机械优化设计(第一次课)PPT课件
机械优化设计课件1
一、从传统设计到优化设计
二、定义
本课程分为七章进行教学(共24学时):
第一章(4学时),介绍优化设计的基本概念; 第二章(4学时),介绍优化设计算法中用到的数学基础,为后面几章的学习 打好基础; 第三、四、五章(分别2、6、4学时),介绍一维搜索、无约束优化、有约束
优化方法的原理与算法,这些都是本课程学习的重点。
四、本课程特点
1.理论性较强。 2.计算机知识熟练,主要C语言。 3.有非常强的专业应用价值。
五、前续课程
微积分、线性代数与解析几何、大学计 算机基础、程序设计基础、理论力学、 材料力学、机械设计;
五、考核方式
教学基本要求 理论授课 上机实习 考核形式 闭卷考试 上机实习报告 占总成绩的比例 80% 20%
第六章(2学时),介绍几种机械优化设计的实例,说明如何应用优化方法解 决机械设计问题。 第七章(2学时),介绍Matlab软件在优化设计中的应用方法.
上机内容(共8学时);
上机一:搜索区间的确定(2学时) 上机二:区间消去法(2学时) 上机三:搜索方向的确定(2学时) 上机四:建立一个完整的优化设计程序(2学时)
八章机械优化设计实例PPT课件
2)曲柄摇杆机构的传动角应在 和 之间,可得 min
max
g7
x
arccos
l2
2
l32 l1
2l2l3
l4
2
max
0
g8
x
min
arccos
l22
l32 l1
2l2l3
l4
2
0
二、曲柄摇杆机构再现已知运动轨迹的优化设计
所谓再现已知运动轨迹:是指机构的连杆曲线尽可能 地接近某一给定曲线。
第15页/共25页
不同的设计要求,目标函数不同。若减速器的中心距没有要求时,可取减速器 最大尺寸最小或重量最轻作为目标函数。
第16页/共25页
f x m min f x l r1 a r4 min
若中心距固定,可取其承载能力为目标函数。
f x 1/ min
减速器类型、结构形式不同,约束函数也不完全相同。 (1)边界约束
第14页/共25页
不同类型的减速器,选取的设计变量使不同的。
展开式圆柱齿轮减速器:齿轮齿数、模数、齿宽、 螺旋角及变位系数等。
行星齿轮减速器:除此之外,还可加行星轮个数。 设计变量应是独立参数,非独立参数不可列为设计 变量。例如齿轮齿数比为已知,一对齿轮传动中,只 能取Z1或Z2一个为设计变量。
又如中心距不可取为设计变量,因为齿轮齿数确定 后,中心距就随之确定了。
(2)性能约束
第17页/共25页
一、单级圆柱齿轮减速器的优化设计
第18页/共25页
第四节 平面连杆机构的优化设计 连杆机构的类型很多,这里只以曲柄摇杆机构两类 运动学设计为例来说明连杆机构优化设计的一般步骤 和方法。 一、曲柄摇杆机构再现已知运动规律的优化设计
机械优化设计PPT课件
ⅲ)维 数—设计变量的个数n.
通常,n ,设计自由度 , 越能获得理想的结果,但求解难度 .
n 10 小型问题 n 11 50 中型问题 n 50 大型问题
2019/8/16
14
2.设计空间
Rn(n 4) 为超越空间.
2019/8/16
15
三.目标函数和等值线
1.目标函数—数学模型中用来评价设计方案优劣的函
数式 (又称评价函数): f (X ) f (x1, x2,...xn ) ①常用指标: 最好的性能; 最小的重量; 最紧凑的外形;
最小的生产成本; 最大的经济效益等.
②单目标和多目标;
l1 l2 l3 l4 0
l1 l10 0
arccos (l2 l1)2 l42 l32 arccos (l2 l1)2 l42 l32 0
2(l2 l1)l4
2(l2 l1)l4
180
l12
l22
2l32 sin 2 ( l22 l12
2019/8/16
22
3.算法的收敛性和收敛准则
1)算法的收敛性
若由某迭代算法计算得到
有极限 lim X (k) X *,这里X *为精确解,则称该迭代算法是 k
收敛的.
2)算法的收敛速度
一般根据算法对正定二次函数的求解能力来判 断,能在有限步迭代中得到其极小点,称算法具有 二次收敛性。具有二次收敛性的算法是收敛速度较 高的方法。
1)二十世纪三十年代.前苏联 Канторович 根据生产组织和计划管理的需要提出线性规划问题. 在 第二次世界大战期间出于战争运输需要,提出线性规划 问题的解法;
机械优化设计PPT
2.梯度投影法
约束面上的梯度投影方向
四、步长的确定
1.取最优步长
2. αk取到约束边界的最大步长
1.取最优步长
2. αk取到约束边界的最大步长
1) 取一试验步长αt,计算试验点xt。
2) 判别试验点xt的位置。 3) 将位于非可行域的试验点xt,调整到约束面上。
2. αk取到约束边界的最大步长
3.计算步骤
三、 不等式约束的增广乘子法
三、 不等式约束的增广乘子法
三、 不等式约束的增广乘子法
图6-36 增广乘子法框图
第七节 非线性规划问题的线性化解法——线性逼近法
一、 序列线性规划法
二、割平面法 三、小步梯度法 四、非线性规划法
一、 序列线性规划法
6-37
二、割平面法
三、小步梯度法
1) 由设计者决定k个可行点,构成初始复合形。 2) 由设计者选定一个可行点,其余的(k-1)个可行点用随机法产生。 3) 由计算机自动生成初始复合形的全部顶点。
二、复合形法的搜索方法
1.反射 2.扩张 3.收缩 4.压缩
1.反射
1) 2) 3) 4) 计算复合形各顶点的目标函数值,并比较其大小,求出最好点L、最坏 点H及次坏点G 计算除去最坏点H外的(k-1)个顶点的中心C 从统计的观点来看,一般情况下,最坏点H和中心点C的连线方向为目标
四、非线性规划法
第八节 广义简约梯度法
一、 简约梯度法
一、 简约梯度法
二、 广义简约梯度法
二、 广义简约梯度法
三、 不等式约束函数的处理和换基问题
1.不等式约束函数的处理方法
2.基变量的选择和换基问题
1.不等式约束函数的处理方法
2.基变量的选择和换基问题
机械优化设计方法ppt课件
f (x) f (x1, x2,...xn )
23
优化设计的目的就是要求所选择的设计变
量使目标函数达到最佳值,即使 f (x) Opt
通常 f (x) min
单目标设计问题
目标函数
多目标设计问题
目前处理多目标设计问题的方法是组合成一个 复合的目标函数,如采用线性加权的形式,即
f (x) W1 f1(x) W2 f2 (x) ... Wq fq (x)
24
四、优化问题的数学模型
优化设计的数学模型是对优化设计问题的数 学抽象。 优化设计问题的一般数学表达式为:
min f (x) x Rn
s.t. gu (x) 0 u 1, 2,..., m
hv (x) 0 v 1, 2,..., p n
4
图1-3 机械优化设计过程框图
5
优化设计与传统设计相比,具有如下三个特点:
(1)设计的思想是最优设计; (2)设计的方法是优化方法; (3)设计的手段是计算机。
二、机械优化设计的发展概况
1ቤተ መጻሕፍቲ ባይዱ优化设计的应用领域 近几十年来,随着数学规划论和电子计算机的迅 速发展而产生的,它首先在结构设计、化学工程、 航空和造船等部门得到应用。
架的高h和钢管平均直径D,使钢管总质量m为最小。
11
图2-2 人字架的受力
12
人字架的优化设计问题归结为:
x D H T 使结构质量
mx min
但应满足强度约束条件 x y 稳定约束条件 x e
13
1
钢管所受的压力
F1
FL h
F(B2 h
25
机械优化设计PPT
二、离散变量优化的主要方法及其特点、思路和步骤
表7-3 离散变量优化的主要方法及其特点和步骤
图7-8 两个目标函数的等值线和约束边界
三、协调曲线法
图7-9 协调曲线
四、分层序列法及宽容分层序列法
四、分层序列法及宽容分层序列法
采用分层序列法,在求解过程中可能会出现中断现象,使求解过程 无法继续进行下去。当求解到第k个目标函数的最优解是惟一时, 则再往后求第(k+1),(k+2),…,l个目标函数的解就完全没有意义 了。这时可供选用的设计方案只是这一个,而它仅仅是由第一个至 第k个目标函数通过分层序列求得的,没有把第k个以后的目标函数 考虑进去。尤其是当求得的第一个目标函数的最优解是唯一时,则 更失去了多目标优化的意义了。为此引入“宽容分层序列法”。这 种方法就是对各目标函数的最优值放宽要求,可以事先对各目标函 数的最优值取给定的宽容量,即ε1>0,ε2>0,…。这样,在求后一 个目标函数的最优值时,对前一目标函数不严格限制在最优解内, 而是在前一些目标函数最优值附近的某一范围内进行优化,因而避 免了计算过程的中断。
5.组合型算法终止准则
6.组合型算法的辅助功能
(1) 直线加速与二次曲线加速 当目标函数严重非线性时,即若
函数具有尖峰脊线,即存在“谷”时,则希望能沿着脊线方向进 行搜索,可迅速提高算法的寻优效率,该算法称为具有脊线加速 能力。 (2) 网格搜索法技术 将离散空间视为一网格空间,每个离散点 就是一个网格节点。 (3) 变量分解策略 将目标函数中的变量分成若干个子集合,若
离散复合形,重新进行调优搜索,直到前后两次离散复合形运算
的优化点重合,算法才最终结束。
6.组合型算法的辅助功能
图7-24 有脊线目标函数 寻优过程示意图
第一章 机械优化设计的基本问题PPT课件
10d D 0 或 10d0.62831805
n
n
该问题属于二维约束问题
12
1.1.3连杆机构优化设计
由图所示六杆机构。它是铰链四杆机构ABCD和带有 滑块5的摆杆6由连杆BE连接而成的。原动件AB逆时 针转动使从动件6绕P点往复摆动。机架AD水平置放, F点已选定。 要求: 当原动件AB转角φ0在180—300o范围内, 摆杆6处于LM位置不动, 即从动件摆杆产生间歇运动。
单价c与螺栓材料,直径d,长度l及加工状况有关。本组 螺栓取35号钢,长度l=50mm的六角头半精制螺栓,单 价见下表
直径d (mm)
单价c (元)
10 0.052
12 0.091
14 0.142
16 0.174
18 0.228
20 0.251
9
由表中数据初步画C=f(d)曲线,由下图线形回归法求得 方程:
表a,每小时生产零件利润量
零件种类
机器序号
1
2
3
4
1
5
6
4
3
2
5
4
5
4
3
6
7
2
8
表b,各机器生产零件速率
零件种类
机器序号
1
2
3
4
1
8
2
4
9
2
7
6
6
3
3
4
8
5
2
19
解:为获利润最大,需合理确定每台机器生产某种零件
若干,设xij表示第j台机器生产第i中零件的件数。
一个月内获总利润: W 5 x 1 16 x 1 24 x 1 33 x 1 45 x 2 14 x 2 25 x 2 34 x 24 6 x 3 17 x 3 22 x 3 38 x 34 且要满足以下约束条件: (1)数量需求限制
机械优化设计第1章概述-PPT精品文档
50年代末数学规划方法被首次用于结构最优化,并成为优 化设计中求优方法的理论基础。数学规划方法是在第二次世界 大战期间发展起来的一个新的数学分支,线性规划与非线性规 划是其主要内容。
最优化设计是在数学规划方法的基础上发展起来的,是 6O年代初电子计算机引入结构设计领域后逐步形成的一种有效的 设计方法。
Evaluation only. eated with Aspose.Slides for .NET 3.5 Client Profile 5.2.0 Copyright 2019-2019 Aspose Pty Ltd.
第一章 优化设计的基本概念
§1-1 绪论
Evaluation only. §1-2 优化设计问题的示例 eated with Aspose.Slides for .NET 3.5 Client Profile 5.2.0 Copyright 2019-2019 Aspose Pty Ltd. §1-3 优化设计的数学模型
第三阶段 工程优化:近二十余年来,计算机技术的发展给 Evaluation only. 解决复杂工程优化问题提供了新的可能,非数学领域专家开发 了一些工程优化方法,能解决不少传统数学规划方法不能胜任 eated with Aspose.Slides for .NET 3.5 Client Profile 5.2.0 的工程优化问题。在处理多目标工程优化问题中,基于经验和 Copyright 2019-2019 Aspose Pty Ltd. 直觉的方法得到了更多的应用。
机械优化设计
机械工程系 吴军 2009.8
Evaluation only. eated with Aspose.Slides for .NET 3.5 Client Profile 5.2.0 Copyright 2019-2019 Aspose Pty Ltd.
《机械优化设计》课件
成本最低、 利润最大、 效率最高、 能耗最低、 综合性能最好
f(x*)
0
x*
x
在规定的范围内(或条件下),
寻找给定函数取得的最大值(或最
小值)的条件。
………
绪论
1.2 优化设计 优化设计是使某项设计在规定的各种设计限制条件下,
优选设计参数,使某项或几项设计指标获得最优值。
1.3 传统设计与优化设计 传统设计:求得 可行解,人工计算。 优化设计:解得 最优解,计算机计算。
优化问题的数学模型是实际优化问题的数学抽象。在
明确设计变量、约束条件和目标函数之后,优化设计问
题可以表示成一般的数学形式。
求设计变量向量
使
且满足约束条件
或可写成miຫໍສະໝຸດ f ( X ) f (x1, x2, , xn )
s.t.
gu ( X ) gu (x1, x2, , xn ) 0 (u 1, 2, m) hk ( X ) hk (x1, x2, , xn ) 0 (u 1, 2, k)
361240181
第二章 优化设计的数学基础
等值线的分布规律: 等值线越内层其函数值越小(对于求目标函数的极小化来说) 沿等值线密的方向,函数值变化快;沿等值线疏的方向,函数值变
没有“心”:例,线性函数的等值线是平行的,无“心”,认为 极值点在无穷远处。
多个“心”:不是单峰函数,每个极(小)值点只是局部极 (小)值点,必须通过比较各个极值点和“鞍点”(须正确判别) 的值,才能确定极(小)值点。
•欢迎加入湖工 大考试资料群:
361240181
•欢迎加入湖工 大考试资料群:
优化设计概述
一 优化设计内涵 二 优化设计基本过程——人字架的 优化设计 三 优化设计问题的描述——数学模型
机械优化设计讲义
《机械优化设计》讲义刘长毅第一讲第一课时:机械优化设计概论课程的研究对象:根据最优化原理和方法,利用计算机为计算工具,寻求最优设计参数的一种现代设计方法。
目标:本课程目标体系可以分为三大块:理论基础、算法的分析、理解和掌握,算法的设计、实现(编程)能力的培养。
将主要是对算法的学习为主,并兼顾培养一定的解决实际问题能力、上机编程调试能力。
首先,几个概念:优化(或最优化原理、方法)、优化设计、机械(工程)优化设计。
现代的优化方法,研究某些数学上定义的问题的,利用计算机为计算工具的最优解。
优化理论本身是一种应用性很强的学科,而工程优化设计(特别是机械优化设计)由于采用计算机作为工具解决工程中的优化问题,可以归入计算机辅助设计(CAD)的研究范畴。
再,优化方法的发展:源头是数学的极值问题,但不是简单的极值问题,计算机算法和运算的引入是关键。
从理论与实践的关系方面,符合实践-理论-实践的过程。
优化原理和方法的理论基础归根结底还是来源于实际生产生活当中,特别是工程、管理领域对最优方案的寻找,一旦发展为一种相对独立系统、成熟的理论基础,反过来可以指导工程、管理领域最优方案的寻找(理论本身也在实践应用中不断进步、完善)。
解决优化设计问题的一般步骤:相关知识:数学方面:微积分、线性代数;计算机方面:编程语言、计算方法;专业领域方面:机械原理、力学等知识内容:数学基础、一维到多维、无约束到有约束1.1数学模型三个基本概念:设计变量、目标函数、约束条件设计变量:相对于设计常量(如材料的机械性能)在设计域中变量是否连续:连续变量、离散变量(齿轮的齿数,)。
设计问题的维数,表征了设计的自由度。
每个设计问题的方案(设计点)为设计空间中的一个对应的点。
设计空间:二维(设计平面)、三维(设计空间)、更高维(超设计空间)。
目标函数:设计变量的函数。
单目标、多目标函数。
等值面的概念:设计目标为常量时形成的曲面(等值线、等值面、超等值面)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三阶段 工程优化:近二十余年来,计算机技术的发展给解决复杂工程 优化问题提供了新的可能,非数学领域专家开发了一些工程优化方法,能 解决不少传统数学规划方法不能胜任的工程优化问题。在处理多目标工程 优化问题中,基于经验和直觉的方法得到了更多的应用。优化过程和方法 学研究,尤其是建模策略研究引起重视,开辟了提高工程优化效率的新的 途径。
设计方案 方案1 方案2 方案3 方案4 方案5
吞吐量 177060 154458 194225 167769 118857
平均能耗 5.82 4.21 3.67 4.21 5.62
平均效率 33.53 29.25 36.79 31.77 22.51
2020/2/25 5
绪论
1 何谓最优化设计 --是用数学的方法寻求最优结果的方法和过程(在多个可行的设 计方案中选择最好的一个)。 机械优化设计主要包括以下两方面的内容: 1.建立优化设计的数学模型 2.模型求解
国家863项目子课题,上海市教委科研创新项目 等科研项目6项。参
与国家级、省部级、企事业单位重大项目等50余项
论文发表:SCI检索11篇、EI论文20余篇
专利:申请或获得各种专利和软件著作权29项,其中授权发明专利
2020/2/235项
2
课程安排
绪论+概述(2学时) 优化设计的数学基础(6学时) 一维搜索方法(2学时) 无约束优化方法(6学时) 线性规划(6学时) 约束优化方法(8学时) 多目标优化与离散优化(4学时) 关于机械优化设计中的几个问题(2学时) 考查:平时出勤+平时作业+期末考试(开卷)
2×45kw 110kw
2×55kw 110kw
起升速度
空载
满载
90m/min
45m/min
60m/min 80m/min 90m/min 60m/min
30m/min 40m/min 45m/min 40m/min
起升额定输 出功率
2×300kw
250kw 2×200kw 2×200kw
300kw
✓ 3、波音公司在747的机身设计中收到了减轻质量、缩短生产周期、降低成 本的效果。
✓ 4、武汉钢铁公司从德国引进的1700薄板轧机,经该公司自主优化之后, 就多盈利几百万马克。
2020/2/25 11
绪论
3 优化设计的发展
第一阶段 人类智能优化:与人类史同步,直接凭借人类的直觉或逻辑思 维,如黄金分割法、穷举法和瞎子爬山法等。
2020/2/25 6
绪论
2 机械的设计方法 1.机械的传统设计方法 --基于手工劳动或简易计算工具。
2.机械的现代优化设计方法 --基于计算机的应用,以人机配合或自动搜索方式进行,能从 “所有的”可行方案中找出“最优的”设计方案。
2020/2/25 7
绪论
2 机械的设计方法
传统设计
可行解
第四阶段 现代优化方法:如遗传算法、 模拟退火和优化过程 的自动控制,智能寻优策略迅速发展。
2020/2/25 10
绪论
2 机械的设计方法
实际案例:
✓ 1、利用一化工优化系统,对一化工厂进行设计。根据给定数据,在16小 时内,进行16000个可行性设计的选择,从中选择一成本最低、产量最大 的方案,并给出必须的精确数据。以前:一组工程师,1年时间,仅仅3个 方案,且并非最优。
✓ 2、美国BELL公司利用优化方法解决450个设计变量的大型结构优化问题。 一个机翼质量减轻了35%。
教育经历
2010/9 - 2014/3,同济大学,机械制造及其自动化,博士
2006/9 - 2008/6,上海海事大学,机械电子工程,硕士
2002/9 - 2006/6,上海海事大学,工业工程,学士
科学研究
研究方向:运筹学与智能优化、物流系统工程
科研项目:主持国家自然科学基金、上海市晨光计划、扬帆计划、
优化设计
最优解
2020/2/25
从传统设计到优化设计
8
绪论
2 机械的设计方法
例1:求圆木做成矩形截面梁,使抗弯截面系数最大时的高宽比。
解:梁的抗弯截面系数
bh2
W
6
d 2 b2 h2
W b (d 2 b2) 6
dW 1 (d 2 3b2 ) 0 b d
轨面上起 轨面下起 升高度 升高度
前伸距
30
18
44
25
15
42
23
14
40
32
15.5
44
32
15
42
小车速度
空载
满载
150m/min
150m/min
110m/min 120m/min 150m/min 100m/min
110m/min 120m/min 150m/min 100m/min
小车额定输出 功率 180kw
db 6
3
h 2 b
设计过程 : (1)从实际问题中抽象出数学模型;
2020/2/25
(2) 选择合适的优化方法求解数学模型。
9
绪论
2 机械的设计方法
与传统机械设计相比,机械优化设计的优点有:
✓ 使传统机械设计中,求解可行解上升为求解最优解成为可能; ✓ 使传统机械设计中,性能指标的校核可以不再进行; ✓ 使机械设计的部分评价,由定性改定量成为可能; ✓ 使零缺陷(废品)设计成为可能; ✓ 大大提高了产品的设计质量,从而提高了产品的质量; ✓ 大大提高了生产效率,降低了产品开发周期。
2020/2/25 3
上海海事大学
Shanghai Maritime University
1909
1912
1958
2004
2009
绪论
INTRODUCTION
01 何谓最优化设计
02 机械的设计方法
03 优化设计的发展
04 课程的主要任务和目的
2020/2/25 4
绪论
设计方案
方案1 方案2 方案3 方案4 方案5
机械优化设计
上海海事大学
SHANGHAI MARITIME UNIVERSITY
何军良
2020/2/25
2017年5月
1
个人简介
何军良 副教授、博士,上海市晨光学者、扬帆学者
上海海事大学 中国(上海)自贸区供应链研究院 上海海事大学 教育部集装箱供应链技术工程研究中心 jlhe@