《概率统计》单元自测题(一)

合集下载

概率论与数理统计自测题

概率论与数理统计自测题

, 概率论与数理统计自测题(含答案,先自己做再对照)一、单项选择题1.设A 与B 互为对立事件,且P (A )>0,P (B )>0,则下列各式中错误..的是( ) A .0)|(=B A P B .P (B |A )=0 C .P (AB )=0 D .P (A ∪B )=12.设A ,B 为两个随机事件,且P(AB)>0,则P (A|AB)=( ) A .P (A ) B .P (AB) C .P (A |B) D .13.设随机变量X 在区间[2,4]上服从均匀分布,则P{2〈X<3}=( )A .P{3。

5<X 〈4。

5}B .P {1。

5<X 〈2.5}C .P{2.5<X<3.5}D .P{4。

5<X<5.5} 4.设随机变量X 的概率密度为f (x )=⎪⎩⎪⎨⎧≤>,1,0;1,2x x x c 则常数c 等于( )A .—1B .21-C .21D .15则P {X=Y}=( )A .0。

3B .0.5C .0.7D .0。

86.设随机变量X 服从参数为2的指数分布,则下列各项中正确的是( ) A .E (X )=0。

5,D (X )=0.25 B .E(X )=2,D (X )=2 C .E (X)=0.5,D (X)=0。

5 D .E (X )=2,D (X)=47.设随机变量X 服从参数为3的泊松分布,Y~B(8,31),且X ,Y 相互独立,则D (X-3Y—4)=( )A .-13B .15C .19D .238.已知D (X )=1,D (Y )=25,ρXY =0。

4,则D (X-Y)=( ) A .6 B .22 C .30 D .469.在假设检验问题中,犯第一类错误的概率α的意义是( ) A .在H 0不成立的条件下,经检验H 0被拒绝的概率 B .在H 0不成立的条件下,经检验H 0被接受的概率 C .在H 0成立的条件下,经检验H 0被拒绝的概率 D .在H 0成立的条件下,经检验H 0被接受的概率10.设总体X 服从[0,2θ]上的均匀分布(θ〉0),x 1, x 2, …, x n 是来自该总体的样本,x为样本均值,则θ的矩估计θˆ=( )A .x 2B .xC .2xD .x 21 1A 2。

概率论与数理统计自测试卷及答案

概率论与数理统计自测试卷及答案

概率论与数理统计自测试卷一一、填空题(每题3分,共15分)1、已知随机变量X 服从参数为2的泊松(Poisson )分布,且随机变量22-=X Z ,则()=Z E ____________.2、设A 、B 是随机事件,()7.0=A P ,()3.0=-B A P ,则()=AB P3、设二维随机变量()Y X ,的分布列为若X 与Y 相互独立,则βα、的值分别为 。

4、设 ()()()4, 1, ,0.6D X D Y R X Y ===,则 ()D X Y -=___ _5、设12,,,n X X X 是取自总体),(2σμN 的样本,则统计量2211()ni i X μσ=-∑服从__________分布.二、选择题(每题3分,共15分)1. 一盒产品中有a 只正品,b 只次品,有放回地任取两次,第二次取到正品的概率为 【 】 (A)11a ab -+-; (B)(1)()(1)a a a b a b -++-; (C) a a b +; (D) 2a ab ⎛⎫ ⎪+⎝⎭. 2、设事件A 与B 互不相容,且()0≠A P ,()0≠B P ,则下面结论正确的是【 】(A) A 与B 互不相容; (B)()0>A B P ; (C) ()()()B P A P AB P =; (D)()()A P B A P =.3、设两个相互独立的随机变量X 与Y 分别服从正态分布()1,0N 和()1,1N ,则【 】(A)()210=≤+Y X P ; (B) ()211=≤+Y X P ; (C)()210=≤-Y X P ; (D)()211=≤-Y X P 。

4、 如果Y X ,满足()Y X D Y X D -=+)(,则必有【 】(A )X 与Y 独立;(B )X 与Y 不相关;(C )0=DY ;(D )0=DX5、设相互独立的两个随机变量X 与Y 具有同一分布律,且X 的分布律为则随机变量()Y X Z ,max =的分布律为【 】(A)()()211,210====z P z P ; (B) ()()01,10====z P z P ; (C) ()()431,410====z P z P ;(D) ()()411,430====z P z P 。

概率统计单元测试

概率统计单元测试

概率统计试题(文科)一、选择题(本大题共10小题,每小题5分,共50分.)1.要完成下列两项调查:①从某肉联厂的火腿肠生产线上抽取1000根火腿肠进行“瘦肉精”检测;②从某中学的15名艺术特长生中选出3人调查学习负担情况.适合采用的抽样方法依次为 ( )A .①用分层抽样,②用简单随机抽样B .①用系统抽样,②用简单随机抽样C .①②都用系统抽样D .①②都用简单随机抽样2.将一个骰子抛掷1次,设事件A 表示向上的一面出现偶数,事件B 表示向上的一面出现的点数不超过3,事件C 表示向上的一面出现的点数不小于4,则( ) A .A 与B 是互斥而非对立事件 B .A 与B 是对立事件 C .B 与C 是互斥而非对立事件 D .B 与C 是对立事件 3.要从编号为01~50的50枚最新研制的某型号导弹中随机抽取5枚来进行发射试验,用每部分选取的号码间隔一样的系统抽样方法确定,则选取的5枚导弹的编号可能是 ( ) A .05,10,15,20,25 B .03,13,23,33,43 C .01,02,03,04,05 D .02,04,08,16,324.两根相距3m 的木杆上系一根拉直的绳子,并在绳子上挂一伦敦奥运会吉祥物“温洛克”,则“温洛克”与两端距离都大于1m 的概率为( ) A .21B .31C .41D .325.某农科所研制成功一种产量较高的农作物种子,并对该作物种子在相同条件下发芽与否进行了试验,试验结果如下表,则其发芽的概率大约为( )A .1B .0.7C .0.8D .0.96.2011年4月28日,世界园艺博览会(以下简称世园会)在西安顺利开幕,吸引了海内外的大批游客.游客甲、游客乙暑假期间去西安看世园会的概率分别为31、41,假定他们两人的行动相互不受影响,则暑假期间游客甲、游客乙两人都不去西安看世园会的概率为( )A .21B .127C .1211D .327.2011年6月,台湾爆出了食品添加有毒塑化剂的案件,令世人震惊.我国某研究所为此开发了一种用来检测塑化剂的新试剂,把500组添加了该试剂的食品与另外500组未添加该试剂的食品作比较,提出假设0H :“这种试剂不能起到检测出塑化剂的作用”,并计算出()01.0635.62≈≥x P .对此,四名同学做出了以下的判断:p :有99%的把握认为“这种试剂能起到检测出塑化剂的作用”q :随意抽出一组食品,它有99%的可能性添加了塑化剂r :这种试剂能检测出塑化剂的有效率为99%s :这种试剂能检测出塑化剂的有效率为1% 则下列命题中正确的是( )A .p ∧qB .﹁p ∧qC .(﹁p ∧﹁q )∧(r ∨s )D .(p ∨﹁r )∧(﹁q ∨s ) 8.日本福岛核电站爆炸后,工作人员随机测量了甲、乙两个城镇空气中核辐射的含量,获得的数据如茎叶图所示,则对甲、乙两个城镇的空气质量评价正确的是 ( )A .甲城镇的空气质量优于乙城镇的空气质量B .乙城镇的空气质量优于甲城镇的空气质量C .甲、乙两城镇的空气质量差不多D .无法比较9.给出以下三幅统计图及四个命题:①从折线统计图能看出世界人口的变化情况 ②2050年非洲人口大约将达到近15亿③2050年亚洲人口比其他各洲人口的总和还要多 ④从1957年到2050年各洲中北美洲人口增长速度最慢 其中正确的个数是 ( ) A .1 B .2 C .3 D .410. 已知函数()xa x f 3cosπ=,a 等于抛掷一颗骰子得到的点数,则()x f y =在[]4,0上有5个以下或6个以上零点的概率是( )A .31B .32C .21D .65二、填空题(本大题共5小题;每小题5分,共25分.)11.2011年“两会”期间,某大学组织全体师生,以调查表的形式对温总理的政府工作报告进行讨论.为及时分析讨论结果,该大学从所回收的调查表中,采用分层抽样的方法抽取了300份进行分析.若回收的调查表中,来自于退休教职工、在职教职工、学生的份数之比为3:7:40,则所抽取的调查表中来自于退休教职工的有 份.12.小明同学学完统计知识后,随机调查了他所在辖区若干居民的年龄,将调查数据绘制成如图所示的扇形和条形统计图,则b a -= .(60以上含60)13.某城市供电局为了了解用电量)(度y 与气温)(C x之间的关系,随机统计了某4天的用电量与当天气温,并制作了对照表:由表中数据,得线性回归方程ax y +-=2.当气温为4-℃时,预测用电量的度数约为 .14.把容量为100的某组样本数据分为10组,其分组情况及频率如下:[)40,20:0.1;[)60,40:0.25;[)80,60:0.45;[)100,80:0.20.若同一组数据用该组区间的中点(例如:区间[)40,20的中点值为30)表示,则这100个数据的平均值为 .15.把一颗骰子投掷两次,第一次得到的点数记为a ,第二次得到的点数记为b ,以a 、b 为系数得到直线31=+by ax l :,又已知直线22:2=+y x l ,则直线1l 与2l 相交的概率为 .三、解答题(本大题共6小题;共75分.解答应写出文字说明、证明过程或演算步骤) 16.(12分)在甲、乙两个箱子中分别装有标号为1、2、3、4的四张卡片,现从甲、乙两个箱子中各取出1张卡片,每张卡片被取出的可能性相等.(1)求取出的两张卡片上标号恰好相同的概率;(2)求取出的两张卡片上的标号至少有一个大于2的概率.17.(12分)2011年2月始发生的利比亚内战引起了全球人民的关注,联合国为此多次召开紧急会议讨论应对措施.在某次分组研讨会上,某组有6名代表参加,B A 、两名代表来自亚洲,D C 、两名代表来自北美洲,E 、F 两名代表来自非洲,小组讨论后将随机选出两名代表发言.(1)代表A 不被选中的概率是多少?(2)选出的两名代表“恰有1名来自北美洲或2名都来自非洲”的概率是多少?18.(12分)一机器可以按各种不同速度转动,其生产的产品有一些会有缺陷,每小时生产有缺陷产品的多少随机器运转速度而变化,用x 表示转速(单位:转/秒),用y 表示每小时生产的有缺陷产品的个数,现观测得到)(y x ,的4组观测值为(8,5),(12,8),(14,9),(16,11).(1)画出散点图.(2)你能从散点图中发现零件数与加工时间近似成什么关系吗?如果近似成线性相关关系的话,请求出相应的回归直线方程;(3)若实际生产中所容许的每小时最多有缺陷产品数为10,则机器的速度不得超过多少转/秒?(精确到1)19.(12分)某市电视台为了宣传举办问答活动,随机对该市15~65岁的人群抽样了n 人,回答问题统计结果如图表所示. 1)分别求出a,b,x,y 的值;2)从第2,3,4组回答正确的人中用分层抽样的方法抽取6人,则第2,3,4组每组应各抽取多少人?3)在2)的前提下,电视台决定在所抽取的6人中随机抽取2人颁发幸运奖,求:所抽取的人中第2组至少有1人获得幸运奖的概率.20.(13分)为了解大学生观看某电视节目是否与性别有关,一所大学心理学教师从该校学生中随机抽取了50人进行问卷调查,得到了如下的列联表,若该教师采用分层抽样的方法从50份问卷调查中继续抽查了10份进行重点分析,知道其中喜欢看该节目的有6人(1(2)是否有99.5%的把握认为喜欢看该节目节目与性别有关?说明你的理由;(3)已知喜欢看该节目的10位男生中,1A、2A、3A、4A、5A还喜欢看新闻,1B、2B、3B还喜欢看动画片,1C、2C还喜欢看韩剧,现再从喜欢看新闻、动画片和韩剧的男生中各选出1名进行其他方面的调查,求1B和1C不全被选中的概率.下面的临界值表供参考:0.05(参考公式:()()()()dbcadcbabcadnK++++-=2,其中dcban+++=)21.(14分)某大学为调查来自南方和北方的同龄大学生的身高差异,从2011级的年龄在18~19岁之间的大学生中随机抽取了一自南方和北方的大学生各10名,测量他们的身高,量出的身高如下(单位:cm)南方:158,170,166,169,180,175,171,176,162,163北方:183,173,169,163,179,171,157,175,178,166(1)根据抽测结果,完成答题卷中的茎叶图,并根据你填写的茎叶图,对来自南方和北方的大学生的身高作比较,写出两个统计结论.(2)设抽测的10名南方大学生的平均身高为x,将10名同学的身高依次输入按程序框图进行运算,问输出的S大小为多少?并说明S的统计学意义.(3).为进一步调查身高与生活习惯的关系,现从来自南方这10名大学生中随机抽取两名身高不低于173cm的同学,求身高为176cm的同学被抽中的概率.答案1.【思路点拨】简单随机抽样适用于总体容量较小的情形;总体容量较大且各个体间没有明显差异时选用系统抽样;当组成总体的各部分存在明显差异时,则应选用分层抽样. 【答案】B 【解析】①中总体容量较大,且火腿肠之间没有明显差异,故适合采用系统抽样;②中总体容量偏小,故适合采用简单随机抽样.2.【思路点拨】可从集合角度进行分析:若A 与B 是互斥事件,则φ=⋂B A ,若A 与B 是对立事件,则,Ω=⋃=⋂B A B A ,φ即对立事件是特殊的互斥事件.【答案】D 【解析】由题意知,=B A {出现点数2},所以事件A 、B 不互斥也不对立;,,Ω=∅=C B C B 故事件B ,C 是对立事件,选D .3.【思路点拨】系统抽样的特点:总体平均分段、选定起始号、等间距、等可能抽样.【答案】B 【解析】采用系统抽样,可先将50个编号分成5组,在第一组随机地抽取一号码,比如抽到3号,则其它各组就依次选取13,23,33,43.四个选择答案中,只有B 属于这种抽取方法.4.【思路点拔】几何概型的计算公式为:的长度(面积或体积)的长度(面积或体积)G G A P 1)(=.【答案】B 【解析】如图设线段AB =3,C 、D 是线段A B 的两个三等分点,则当“温洛克”挂在线段CD 上的时候,“温洛克”与两端A 、B 的距离都大于1.所以“温洛克”与两端距离都大于1m 的概率为31==的长度的长度AB CD P .5.【思路点拔】求出种子发芽的各频率值,发现频率的稳定值,即为概率值.【答案】D 【解析】我们可以用频率的近似值表示随机事件发生的概率,根据表格计算不同情况下的菜籽发芽的频率分别是1,0.8,0.9,0.857,0.892,0.910,0.913,0.903,0.905,由上面的计算结果可知,菜籽发芽的频率接近于0.9,且在它附近摆动,故此可知菜籽在已知条件下发芽的概率大约为0.9.6.【思路点拔】由于甲、乙两人的行动相互不受影响,故他们去西安看世园会为相互独立事件,于是联想到调用概率的乘法公式求解.【答案】A 【解析】分别记甲、乙去西安旅游为事件A 、B ,则()31=A P ,()41=B P ,由题设可知A 、B 相互独立,故所求的概率()()()21411311=⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-==⋅=B P A P B A P P .7.【思路分析】本题中:提出假设0H :“这种试剂不能起到检测出塑化剂的作用”,并计算出()01.0635.62≈≥xP ,因此,在一定程度上说明假设不合理,我们就以99%的把握拒绝假设,故易知p ,r 为真命题,再由真值表即可获解.【答案】D 【解析】由题设可知命题p ,r 为真命题,q ,s 为假命题,依据复合命题的真值表可知D 为真命题.8.【思路点拔】先利用茎叶图得到两组数据,并求出其平均值和方差,再利用方差进行比较:方差越小,波动越小,空气质量越高. 【答案】B 【答案】17010182179179171170168168163162158=+++++++++=x .甲城镇核辐射的样本方差为:[()()()()+-+-+-+-2222170168170163170162170158101()+-2170168()+-2170170()+-2170171()2170179-()]571701822=-+,1.17110181179178176173170168165162159=+++++++++=x ,乙城镇核辐射的样本方差为101[()21.171159-()21.171162-+()21.171165-+()21.171168-+()21.171170-+()21.171173-+()21.171176-+()21.171178-+()21.171179-+()21.171181-+29.51=,由此判断乙城镇的空气质量较好. 9.【思路点拔】利用折线图,扇形统计图,条形统计图的特征,解决问题.【答案】B 【解析】①显然正确;从条形统计图中可得到:2050年非洲人口大约将达到近18亿,②错;从扇形统计图中能够明显的得到结论:2050年亚洲人口比其他各洲人口的总和还要多,③正确;由上述三幅统计图并不能得出从1957年到2050年中哪个洲人口增长速度最慢,故④错误.因此正确的命题有①③.10.【答案】D 【解析】抛掷一颗骰子共有6种情况.当a =1,2,3,4,5,6时,利用函数()x f 的图像易知,()x f y =在[]4,0上的零点分别为1,2,4,5,7,8个.故所求概率为656263=+=P .11.【思路点拔】确定各层应抽取的个体数是实施分层抽样的最关键步骤,而确定办法主要有二:①利用抽样比k 来确定,当已知各层的个体数时,用此法计算较为简便;②利用结论“样本中各层抽取的个体数之比=总体中各层的个体数之比”来确定,当总体(或样本)中各层个体数以比的形式给出时,一般考虑用此法速解.【答案】18【解析】由题设知:来自于退休教职工、在职教职工、学生的份数之比为3:7:40,故样本中相应的份数之比仍为3:7:40,设所抽取的调查表中来自退休教职工份数为m ,则1840733300=⇒++=m m .【思路点拔】读取统计图解答问题的关键是充分挖掘图中所包含的信息.在条形统计图中,每个直条的高度表示相应样本值出现的次数(即频数)或百分比;扇形统计图中,每个扇形的大小反映所表示的那部分占总体百分比的大小.【答案】8%【解析】设小明共调查了x 名居民的年龄,由230%46=⋅x ,得500=x ;于是得%20%100500100=⨯=a ;b=12%22%)46%(20%1=++-.故a-b=8%.13.【思路点拨】先利用回归直线方程过(y x ,),求出a ,然后再求解. 【答案】68【解析】因为1813101104++-==,40464383424=+++=y ,又因为回归直线方程过(y x ,),所以402060a a =-+⇒=,把04-代入回归直线方程,可得用电量的都市约为68.14.【思路点拔】由频率求出频数,便能求得这100个数据的平均值.【答案】65【解析】由题设可知各组及其频数分别为:[)40,20:10;[)60,40:25;[)80,60:45;[)100,80:20.故这100个数据的期望值(平均值)为[]6520904570255010301001=⨯+⨯+⨯+⨯=x .15.【思路点拔】由两直线的交点在第一象限,构造出关于a,b 不等式组,再利用枚举法确定基本事件数,便易得所求.【答案】3613【解析】由题意知,{}6,5,4,3,2,1,∈b a .因为直线1l 与2l 的交点在第一象限,所以由他们的图象可知:3132b a ⎧<⎪⎪⎨⎪>⎪⎩或3132ba ⎧>⎪⎪⎨⎪<⎪⎩解得3,1b a >⎧⎨≤⎩或32b a <⎧⎨≥⎩,所以基本事件()b a ,可以是(1,4),(1,5),(1,6),(2,1),(2,2),(3,1),(3,2),(4,1),(4,2),(5,1),(5,2),6,1),(6,2)共13个,而基本事件有3666=⨯种,所以随机事件“直线1l 与2l 的交点在第一象限”的概率为3613=P16.【思路点拨】根据树脂图列出所有结果或者直接写出所有结果,然后求解.【解析】利用树状图可以列出从甲、乙两个盒子中各取出1个球的所有可能结果(如下图),可以看出,试验的所有可能结果数为16种且每种结果是等可能的.(3分)(1)所取两张卡片上的标号为相同整数的结果有1-1,2-2,3-3,4-4,共4种.故根据古典概型公式,所求概率41164==P .答:取出的两张卡片的标号为相同整数的概率为41.(6分)(2)记事件“取出的两张卡片的标号至少有一个大于2”为A .则A 的对立事件是A =“取出的两张卡片上的标号都不于大2”(8分)所取出的两张卡片上的标号都不大于3的结果有1-1,1-2,2-1,2-2,共4种.43)(1)(41164)(=-=∴==A P A P A P .答:取出的两张卡片上的标号至少有一个大于3的概率为43.(12分)17【思路点拔】先利用枚举法列举出6名代表中随机选出2名的结果总数,再从中找中各事件所包含的结果数,然后代入古典概型、对立事件以及互斥事件的概率公式进行求解.【解析】(1)从这6名代表中随机选出2名,共有C 种不同的选法,分别为(A ,B ),(A ,C ),(A ,D ),(A ,E ),(A ,F ),(B ,C ),(B ,D ),(B ,E ),(B ,F ),(C ,D ),(C ,E ),(C ,F ),(D ,E ),(D ,F ),(E ,F ).(3分).其中代表A 被选中的选法有(A ,B ),(A ,C ),(A ,D ),(A ,E ),(A ,F )共5种,则代表A 被选中的概率为31155=(6分)所以代表A 不被选中的概率为321551=-=P .(2)随机选出的2名代表“恰有1名来自北美洲或2名都来自非洲”的结果有9种,分别是),(C A ,),(D A ,),(C B ,),(D B ,),(E C ,),(F C ,),(E D ,),(F D ,),(F E .“恰有1名来自北美洲或2名都来自非洲”这一事件的概率为53159=(12分).18.【思路点拔】先画出散点图,由散点图可知各散点分布成一条直线附近,故零件数与加工时间近似成线性相关关系,再求出回归直线方程,并利用此方程求解. 【解析】(1)如图(4分)(2)设回归直线方程为a bx y +=ˆ,则5.1241614128=+++=x ,25.8411985=+++=y ,(3)43811169148125844332211=⨯+⨯+⨯+⨯=+++y x y x y x y x ;6601614128222224232221=+++=+++x x x x ,所以,70515.12466025.85.1244382=⨯-⨯⨯-=b ,765.12705125.8-=⨯-=-=x b y a ;故:y与x 之间的回归直线方程为767051ˆ-=x y(8分)(3)由10767051≤-=x y ,得1451706≈≤x .即机器的速度不得超过14转/秒.(12分)19.【思路点拔】对于(1),可结合频率分布直方图的性质求解;对于(2),则可利用分层抽样比求解;问题(3)为古典概型问题,可用枚举法求解. 【解析】(1)由频率表中第1组数据可知,第1组总人数为105.05=,再结合频率分布直方图可知1001010.010=⨯=n (1分)∴a=100×0.020×10×0.9=18,b=100×0.025×10×0.36=9,(2分)9.03.010027=⨯=x ,2.015.01003=⨯=y (4分)(2)第2,3,4组中回答正确的共有54人.(5分)∴利用分层抽样在54人中抽取6人,每组分别抽取的人数为:第2组:265418=⨯人,第3组:365427=⨯人,第4组:16549=⨯人.(8分)(3)设第2组的2人为1A、2A,第3组的3人为1B、2B、2B,第4组的1人为1C,则从6人中抽2人所有可能的结果有:()21,AA,()11,BA,()21,B A,()31,BA,()11,CA,()12,BA,()22,BA,()32,BA,()12,CA,()21,BB,()31,B B,()11,CB,()32,BB,()12,CB,()13,CB,共15个基本事件,(10分)其中第2组至少有1人被抽中的有()21,AA,()11,BA,()21,BA,()31,BA,()11,CA,()12,BA,()22,BA,()32,BA,()12,CA这9个基本事件.(11分)∴第2组至少有1人获得幸运奖的概率为53159=(12分)20.【思路点拔】在独立性检验中,常利用2K来确定“两个分类变量是否有关联”:当706.22≤K时,可以认为变量A、B是没有关联的;当2K>2.706时,有90%的把握判定变量A、B有关联;当2K>3.841时,有95%的把握判定变量A、B有关联;当2K>6.635时,有99%的把握判定变量A、B有关联.故只需计算出2K的值,利用上述结论即可解决第(2)小题.第(3)小题可用组合知识及枚举法求解.【解析】(1)由分层抽样知识知,喜欢看该节目的同学有3010650=⨯,故不喜欢看该节目的同学有50-30=20人,(2分)于是可将列联表补充如右图:(4分)(2)()333.82525203051015205022≈⨯⨯⨯⨯-⨯⨯=K>7.879(7分)∴有99.5%的把握认为喜爱该节目与性别有关.(8分)(3)从10位男生中选出喜欢看韩剧、喜欢看新闻、喜欢看动画片的各1名,其一切可能的结果组成的基本事件如下:()111,,CBA,()211,,CBA,()121,,CBA,()221,,CBA,()131,,CBA,()231,,CBA,()112,,CBA,()212,,CBA,()122,,CBA,()222,,CBA,()132,,CBA,()232,,CBA,()113,,CBA,()213,,CBA,()123,,CBA,()233,,CBA,()223,,CBA,()133,,CBA,()114,,CBA,()214,,CBA,()124,,CBA,()224,,CBA,()134,,CBA,()234,,CBA,()115,,CBA,()215,,CBA,()125,,CBA,()225,,CBA,()135,,CBA,()235,,CBA,基本事件的总数为30,(10分)用M表示“11CB、不全被选中”这一事件,则其对立事件M表示“11CB、全被选中”这一事件,由于由()111,,CBA,()112,,CBA,()113,,CBA,()114,,CBA,()115,,CBA,5个基本事件组成,所以()61305==MP,(12分)由对立事件的概率公式得()()656111=-=-=MPMP.(13分)21.【思路点拔】(1)可利用给出数据直接画出茎叶图,再根据茎叶图从样本的数字特征等角度来得出统计结论;(2)认真读懂框图,不难看出该框图的功能是计算一组数据的方差;(3)利用枚举法求解;【解析】(1)茎叶图如右图(2分)统计结论:(给出下述四个供参考,考生只要答对其中两个即给满分,给出其他合理的答案也可给分)①北方大学生的平均身高大于南方大学生的平均身高.②南方大学生身高比北方大学生的身高更整齐;③南方大学生的身高的中位数为169.5cm,北方大学生的身高的中位数是172cm.④南方大学生的高度基本上是对称的,而且大多数集中在均值附近,北方大学生的高度分布较为分散.(4分)(2)169=x,6.42=S(6分),S表示10位南方大学生身高的方差,是描述身高离散程度的量.S值越小,表示身高越整齐,S值越大,表示身高参差不齐.(8分)(3)记“身高为176cm的同学被抽中”为事件A,从这10名南方大学生中抽出两名身高不低于170cm的同学有(170,171),(170,175),(170,176),(170,180),(171,175),(171,176),(171,180),(175,176),(175,180),(176,180),共10个基本事件,而事件A含有4个基本事件,故()52104==AP.(14分)。

概率统计单元自测

概率统计单元自测

《概率论与数理统计》单元自测题第一章 随机事件与概率专业 班级 姓名 学号一、填空题:1.设A ,B 是随机事件,7.0)(=A P ,5.0)(=B P ,3.0)(=-B A P ,则=)(AB P _____________,=)(A B P _____________;2.设A ,B 是随机事件,4.0)(=A P ,3.0)(=B P ,1.0)(=AB P ,则=)(B A P __________; 3.在区间)1,0(中随机地取两个数,则两数之和小于1的概率为___________;4.三台机器相互独立运转,设第一、第二、第三台机器发生故障的概率依次为0.1,0.2,0.3,则这三台机器中至少有一台发生故障的概率为_____________;5.设在三次独立试验中,事件A 出现的概率相等,若已知A 至少出现一次的概率等于2719,则事件A 在每次试验中出现的概率)(A P 为____________。

二、选择题:1.以A 表示事件“甲种产品畅销,乙种产品滞销”,则对立事件A 为( ) (A )“甲种产品滞销,乙种产品畅销”; (B )“甲、乙产品均畅销”; (C )“甲种产品滞销或乙种产品畅销”; (D )“甲种产品滞销”。

2.设A ,B 为两个事件,则下面四个选项中正确的是( ) (A ) )()()(B P A P B A P +=⋃; (B ))()()(B P A P AB P =; (C ))()()(A P B P A B P -=-; (D ))((1)(AB P B A P -=⋃。

3.对于任意两事件A 与B ,与B B A =⋃不等价的是( ) (A ) B A ⊂; (B )A B ⊂; (C ) φ=B A ; (D )φ=B A 。

4.设6.0)(=A P ,8.0)(=B P ,8.0)|(=A B P ,则有( ) (A ) 事件A 与B 互不相容; (B ) 事件A 与B 互逆; (C )事件A 与B 相互独立; (D )A B ⊂。

(完整版)概率统计模拟试题1-4

(完整版)概率统计模拟试题1-4

(完整版)概率统计模拟试题1-4201模拟试题(一)一.单项选择题(每小题2分,共16分)1.设B A ,为两个随机事件,若0)(=AB P ,则下列命题中正确的是()(A) A 与B 互不相容 (B) A 与B 独立(C) 0)(0)(==B P A P 或(D) AB 未必是不可能事件2.设每次试验失败的概率为p ,则在3次独立重复试验中至少成功一次的概率为()(A) )1(3p - (B) 3)1(p - (C) 31p - (D) 213)1(p p C -3.若函数)(x f y =是一随机变量X 的概率密度,则下面说法中一定成立的是() (A) )(x f 非负 (B) )(x f 的值域为]1,0[ (C) )(x f 单调非降(D) )(x f 在),(+∞-∞内连续4.若随机变量X 的概率密度为)( 21)(4)3(2+∞<<-∞=+-x ex f x π,则=Y ())1,0(~N(A)23+X (B)23+X (C)23-X (D)2-X 5.若随机变量Y X ,不相关,则下列等式中不成立的是()(A)0) ,cov(=Y X (B) DY DX Y X D +=+)((C) DY DX DXY ?=(D) EY EX EXY ?=6.设样本n X X X ,,,21取自标准正态分布总体X ,又S X ,分别为样本均值及样本标准差,则() (A) )1,0(~N X (B) )1,0(~N X n(C))(~212n X ni i χ∑= (D))1(~-n t SX7.样本n X X X ,,,21Λ )3(≥n 取自总体X ,则下列估计量中,()不是总体期望μ的无偏估计量 (A)∑=ni iX1(B) X(C) )46(1.01n X X +(D) 321X X X -+8.在假设检验中,记0H 为待检假设,则犯第一类错误指的是() (A) 0H 成立,经检验接受0H (B) 0H 成立,经检验拒绝0H (C) 0H 不成立,经检验接受0H (D) 0H 不成立,经检验拒绝0H二.填空题(每空2分,共14分)1.同时掷三个均匀的硬币,出现三个正面的概率是_____ ___,恰好出现一个正面的概率是________.2.设随机变量X 服从一区间上的均匀分布,且3,3==DX EX ,则X 的概率密度为________. 3.设随机变量X 服从参数为2的指数分布,Y 服从参数为4的指数分布,则=+)32(2Y X E _______. 4.设随机变量X 和Y 的数学期望分别为-2和2,方差分别为1和4,而相关系数为-0.5,则根据切比雪夫不等式,有≤≥+}6|{|Y X P ________.5.假设随机变量X 服从分布)(n t ,则21X服从分布____ ____(并写出其参数).2026.设n X X X ,,,21Λ )1(>n 为来自总体X 的一个样本,对总体方差DX 进行估计时,常用的无偏估计量是________.三.(本题6分)设1.0)(=A P ,9.0)|(=A B P ,2.0)|(=A B P ,求)|(B A P . 四.(本题8分)两台车床加工同样的零件,第一台出现废品的概率为0.03,第二台出现废品的概率为0.02.加工出来的零件放在一起.又知第一台加工的零件数是第二台加工的零件数的2倍.求:(1) 任取一个零件是合格品的概率,(2) 若任取一个零件是废品,它为第二台车床加工的概率. 五.(本题14分)袋中有4个球分别标有数字1,2,2,3,从袋中任取一球后,不放回再取一球,分别以Y X ,记第一次,第二次取得球上标有的数字,求:(1) ) ,(Y X 的联合分布; (2) Y X ,的边缘分布; (3) Y X ,是否独立;(4) )(XY E .六.(本题12分)设随机变量X 的密度函数为)( )(||2+∞<<-∞=-x e Ax x f x ,试求:(1) A 的值;(2) )21(≤<-X P ; (3) 2X Y =的密度函数. 七.(本题6分)某商店负责供应某地区1000人商品,某种产品在一段时间内每人需用一件的概率为0.6.假定在这段时间,各人购买与否彼此无关,问商店应预备多少件这种商品,才能以%7.99的概率保证不会脱销?(假定该商品在某一段时间内每人最多买一件).八.(本题10分)一个罐内装有黑球和白球,黑球数与白球数之比为R . (1) 从罐内任取一球,取得黑球的个数X 为总体,即??=白球,,黑球,,01X 求总体X 的分布;(2) 从罐内有放回的抽取一个容量为n 的样本n X X X ,,,21Λ,其中有m 个白球,求比数R 的最大似然估计值.九.(本题14分)对两批同类电子元件的电阻进行测试,各抽6件,测得结果如下(单位:Ω):A 批:0.140,0.138,0.143,0.141,0.144,0.137;B 批:0.135,0.140,0.142,0.136,0.138,0.141. 已知元件电阻服从正态分布,设05.0=α,问:(1) 两批电子元件的电阻的方差是否相等? (2) 两批电子元件的平均电阻是否有显著差异? (2281.2)10(025.0=t ,15.7)5,5(025.0=F )203模拟试题(二)一.单项选择题(每小题2分,共16分)1.设C , ,B A 表示3个事件,则C B A 表示() (A) C , ,B A 中有一个发生(B) C , ,B A 中不多于一个发生(C) C , ,B A 都不发生 (D) C , ,B A 中恰有两个发生2.已知)(,61)|(,31)()(B A P B A P B P A P 则====(). (A) 187 (B) 1811 (C) 31 (D) 413.设两个相互独立的随机变量X 与Y 分别服从正态分布)1,0(N 和)1,1(N ,则()(A) 21}0{=≤+Y X P (B) 21}1{=≤+Y X P (C) 21}0{=≤-Y X P (D) 21}1{=≤-Y X P4.设X 与Y 为两随机变量,且6.0,1,4===XY DY DX ρ,则=-)23(Y X D ()(A) 40 (B) 34(C) 25.6 (D) 17.65.若随机变量X 服从参数为λ的泊松分布,则2X 的数学期望是()(A) λ(B)λ1 (C) 2λ(D) λλ+26.设n X X X ,,,21Λ是来自于正态总体),(2σμN 的简单随机样本,X 为样本方差,记∑=--=n i i X X n S 122)(111 ∑=-=n i i X X n S 1222)(1 ∑=--=n i i X n S 1223)(11μ ∑=-=n i i X n S 1224)(1μ 则服从自由度为1-n 的t 分布的随机变量是()(A) 1/1--=n S X t μ (B) 1/2--=n S X t μ (C) 1/3--=n S X t μ(D) 1/4--=n S X t μ7.设总体X 均值μ与方差2σ都存在,且均为未知参数,而,,,21ΛX X n X 是该总体的一个样本,X 为样本方差,则总体方差2σ的矩估计量是()(A) X (B) ∑=-n i i X n 12)(1μ(C) ∑=--n i i X X n 12)(11 (D) ∑=-n i i X X n 12)(1 8.在假设检验时,若增大样本容量,则犯两类错误的概率() (A) 都增大 (B) 都减小204(C) 都不变 (D) 一个增大一个减小二.填空题(每空2分,共14分)1.设10件产品中有4件不合格品,从中任取2件,已知所取2件中有1件是不合格品,则另外1件也是不合格品的概率为________.2.设随机变量X 服从)8.0 ,1(B 分布,则X 的分布函数为________.3.若随机变量X 服从均值为2,方差为2σ的正态分布,且6.0}40{=<<x p="" ,则}0{<="" 的0-1分布,其中)10(<。

《概率统计》单元自测题(一)

《概率统计》单元自测题(一)

《概率统计》单元自测题(一)《概率统计》单元自测题(一)一、填空题1.设 A 、B 、C 是三个随机事件。

试用 A 、B 、C 分别表示事件1)A 、B 、C 至少有一个发生2)A 、B 、C 中恰有一个发生3)A 、B 、C 不多于一个发生2.设 A 、B 为随机事件, P (A)=0.5,P(B)=0.6,P(B A)=0.8。

则P(B )A U =3.若事件A 和事件B 相互独立, P()=,A αP(B)=0.3,P(AB)=0.7,U 则α=4. 将C,C,E,E,I,N,S 等7个字母随机的排成一行,那末恰好排成英文单词SCIENCE 的概率为5. 甲、乙两人独立的对同一目标射击一次,其命中率分别为0.6和0.5,现已知目标被命中,则它是甲射中的概率为二、选择题1. 设A,B 为两随机事件,且B A ?,则下列式子正确的是(A )P (A+B) = P (A); (B )()P(A);P AB =(C )(|A)P(B);P B = (D )(A)P B -=()P(A)P B -2. 以A 表示事件“甲种产品畅销,乙种产品滞销”,则其对立事件A 为(A )“甲种产品滞销,乙种产品畅销”;(B )“甲、乙两种产品均畅销”(C )“甲种产品滞销”;(D )“甲种产品滞销或乙种产品畅销”。

3. 袋中有50个乒乓球,其中20个黄的,30个白的,现在两个人不放回地依次从袋中随机各取一球。

则第二人取到黄球的概率是(A )1/5 (B )2/5 (C )3/5 (D )4/54. 对于事件A ,B ,下列命题正确的是(A )若A ,B 互不相容,则A 与B 也互不相容。

(B )若A ,B 相容,那么A 与B 也相容。

(C )若A ,B 互不相容,且概率都大于零,则A ,B 也相互独立。

(D )若A ,B 相互独立,那么A 与B 也相互独立。

5. 若()1P B A =,那么下列命题中正确的是(A )A B ? (B )B A ? (C )A B -=? (D )()0P A B -=三、计算题1.10把钥匙中有3把能打开门,今任意取两把,求能打开门的概率。

概率统计试题库及答案

概率统计试题库及答案
69、设随机变量 可取 三个值,且 , ,则 _________。(0.3)
70、随机变量 的分布函数为 ,则 = 。
71、设随机变量ξ可取0,1,2三个值,且P{ξ=1}=0.3,P{ξ=2}=0.2,则P{ξ=0}=_____________。(0.5)
72、已知连续型随机变量X的分布函数为 则P{0.5<X<1.5}=____________,P{X>2/3}=______________。(0.75, )
91、设 ,则X的函数Y=~N(0,1)。( )
92、设 ,且 ,则 =__________。(0.05)
93、 。( )
94、设随机变量 的分布函数为 ,则对于任意实数 ,有 ____________。( )
95、设连续型随机变量 服从 区间上的均匀分布,则 的分布函数 ___________________。( )
6、 ___________; _____________; ____________。( , , )
7、设事件A、B、C,将下列事件用A、B、C间的运算关系表示:(1)三个事件都发生表示为:_____________;(2)三个事件不都发生表示为:_____________;(3)三个事件中至少有一个事件发生表示为:___________。( , , )
43、100件产品中有10件次品,任取5件恰有3件次品的概率为________________(只写算式)。( )
44、某楼有供水龙头5个,调查表明每一龙头被打开的概率为 ,则恰有3个水龙头同时被打开的概率为____________(只写算式)。( )
45、古典概型的主要特点是:______________________________和______________________________。(样本空间中基本事件总数是有限的,每一基本事件发生是等可能的)

概率统计 单元自测题

概率统计 单元自测题

概率统计单元自测题皖西学院金融与数学学院编订第一单元 随机事件及其概率一、选择题1、事件A 发生且,B C 都不发生,下列表示不正确的是:( )① ABC ; ② A B C -- ; ③ ()A B C -+ ; ④ A BC -2、设,A B 是同一样本空间S 中的任意两个事件,则下列关系一定成立的是( )①.()A B B A +-= ; ②.()A B B A +-? ;③.()A B B A -+= ; ④. ()A B B A -+?.3、从一批产品中随机抽两次,每次抽1件。

以A 表示事件“两次都抽得正品”,B 表示事件“至少抽得一件次品”,则下列关系式中正确的是 ( )① A B Ì; ② B A Ì ; ③ A B = ; ④ A B = .4、设,A B 是同一样本空间S 中的任意两个事件,且()0.6P A = ,()0.7P B = ,则()P AB 的最小值是 ( )① 0; ② 0.1; ③ 0.42; ④ 0.35、同时掷3枚匀称的硬币,则恰好有两枚正面向上的概率为 ( )① 0.5 ; ② 0.25 ; ③ 0.125 ; ④ 0.375 .6、设()0.6,()0.7P A P B ==,则()p P AB =的取值范围是( ) ① 00.3p #; ② 00.6p #; ③ 0.10.6p #; ④ 0.30.6p #.7、设,A B 是互不相容事件,且0()1P B <<。

则下列关系不能成立的是 ( ) ① ()()()P AB P A P B =; ②()0P AB = ;③()()()P A B P A P B +=+; ④()1P A B +=.8、已知A B Ì,则下面说法错误的是 ( )① ()()()P B A P B P A -=- ;②()()()P B A P B P AB -=-;③ ()()()P AB P A P B =- ; ④ ()()()P BA P B P A =-.9、设,A B 是互不相容的事件,则下列等式一定成立的是 ( ) ①()()()P AB P A P B = ;②()1()P A P B =- ;③()1P AB = ;④()1P A B =U二、填空题1、袋中有10个球,分别编有号码1至10,从中任取1球,设{A = 取得球的号码是偶数} ,{B = 取得球的号码是奇数} ,{C = 取得球的号码小于5} ,问下列运算表示什么事件:①A B U {= }②{AB = } ③{AC = } ④{AC = } ⑤{AB = } ⑥{B C =U } ⑦{A C -= }2、用事件,,A B C 的运算关系式表示下列事件:① 表示 A 出现,,B C 都不出现;② 表示 ,A B 都出现,C 不出现;③ 表示 所有,,A B C 三个事件都出现;④ 表示 ,,A B C 三个事件中至少有一个出现; ⑤ 表示 三个事件,,A B C 都不出现;⑥ 表示 三个事件,,A B C 中不多于一个事件出现; ⑦ 表示 三个事件,,A B C 中不多于两个事件出现; ⑧ 表示 三个事件,,A B C 中至少有两个事件出现。

概率统计习题集(含答案)

概率统计习题集(含答案)

第一章 随机事件及其概率一、选择题:1.设A 、B 、C 是三个事件,与事件A 互斥的事件是: ( )A .AB AC + B .()A B C + C .ABCD .A B C ++2.设B A ⊂ 则 ( )A .()P AB I =1-P (A ) B .()()()P B A P B A -=-C . P(B|A) = P(B)D .(|)()P A B P A =3.设A 、B 是两个事件,P (A )> 0,P (B )> 0,当下面的条件( )成立时,A 与B 一定独立A .()()()P AB P A P B =I B .P (A|B )=0C .P (A|B )= P (B )D .P (A|B )= ()P A4.设P (A )= a ,P (B )= b, P (A+B )= c, 则 ()P AB 为: ( )A .a-bB .c-bC .a(1-b)D .b-a5.设事件A 与B 的概率大于零,且A 与B 为对立事件,则不成立的是 ( )A .A 与B 互不相容 B .A 与B 相互独立C .A 与B 互不独立D .A 与B 互不相容6.设A 与B 为两个事件,P (A )≠P (B )> 0,且A B ⊃,则一定成立的关系式是( )A .P (A|B )=1 B .P(B|A)=1C .(|A)1p B =D .(A|)1p B =7.设A 、B 为任意两个事件,则下列关系式成立的是 ( )A .()AB B A -=U B .()A B B A -⊃UC .()A B B A -⊂UD .()A B B A -=U8.设事件A 与B 互不相容,则有 ( )A .P (AB )=p (A )P (B ) B .P (AB )=0C .A 与B 互不相容D .A+B 是必然事件9.设事件A 与B 独立,则有 ( )A .P (AB )=p (A )P (B ) B .P (A+B )=P (A )+P (B )C .P (AB )=0D .P (A+B )=110.对任意两事件A 与B ,一定成立的等式是 ( )A .P (AB )=p (A )P (B ) B .P (A+B )=P (A )+P (B )C .P (A|B )=P (A )D .P (AB )=P (A )P (B|A )11.若A 、B 是两个任意事件,且P (AB )=0,则 ( )A .A 与B 互斥 B .AB 是不可能事件C .P (A )=0或P (B )=0D .AB 未必是不可能事件12.若事件A 、B 满足A B ⊂,则 ( )A .A 与B 同时发生 B .A 发生时则B 必发生C .B 发生时则A 必发生D .A 不发生则B 总不发生13.设A 、B 为任意两个事件,则P (A-B )等于 ( )A . ()()PB P AB - B .()()()P A P B P AB -+C .()()P A P AB -D .()()()P A P B P AB --14.设A 、B 、C 为三事件,则AB BC AC U U 表示 ( )A .A 、B 、C 至少发生一个 B .A 、B 、C 至少发生两个C .A 、B 、C 至多发生两个D .A 、B 、C 至多发生一个15.设0 < P (A) < 1. 0 < P (B) < 1. P(|B)+P(A B A )=1. 则下列各式正确的是( )A .A 与B 互不相容 B .A 与B 相互独立C .A 与B 相互对立D .A 与B 互不独立16.设随机实际A 、B 、C 两两互斥,且P (A )=0.2,P (B )=0.3,P (C )=0.4,则PA B C -=U ()( ).A .0.5B .0.1C .0.44D .0.317掷两枚均匀硬币,出现一正一反的概率为 ( )A .1/2B .1/3C .1/4D .3/418.一种零件的加工由两道工序组成,第一道工序的废品率为 1p ,第二道工序的废品率为2p ,则该零件加工的成品率为 ( )A .121p p --B .121p p -C .12121p p p p --+D .122p p --19.每次试验的成功率为)10(<<p p ,则在3次重复试验中至少失败一次概率为( )。

概率统计第一章习题

概率统计第一章习题

第一章 概率论的基本概念基础训练I一、选择题1、以A 表示事件“甲种产品畅销,乙种产品滞销”,则其对立事件A 为:( )A )甲种产品滞销,乙种产品畅销;B )甲乙产品均畅销;C )甲种产品滞销;D )甲产品滞销或乙种产品畅销。

2、设事件B A ,是两个概率不为零的互不相容事件,则下列结论正确的是( )A ),AB 互不相容; B )A 与B 相容;C ))()()(B P A P AB P =;D ))()(A P B A P =-。

3、对于任意事件B A ,,有=-)(B A P ( )A ))()(B P A P -; B ))()()(AB P B P A P +-;C ))()(AB P A P -;D ))()()(AB P B P A P -+。

4、已知5个人进行不放回抽签测试,袋中5道试题(3道易题,2道难题),问第3个人抽中易题的概率是( )A )53;B )43;C )42;D )103. 5、设()0.8P A =,()0.7P B =,(|)0.8P A B =,则下列结论正确的有( )A )B A ,相互独立; B )B A ,互不相容;C )A B ⊃;D ))()()(B P A P B A P +=⋃。

二、填空题1、设C B A ,,是随机事件,则事件“A 、B 都不发生,C 发生”表示为 , “C B A ,,至少有两个发生”表示成 。

2、设A 、B 互不相容,4.0)(=A P ,7.0)(=⋃B A P ,则=)(B P ;3、某市有50%住户订日报,有65%住户订晚报,有85%的住户至少订这两种报纸中的一种,则同时订这两种的住户百分比是: ;4、设4/1)()()(===C P B P A P ,0)()(==BC P AB P ,8/1)(=AC P ,则C B A 、、三件事至少有一个发生的概率为 ;5、若A 、B 互不相容,且,0)(>A P 则=)|(A B P ;若A 、B 相互独立,且,0)(>A P 则=)|(A B P 。

概率论与数理统计第一章测试题

概率论与数理统计第一章测试题

概率论与数理统计第一章测试题一、填空题(每题3分)1.设 A 、B 、C 是三个随机事件。

试用 A 、B 、C 分别表示事件1)A 、B 、C 至少有一个发生 。

2)A 、B 、C 中恰有一个发生 。

3)A 、B 、C 不多于一个发生 。

2.设 A 、B 为随机事件, P (A)=0.5,P(B)=0.6,P(B A)=0.8。

则P(B)A = 3.若事件A 和事件B 相互独立, P()=,A αP(B)=0.3,P(A B)=0.7,则α=4. 袋中有编号为1,2,3,4,5的5个彩球,从中取出3个球,则取到最大号码为4的概率为 。

5. 甲、乙两人独立的对同一目标射击一次,其命中率分别为0.6和0.5,现已知目标被命中,则它是甲射中的概率为 。

二、选择题(每题3分)1. 设A,B 为两随机事件,且B A ⊂,则下列式子正确的是 。

(A )P(A ∪B) = P(A); (B )()P(A);P AB =(C )(|A)P(B);P B = (D )(A)P B -=()P(A)P B -2. 以A 表示事件“甲种产品畅销,乙种产品滞销”,则其对立事件A 为 。

(A )“甲种产品滞销,乙种产品畅销”; (B )“甲、乙两种产品均畅销”(C )“甲种产品滞销”; (D )“甲种产品滞销或乙种产品畅销”。

3. 袋中有50个乒乓球,其中20个黄的,30个白的,现在两个人不放回地依次从袋中随机各取一球。

则第二人取到黄球的概率是(A )1/5 (B )2/5 (C )3/5 (D )4/54. 对于事件A ,B ,下列命题正确的是(A )若A ,B 互不相容,则A 与B 也互不相容。

(B )若A ,B 相容,那么A 与B 也相容。

(C )若A ,B 互不相容,且概率都大于零,则A ,B 也相互独立。

(D )若A ,B 相互独立,那么A 与B 也相互独立。

5. 若()1P B A =,那么下列命题中正确的是(A )A B ⊂ (B )B A ⊂ (C )A B -=∅ (D )()0P A B -=三、解答题(每题10分)1.10把钥匙中有3把能打开门,今任意取两把,求能打开门的概率。

概率统计试题库及答案

概率统计试题库及答案
6、 ___________; _____________; ____________。( , , )
7、设事件A、B、C,将下列事件用A、B、C间的运算关系表示:(1)三个事件都发生表示为:_____________;(2)三个事件不都发生表示为:_____________;(3)三个事件中至少有一个事件发生表示为:___________。( , , )
54、5人排成一排照相,其中a.,b两人不能相邻照相的概率为_________。( )
55、4.3个人选等可能地选择五条不同的道路,则至少有两人选择同一条道路的概率为:_________。( )
56、两人在1到10个号码中允许重复地各选取一个,则最大号码为5的概率为_________。( )
57、甲乙两人赌博约定五局三胜,设两人每局的胜率相等.在甲已胜二场,乙已胜一场的情况下,乙最终获胜的概率为_________。( )
63、已知P(A)=0﹒6,P(B)=0﹒4,P(A︱B)=0﹒45,则P(A B)=。(0.82)
64、某车间有5台相互独立运行的设备,开工率均为p,若至少有3台设备同时开工生产才能正常进行,则生产能正常进行的概率为_________。(只写算式)( )
65、设试验 的样本空间为 , 为 的事件, 为 的一个划分,且 ,则 ____________。( )
28、已知 , , ,则 ____________。(0.60)
29、计算下列算式:(1) =_________;(2) =_________;(3)若A,B独立,P(A)=0.3, P(B)=0.2,则P(B-A)=_________。( , ,0.14)
30、设A、B是两个事件,若 ,则有 _______________。( )

概率统计小测验1-3章(带答案)

概率统计小测验1-3章(带答案)

概率统计1-3章小测(100分钟共120分) 姓名___________学号______________________ 一、填空题,每题4分,共60分。

(1)已知 则=0.7(2)一批产品共有10个正品和2个次品,随机抽取,每次抽一个,抽出后不再放回,则第三次抽出的是次品的概率为__1/6__________.(抽签问题)(3)从数1,2,3,4中任取一个数,记为,再从1到X 中任取一个数,记为,则=13/48 (4)在区间内任取两个数,则事件”两数之和小于”的概率为___17/25________. (5)设~(0,2)X U ,则42Y X =+的概率密度1210()8Y y f y other ⎧≤≤⎪=⎨⎪⎩(6)设~(0,2)X U ,则在内的概率密度()Y f y =(7)设X 的分布函数为(),14,F x Y X =-则Y 的分布函数1()1()4Y yF y F -=-. (8)设(),max(,2),X e Y X λ~=则Y 的分布函数02()12Y yy F y ey λ-<⎧=⎨-≥⎩ (9)设X 与Y 相互独立,~(1,0.5),X B Y 有密度(),Y f y 令2,Z X Y =+则11()()(2)22Z Y f z f z f z =+- (10)设X 有密度函数53(),0,xf x Ax ex -=> 则635!A =.(11)设X 服从均匀分布(0,1)U ,且当1~(0,),X x Y U x=时,则(1)1/2P Y <= (12)设X 有密度函数2()3,01,f x x x =<<Y 表示对X 的三次独立观察中1{}2X ≥发生的次数,则147(2)512P Y ==.(13)设(2,)X B p ~, (3,)Y B p ~,已知63(Y 1)64P ≥=,则31(1)()84P X p ===. (14)设(,)X Y 的分布函数22(1e )(1e ),0,0(,),0,others x y x y F x y --⎧-->>=⎨⎩则210()0xX e x F x x -⎧->=⎨≤⎩()0.5,P A =()0.6P B =(|)0.8,P B A =()P A B X Y }2{=Y P (0,1)652Y X =(0,4)(15) 设X 与Y 独立同分布于指数分布()e λ,min(,),Z X Y =则~()Z e λ 二、计算题1(10分)现有同类型设备200台,各台工作是相互独立的,发生故障的概率都是0.02.假设在通常情况下一台设备的故障可由一个人来处理,问至少需配备多少工人,才能保证设备发生故障但不能及时维修的概率小于0.01。

《概率论与数理统计》习题及答案 第一章

《概率论与数理统计》习题及答案  第一章

《概率论与数理统计》习题及答案第 一 章1.写出下列随机试验的样本空间及下列事件中的样本点: (1)掷一颗骰子,记录出现的点数. A =‘出现奇数点’;(2)将一颗骰子掷两次,记录出现点数. A =‘两次点数之和为10’,B =‘第一次的点数,比第二次的点数大2’;(3)一个口袋中有5只外形完全相同的球,编号分别为1,2,3,4,5;从中同时取出3只球,观察其结果,A =‘球的最小号码为1’;(4)将,a b 两个球,随机地放入到甲、乙、丙三个盒子中去,观察放球情况,A =‘甲盒中至少有一球’;(5)记录在一段时间内,通过某桥的汽车流量,A =‘通过汽车不足5台’,B =‘通过的汽车不少于3台’。

解 (1)123456{,,,,,}S e e e e e e =其中i e =‘出现i 点’1,2,,6i =,135{,,}A e e e =。

(2){(1,1),(1,2),(1,3),(1,4),(1,5),(1,6)S = (2,1),(2,2),(2,3),(2,4),(2,5),(2,6) (3,1),(3,2),(3,3),(3,4),(3,5),(3,6) (4,1),(4,2),(4,3),(4,4),(4,5),(4,6) (5,1),(5,2),(5,3),(5,4),(5,5),(5,6) (6,1),(6,2),(6,3),(6,4),(6,5),(6,6)}; {(4,6),(5,5),(6,4)}A =; {(3,1),(4,2),(5,3),(6,4)}B =。

(3){(1,2,3),(2,3,4),(3,4,5),(1,3,4),(1,4,5),(1,2,4),(1,2,5)S = (2,3,5),(2,4,5),(1,3,5)}{(1,2,3),(1,2,4),(1,2,5),(1,3,4),(1,3,5),(1,4,5)}A = (4){(,,),(,,),(,,),(,,),(,,),(,,),S ab ab ab a b a b b a =--------- (,,),(,,,),(,,)}b a a b b a ---,其中‘-’表示空盒; {(,,),(,,),(,,),(,,),(,,)}A ab a b a b b a b a =------。

高三第一章概率与统计单元测试题(理)

高三第一章概率与统计单元测试题(理)

高三第一章概率与统计单元测试题(理)一、 选择题 (每小题5分,共12小题,每小题有且只有一个正确的答案)1. 下列随机变量中,不是离散随机变量的是 ( ) A. 从10只编号的球 ( 0号到9号) 中任取一只,被取出的球的号码 ξ B. 抛掷两个骰子,所得的最大点数ξC. [0 , 10]区间内任一实数与它四舍五入取整后的整数的差值ξD. 一电信局在未来某日内接到的 电话呼叫次数ξ2. 某批量较大的产品的次品率为10%,从中任意连续取出4件,则其中恰好含有3件次品的概率是 A. 0.0001 B. 0.0036 C. 0.0486 D. 0.2916 ( )3. 已知随机变量ξ的分布列为则ξA. 0.5 B. -1 C. 0 D. 14. 有N 件产品,其中有M 件次品,从中不放回地抽n 件产品,抽到的次品数的数学期望值是A. nB. (1)M n N - C. M n ND. (1)M n N + ( ) 5. 设ξ是随机变量,且(10)40D ξ=,则()D ξ等于 ( )A. 0.4B. 4C. 40D. 4006. 已知随机变量ξ服从二项分布1~(6,)3B ξ,则P(ξ=2) = ( ) A.316 B. 4243 C. 16243 D. 802437. 在某餐厅内抽取100人,其中有30人在15岁以下,35人在16至25岁,25人在26至45岁,10人在46岁以上,则数 0.35 是16到25岁人员占总体分布的 ( ) A. 概率 B. 频率 C. 累计频率 D. 频数8. 设有一个直线回归方程为 ^^2 1.5y x =- ,则变量x 增加一个单位时 ( ) A. y 平均增加 1.5 个单位 B. y 平均增加 2 个单位 C. y 平均减少 1.5 个单位 D. y 平均减少 2 个单位9. 某服务部门有n 个服务对象,每个服务对象是否需要服务是独立的,若每个服务对象一天中需要服务的可能性是 p , 则该部门一天中平均需要服务的对象个数是 ( ) A . n p (1-p) B. n p C. n D. p (1-p)10. 设有n 个样本12,,,n x x x ,其标准差是x S ,另有n 个样本12,,,n y y y ,且35k k y x =+ ( k = 1, 2, … , n ),其标准差为y S ,则下列关系正确的是 ( )A. 35y x S S =+ .B. 3y x S S =C. y x S =D. 5y x S =+11. 已知随机变量ξ的概率密度函数为201()001x x f x x x ⎧≤≤⎪=⎨<>⎪⎩或,则11()42P ξ<<=A. 14B. 17C. 19D. 316( )12. 某单位有老年人28 人,中年人54人,青年人81人,为了调查他们的身体状况的某项指标,需从他们中间抽取一个容量为36样本,适合的抽取样本的方法是 ( ) A. 简单的随机抽样 B. 系统抽样 C. 先从老年中排除一人,再用分层抽样 D.分层抽样二、填空题 ( 每小题4分,共4个小题,16分)13. 一个容量为20的样本数据,分组后,组距与频数如下: (]10,20,2; (]20,30, 3 ;(]30,40, 4 ; (]40,50, 5 ; (]50,60, 4 ; (]60,70, 2 .则样本在区间 (],50-∞上的频率为_______________________14. 一射手对靶射击,直到第一次中靶为止.他每次射击中靶的概率是 0.9 ,他有3颗弹子,射击结束后尚余子弹数目ξ的数学期望E ξ=______________________15. 有一个简单的随机样本: 10, 12, 9, 14, 13 则样本平均数x =__________ ,样本方差2s =___________16. 设随机变量2~(5,3)N ξ,则可知 35~ξ-_________________三、解答题( 共6 小题,总分74分,要求写出必要的解题过程 ) 17. (本题满分12分)假定每人生日在各个月份的机会都是相等的,求: (1) 某班的60个人中生日在一月份的平均人数;(2) 该班的60个人中有2人生日在第一季度的概率(只列出式子即可)18. (本题满分12分)已知随机变量ξ的分布列为且已知 2,E D ξ= , 求: (1) 1,2,3(2) (12)P ξ-<<, (12)P ξ<<19. (本题满分12分)甲、乙两名射手在一次射击中的得分是两个随机变量,分别记为ξ和η,它们的分布列分别为(1) 求a , b 的值(2) 计算ξ和η的期望与方差,并以此分析甲、乙两射手的技术情况.20. (本题满分12分)若随机事件A在一次试验中发生的概率为P ( 0<P<1 ),用随机变量ξ表示A在一次试验中发生的次数. (1) 求方差Dξ的最大值;(2) 求21DEξξ-的最大值.21. (本题满分12分)已知测量误差2~(2,10)N ξ(单位:㎝ ),(1)0.8413,(0.6)0.7257Φ=Φ=. (1) 求一次测量中误差的绝对值不超过8 ㎝ 的概率;(2) 必须进行多少次测量才能使至少有一次测量的误差的绝对值不超过8 ㎝ 的概率大于 0.9 ?22. (本题满分14分)从一批有5个合格品与3个次品的产品中,一件一件地抽取产品,设各个产品被抽到的可能性相同.记ξ为直到取出的是合格品为止时所需抽取的次数,分别在下列三种情形下求出:(1) 每次抽取的产品都不放回到这批产品中的ξ的分布列和所需平均抽取的次数; (2) 每次抽取的产品都立即放回到这批产品中,然后再抽取一件产品的ξ的分布列; (3) 每次抽取一件产品后,总将一件合格品放入这批产品中的ξ的分布列.参考答案: 一、选择题C B B C A ,D B C B B ,D C 二、填空题13. 0.7 14. 1.89 15. 11.6 , 3.44 16. 2(10,9)N 三、解答题17. (1) 5 (2) 22586013()()44ð18. (1) 0.25 , 0.5 , 0.25 (2) 0.25 , 019. (1) a = 0.5 b = 0.6 (2) E ξ=1.3 D ξ=0.41 E η= 1.4 D η= 0.64 两者比较略去.20. (1) p =12时, D ξ的最大值为14 (2)P =时,最大值为2-21. (1) 0.567 (2) 至少 3 次 .E ξ(2) (3) 略。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《概率统计》单元自测题(一)
一、填空题
1.设 A 、B 、C 是三个随机事件。

试用 A 、B 、C 分别表示事件
1)A 、B 、C 至少有一个发生
2)A 、B 、C 中恰有一个发生
3)A 、B 、C 不多于一个发生
2.设 A 、B 为随机事件, P (A)=0.5,P(B)=0.6,P(B A)=0.8。

则P(B
)A = 3.若事件A 和事件B 相互独立, P()=,A αP(B)=0.3,P(A B)=0.7,则α=
4. 将C,C,E,E,I,N,S 等7个字母随机的排成一行,那末恰好排成英文单词SCIENCE 的概率为
5. 甲、乙两人独立的对同一目标射击一次,其命中率分别为0.6和0.5,现已知目标被命中,则它是甲射中的概率为
二、选择题
1. 设A,B 为两随机事件,且B A ⊂,则下列式子正确的是
(A )P (A+B) = P (A); (B )()P(A);P AB =
(C )(|A)P(B);P B = (D )(A)P B -=()P(A)P B -
2. 以A 表示事件“甲种产品畅销,乙种产品滞销”,则其对立事件A 为
(A )“甲种产品滞销,乙种产品畅销”; (B )“甲、乙两种产品均畅销”
(C )“甲种产品滞销”; (D )“甲种产品滞销或乙种产品畅销”。

3. 袋中有50个乒乓球,其中20个黄的,30个白的,现在两个人不放回地依次从袋中随机各取一球。

则第二人取到黄球的概率是
(A )1/5 (B )2/5 (C )3/5 (D )4/5
4. 对于事件A ,B ,下列命题正确的是
(A )若A ,B 互不相容,则A 与B 也互不相容。

(B )若A ,B 相容,那么A 与B 也相容。

(C )若A ,B 互不相容,且概率都大于零,则A ,B 也相互独立。

(D )若A ,B 相互独立,那么A 与B 也相互独立。

5. 若()1P B A =,那么下列命题中正确的是
(A )A B ⊂ (B )B A ⊂ (C )A B -=∅ (D )()0P A B -=
三、计算题
1. 10把钥匙中有3把能打开门,今任意取两把,求能打开门的概率。

2. 任意将10本书放在书架上。

其中有两套书,一套3本,另一套4本。

求下列事件的概率。

1) 3本一套放在一起。

2)两套各自放在一起。

3)两套中至少有一套放在一起。

3. 调查某单位得知。

购买空调的占15%,购买电脑占12%,购买DVD 的占20%;其中购买空调
与电脑占6%,购买空调与DVD 占10%,购买电脑和DVD 占5%,三种电器都购买占2%。

求下列事件的概率。

1)至少购买一种电器的;
2)至多购买一种电器的;
3)三种电器都没购买的;
4. 仓库中有十箱同样规格的产品,已知其中有五箱、三箱、二箱依次为甲、乙、丙厂生产的,
且甲厂,乙厂、丙厂生产的这种产品的次品率依次为1/10,1/15,1/20.从这十箱产品中任取一件产品,求取得正品的概率。

5. 一箱产品,A ,B 两厂生产分别个占60%,40%,其次品率分别为1%,2%。

现在从中任取
一件为次品,问此时该产品是哪个厂生产的可能性最大?
6. 有标号1∼n 的n 个盒子,每个盒子中都有m 个白球k 个黑球。

从第一个盒子中取一个球放
入第二个盒子,再从第二个盒子任取一球放入第三个盒子,依次继续,求从最后一个盒子取到的球是白球的概率。

二、 证明题
设A ,B 是两个事件,满足)()(A B P A B P ,证明事件A ,B 相互独立。

相关文档
最新文档