2=i ω,3分 所以21=∆∑=ni ii xω,可知)(x f 在[0,1]上不可积.6分注:仅知道振幅2=i ω给3分;运用积分定义讨论也相应给分.二、反常积分部分(每小题6分,共12分): 1.计算⎰∞+∈0)(e 2R a dx x ax .解: 当0≥a 时积分发散;2分当0<a 时,⎰∞+02edx x ax ⎰∞+=02)(e 212ax d a ax a21-=.6分注:知道用比较法给2分;计算过程不分情况讨论给3分;运用其它方法也相应给分. 2.判断反常积分⎰∞++131tan arc dx xx的敛散性. 解: 当+∞→x 时,31arctan x x +~32xπ,3分又3311122dx dx x x ππ+∞+∞=⎰⎰收敛,所以积分⎰∞++131tan arc dx x x 收敛.6分三、常数项级数部分(每小题6分,共18分):1.求级数∑∞=⎪⎭⎫⎝⎛-13121n nn之和. 解: ∑=⎪⎭⎫ ⎝⎛-=n k k k n S 1312121121121-⎪⎭⎫ ⎝⎛-⋅=n31131131-⎪⎭⎫ ⎝⎛-⋅-n,4分所以21lim ==∞→n n S S .6分注:利用等比级数求和写出公式但过程存在问题给3分2.讨论正项级数∑∞=122n n n 的敛散性.解: 设22n n n u =,则1分1limn n nu u +→∞121<=,5分 由D ’Alembert 判别法,∑∞=122n n n 收敛.6分注:利用比值判别法或者根植判别法时不带极限符号给4-5分.3.设)(x f 在]1,1[-上具有二阶连续导数,且0)(lim=→xx f x .证明级数∑∞=⎪⎭⎫⎝⎛11n n f 绝对收敛. 证: 由0)(lim=→xx f x 可知0)0(=f ,0)0('=f , 2分 ()()()()()22001!2!2f f f f x f x x x ξξ'''''=++=,ξ介于0与x 之间,4分于是⎪⎭⎫⎝⎛n f 1~212)0("n f ⋅(∞→n ), 所以级数∑∞=⎪⎭⎫⎝⎛11n n f 绝对收敛.6分注:知道泰勒展开但有错给3分.四、函数项级数部分(每小题8分,共16分): 1.证明函数序列()nx n S x e -=()1,2,3,n =在区间)1,0(上不一致收敛性,但在),1(+∞上一致收敛.证: 固定x ∈)1,0(,()lim lim nxn n n S x e-→∞→∞=0)(=x S =()S x ,2分)()(sup ),()1,0(x S x S S S d n x n -=∈1= ─/→ 0(∞→n ), 所以{}()n S x 在(0,1)上非一致收敛.4分固定x ∈)1,0(,()lim lim nxn n n S x e-→∞→∞=0)(=x S =()S x ,)()(sup ),(),1(x S x S S S d n x n -=+∞∈n e -=)(0∞→→n ,所以{}()n S x 在(1,)+∞上一致收敛.8分注:知道方法法但求极限时有错给2分;证明不一致收敛时也可以取点列{}n x ;运用其他方法相应给分. 2.证明函数级数∑∞=-02)1(n n x x 在区间[]0,1一致收敛性.证: 设n n x x x u 2)1()(-=,则在]1,0[上()211()2(1)(1)(1)21n n n n u x x x n x x x x x n x --'=--+-=--+-⎡⎤⎣⎦()1(1)2n x x n n x -=--+⎡⎤⎣⎦3分令()0.n u x '=解得唯一驻点2nx n =+,比较知 )2()(0+≤≤n n u x u n n 2)2(4+<n ,6分由于∑∞=+02)2(4n n 收敛,7分由Weierstrass 判别法,∑∞=-02)1(n n x x 在]1,0[上一致收敛.8分注:若转化成函数列的情况但有错酌情给分2-4分;运用其他方法相应给分.五、幂级数部分(每小题6分,共12分):1.求幂级数∑∞=+0212n n n x 的和函数.解: 22222222321limlim 2321n n nn n n x n x n xn x x n ++→∞→∞++==++,由比值判别法知21x <时级数收敛,21x >时级数发散,级数收敛半径为1=R ,当1±=x 时,级数发散,所以收敛域为)1,1(-=D .3分设∑∞=+=0212)(n nn x x S ,()xS x =∑∞=++01212n n n x ,利用逐项求导,得到 []221()1n n xS x x x ∞='==-∑, 所以20()1xdx xS x x =-⎰11ln 21xx+=-,0x ≠时.()S x =11ln 21xx x+-,0x =时,(0)1S =.6分注:不求收敛域最多给5分;知道逐项求导或者逐项积分但过程问题较大给2分;不考虑0x =的情况最多给5分.2.将()ln f x x =展开为()2x -的幂级数.解: ()()1ln 111n nn x x n +∞=+=-+∑()11x -<≤2分ln ln[2(2)]x x =+-⎪⎭⎫ ⎝⎛-++=221ln 2ln x ()110(1)ln 2(2)12n n n n x n ∞++=-=+-+⋅∑.5分由211222042x x x --<≤⇒-<-≤⇒<≤.6分注:仅写出ln ln[2(2)]x x =+-给2分;知道展开公式但错误较大给2分;. 六、多元函数的极限(6分): 1.讨论函数yx yx y x f +-=),(当),(y x 趋于)0,0(时的极限是否存在. 解: 当动点(),x y 沿直线y kx =趋近于()0,0时1分 001lim (,)limlim 1y kxy kxx x x x y x kx kf x y x y x kx k==→→→---===+++4分此极限随着k 的变化而变化5分所以当),(y x 趋于)0,0(时函数(,)f x y 极限不存在.6分。
数学分析(II)期终考试试题(A卷)
23.原式= lim
n→∞
∑ cos
1 2
iπ 1 ⋅ ………………………………………………………3分 n n
………………………………………………………………6分
2
∫
1 0
cos 2 π xdx =
2 2
24.圆 x + ( y − R ) ≤ r (0 < r < R ) 的上、下半圆分别为
y1 = R + r 2 − x 2 和y 2 = R − r 2 − x 2 , x ≤ r
′
′
28. 因 u n u n +1 ≤
1 (u n + u n+1 ) 2
…………………………………………………4 分 ………………………………………7 分
而∑
1 (u n + u n+1 ) 收敛,得证 2
2
六.讨论题: (本题共 8 分) 30.
∫
+∞ 0
+∞ 1
1 dx +∞ dx dx =∫ p +∫ ……………………………………………………2 分 p 0 x 1 x xp
u dx p1−1 , p >1 dx = = …………………………………4 分 lim p p ∫ u →+∞ 0 x x +∞, 0 < p ≤ 1
∫
1
1 1 dx 1− dx p , 0 < p <1 = = , …………………………………6 分 lim ∫ 0 x p u → 0+ ∫ u x p p ≥1 +∞,
《数学分析》 (II)期终考试试题(A 卷)
学历自考模拟试卷-《数学分析II》期末考查试卷【附答案】
x
3xdx +
y x cos ydy (5 分)
M0M
0
0
= 3 x2 + x sin y (6 分)(说明:原函数可以直接观察得出!) 2
五、应用题(7 分)
一页长方形白纸,要求印刷面积占 Acm2 ,并使所留页边空白为:上部与下部宽度之和为: a + b = h cm,左部与右部宽度之和为: c + d = r cm (A,r,h 为已知数),求页面的长(y)和宽(x), 使它的面积最小.
(3 分)
L = (x − r)(y − h) − A = 0.
于是有
x = r , 1+
y = h , 1+
= − 1+
Ah r
(5
分)
根据问题的实际意义知,此时页面的面积是最小的.(7 分)
x = Ar + r, y = Ah + h. (6 分)
h
r
3
= ar cos , y
= br sin
(3
分),则
D
可表示为: 0
2 , 0 r
1(4
分),所以,
S =
2
d
1abrdr (5 分),所以 S = ab (7 分).
0
0
4、计算第二型曲面积分: I
=
S
1 dxdy ,其中 S 是椭球面 x2
z
a2
+
y2 b2
+
z2 c2
= 1 的外侧
解:由题意,目标函数与约束条件分别为 S = xy 与 x r, y h, (x − r)(y − h) = A. (1 分)作 Lagrange 函数 L = xy + [(x − r)(y − h) − A], (2 分)则有
数学分析(Ⅱ)试题与参考答案
数学分析(2)期末试题课程名称数学分析(Ⅱ) 适 用 时 间试卷类别1适用专业、年级、班 应用、信息专业一、单项选择题(每小题3分,3×6=18分)1、 下列级数中条件收敛的是( ).A .1(1)nn ∞=-∑ B .1nn ∞=.21(1)n n n ∞=-∑ D .11(1)nn n ∞=+∑2、 若f 是(,)-∞+∞内以2π为周期的按段光滑的函数, 则f 的傅里叶(Fourier )级数在它的间断点x 处 ( ).A .收敛于()f xB .收敛于1((0)(0))2f x f x -++ C . 发散 D .可能收敛也可能发散3、函数)(x f 在],[b a 上可积的必要条件是( ).A .有界B .连续C .单调D .存在原函数4、设()f x 的一个原函数为ln x ,则()f x '=( )A .1x B .ln x x C . 21x- D . x e 5、已知反常积分20 (0)1dxk kx +∞>+⎰收敛于1,则k =( ) A . 2π B .22π C . 2D . 24π6、231ln (ln )(ln )(1)(ln )n nx x x x --+-+-+收敛,则( )A . x e <B .x e >C . x 为任意实数D . 1e x e -<<二、填空题(每小题3分,3×6=18分)1、已知幂级数1nn n a x∞=∑在2x =处条件收敛,则它的收敛半径为.2、若数项级数1n n u ∞=∑的第n 个部分和21n nS n =+,则其通项n u =,和S =. 3、曲线1y x=与直线1x =,2x =及x 轴所围成的曲边梯形面积为. 4、已知由定积分的换元积分法可得,1()()bxxaef e dx f x dx =⎰⎰,则a =,b =.5、数集(1)1, 2 , 3, 1nnn n ⎧⎫-=⎨⎬+⎩⎭的聚点为. 6、函数2()x f x e =的麦克劳林(Maclaurin )展开式为.65三、计算题(每小题6分,6×5=30分) 1、(1)dx x x +⎰. 2、2ln x x dx ⎰. 3、 0 (0)dx a >⎰. 4、 2 0cos limsin xx t dt x→⎰.5、dx ⎰.四、解答题(第1小题6分,第2、3 小题各8分,共22分)1、讨论函数项级数21sin n nxn ∞=∑在区间(,)-∞+∞上的一致收敛性. 2、求幂级数1nn x n ∞=∑的收敛域以及收敛区间内的和函数.3、设()f x x =,将f 在(,)ππ-上展为傅里叶(Fourier )级数.五、证明题(每小题6分,6×2=12分)1、已知级数1nn a∞=∑与1nn c∞=∑都收敛,且, 1, 2, 3 n n n a b c n ≤≤=,证明:级数1nn b∞=∑也收敛.2、证明:22 0sin cos nn x dx x dx ππ=⎰⎰.66试题参考答案与评分标准课程名称 数学分析(Ⅱ) 适 用 时 间试卷类别1适用专业、年级、班应用、信息专业一、 单项选择题(每小题3分,3×6=18分)⒈ B ⒉ B ⒊ A ⒋ C ⒌ D ⒍ D二、 填空题(每小题3分,3×6=18分)⒈2⒉2, =2(1)n u S n n =+⒊ln 2⒋1, a b e ==⒌1±⒍201, (,)!nn x x n ∞=∈-∞+∞∑三、 计算题(每小题6分,6×5=30分)1. 解111(1)1x x x x=-++1(1)dx x x ∴+⎰(3分)11()1dx x x =-+⎰ln ln 1.x x C =-++(3分)2. 解 由分部积分公式得231ln ln 3x xdx xdx =⎰⎰ 3311ln ln 33x x x d x =-⎰(3分) 33111ln 33x x x dx x =-⋅⎰ 3211ln 33x x x dx =-⎰ 3311ln 39x x x C =-+(3分) 3. 解 令sin , [0, ]2x a t t π=∈由定积分的换元积分公式,得⎰2220cos atdt π=⎰(3分)6722(1cos2)2at dtπ=+⎰221(sin2)22at tπ=+2.4aπ=(3分)4.解由洛必达(L'Hospital)法则得2coslimsinxxtdtx→⎰2coslimcosxxx→=(4分)lim cosxx→=1=(2分)5.解=(2分)2sin cosx x dxπ=-⎰424(cos sin)(sin cos)x x dx x x dxπππ=-+-⎰⎰(2分)244(sin cos)(sin cos)x x x xπππ=+-+2.=(2分)四、解答题(第1小题6分,第2、3小题各8分,共22分)1.解(,),x n∀∈-∞∞∀+(正整数)22sin1nxn n≤(3分)而级数211nn∞=∑收敛,故由M判别法知,21sinnnxn∞=∑在区间(,)-∞+∞上一致收敛.(3分)682. 解 幂级数1nn x n∞=∑的收敛半径1R ==,收敛区间为(1,1)-.(2分)易知1n n x n ∞=∑在1x =-处收敛,而在1x =发散,故1nn x n∞=∑的收敛域为[1,1)-.(2分) 01, (1, 1)1n n x x x ∞==∈--∑(2分) 逐项求积分可得0001, (1,1)1xx nn dt t dt x t ∞==∈--∑⎰⎰. 即101ln(1), (1,1).1n nn n x x x x n n+∞∞==--==∈-+∑∑(2分)3. 解 函数f 及其周期延拓后的图形如下函数f 显然是按段光滑的,故由收敛性定理知它可以展开为Fourier 级数。
数学分析期末试题A答案doc
数学分析期末试题A答案doc2024年数学分析期末试题A及答案一、选择题1、以下哪个函数在 x = 0 处连续? A. $f(x) = x^2$ B. $f(x) = \frac{1}{x}$ C. $f(x) = sin x$ D. $f(x) = e^x$ 答案:D解析:在 x = 0 处,只有选项 D 中的函数 e^x 是连续的。
因此,答案为 D。
2、设 $f(x) = x^2$,则 $f(3x - 2) =$ __________。
A. $x^2$ B. $(3x - 2)^2$ C. $(3x - 2)^3$ D. $(3x - 2)^2 + 1$ 答案:B解析:将 $x$ 替换为 $3x - 2$,得 $f(3x - 2) = (3x - 2)^2$。
因此,答案为 B。
3、下列等式中,错误的是: A. $\int_{0}^{1}x^2dx =\frac{1}{3}x^3|{0}^{1}$ B. $\int{0}^{\pi}\sin xdx = \cosx|{0}^{\pi}$ C. $\int{0}^{2\pi}\sin xdx = 0$ D.$\int_{0}^{1}(2x + 1)dx = (x^2 + x)|_{0}^{1}$ 答案:A解析:等式两边取极限,只有 A 选项等式两边不相等,因此 A 选项是错误的。
4、下列哪个导数是常数函数? A. $y = x^3$ B. $y = \sin x$ C. $y = e^x$ D. $y = log_a(x)$ 答案:C解析:常数函数的导数为零。
在选项中,只有 C 中的函数 e^x 的导数为常数函数,其导数为 $e^x$。
因此,答案为 C。
高一生物期末考试试题及答案doc高一生物期末考试试题及答案doc高一生物期末考试是一次重要的学业水平测试,旨在考察学生在本学期学习生物课程的效果。
以下是本次考试的部分试题及其答案,供大家参考。
一、选择题1、下列哪一种生物不是由细胞构成的? A. 细菌 B. 植物 C. 动物D. 病毒答案:D2、哪一个器官属于消化系统? A. 口腔 B. 食道 C. 胃 D. 大肠答案:C3、在光合作用中,哪一个物质是植物从空气中吸收的? A. 氧气 B. 二氧化碳 C. 葡萄糖 D. 水答案:B二、填空题1、病毒是一种生物,但它不能 _______ 和保持生命活动,必须_______ 在细胞内。
数学分析2试题A及答案(09
3、解:
1 3 2x
1 3
1 12
x
1 3
n0
(2 3
x)n
n0
2n 3n1
xn,
2 x 1, x 3
3
2
3
四、证明:依定理 9.10, f 在 R 上可导,且对 x R, f (x) f (x)或f (x) f (x) 0 。
考虑函数 g(x) f (x)ex ,则对 x R, g(x) [ f (x) f (x)]ex 0 ,从而 g(x) c(c 为常数),即 f (x)ex c或f (x) cex
)
,所以
lim
n
2 3
xn
dx 0
0 1 x
解法五:因为 0
2 3 0
xn 1 x
dx
2 3
n
2 3 0
1
1
x
dx
2 3
n
ln
5 3
0(n
)
,所以
lim
n
2 3
xn
dx 0
0 1 x
n
3、解: lim
n
n
lim
1 1 1 1 dx
n i1 n2 i2 n i1 1 ( i )2 n 0 1 x2
4
n
4、解: d x3 dt 3x2 2x dx x2 1 t2 1 x12 1 x8
5、解:因为 lim x2 1 1, p 2 1 ,所以原积分收敛。 x x 1 xm(1
x1
x)
arctan 1 x3
x
lim
x1
arctan x 1 x x2
, p 1,所以瑕积分 12
x f (t)dt 1 (ex 1) 1,
数学分析(2)期末试题参考答案
些值,使得
∫J
χK
(x,
y)dy ∫
≤
F (x)
≤
J χK (x, y)dy,则 F (x) 在 I 上 Riemann
可积,且有
I F (x)dx =
I ×J
χK (x,
y)dxdy
=
0。注意
F ∫
(x)
≥
0,所以,F
(x)
几乎处处为零。另一方面,根据 Kx 的定义,有 F (x) = J χKx (y)dy,所以 Kx
0,则有
(∫ R−ε ∫ R )
I(R) =
+
ey2−R2 dy ≤ e−2 R ε+ε2 (R − ε) + ε,
0
R−ε
于是 lim sup I(R) ≤ ε,另一方面显然有 lim inf I(R) ≥ 0,最后再令 ε → 0 即可
R→+∞
R→+∞
证明 lim I(R) = 0。
R→+∞
(证法二)上述极限还可通过 L’Hôspital 法则求得:
解答:(证法一)因为
K
紧且
Lebesgue ∫
零测,所以
Jordan
零测,于是
χK (x,
y)
在
I
×J
上
Riemann ∫
可积,且有
I×J χK (x, y)dxdy = 0。根据 Fubini 定理,
积分
F (x)
= ∫
J χK (x, y)dy
几乎处处存在。在 ∫
F (x)
不存在的地方随意规定一
det J
=
det AU det AV
> 0。
2021-2022学年数学分析II期末试题参考答案
课程编号:100171019 北京理工大学2021-2022学年第二学期2021级数学分析(II )期终考试试题A 卷解答1.(23分)求下列函数的偏导数或全微分 (1)设cos xyz e=,求dz .(2)设(,)z z x y =由方程zx y z e ++=所确定的隐函数,求z x ∂∂和22zx∂∂.(3)设1()()z f xy yg x y x=++,其中f 和g 在R 上有连续的二阶导数,求z x ∂∂,z y ∂∂和2zy x∂∂∂ 解:(1)cos (cos )xy dz e d xy =cos (sin )()xy e xy d xy =−cos sin ()xy xye ydx xdy =−+.(2)方程关于x 求导,y 是常数,z 是x 的函数,1z x x z e z +=,11x zz e =−. 23(1)(1)z zx xx z ze z e z e e =−=−−−. 方法二. zzxx x x xx z e z z e z =+,221(1)z zx xx z ze z e z e e =−=−−−. (3)//211()()()z f xy f xy y yg x y x x x∂=−+⋅++∂ //21()()()yf xy f xy yg x y x x =−+++,//1()()()z f xy x g x y yg x y y x∂=⋅++++∂ //()()()f xy g x y yg x y =++++,2/////()()()zf xy yg x y yg x y y x∂=⋅++++∂∂ /////()()()yf xy g x y yg x y =++++.2.(15分)(1)求二重积分22Dy I dxdy x=⎰⎰,其中D 为由1,2,y y y x x ===所围的区域. (2)求三重积分I x dxdydz Ω=⎰⎰⎰,其中Ω由0,0,0,21x y z x y z ===++=所围成.(3)求第一型曲面积分()MI x y z dS =++⎰⎰,其中M为上半球面:z =222x y R +≤(0)R >. 解:(1)2221221y y Dy y I dxdy dy dx x x==⎰⎰⎰⎰22111()yyy dy x =−⎰2223111()()y y dy y y dy y=−=−⎰⎰ 94=. 方法二. 22212221122212x x Dy y y I dxdy dx dy dx dy x xx ==+⎰⎰⎰⎰⎰⎰.(2)设D 为xy −平面上由0,0,21x y x y ==+=所围成区域.I x dxdydz Ω=⎰⎰⎰120x yDdxdy xdz −−=⎰⎰⎰(12)Dx x y dxdy =−−⎰⎰[]11(1)20(1)2x dx x x xy dy −=−−⎰⎰12011(1)448x x dx =−=⎰. 方法二. 对任意的[0,1]x ∈,x D 为yz −平面上由0,0,21y z y z x ==+=−所围成区域.I x dxdydz Ω=⎰⎰⎰1xD dx xdydz =⎰⎰⎰12011(1)448x x dx =−=⎰(3) x z =y z =,()MI x y z dS =++⎰⎰221(x y x y +≤=++⎰⎰221(x y x y +≤=++⎰⎰221x y Rdxdy +≤=⎰⎰3R π=.3.(8分)设(,)z z x y =在2R 有连续偏导数,并且322cos(2)3cos(2)dz axy x y dx x y b x y dy ⎡⎤⎡⎤=+++++⎣⎦⎣⎦其中,a b 是常数,求,a b 的值和(,)z z x y =的表达式. 解:由条件3cos(2)x z axy x y =++,223cos(2)y z x y b x y =++, 则232sin(2)xy z axy x y =−+,26sin(2)yx z xy b x y =−+. 因为xy z 和yx z 都连续,所以xy yx z z =, 232sin(2)axy x y −+26sin(2)xy b x y =−+, 取,02x y π==,解得2b =,进而得出2a =.再由32cos(2)x z xy x y =++,23(,)sin(2)()z x y x y x y y ϕ=+++, 22/32cos(2)()y z x y x y y ϕ=+++, 于是/()0y ϕ=,()y C ϕ=.故23(,)sin(2)z x y x y x y C =+++.4.(10分)求幂级数211(1)(21)!n n n n x n +∞−=−+∑的收敛域及和函数的表达式.解:记21(1)()(21)!n n n n u x x n −−=+. 对任意的0x ≠,21()0,()2(23)n n u x xn u x n n +=→→+∞+, 则211(1)(21)!n n n n x n +∞−=−+∑收敛. 即得211(1)(21)!n n n n x n +∞−=−+∑的收敛域为(,)−∞+∞. 记211(1)()(21)!n n n n S x x n +∞−=−=+∑,定义域为(,)−∞+∞.容易求得(0)0S =. 对任意的0x ≠,利用幂级数的性质,2/11(1)()()2(21)!nn n S x x n +∞=−=+∑/211(1)2(21)!n n n x n +∞=⎛⎫−= ⎪+⎝⎭∑/21111(1)2(21)!n n n x x n +∞+=⎛⎫−= ⎪+⎝⎭∑/11(sin )2x x x⎛⎫=− ⎪⎝⎭ 2cos sin 2x x xx−=.5.(10分)设()f x 是以2π为周期的函数,它在区间(,]ππ−上的表达式为00()20x f x x ππ−<≤⎧=⎨<≤⎩. (1)求()f x 的Fourier 级数;(2)求()f x 的Fourier 级数的和函数在区间[0,2]π上的表达式;(3)求11(1)21n n n −+∞=−−∑.解:(1)先计算()f x 的Fourier 系数, 01()a f x dx πππ−=⎰122dx ππ==⎰,1()cos n a f x nxdx πππ−=⎰12cos 0nxdx ππ==⎰,1,2,n =,1()sin n b f x nxdx πππ−=⎰ ()0122sin 1(1)n nxdx n πππ==−−⎰2421(21)n k n k k π=⎧⎪=⎨=−⎪−⎩,1,2,k =.()f x 的Fourier 级数为()01cos sin 2n n n a a nx b nx +∞=++∑ 14sin(21)121k k xk π+∞=−=+−∑. (2) 12(0,)4sin(21)10(,2)2110,,2k x k x x k x ππππππ+∞=∈⎧−⎪+=∈⎨−⎪=⎩∑. (3)令2x π=,1411sin (21)2212k k k ππ+∞=⎛⎫+−= ⎪−⎝⎭∑,解得11(1)214n n n π−+∞=−=−∑.6.(12分)(1)判别下列广义积分的收敛性,若收敛,是绝对收敛还是条件收敛?(a) 30411dx +∞−⎰ (b) 20sin x dx +∞⎰ (2)设()af x dx +∞⎰收敛,并且lim ()x f x L →+∞=.证明:0L =.解:(1)(a) 0,1x x ==为瑕点, 考虑30411dx +∞−⎰1122133330122444411111111dx dx dx dx +∞=+++−−−−⎰⎰⎰⎰.因为330004411lim lim111x x x →+→+==−−,3431141lim 111x x x →→−⋅==−,31342433441lim lim111x x xxx +→+∞→+∞⋅==−−,而其中1351244+=>,所以112213333012244441111,,,1111dx dx dx dx +∞−−−−⎰⎰⎰⎰都收敛,于是30411dx +∞−⎰收敛,又被积函数非负,故是绝对收敛.(b)0x =不是瑕点,20sin x dx +∞⎰与21sin x dx +∞⎰具有相同的收敛性,只讨论21sin x dx +∞⎰即可.令2t x =,则2111sin 2x dx +∞+∞=⎰⎰, 1+∞⎰条件收敛. 那么20sin x dx +∞⎰条件收敛.(2)假设0L ≠,不妨设0L >.由lim ()x f x L →+∞=,根据极限性质,存在0X >,使得当x X >时,()2Lf x >.则A X ∀>,()()()A X AaaXf x dx f x dx f x dx =+⎰⎰⎰()()2X aLf x dx A X >+−⎰, 由此推出lim()A aA f x dx →+∞=+∞⎰,与()af x dx +∞⎰收敛矛盾.假设不成立,即0L =.7.(12分)(1)证明:函数项级数1nx n ne +∞−=∑在[,)(0)δδ+∞>一致收敛,但在(0,)+∞不一致收敛.(2)证明:1()nx n f x ne +∞−==∑在区间(0,)+∞上连续且可导.证:(1)对任意的[,)x δ∈+∞和任意的正整数n ,0nx n ne ne δ−−<<, 而1,e n δδ−−=→<→+∞,说明1nn neδ+∞−=∑收敛,根据M 判别法,函数项级数1nx n ne +∞−=∑在[,)(0)δδ+∞>一致收敛.记()nx n u x ne −=,对任意的正整数n ,取1(0,)n x n=∈+∞, 1()0,n n u x ne n −=→+∞,则()nxn u x ne−=在(0,)+∞不一致收敛于0.故函数项级数1nx n ne +∞−=∑在(0,)+∞不一致收敛. (2) (0,)x ∀∈+∞,存在0δ>,使得(,)x δ∈+∞.因为()nxn u x ne−=在(0,)+∞连续(1,2,)n =,利用(1),函数项级数1nx n ne +∞−=∑在[,)(0)δδ+∞>一致收敛,所以和函数1()nx n f x ne +∞−==∑在[,)δ+∞上连续,于是它在x 连续.由x 的任意性,1()nx n f x ne +∞−==∑在区间(0,)+∞上连续.对任意的0δ>,/22()nx n n u x n e n e δ−−=−≤,[,),1,2,x n δ∀∈+∞=,而1,e n δδ−−=→<→+∞,说明21nn n eδ+∞−=∑收敛,根据M 判别法,函数项级数/1()n n u x +∞=∑在[,)(0)δδ+∞>一致收敛.根据一致收敛的函数项级数的逐项可导性,1()nx n f x ne +∞−==∑在区间[,)(0)δδ+∞>可导. 同理可得,1()nx n f x ne +∞−==∑在区间(0,)+∞上可导.8.(10分)设1α>,10n n a a +<≤,0,1,2,n =.证明:111n n n n n a a a a α+∞−=−−∑收敛. 证:由条件,{}n a 单调递增,则要么{}n a 有上界要么{}n a 趋于+∞. (1)设{}n a 有上界. 则{}n a 收敛,记lim n n A a →+∞=,显然0A >.利用极限性质,存在0N ,当0n N >时, 2n Aa >. 则当01n N >+时,由条件1α>,那么1111120()()()22n n n n n n n n a a a a a a A A a a A ααα+−−−−−−≤<=−. 由于1001(),nk k n k a a a a A a n −=−=−→−→+∞∑,说明11()n n n a a +∞−=−∑收敛. 利用比较判别法,111n n n n n a a a a α+∞−=−−∑收敛.(2) 设{}n a 无上界,即lim n n a →+∞=+∞.利用极限性质,存在0N ,当0n N >时,1n a >. 则当01n N >+时,由条件1α>,那么11111110n n n n n n n n n na a a a a a a a a a α−−−−−−−≤≤=−. 由于 110011111(),nk k k n n a a a a a =−−=−→→+∞∑, 说明1111()n n n a a +∞=−−∑收敛. 利用比较判别法,111n n n n n a a a a α+∞−=−−∑收敛.。
北京交通大学工科数学分析期末考试(A)卷答案
∂ z ∂ z + 2 = ze 2 x 2 ∂y ∂x
2 2
∂z ∂z = f ′(u )e x sin y , = f ′(u )e x cos y ∂y ∂x ∂2 z = f ′′(u )e 2 x sin 2 y + f ′(u )e x sin y , ∂x 2
(
)
2 2 2 st′ = ( x′)t + ( y′)t + (z ′)t = 9 sin 2 t cos 4 t + 9 cos 2 t sin 2 t + 4 sin 2 2t = 5 sin t cos t , G 1 所以, T = (− 3 cos t, 3 sin t, − 4 ) , 5
Ω Σ1 Σ1
(
)
……5
(
)
= ∫∫∫ dxdydz + 16
Ω
x 2 + z 2 ≤2
∫∫ dzdx
=π∫
1
3
(
y − 1 dy + 32π
……8
)
2
= 34π
九. (本题满分 8 分) 设直线
P (1, − 2, 5) ,试求常数 a , b .
解:
⎧x + y + b = 0 2 2 在平面 π 上,而平面 π 与曲面 z = x + y 相切于点 ⎨ ⎩ x + ay − z − 3 = 0
工科数学分析(A)卷答案-1
3 ⎧ ⎪ f x ( x, y ) = 4 x − 2 x − 2 y = 0 ⎨ 3 ⎪ ⎩ f y (x, y ) = 4 y − 2 x − 2 y = 0 解得其驻点为 M 0 ( 0, 0 ) 、 M 1 ( 1, 1 ) 、 M 2 ( − 1, 1 ) ,则______________ .
《数学分析II》期末试卷+参考答案
《数学分析(II )》试题2004.6一.计算下列各题:1.求定积分∫+e x x dx 12)ln 2(;2.求定积分; ∫−222),1max(dx x3.求反常积分dx x x ∫∞++021ln ;4.求幂级数()∑∞=−+1221n n n x n n 的收敛域;5.设,求du 。
yz x u =二.设变量代换可把方程⎩⎨⎧+=−=ay x v y x u ,20622222=∂∂−∂∂∂+∂∂y z y x z x z 简化为02=∂∂∂v u z ,求常数。
a三.平面点集(){}⎭⎬⎫⎩⎨⎧=⎟⎠⎞⎜⎝⎛L U ,2,11sin ,10,0n n n是否为紧集?请说明理由。
四.函数项级数n nn n x x n +⋅−∑∞=−1)1(11在上是否一致收敛?请说明理由。
]1,0[五.设函数在上连续,且满足)(x f ),(∞+−∞1)1(=f 和)arctan(21)2(20x dt t x tf x =−∫。
求。
∫21)(dx x f六.设函数在上具有连续导数,且满足)(x f ),1[∞+1)1(=f 和22)]([1)(x f x x f +=′,+∞<≤x 1。
证明:存在且小于)(lim x f x +∞→41π+。
七.设如下定义函数:dt t t x f x x t1sin 21)(2∫⎟⎠⎞⎜⎝⎛+=,。
1>x 判别级数∑∞=2)(1n n f 的敛散性。
八.设∫=40cos sin πxdx x I n n (L ,2,1,0=n )。
求级数的和。
∑∞=0n n I《数学分析(II )》试题(答案)2004.6一.1.421π⋅; 2.320; 3.; 4. 0)2/1,2/1(−; 5.⎟⎠⎞⎜⎝⎛++=xdz y xdy z dx x yz x dz yz ln ln 。
二.。
3=a 三. 是紧集。
四.一致收敛。
五.43。
六.因为,所以单调增加,因此0)(>′x f )(x f 1)1()(=>f x f 。
2020-2021《数学分析 》(二)期末课程考试试卷A(含答案)
2020-2021《数学分析》(二)期末课程考试试卷A一、 填空题(3分⨯5=15分).1.(ln )[1(ln )]f x dx x f x '=+⎰ln (ln )1f x c ++ .2.45522[sin cos ]x x x dx ππ-+=⎰8/15 . 3.22limarcsin x x x e dxx x--->⎰=1 .4.设()f x C =+⎰则 )(x f ''= .5. 2()xf x e -=的麦克劳林级数为()f x = 0(1)2!nnn n x n ∞=-∑二、 选择题(3分⨯5=15分).1.若反常积分1a xx e dx +∞-⎰收敛,则 ( A ).(A )0>a , (B) R a ∈, (C) 1>a , (D) 0<a . 2. 若反常积分011(1)adx x -⎰收敛,则 ( D ).(A )0>a , (B) R a ∈, (C) 1>a , (D) 1<a . 3. 若反常积分1sin axdx x +∞⎰绝对收敛,则 ( C ). (A )0>a , (B) R a ∈, (C) 1>a , (D) 0<a .4. 若级数∑∞=+-031)1(n annn 条件收敛,则 ( D ). (A )0>a , (B) R a ∈, (C) 1>a , (D) 2/3>3/1>a .5. 设函数()f x =⎪⎩⎪⎨⎧-11 ππ<≤<≤-x x 00以2T π=为周期,其傅里叶级数的和函数为()S x ,则(6)4S ππ+=( B ).(A )-1 , (B) 1 , (C) 0 , (D)不存在.三、计算题(6分⨯5=30分)1.求ln(1)x dx +⎰. 解:原式=ln(1)1xx x dx x +-+⎰-------------------4分 =ln(1)ln(1)x x x x C +-+++-----------------6分 2.求312x xdx -⎰.解:原式=21(2)x x dx -⎰+32(2)x x dx -⎰--------------2分=43--------------6分 3.求)1sin 2sin (sin 1lim πππn n n n n n -+++∞>- .解:原式=n k n n k n π)1(sin 1lim 1-∑=∞>-=⎰1sin xdx π-------------2分院系 班级 序号 姓名 装 订 线=10)cos (1x -π-------------4分=2/π-------------6分4.求21⎰.解:原式=22sin cos cos ttdx tπ⎰-------4分=4π-------6分5. 求反常积分211(1)dx x x +∞+⎰的值. 解:因为211(1)dx x x +∞+⎰21111111dx dx dx x x x +∞+∞+∞=-++⎰⎰⎰------------4分 1ln 2=--------------6分四、(1)求由曲线2y x =与直线0,1,1x x y ===-所围图形的面积. (2)求上述图形绕直线1y =-旋转一周而得立体体积. (10分).解:(1)120413s x dx =+=⎰--------------------5分(2)122028(1)15v x dx ππ=+=⎰--------------------10分 五、证明:若级数∑∞=12n n a 收敛,)0(1>∑∞=n n na na 也收敛. (4分) 证明:因为级数 ∑∞=121n n,∑∞=12n na收敛------------2分所以)1(212n n a n +∑∞=收敛,又(21≤n a n )122n a n+ 则)0(1>∑∞=n n na n a 也收敛. ----------------4分 六、求幂级数0(1)1n nn x n ∞=-+∑的收敛半径、收敛域与和函数,又求01(1)(1)2n nn n ∞=-+∑的 和(10分)解: 令 =)(x s ∑∞=+-01)1(n n n x n=)(x xs ∑∞=+-+01)1(1n n n x n , ])(['x xs =∑∞=-0)1(n n n x =x+11,)1,1(-∈x=)(x xs ⎰+=+xx dx x 0)1ln(11=)(x s xx )1ln(+0≠x0)(,0==x s x ------------------4分收敛半径为1 ,收敛域为(-1,1]。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
lim ( ) ( )
x , y → 0,0
x 2 + y 2 = 0 = f ( 0, 0 ) 故连续……………………………………………3 分
∆x → 0
lim
∆x 2 + 0 − f (0,0 ) ∆x 2 1 ∆x > 0 ……………………………6 分 = lim = ∆x →0 ∆x ∆x − 1 ∆x < 0
《数学分析》 (II)期末考试试题(A 卷)
参考答案及评分标准
一.填空题(每小题 2 分,共 10 分):
1.
2x 3x 2 ln y + v y
2.
∑b
n =1
∞
n
sin nx
3. 2
4.
(1, −1, −3)
5. x + y − 2 = 0
二.计算题(每小题 10 分,共 50 分): 6.
∞ x n −1 x n −1 1 M 由 判别法知: 在 x ∈ [−1, 1] 一致收敛………………………3 分 , ≤ ∑ 2 n2 n2 n =1 n
f ′( x) = −
Fx sin x + ye xy = , …………………………………………10 分 Fy cos y − xe xy
4
e| x| | x |n +1 = 0 ,即 lim Rn ( x) = 0 ……………………5 分 n →∞ ( n + 1)! n →∞
Rn ( x) =
对任何实数 x 都有 则 e = 1+
x
1 1 1 x + x 2 + " + x n + " , x ∈ (−∞, ∞ ) ………………………………6 分 1! 2! n! 1 2 1 4 1 2n x2 得 e = 1 + x + x + " + x + " , x ∈ (−∞, ∞ ) …………………………8 分 n! 1! 2! 1 x3 1 x5 1 x 2 n +1 所以 F ( x) = ∫ e dt = x + + +"+ +" 0 1! 3 2! 5 n ! 2n + 1
x t2
…………………10 分
8.
∂z 1 = g1 + g 2 , ∂x y
∂z x = − 2 g2 ∂y y
…………………………………………………4 分
1
∂2 z 2 1 = g11 + g12 + 2 g 22 ……………………………………………………………6 分 2 ∂x y y ∂2 z x x 1 = − 2 g12 − 3 g 22 − 2 g 2 ……………………………………………………8 分 ∂x∂y y y y ∂2 z 2x x2 = + g g 22 …………………………………………………………………10 分 2 ∂y 2 y 3 y4
(n)
( x) = e x , f ( n ) (0) = 1 , (n = 1, 2,") ………………………………………………2 分
eθx e| x| x n +1 (0 ≤ θ ≤ 1) , | Rn ( x) |≤ | x |n +1 …………………………4 分 (n + 1)! (n + 1)! lim
x n −1 每个 un ( x) = 2 在 x ∈ [−1, 1] 上连续;………………………………………………6 分 n
∫
7. f
x 0
n −1 ∞ xt t n −1 xn S (t )dt = ∫ ∑ 2 dt = ∑ ∫ dt = ∑ 3 ………………………………………10 分 0 n2 n n =1 n 0 n =1 x ∞
9.令 F ( x, y, z ) = 2 x + 3 y + z − 9 , G ( x, y, z ) = 3 x + y − z ……………………2 分
2 2 2 2 2 2
则 Fx = 4 x , Fy = 6 y , Fz = 2 z , Gx = 6 x , G y = 2 y , Gz = −2 z ,…………4 分 所以
lim
2
即
( x , y ) →(0,0)
lim
当 y ≠ 0 时, lim
x →0
xy = 0 …………………………………………………7 分 x + y2
2
从而 lim lim
y →0 x →0
xy = 0 ………………………………………………………8 分 x + y2
2
同理有 lim lim
x →0 y → 0
∂( F , G ) ∂ ( x, y )
(1, −1,2)
= 28 ,
∂( F , G) ∂ ( y, z )
(1, −1,2)
= 32 ,
∂( F , G ) ∂ ( z, x)
(1, −1,2)
= 40 ………6 分
切线方程为,
x −1 y +1 z − 2 = = …………………………………………………8 分 8 10 7
故关于 x 的偏导数不存在,……………………………………………………………7 分
2
同理; z 关于 y 的偏导数不存在。……………………………………………………10 分 12. F ( x0 + h, y0 + k ) = F ( x0 , y0 ) + Fx ( x0 + θh, y0 + θk ) h + Fy ( x0 + θh, y0 + θk ) k ……………………………………………………4 1 ≠ 0, Fx (0, 0) = 0
…………………………………6 分
3
方程 cos x + cos y = e 能确定隐函数 y = f ( x)
xy
…………………………7 分
由(Ⅲ)知,隐函数 y = f ( x) 可微,……………………………………………9 分
xy = 0 ……………………………………………………9 分 x + y2
2
所以两个累次极限存在。……………………………………………………10 分 14.设 F ( x, y ) = cos x + cos y − e …………………………………………………2分
xy
(Ⅰ) F ( x, y ) 在原点的某个邻域内连续……………………………………3 分 (Ⅱ) F ( x, y ) = 0 ……………………………………………………………4 分 (Ⅲ) Fx = − sin x − ye , Fy = cos y − xe 连续 ………………………5 分
法平面方程为 8( x − 1) + 10( y + 1) + 7( z − 2) = 0 或 (8 x + 10 y + 7 z − 12 = 0) ……10 分 10.设长方体的长、宽、高分别为 x, y, z ,体积为 V …………………………………1 分 则表面积为 f ( x) = 2( xy + yz + zx) ,限制条件为 xyz = V ………………………3 分 设 L( x, y, z , λ ) = 2( xy + yz + zx) + λ ( xyz − V ) …………………………………5 分
Lx = 2( y + z ) + λyz = 0 L = 2( x + z ) + λxz = 0 y …………………………………………………………7 分 令 Lz = 2( y + x) + λxy = 0 Lλ = xyz − V = 0
得 x = y = z = 3 V …………………………………………………………………9 分 即,所求为正立方体。……………………………………………………………10 分 三.证明题(每小题 10 分,共 20 分): 11.
y0 = 0, h =
四.讨论题(每小题 10 分,共 20 分): 13.当动点 ( x, y ) 沿直线 y = mx 趋于 (0, 0) 时,……………………………………2 分 由于 f ( x, y ) = f ( x, mx) =
( x , y ) →(0,0)
lim
m ……………………………………………4 分 1 + m2 m f ( x, y ) = lim f ( x, mx) = ……………………………………5 分 x →0 1 + m2 f ( x, y ) = xy 不存在 ………………………………6 分 ( x , y ) → (0,0) x + y 2
π π , k= ……………………………………………6 分 3 6 π π π πθ πθ π πθ πθ sin cos = sin 0 cos 0 + cos cos − sin sin ………………8 分 3 6 3 3 6 6 3 6 πθ πθ π πθ πθ 3 π − sin sin cos 因此: = cos ………………………………10 分 4 3 3 6 6 3 6