PUSHOVER分析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
静力非线性(Pushover)分析
静力非线性(包括 pushover)分析是一个强有力的功能,仅提供在ETABS 非线性版本中。除了为基于抗震设计性能执行 Pushover 分析外,此功能还可用于执行常规静力非线性分析和分段式(增加)构造的分析。
执行任何非线性将花费许多时间与耐性。在执行静力非线性分析前,请仔细阅读下列全部信息。要特别注意其中的重要事项。
非线性
静力非线性分析中可以考虑几类非线性特征。
在框架/线单元中不连续的用户定义铰的材料非线性。铰沿着任何框架单元长度指定到任何位置数上(参见线对象的框架非线性铰指定)。非耦合弯矩、扭矩、轴力和剪力铰是有效的。也有根据铰位置上的交互作用轴力和弯矩所屈服的耦合 P-M2-M3 铰。在相同的位置可存在多于一种的铰类型。例如,可以指定一个 M3(弯矩)和一个 V2(剪力)铰到框架单元的相同端部。所提供的默认铰属性是基于 ATC-40 和 FEMA-273 标准的。
在连接单元中材料的非线性。有效非线性特征包括沿任何自由角度的缝隙(仅压力)、hook(仅张力)、单轴塑性,以及两种基本隔震器类型(双轴塑性和双轴磨擦/摆动)(参见线对象的连接属性指定)。连接阻尼属性在静力非线性分析中没有效应。
所有单元中的几何非线性。可以选择仅考虑 P-△ 效应或考虑 P-△ 效应加上大位移(请参见几何非线性效应)。大位移效应考虑变形配置的平衡,并允许用于大平移和旋转。但是,每个单元中的应变被假设保留为小值。
分段(顺序)施工。在每个分析工况中,可按阶段施工顺序添加或删除构件(请参见静力非线性分段施工)。
分析工况
静力非线性分析可由任何数量的工况组成。每个静力非线性工况在结构中可有不同的荷载分布。例如:典型静力非线性分析可由三种工况组成。
第一种为结构应用重力荷载,其次为在结构的高度上应用一个横向荷载分布,第三种将在结构高度上应用另一个横向荷载分布。
静力非线性工况可从零初始状态开始,或从前一工况末的结果开始。
在前一例子中,重力工况将从零初始状态开始,两个横向工况可从重力工况末开始。
每个分析工况可由多个施工阶段组成。例如:这可能在结构逐层施工中被用于重力分析工况。
静力非线性分析工况完全独立于所有 ETABS 中其它的分析类型。尤其是,任何为线性和动态分析执行的初始 P-Δ分析在静力非线性分析工况中没有影响。只有线性模态形状交互作用可在静力非线性工况中用于荷载。
静力非线性分析工况可被用于设计。通常把线性和非线性结果组合起来没有意义,所以可以被用于设计的静力非线性工况应包括所有的荷载、适当的尺度,它们可为设计检查进行组合。
荷载
应用在给定的静力非线性工况结构上的荷载分布,定义为下列的一个或多个项的成比例组合:
任一静载工况。
在三个全局方向的任一方向上的匀加速度作用。在每个节点力对于从属此节点的质量是成比例的,并在指定的方向上产生作用。
任何特征或瑞兹模态的一个模态荷载。在每个节点的力与模态位移、模态角速度的平方(w2)以及从属此节点质量的乘积成比例,并在模态位移方向上作用。
每个建筑构造方案的荷载组合是增加的,即如果是开始于前一个静力非线性工况,它是对已经在结构上作用的荷载的额外补充。
在单一工况下的分段施工期间,当被添加时,所指定的荷载应用到每个阶段。如果在分段施工期间一个单元被删除,则删除全部被此单元携带的荷载(包括来自于以前工况的荷载)。
荷载控制
应用荷载有两类明显不同的控制。每个工况可使用一个不同的荷载控制类型。选择通常根据荷载的物理性质与结构的预期性能:
力控制。应用全部指定的荷载组合。当已知荷载(如重力荷载),且预期结构能够支承此荷载时,应当使用力控制。分段施工需要力控制。
位移控制。结构中被监控的单一位移分量(或成对位移)是被控制的。需要对荷载组合的数量增减,直到控制位移达到指定的数值为止。当找到了指定的位移(如抗震荷载)时,此处应用的荷载量事先是不知道的,或当结构可预期失去强度或变成不稳定时,应使用位移控制。位移控制不能用于分段施工。
分析结果
从静力非线性分析中可获得几种输出类型:
基底反力和监控的位移可以被出图。
沿 Pushover 曲线上每个点的基底反力 vs 监控的位移数值表格,连同超过其铰属性强制位移曲线上某些控制点的铰数量表格,可在屏幕上查看、打印或保存为文件。
基底反力 vs 监控的位移可按 ADRS 格式出图,此处垂直轴是谱加速度,而水平轴是谱位移。需要的谱可在出图上被重叠。
将能力谱(ADRS 能力与需求曲线)、有效周期与有效阻尼的数值制成表格,以在屏幕中进行查看、打印或保存为文件。
铰排列的顺序与每个铰的色标状态可按图形方式进行查看,根据逐步原则,静力非线性工况可按步进行。
构件力和应力也能以图形化方式进行查看,根据逐步原则,静力非线性工况可按步进行。
所选构件的构件力和铰结果可写入为电子表格格式的文件,随后在电子数据表格程序中处理。
所选构件的构件力和铰结果可写入到 Access 数据库格式的文件中。
步骤
下列常规步骤顺序涉及执行静力非线性分析:
生成一个与任何其它分析一样的模型。注意:虽然其它单元类型可显示在模型中,但框架和连接单元限制为材料非线性。
即便要定义静力荷载工况,也需要在静力非线性分析中使用(定义菜单 > 静力荷载工况命令进行访问)。
定义任何框架单元的钢或混凝土设计所需的静力或动力分析工况。
如需要定义铰属性,可通过定义菜单 > 框架非线性铰属性命令进行。
如需要指定铰属性,可通过设定菜单 > 框架/线 > 非线性铰命令进行。
如需要定义非线性连接属性,可通过定义菜单 > 连接属性命令进行。
如需要铰连接属性指定到框架/线单元上,可通过设定菜单 > 框架/线 > 连接属性命令进行。
运行基本线性和动态分析(通过分析菜单 > 运行命令进行)。
如果任何混凝土铰属性是基于默认数值的,以便被程序所计算,用户就可执行混凝土设计,决定使用的钢筋。
如果任何钢铰属性是基于默认数值的,以便被程序所计算,用户就可执行钢设计,程序决定使用合适的截面。
对于分段施工,定义代表各完成施工阶段的组。
定义静力非线性工况(定义菜单 > 静力非线性/Pushover 工况命令进行)。
运行静力非线性分析(分析菜单 > 运行静力非线性分析命令进行)。
复查静力非线性结果(显示菜单 > 显示静力 Pushover 曲线命令)、(显示菜单 > 显示变形后形状命令)、(显示菜单 > 显示构件力/应力图命令)和(文件菜单 > 表格打印 > 分析输出命令)。
执行任何利用静力非线性工况的设计检查。
按需要修订模型并反复进行。
重要事项
进行非线性分析需要时间与耐心。每个非线性问题都不一样。预计您需要一定的时间来学会解决每个新问题的最佳方法。
从简单开始,并逐步完善。确保模型性能在线性荷载与模态分析下如所期望的那样。宁可起始在预期为最大非线性域中逐步添加铰,也不在起始就到处使用铰。使用不丢失主构件强度的铰模型开始;可在以后修改铰模型或重新设计结构。
执行没有非线性几何形的初始分析。添加 P-Δ效应,最终很有可能导致大面积的破坏。以适度目标位移和有限制的步骤数量开始。在开始时,目标应是快速执行分析,以便可得到建模的体验。当通过建模实践增长了信心,可更进一步地学习,并考虑到更极端的非线性状态。
在数学上,静力非线性分析不总是保证有唯一的解决方案。动态分析的惯性效应可遵循真实世界结构路径的限制。但这不是真实的静力分析,尤其在由于材料或几何非线性造成失去强度的不稳定工况下。
小规模改变属性或荷载可导致在非线性反应中大规模的改变。由于这种原因,考虑许多不同的荷载工况是相当重要的,而且可在结构属性变化效果的敏感度进行研究。
静力非线性工况数据
对话框:静力非线性工况数据
访问静力非线性工况数据对话框,可使用定义菜单>静力非线性
/Pushover工况命令,并点击添加新工况或修改/显示新工况按钮静力非线性工况数据对话框具有下列域:
选项域