2020年全国高考数学·培优复习 第30讲 数列高考选择填空压轴题专练
压轴题01 数列压轴题(解析版)--2023年高考数学压轴题专项训练(全国通用)
压轴题01数列压轴题题型/考向一:等差数列、等比数列性质的综合题型/考向二:以古文化、实际生活等情境综合题型/考向三:数列综合应用一、等差数列、等比数列的基本公式1.等差数列的通项公式:a n =a 1+(n -1)d ;2.等比数列的通项公式:a n =a 1·q n -1.3.等差数列的求和公式:S n =n (a 1+a n )2=na 1+n (n -1)2d ;4.等比数列的求和公式:S na 1-a n q1-q ,q ≠1,二、等差数列、等比数列的性质1.通项性质:若m +n =p +q =2k (m ,n ,p ,q ,k ∈N *),则对于等差数列,有a m +a n =a p +a q =2a k ,对于等比数列,有a m a n =a p a q =a 2k .2.前n 项和的性质(m ,n ∈N *):对于等差数列有S m ,S 2m -S m ,S 3m -S 2m ,…成等差数列;对于等比数列有S m ,S 2m -S m ,S 3m -S 2m ,…成等比数列(q =-1且m 为偶数情况除外).三、数列求和的常用方法热点一分组求和与并项求和1.若数列{c n }的通项公式为c n =a n ±b n ,或c nn ,n 为奇数,n ,n 为偶数,且{a n },{b n }为等差或等比数列,可采用分组求和法求数列{c n }的前n 项和.2.若数列的通项公式中有(-1)n 等特征,根据正负号分组求和.热点二裂项相消法求和裂项常见形式:(1)分母两项的差等于常数1(2n -1)(2n +1)=1n (n +k )=(2)分母两项的差与分子存在一定关系2n (2n -1)(2n +1-1)=12n -1-12n +1-1;n +1n 2(n +2)2=141n 2-1(n +2)2.(3)分母含无理式1n +n +1=n +1-n .热点三错位相减法求和如果数列{a n }是等差数列,{b n }是等比数列,那么求数列{a n ·b n }的前n 项和S n 时,可采用错位相减法.用其法求和时,应注意:(1)等比数列的公比为负数的情形;(2)在写“S n ”和“qS n ”的表达式时应特别注意将两式“错项对齐”,以便准确写出“S n -qS n ”的表达式.○热○点○题○型一等差数列、等比数列性质的综合1.已知等比数列{}n a 满足123434562,4a a a a a a a a +++=+++=,则11121314a a a a +++=()A .32B .64C .96D .128【答案】B【详解】设{}n a 的公比为q ,则()234561234a a a a q a a a a +++=+++,得22q =,所以()()1051112131412341234264a a a a a a a a q a a a a +++=+++⨯=+++⨯=.故选:B2.已知等比数列{}n a 的公比0q >且1q ≠,前n 项积为n T ,若106T T =,则下列结论正确的是()A .671a a =B .781a a =C .891a a =D .9101a a =【答案】C3.已知等差数列n 满足15,36,数列n 满足12n n n n ++=⋅⋅.记数列{}n b 的前n 项和为n S ,则使0n S <的n 的最小值为()A .8B .9C .10D .11【答案】C【分析】设等差数列{}n a 的公差为d ,则由1536446a a a a =⎧⎨=+⎩得:111141624206a a da d a d =+⎧⎨+=++⎩,解得:1163a d =⎧⎨=-⎩,()1631319n a n n ∴=--=-+,则当6n ≤时,0n a >;当7n ≥时,0n a <;∴当4n ≤时,0n b >;当5n =时,0n b <;当6n =时,0n b >;当7n ≥时,0n b <;11613102080b =⨯⨯= ,213107910b =⨯⨯=,31074280b =⨯⨯=,474128b =⨯⨯=,()54128b =⨯⨯-=-,()()612510b =⨯-⨯-=,()()()725880b =-⨯-⨯-=-,()()()85811440b =-⨯-⨯-=-,()()()9811141232b =-⨯-⨯-=-,()()()101114172618b =-⨯-⨯-=-,532900S ∴=>,915480S =>,1010700S =-<,100S < ,当10n ≥时,0n b <,∴当10n ≥时,0n S <,则使得0n S <的n 的最小值为10.()()()()()()102120232022k k k k k k k T f a f a f a f a f a f a =-+-++- ,1,2k =,则1T ,2T 的大小关系是()A .12T >TB .12T T <C .12T T =D .1T ,2T 的大小无法确定()()101322022...a f a +-)()22023f a -1=125.数列n 满足12,21n n n ++=+∈N ,现求得n 的通项公式为n nn F A B ⎛=⋅+⋅ ⎝⎭⎝⎭,,A B ∈R ,若[]x 表示不超过x 的最大整数,则812⎡⎤⎛⎢⎥ ⎢⎥⎝⎭⎣⎦的值为()A .43B .44C .45D .46○热○点○题○型二以古文化、实际生活等情境综合6.小李年初向银行贷款M 万元用于购房,购房贷款的年利率为P ,按复利计算,并从借款后次年年初开始归还,分10次等额还清,每年1次,问每年应还()万元.A .10MB .()()1010111MP P P ++-C .()10110M P +D .()()99111MP P P ++-7.传说国际象棋发明于古印度,为了奖赏发明者,古印度国王让发明者自己提出要求,发明者希望国王让人在他发明的国际象棋棋盘上放些麦粒,规则为:第一个格子放一粒,第二个格子放两粒,第三个格子放四粒,第四个格子放八粒……依此规律,放满棋盘的64个格子所需小麦的总重量大约为()吨.(1kg麦子大约20000粒,lg2=0.3)A.105B.107C.1012D.1015次日脚痛减一半,六朝才得到其关,要见末日行里数,请公仔细算相还.”其意思为:有一个人一共走了441里路,第一天健步行走,从第二天起脚痛,每天走的路程为前一天的一半,走了6天后到达目的地,请问最后一天走的路程是()A.7里B.8里C.9里D.10里【答案】A【详解】设第六天走的路程为1a,第五天走的路程为2a……第一天走的路程记为6a,9.2022年10月16日上午10时,中国共产党第二十次全国代表大会在北京人民大会堂隆重开幕.某单位组织全体党员在报告厅集体收看党的二十大开幕式,认真聆听习近平总书记向大会所作的报告.已知该报告厅共有10排座位,共有180个座位数,并且从第二排起,每排比前一排多2个座位数,则最后一排的座位数为()A .23B .25C .27D .2910次差成等差数列的高阶等差数列.现有一个高阶等差数列的前6项分别为4,7,11,16,22,29,则该数列的第18项为()A .172B .183C .191D .211【答案】C【详解】设该数列为{}n a ,则11,(2)n n a a n n --=+≥,○热○点○题○型三数列综合应用11.在数列{}n a 中,11a =,11n n a a n +=++,则122022111a a a +++= ()A .20211011B .40442023C .20212022D .2022202312.已知正项数列{}n a 的前n 项和为n S ,且12a =,()()1133n nn n n n S S S S ++-=+,则2023S =()A .202331-B .202331+C .2022312+D .2023312+13.已知一族曲线n .从点向曲线n 引斜率为(0)n n k k >的切线n l ,切点为(),n n n P x y .则下列结论错误的是()A .数列{}n x 的通项为1n nx n =+B .数列{}n y 的通项为n yC .当3n >时,1352111nn nx x x x x x--⋅⋅⋅>+ Dnnxy <故D 正确.故选:B.14.在数列{}n a 中给定1a ,且函数()()311sin 213n n f x x a x a x +=-+++的导函数有唯一零点,函数()()()112πcos π2g x x x x =-且()()()12918g a g a g a +++= ,则5a =().A .14B .13C .16D .1915.已知函数()()*ln N f x nx x n =+∈的图象在点,fn n ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭处的切线的斜率为n a ,则数列11n n a a +⎧⎫⎨⎩⎭的前n 项和n S 为()A .11n +B .()()235212n nn n +++C .()41nn +D .()()235812n nn n +++。
高考数学压轴专题2020-2021备战高考《数列》真题汇编附答案解析
数学《数列》高考知识点一、选择题1.设数列是公差的等差数列,为前项和,若,则取得最大值时,的值为A .B .C .或D .【答案】C 【解析】,进而得到,即,数列是公差的等差数列,所以前五项都是正数,或时,取最大值,故选C.2.设数列{}n a 是等差数列,1356a a a ++=,76a =.则这个数列的前7项和等于( ) A .12 B .21C .24D .36【答案】B 【解析】 【分析】根据等差数列的性质可得3a ,由等差数列求和公式可得结果. 【详解】因为数列{}n a 是等差数列,1356a a a ++=, 所以336a =,即32a =, 又76a =, 所以73173a a d -==-,1320a a d =-=, 故1777()212a a S +== 故选:B 【点睛】本题主要考查了等差数列的通项公式,性质,等差数列的和,属于中档题.3.数列{}n a :1,1,2,3,5,8,13,21,34,…,称为斐波那契数列,是由十三世纪意大利数学家列昂纳多·斐波那契以兔子繁殖为例子而引入,故又称为“兔子数列”.该数列从第三项开始,每项等于其前相邻两项之和.即:21n n n a a a ++=+.记该数列{}n a 的前n 项和为n S ,则下列结论正确的是( )A .201920202S a =+B .201920212S a =+C .201920201S a =-D .201920211S a =-【答案】D 【解析】【分析】根据递推关系利用裂项相消法探求和项与通项关系,即得结果. 【详解】 因为1233243546521()()()()()n n n n S a a a a a a a a a a a a a a ++=++++=-+-+-+-+-2221n n a a a ++=-=-,所以201920211S a =-,选D. 【点睛】本题考查裂项相消法,考查基本分析判断能力,属中档题.4.已知数列{}n a 为等比数列,前n 项和为n S ,且12a =,1n n b a =+,若数列{}n b 也是等比数列,则n S =( ) A .2n B .31n - C .2n D .31n -【答案】C 【解析】 【分析】设等比数列{}n a 的公比为q ,写出,n n a b .由数列{}n b 是等比数列,得2213b b b =,求出q ,即求n S . 【详解】设等比数列{}n a 的公比为q ,112,2n n a a q -=∴=,121n n b q -∴=+,13b ∴=,221b q =+,2321b q =+,{}n b 也是等比数列, 2213b b b ∴=,即()()2221321q q +=+解得1q =,2,2n n a S n ∴=∴=. 故选:C . 【点睛】本题考查等比数列的性质,属于基础题.5.已知数列{}n a 的前n 项和为n S ,若2n n S a n =-,则9S =( ) A .993 B .766 C .1013 D .885【答案】C 【解析】 【分析】计算11a =,()1121n n a a -+=+,得到21nn a =-,代入计算得到答案.【详解】当1n =时,11a =;当2n ≥时,1121n n n n a S S a --=-=+,∴()1121n n a a -+=+,所以{}1n a +是首项为2,公比为2的等比数列,即21nn a =-,∴1222n n n S a n n +=-=--,∴1092111013S =-=.故选:C . 【点睛】本题考查了构造法求通项公式,数列求和,意在考查学生对于数列公式方法的灵活运用.6.执行下面程序框图输出S 的值为( )A .2542B .3764C .1730D .67【答案】A 【解析】 【分析】模拟执行程序框图,依此写出每次循环得到的,S i 的值并判断5i >是否成立,发现当6i =,满足5i >,退出循环,输出运行的结果111111324354657S =++⨯⨯⨯⨯⨯++,利用裂项相消法即可求出S . 【详解】 由题意可知,第1次循环时113S =⨯,2i =,否; 第2次循环111324S =+⨯⨯,3i =,否; 第3次循环时111132435S =++⨯⨯⨯,4i =,否; 第4次循环时111113243546S =++⨯⨯⨯⨯+,5i =,否;第5次循环时111111324354657S =+++⨯⨯⨯⨯⨯+,6i =,是; 故输出111111324354657S =++⨯⨯⨯⨯⨯++111111111112324354657⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-+-+-+-+- ⎪ ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦= 1111251226742⎛⎫=+--=⎪⎝⎭ 故选:A. 【点睛】本题主要考查程序框图中的循环结构,同时考查裂项相消法求和,属于基础题.7.在数列{}n a 中,若10a =,12n n a a n +-=,则23111na a a +++的值 A .1n n- B .1n n+ C .11n n -+ D .1n n + 【答案】A 【解析】分析:由叠加法求得数列的通项公式(1)n a n n =-,进而即可求解23111na a a +++的和. 详解:由题意,数列{}n a 中,110,2n n a a a n +=-=, 则112211()()()2[12(1)](1)n n n n n a a a a a a a a n n n ---=-+-++-+=+++-=-,所以1111(1)1n a n n n n ==--- 所以231111111111(1)()()12231n n a a a n n n n-+++=-+-++-=-=-,故选A. 点睛:本题主要考查了数列的综合问题,其中解答中涉及到利用叠加法求解数列的通项公式和利用裂项法求解数列的和,正确选择方法和准确运算是解答的关键,着重考查了分析问题和解答问题的能力,以及推理与运算能力.8.已知椭圆221x y m n+=满足条件:,,m n m n +成等差数列,则椭圆离心率为( )A B .2C .12D 【答案】B 【解析】 【分析】根据满足条件,,m n m n +成等差数列可得椭圆为2212x ym m+=,求出,a c .再求椭圆的离心率即可. 【详解】()22n m m n n m =++⇒=, ∴椭圆为2212x y m m +=,22c m m m =-=,得c =又a =2c e a ∴==.B. 【点睛】一般求离心率有以下几种情况:①直接求出,a c ,从而求出e ;②构造,a c 的齐次式,求出e ;③采用离心率的定义以及圆锥曲线的定义来求解;④根据圆锥曲线的统一定义求解.9.数列{}n a 的通项公式为()n a n c n N *=-∈.则“2c <”是“{}na 为递增数列”的( )条件. A .必要而不充分 B .充要C .充分而不必要D .即不充分也不必要【答案】A 【解析】 【分析】根据递增数列的特点可知10n n a a +->,解得12c n <+,由此得到若{}n a 是递增数列,则32c <,根据推出关系可确定结果. 【详解】若“{}n a 是递增数列”,则110n n a a n c n c +-=+--->, 即()()221n c n c +->-,化简得:12c n <+, 又n *∈N ,1322n ∴+≥,32c ∴<, 则2c <{}n a 是递增数列,{}n a 是递增数列2c ⇒<,∴“2c <”是“{}n a 为递增数列”的必要不充分条件.故选:A . 【点睛】本题考查充分条件与必要条件的判断,涉及到根据数列的单调性求解参数范围,属于基础题.10.数列{a n },满足对任意的n ∈N +,均有a n +a n +1+a n +2为定值.若a 7=2,a 9=3,a 98=4,则数列{a n }的前100项的和S 100=( ) A .132 B .299C .68D .99【答案】B 【解析】 【分析】由12n n n a a a ++++为定值,可得3n n a a +=,则{}n a 是以3为周期的数列,求出123,,a a a ,即求100S . 【详解】对任意的n ∈+N ,均有12n n n a a a ++++为定值,()()123120n n n n n n a a a a a a +++++∴++-++=,故3n n a a +=,{}n a ∴是以3为周期的数列,故17298392,4,3a a a a a a ======,()()()100123979899100123133S a a a a a a a a a a a ∴=+++++++=+++()332432299=+++=.故选:B . 【点睛】本题考查周期数列求和,属于中档题.11.在古希腊,毕达哥拉斯学派把1,3,6,10,15,21,28,36,45,…这些数叫做三角形数.设第n 个三角形数为n a ,则下面结论错误的是( ) A .1(1)n n a a n n --=>B .20210a =C .1024是三角形数D .123111121n n a a a a n +++⋯+=+ 【答案】C 【解析】 【分析】对每一个选项逐一分析得解. 【详解】∵212a a -=,323a a -=,434a a -=,…,由此可归纳得1(1)n n a a n n --=>,故A 正确;将前面的所有项累加可得1(1)(2)(1)22n n n n n a a -++=+=,∴20210a =,故B 正确; 令(1)10242n n +=,此方程没有正整数解,故C 错误; 1211111111212231n a a a n n ⎡⎤⎛⎫⎛⎫⎛⎫+++=-+-++- ⎪ ⎪ ⎪⎢⎥+⎝⎭⎝⎭⎝⎭⎣⎦122111n n n ⎛⎫=-= ⎪++⎝⎭,故D 正确. 故选C 【点睛】本题主要考查累加法求通项,考查裂项相消法求和,意在考查学生对这些知识的理解掌握水平和分析推理能力.12.已知{}n a 为等差数列,135105a a a ++=,24699a a a ++=,则20a 等于( ). A .1- B .1C .3D .7【答案】B 【解析】 【分析】利用等差数列的通项公式,列出方程组,求出首项和公差,由此能求出20a . 【详解】 解:{}n a 为等差数列,135105a a a ++=,24699a a a ++=,13533105a a a a ∴++==,2464399a a a a ++==,335a ∴=,433a =,4333352d a a =-=-=-, 13235439a a d =-=+=, 20139391921a a d ∴=+=-⨯=.故选:B 【点睛】本题考查等差数列的第20项的求法,是基础题,解题时要认真审题,注意等差数列的性质的合理运用.13.已知首项为1的正项等比数列{}n a 的前n 项和为n S ,4a -、3a 、5a 成等差数列,则2020S 与2020a 的关系是( )A .2020202021S a =+B .2020202021S a =-C .2020202041S a =+D .2020202043S a =-【答案】B 【解析】 【分析】求出等比数列{}n a 的公比q ,然后求出2020S 和2020a ,由此可得出结论. 【详解】设等比数列{}n a 的公比为q ,则0q >,4a -、3a 、5a 成等差数列,3542a a a ∴=-,所以,220q q --=,0q >,解得2q,20192019202012a a q ∴==,()20201202020201211a q S q-==--,因此,2020202021S a =-. 故选:B. 【点睛】本题考查等比数列求和公式以及通项公式的应用,涉及等差中项的应用,考查计算能力,属于中等题.14.已知数列{}n a 的前n 项和()2*23n S n n n N=+∈,则{}na 的通项公式为( )A .21n a n =+B .21n a n =-C .41n a n =+D .41n a n =-【答案】C 【解析】 【分析】首先根据223n S n n =+求出首项1a 的值,然后利用1n n n a S S -=-求出2n ≥时n a 的表达式,然后验证1a 的值是否适合,最后写出n a 的式子即可. 【详解】因为223n S n n =+,所以,当2n ≥时,22123[2(1)3(1)]41n n n a S S n n n n n -=-=+--+-=+,当1n =时,11235==+=a S ,上式也成立, 所以41n a n =+, 故选C. 【点睛】该题考查的是有关数列的通项公式的求解问题涉及到的知识点有数列的项与和的关系,即11,1,2n n n S n a S S n -=⎧=⎨-≥⎩,算出之后再判断1n =时对应的式子是否成立,最后求得结果.15.等差数列{}n a 中,n S 为它的前n 项和,若10a >,200S >,210S <,则当n =( )时,n S 最大. A .8 B .9C .10D .11【答案】C 【解析】 【分析】根据等差数列的前n 项和公式与项的性质,得出100a >且110a <,由此求出数列{}n a 的前n 项和n S 最大时n 的值. 【详解】等差数列{}n a 中,前n 项和为n S ,且200S >,210S <, 即()()120201*********a a S a a +==+>,10110a a ∴+>,()1212111212102a a S a +==<,所以,110a <,则100a >,因此,当10n =时,n S 最大. 故选:C. 【点睛】本题考查了等差数列的性质和前n 项和最值问题,考查等差数列基本性质的应用,是中等题.16.在等差数列{}n a 中,3a ,15a 是方程2650x x -+=的根,则17S 的值是( ) A .41 B .51C .61D .68【答案】B 【解析】 【分析】由韦达定理得3156a a +=,由等差数列的性质得117315a a a a +=+,再根据等差数列的前n 项和公式求17S . 【详解】在等差数列{}n a 中,3a ,15a 是方程2650x x -+=的根,3156a a ∴+=.()()11731517171717651222a a a a S ++⨯∴====. 故选:B . 【点睛】本题考查等差数列的性质和前n 项和公式,属于基础题.17.一对夫妇为了给他们的独生孩子支付将来上大学的费用,从孩子一周岁生日开始,每年到银行储蓄a 元一年定期,若年利率为r 保持不变,且每年到期时存款(含利息)自动转为新的一年定期,当孩子18岁生日时不再存入,将所有存款(含利息)全部取回,则取回的钱的总数为( ) A .17(1)a r + B .17[(1)(1)]ar r r +-+C .18(1)a r +D .18[(1)(1)]ar r r+-+【答案】D 【解析】 【分析】由题意可得:孩子18岁生日时将所有存款(含利息)全部取回,可以看成是以(1)a r +为首项,(1)r +为公比的等比数列的前17项的和,再由等比数列前n 项和公式求解即可. 【详解】 解:根据题意,当孩子18岁生日时,孩子在一周岁生日时存入的a 元产生的本利合计为17(1)a r +, 同理:孩子在2周岁生日时存入的a 元产生的本利合计为16(1)a r +, 孩子在3周岁生日时存入的a 元产生的本利合计为15(1)a r +,⋯⋯孩子在17周岁生日时存入的a 元产生的本利合计为(1)a r +,可以看成是以(1)a r +为首项,(1)r +为公比的等比数列的前17项的和, 此时将存款(含利息)全部取回, 则取回的钱的总数:17171618(1)[(1)1](1)(1)(1)[(1)(1)]11a r r aS a r a r a r r r r r++-=++++⋯⋯++==+-++-;故选:D . 【点睛】本题考查了不完全归纳法及等比数列前n 项和,属中档题.18.已知等差数列{}n a 的公差0d ≠,且1313,,a a a 成等比数列,若11a =,n S 为数列{}n a 的前n 项和,则263n n S a ++的最小值为( )A .4B .3 C.2 D .2【答案】D【解析】【分析】 由题意得2(12)112d d +=+,求出公差d 的值,得到数列{}n a 的通项公式,前n 项和,从而可得263n n S a ++,换元,利用基本不等式,即可求出函数的最小值. 【详解】解:11a =,1a 、3a 、13a 成等比数列,2(12)112d d ∴+=+.得2d =或0d =(舍去),21n a n ∴=-,2(121)2n n n S n +-∴==, ∴()()22211426263322112n n n n S n n a n n n ++++++===+-+++. 令1t n =+,则2642223n n S t a t +=+-≥=+ 当且仅当2t =,即1n =时,∴263n n S a ++的最小值为2. 故选:D .【点睛】 本题主要考查等比数列的定义和性质,等比数列的通项公式,考查基本不等式,属于中档题.19.已知等差数列{}n a 的前n 项和为n S ,若816S =,61a =,则数列{}n a 的公差为( )A .32B .32-C .23D .23- 【答案】D【解析】【分析】根据等差数列公式直接计算得到答案.【详解】依题意,()()183********a a a a S ++===,故364a a +=,故33a =,故63233a a d -==-,故选:D . 【点睛】 本题考查了等差数列的计算,意在考查学生的计算能力.20.数列{}n a 满足11a =,对任意的*n N ∈都有11n n a a n +=++,则122016111a a a +++=( ) A .20152016B .40322017C .40342017D .20162017【答案】B【解析】【分析】 首先根据题设条件,由11n n a a n +=++,可得到递推关系为11n n a a n +-=+;接下来利用累加法可求得()12n n n a +=,从而()1211211n a n n n n ⎛⎫==- ⎪++⎝⎭,由此就可求得122016111a a a +++的值.【详解】因为111n n n a a a n a n +=++=++,所以11n n a a n +-=+,用累加法求数列{}n a 的通项得:()()1211n n n a a a a a a -=+-+⋯+-()1122n n n +=++⋯+=, 所以()1211211n a n n n n ⎛⎫==- ⎪++⎝⎭, 于是1232016111111111212222320162017a a a a ⎛⎫⎛⎫⎛⎫ +++⋯+=-+-+⋯+-⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 121201*********⎛⎫==- ⎪⎝⎭. 故选:B.【点睛】本题是一道考查数列的题目,掌握数列的递推关系以及求解前n 项和的方法是解答本题的关键,属于常考题.。
2020年全国高考数学试题分类汇编1-选择填空压轴题-含详细答案
2020年全国高考数学试题汇编选择填空压轴题一、选择题(本大题共11小题,共54.0分)1.2020年3月14日是全球首个国际圆周率日(πDay).历史上,求圆周率π的方法有多种,与中国传统数学中的“割圆术”相似,数学家阿尔⋅卡西的方法是:当正整数n充分大时,计算单位圆的内接正6n边形的周长和外切正6n边形(各边均与圆相切的正6n边形)的周长,将它们的算术平均数作为2π的近似值.按照阿尔⋅卡西的方法,π的近似值的表达式是()A. 3n(sin30°n +tan30°n) B. 6n(sin30°n+tan30°n)C. 3n(sin60°n +tan60°n) D. 6n(sin60°n+tan60°n)2.设集合A={(x,y)|x−y≥1,ax+y>4,x−ay≤2},则()A. 对任意实数a,(2,1)∈AB. 对任意实数a,(2,1)∉AC. 当且仅当a<0时,(2,1)∉AD. 当且仅当a≤32时,(2,1)∉A3.根据有关资料,围棋状态空间复杂度的上限M约为3361,而可观测宇宙中普通物质的原子总数N约为1080,则下列各数中与MN最接近的是()(参考数据:lg3≈0.48)A. 1033B. 1053C. 1073D. 10934.数学中有许多形状优美、寓意美好的曲线,曲线C:x2+y2=1+|x|y就是其中之一(如图).给出下列三个结论:①曲线C恰好经过6个整点(即横、纵坐标均为整数的点);②曲线C上任意一点到原点的距离都不超过√2;③曲线C所围成的“心形”区域的面积小于3.其中,所有正确结论的序号是()A. ①B. ②C. ①②D. ①②③5.袋中装有偶数个球,其中红球、黑球各占一半,甲、乙、丙是三个空盒.每次从袋中任意取出两个球,将其中一个球放入甲盒,如果这个球是红球,就将另一个放入乙盒,否则就放入丙盒,重复上述过程,直到袋中所有球都被放入盒中,则()A. 乙盒中黑球不多于丙盒中黑球B. 乙盒中红球与丙盒中黑球一样多C. 乙盒中红球不多于丙盒中红球D. 乙盒中黑球与丙盒中红球一样多6. 若2a +log 2a =4b +2log 4b ,则( )A. a >2bB. a <2bC. a >D. a <7. 已知函数f(x)={x 3,x ≥0,−x,x <0.若函数g(x)=f(x)−|kx 2−2x|(k ∈R)恰有4个零点,则k 的取值范围是( ) A. (−∞,−12)∪(2√2,+∞) B. (−∞,−12)∪(0,2√2) C. (−∞,0)∪(0,2√2)D. (−∞,0)∪(2√2,+∞)8. 已知A ,B ,C 为球O 的球面上的三个点,⊙O 1为▵ABC 的外接圆.若⊙O 1的面积为4π,AB =BC =AC =OO 1,则球O 的表面积为( )A. 64πB. 48πC. 36πD. 32π9. 0−1周期序列在通信技术中有着重要应用,若序列a 1a 2…a n …满足a i ∈(0,1)(i =1,2,…),且存在正整数m ,使得a i+m =a i (i =1,2,…)成立,则称其为0−1周期序列,并称满足a i+m =a i (i =1,2,…)的最小正整数m 为这个序列的周期.对于周期为m 的0−1序列a 1a 2…a n …,C(k)=1m ∑a i a i+k (k =1,2,…,m −1)m i=1是描述其性质的重要指标.下列周期为5的0−1序列中,满足C(k)≤15(k =1,2,3,4)的序列是( )A. 11010…B. 11011…C. 10001…D. 11001…10. 已知<,<.设a =3,b =5,c =8,则( )A. a <b <cB. b <a <cC. b <c <aD. c <a <b11. 某学校运动会的立定跳远和30秒跳绳两个单项比赛分成预赛和决赛两个阶段,表中为10名学生的预赛成绩,其中有三个数据模糊.在这10名学生中,进入立定跳远决赛的有8人,同时进入立定跳远决赛和30秒跳绳决赛的有6人,则( )A. 2号学生进入30秒跳绳决赛B. 5号学生进入30秒跳绳决赛C. 8号学生进入30秒跳绳决赛D. 9号学生进入30秒跳绳决赛二、不定项选择题(本大题共1小题,共5.0分)12. 信息熵是信息论中的一个重要概念.设随机变量X 所有可能的取值为1,2,,n ,且P(X =i)=>0(i =1,2,,n),=1,定义X 的信息熵H(X)=−( )A. 若n =1,则H (x )=0B. 若n =2,则H(x)随着的增大而增大C. 若=(i =1,2,,n),则H(x)随着n 的增大而增大D. 若n =2m ,随机变量Y 的所有可能取值为1,2,,m ,且P(Y =j)=+(j =1,2,,m)则H(X)H(Y)三、填空题(本大题共12小题,共60.0分)13.为满足人民对美好生活的向往,环保部门要求相关企业加强污水治理,排放未达标的企业要限期整改.设企业的污水排放量W与时间t的关系为W=f(t),用−f(b)−f(a)b−a的大小评价在[a,b]这段时间内企业污水治理能力的强弱.已知整改期内,甲、乙两企业的污水排放量与时间的关系如图所示.给出下列四个结论:①在[t1,t2]这段时间内,甲企业的污水治理能力比乙企业强;②在t2时刻,甲企业的污水治理能力比乙企业强;③在t3时刻,甲,乙两企业的污水排放都已达标;④甲企业在[0,t1],[t1,t2],[t2,t3]这三段时间中,在[0,t1]的污水治理能力最强.其中所有正确结论的序号是______.14.某网店统计了连续三天售出商品的种类情况:第一天售出19种商品,第二天售出13种商品,第三天售出18种商品;前两天都售出的商品有3种,后两天都售出的商品有4种,则该网店①第一天售出但第二天未售出的商品有______种;②这三天售出的商品最少有______种.15.某学习小组由学生和教师组成,人员构成同时满足以下三个条件:(i)男学生人数多于女学生人数;(ii)女学生人数多于教师人数;(iii)教师人数的两倍多于男学生人数.①若教师人数为4,则女学生人数的最大值为______.②该小组人数的最小值为______.16.李明自主创业,在网上经营一家水果店,销售的水果中有草莓、京白梨、西瓜、桃,价格依次为60元/盒、65元/盒、80元/盒、90元/盒.为增加销量,李明对这四种水果进行促销:一次购买水果的总价达到120元,顾客就少付x元.每笔订单顾客网上支付成功后,李明会得到支付款的80%.①当x=10时,顾客一次购买草莓和西瓜各1盒,需要支付__________元;②在促销活动中,为保证李明每笔订单得到的金额均不低于促销前总价的七折,则x的最大值为________.17.已知椭圆M:x2a2+y2b2=1(a>b>0),双曲线N:x2m2−y2n2=1.若双曲线N的两条渐近线与椭圆M的四个交点及椭圆M的两个焦点恰为一个正六边形的顶点,则椭圆M的离心率为__________;双曲线N的离心率为________.18.三名工人加工同一种零件,他们在一天中的工作情况如图所示,其中A i的横、纵坐标分别为第i名工人上午的工作时间和加工的零件数,点B i的横、纵坐标分别为第i名工人下午的工作时间和加工的零件数,i=1,2,3.(1)记Q i为第i名工人在这一天中加工的零件总数,则Q1,Q2,Q3中最大的是______ ;(2)记p i为第i名工人在这一天中平均每小时加工的零件数,则p1,p2,p3中最大的是______ .19.设函数f(x)={x 3−3x,x≤a−2x,x>a.①若a=0,则f(x)的最大值为______;②若f(x)无最大值,则实数a的取值范围是______.20.如图,在三棱锥P−ABC的平面展开图中,AC=1,AB=AD=,AB AC,AB AD,CAE=,则FCB=__________.21.设有下列四个命题:P1:两两相交且不过同一点的三条直线必在同一平面内.P2:过空间中任意三点有且仅有一个平面.P3:若空间两条直线不相交,则这两条直线平行.P4:若直线l⊂平面α,直线m⊥平面α,则m⊥l.则下述命题中所有真命题的序号是________.①p1∧p4②p1∧p2③¬p2∨p3④¬p3∨¬p422.关于函数f(x)=x+有如下四个命题:f(x)的图像关于y轴对称.f(x)的图像关于原点对称,f(x)的图像关于直线x=对称.f(x)的最小值为2.其中所有真命题的序号是__________.23. 如图,在四边形ABCD 中,∠B =60°,AB =3,BC =6,且AD ⃗⃗⃗⃗⃗⃗ =λBC ⃗⃗⃗⃗⃗ ,AD ⃗⃗⃗⃗⃗⃗ ⋅AB ⃗⃗⃗⃗⃗ =−32,则实数λ的值为______,若M ,N 是线段BC 上的动点,且|MN ⃗⃗⃗⃗⃗⃗⃗ |=1,则DM ⃗⃗⃗⃗⃗⃗⃗ ⋅DN ⃗⃗⃗⃗⃗⃗ 的最小值为______.24. 数列{a n }满足a n+2+(−1)n a n =3n −1,前16项和为540,则a 1=____.答案和解析1.【答案】A【解析】【分析】本题考查数学中的文化,考查圆的内接和外切多边形的边长的求法,考查运算能力,属于基础题.设内接正6n边形的边长为a,外切正6n边形的边长为b,运用圆的性质,结合直角三角形的锐角三角函数的定义,可得所求值.【解答】解:如图,设内接正6n边形的边长为a,外切正6n边形的边长为b,可得a=2sin360°12n =2sin30°n,b=2tan360°12n =2tan30°n,则2π≈6na+6nb2=6n(sin30°n+tan30°n),即π≈3n(sin30°n +tan30°n),故选:A.2.【答案】D【解析】【分析】本题考查元素与集合的关系,考查运算求解能力,是中档题.根据题意,取特例判断求解即可.【解答】解:当a=−1时,集合A={(x,y)|x−y≥1,ax+y>4,x−ay≤2}={(x,y)|x−y≥1,−x+y>4,x+ y≤2},显然(2,1)不满足,−x+y>4,x+y≤2,所以A不正确;当a=4时,集合A={(x,y)|x−y≥1,ax+y>4,x−ay≤2}={(x,y)|x−y≥1,4x+y>4,x−4y≤2},可知:此时(2,1)∈A,所以B不正确;当a=1时,集合A={(x,y)|x−y≥1,ax+y>4,x−ay≤2}={(x,y)|x−y≥1,x+y>4,x−y≤2},显然此时(2,1)∉A,所以C不正确;故选:D.3.【答案】D【解析】【分析】本题考查指数形式与对数形式的互化,属于基础题.根据对数的性质:T=a log a T,可得:3=10lg3≈100.48,将M也化为10为底的指数形式,进而可得结果.【解答】解:由题意:M≈3361,N≈1080,根据对数性质有:3=10lg3≈100.48,∴M≈3361≈(100.48)361≈10173,∴MN ≈101731080=1093.故选D.4.【答案】C【解析】【分析】本题考查了方程与曲线,属中档题.将x换成−x方程不变,所以图形关于y轴对称,根据对称性讨论y轴右边的图形可得.【解答】解:将x换成−x方程不变,所以图形关于y轴对称,当x=0时,代入得y2=1,∴y=±1,即曲线经过(0,1),(0,−1),当x>0时,方程变为y2−xy+x2−1=0,所以由△=x2−4(x2−1)≥0,解得x∈(0,2√33],所以x只能取整数1,当x=1时,y2−y=0,解得y=0或y=1,即曲线经过(1,0),(1,1),根据对称性可得曲线还经过(−1,0),(−1,1),故曲线一共经过6个整点,故①正确,当x>0时,由x2+y2=1+xy得x2+y2−1=xy≤x2+y22,(当x=y时取等),∴x2+y2≤2,∴√x2+y2≤√2,即曲线C上y轴右边的点到原点的距离不超过√2,根据对称性可得:曲线C上任意一点到原点的距离都不超过√2,故②正确,×2×1=1,在x轴上方图形面积大于矩形面积=1×2=2,x轴下方的面积大于等腰直角三角形的面积=12因此曲线C所围成的“心形”区域的面积大于2+1=3,故③错误,故选C.5.【答案】B【解析】【分析】本题考查了推理与证明,重点是找到切入点逐步进行分析,对学生的逻辑思维能力有一定要求,属于中档题.取出的两球有四种情况,分别分析三个盒子中球的关系即可得出结果.【解答】解:取两个球共有4种情况:①红+红,则乙盒中红球数加1个;②黑+黑,则丙盒中黑球数加1个;③红+黑(红球放入甲盒中),则乙盒中黑球数加1个;④黑+红(黑球放入甲盒中),则丙盒中红球数加1个.设一共有球2a个,则a个红球,a个黑球,甲中球的总个数为a,其中红球x个,黑球y个,x+y=a.则乙中有x个球,其中k个红球,j个黑球,k+j=x;丙中有y个球,其中l个红球,i个黑球,i+l=y;黑球总数a=y+i+j,又x+y=a,故x=i+j由于x=k+j,所以可得i=k,即乙中的红球等于丙中的黑球.故选B.6.【答案】B【解析】【分析】本题考查指数及对数的运算性质,指数及对数函数的单调性,属中档题.【解答】解:根据指数及对数的运算性质,4b+2log4b=22b+log2b,∵log2(2b)=log2b+1>log2b,∴22b+log2(2b)>22b+log2b=2a+log2a,根据函数f(x)=2x+log2x是定义域上的增函数,由f(2b)>f(a),得a<2b,故答案为B.7.【答案】D【解析】【分析】本题考查函数的零点,参数的取值范围,关键利用分类讨论思想,分析函数的交点,属于难题.问题转化为f(x)=|kx2−2x|有四个根,⇒y=f(x)与y=ℎ(x)=|kx2−2x|有四个交点,再分三种情况当k=0时,当k<0时,当k>0时,讨论两个函数四否能有4个交点,进而得出k的取值范围.【解答】解:若函数g(x)=f(x)−|kx2−2x|(k∈R)恰有4个零点,则f(x)=|kx2−2x|有四个根,即y=f(x)与y=ℎ(x)=|kx2−2x|有四个交点,当k=0时,y=f(x)与y=|−2x|=2|x|图象如下:两图象有2个交点,不符合题意,当k<0时,y=|kx2−2x|与x轴交于两点x1=0,x2=2k(x2<x1)图象如图所示,两图象有4个交点,符合题意,当k>0时,y=|kx2−2x|与x轴交于两点x1=0,x2=2k(x2>x1)在[0,2k)内两函数图象有两个交点,所以若有四个交点,只需y=x3与y=kx2−2x在(2k,+∞)还有两个交点,即可,即x3=kx2−2x在(2k,+∞)还有两个根,即k=x+2x 在(2k,+∞)还有两个根,函数y=x+2x≥2√2,(当且仅当x=√2时,取等号),所以0<2k<√2,且k>2√2,所以k>2√2,综上所述,k的取值范围为(−∞,0)∪(2√2,+∞).故选:D.8.【答案】B【解析】【分析】本题考查球的结构与性质,球的表面积公式,属中档题.【解答】解:由圆O1的面积为4π=πr2,故圆O1的半径ρ=2,∵AB=BC=AC=OO1,则三角形ABC是正三角形,由正弦定理:ABsin60∘=2r=4,得AB=OO1=2√3,由R2=r2+OO12,得球O的半径R=4,表面积为4πR2=64π,故答案为A.9.【答案】C【解析】【分析】本题主要考查新定义类型的问题,属于较难题.【解答】解:对于A选项,C(1)=15∑a i5i=1a i+1=15(1+0+0+0+0)=15,C(2)=15∑a i5i=1a i+2=15(0+1+0+1+0)=25>15,不满足,排除;对于B选项,C(1)=15∑a i5i=1a i+1=15(1+0+0+1+1)=35>15,不满足,排除;对于C选项,C(1)=15∑a i5i=1a i+1=15(0+0+0+0+1)=15,C(2)=15∑a i5i=1a i+2=15(0+0+0+0+0)=0,C(3)=15∑a i5i=1a i+3=15(0+0+0+0+0)=0,C(4)=15∑a i5i=1a i+4=15(1+0+0+0+0)=15,满足;对于D选项,C(1)=15∑a i5i=1a i+1=15(1+0+0+0+1)=25>15,不满足,排除;故选C.10.【答案】A【解析】【分析】本题主要考查对数与对数函数,借助中间值比较大小.【解答】解:a=log53=ln 3ln 5,b=log85=ln 5ln 8,c=log138=ln 8ln 13,a−b=ln 3ln 5−ln 5ln 8=ln 3⋅ln 8−(ln 5)2ln 5⋅ln 8<(ln 3+ln 82)2−(ln 5)2ln 5⋅ln 8=(ln 24+ln 25)(ln 24−ln 25)4ln 5⋅ln 8<0;c−45=ln 8ln 13−45=5ln 8−4ln 135ln 13=ln 85−ln 1345ln 13>0;b−45=ln 5ln 8−45=5ln 5−4ln 85ln 8=ln 55−ln 845ln 13<0;综上所述,a<b<45<c,即a<b<c,故选A.11.【答案】B【解析】解:∵这10名学生中,进入立定跳远决赛的有8人,故编号为1,2,3,4,5,6,7,8的学生进入立定跳远决赛,又由同时进入立定跳远决赛和30秒跳绳决赛的有6人,则3,6,7号同学必进入30秒跳绳决赛,剩下1,2,4,5,8号同学的成绩分别为:63,a,60,63,a−1有且只有3人进入30秒跳绳决赛,故成绩为63的同学必进入30秒跳绳决赛,故选:B根据已知中这10名学生中,进入立定跳远决赛的有8人,同时进入立定跳远决赛和30秒跳绳决赛的有6人,逐一分析四个答案的正误,可得结论.本题考查的知识点是推理与证明,正确利用已知条件得到合理的逻辑推理过程,是解答的关键.12.【答案】AC【解析】【分析】本题考查离散型随机变量的应用,重点考查对新定义的理解,属于难题.【解答】解:A选项中,由题意知p1=1,此时H(X)=−1×log21=0,故A正确;B选项中,由题意知p1+p2=1,且p1∈(0,1),H(X)=−p1log2p1−p2log2p2=−p1log2p1−(1−p1)log2(1−p1),设f(x)=−xlog2x−(1−x)log2(1−x),x∈(0,1)则f′(x)=−log2x−1ln2+log2(1−x)+1ln2=log2(1x−1),当x∈(12,1)时,f′(x)<0,当x∈(0,12)时,f′(x)>0,故当p1∈(0,12)时,H(X)随着p1的增大而增大,当p1∈(12,1)时,H(X)随着p1的增大而减小,故B错误;C 选项中,由题意知H(X)=n ×(−1n )log 21n =log 2n ,故H(X)随着n 的增大而增大,故C 正确.D 选项中,由题意知H(Y)=−∑(p j +p 2m+1−j )m j=1log 2(p j +p 2m+1−j ),H(X)=−∑p j 2m j=1log 2p j =−∑(p j m j=1log 2p j +p 2m+1−j log 2p 2m+1−j ), H(X)−H(Y)=∑log 2(p j +p 2m+1−j )p j +p 2m+1−j m j=1−∑(log 2p j p j +log 2p 2m+1−jp 2m+1−j m j=1) =∑log 2(p j +p 2m+1−j )p j +p 2m+1−j p j p j p 2m+1−j p 2m+1−j m j=1=∑log 2(p j +p 2m+1−j )p j (p j +p 2m+1−j )p 2m+1−j p j p j p 2m+1−j p 2m+1−j m j=1=∑log 2(1+p 2m+1−j p j )p j (1+p j p 2m+1−j )p 2m+1−j m j=1>0,故D 错误,故答案为AC .13.【答案】①②③【解析】解:设甲企业的污水排放量W 与时间t 的关系为W =f(t),乙企业的污水排放量W 与时间t 的关系为W =g(t).对于①,在[t 1,t 2]这段时间内,甲企业的污水治理能力为−f(t 2)−f(t 1)t 2−t 1, 乙企业的污水治理能力为−g(t 2)−g(t 1)t 2−t 1.由图可知,f(t 1)−f(t 2)>g(t 1)−g(t 2),∴−f(t 2)−f(t 1)t 2−t 1>−g(t 2)−g(t 1)t 2−t 1,即甲企业的污水治理能力比乙企业强,故①正确;对于②,由图可知,f(t)在t 2时刻的切线的斜率小于g(t)在t 2时刻的切线的斜率,但两切线斜率均为负值, ∴在t 2时刻,甲企业的污水治理能力比乙企业强,故②正确;对于③,在t 3时刻,甲,乙两企业的污水排放都小于污水达标排放量,∴在t 3时刻,甲,乙两企业的污水排放都已达标,故③正确;对于④,由图可知,甲企业在[0,t 1],[t 1,t 2],[t 2,t 3]这三段时间中,在[t 1,t 2]的污水治理能力最强,故④错误.∴正确结论的序号是①②③.故答案为:①②③.由两个企业污水排放量W 与时间t 的关系图象结合平均变化率与瞬时变化率逐一分析四个命题得答案. 本题考查利用数学解决实际生活问题,考查学生的读图视图能力,是中档题.14.【答案】16 29【解析】解:①设第一天售出商品的种类集为A ,第二天售出商品的种类集为B ,第三天售出商品的种类集为C ,如图,则第一天售出但第二天未售出的商品有19−3=16种;②由①知,前两天售出的商品种类为19+13−3=29种,第三天售出但第二天未售出的商品有18−4=14种,当这14种商品属于第一天售出但第二天未售出的16种商品中时,即第三天没有售出前两天的商品时,这三天售出的商品种类最少为29种.故答案为:①16;②29.①由题意画出图形得答案;②求出前两天所受商品的种数,由特殊情况得到三天售出的商品最少种数. 本题考查集合的包含关系及其应用,考查了集合中元素的个数判断,考查学生的逻辑思维能力,是中档题. 15.【答案】6 12【解析】解:①设男学生女学生分别为x ,y 人,若教师人数为4,则{x >yy >42×4>x,即4<y <x <8,即x 的最大值为7,y 的最大值为6,即女学生人数的最大值为6.②设男学生女学生分别为x ,y 人,教师人数为z ,则{x >yy >z 2z >x,即z <y <x <2z即z 最小为3才能满足条件,此时x 最小为5,y 最小为4,即该小组人数的最小值为12,故答案为:6,12①设男学生女学生分别为x ,y 人,若教师人数为4,则{x >yy >42×4>x,进而可得答案;②设男学生女学生分别为x,y人,教师人数为z,则{x>yy>z2z>x,进而可得答案;本题考查的知识点是推理和证明,简易逻辑,线性规划,难度中档.16.【答案】①130;②15.【解析】【分析】本题考查不等式在实际问题的应用,考查化简运算能力,属于中档题.①由题意可得顾客一次购买的总金额,减去x,可得所求值;②在促销活动中,设订单总金额为m元,讨论m的范围,可得(m−x)×80%≥m×70%,解不等式,结合恒成立思想,可得x的最大值.【解答】解:①当x=10时,顾客一次购买草莓和西瓜各1盒,可得60+80=140(元),即有顾客需要支付140−10=130(元);②在促销活动中,设订单总金额为m元,当0<m<120时,显然符合题意;当m≥120时,可得(m−x)×80%≥m×70%,即有x≤m8,可得x≤1208=15,则x的最大值为15元.故答案为:130;15.17.【答案】√3−1;2【解析】【分析】本题考查椭圆和双曲线的简单性质,考查计算能力,属于中档题.根据题意,可得正六边形的一个顶点(c2,√3c2),代入椭圆方程,求出椭圆的离心率;再根据双曲线渐近线斜率求出双曲线离心率即可.【解答】解:椭圆M:x2a2+y2b2=1(a>b>0),双曲线N:x2m2−y2n2=1,若双曲线N的两条渐近线与椭圆M的四个交点及椭圆M的两个焦点恰为一个正六边形的顶点,又椭圆的一个焦点为(c,0),可得正六边形的一个顶点(c2,√3c2),可得:c 24a 2+3c 24b 2=1,可得14e 2+34(1e 2−1)=1,可得e 4−8e 2+4=0,e ∈(0,1), 解得e =√3−1.同时,双曲线的渐近线的斜率为√3,即n m =√3,可得:n 2m 2=3,即m 2+n 2m 2=4,可得双曲线的离心率为√m2+n 2m =2.故答案为:√3−1;2.18.【答案】Q 1;p 2【解析】【分析】本题考查的知识点是函数的图象,分析出Q i 和p i 的几何意义,是解答的关键.(1)若Q i 为第i 名工人在这一天中加工的零件总数,则Q i =A i +B i ,是A i B i 连线的中点的纵坐标的2倍,进而得到答案.(2)若p i 为第i 名工人在这一天中平均每小时加工的零件数,则p i 为A i B i 中点与原点连线的斜率;进而得到答案.【解答】解:(1)设A 1(x A 1,y A 1),B 1(x B 1,y B 1),线段A 1B 1的中点为E(x 1,y 1),则Q 1=y A 1+y B 1=2y 1.因此,要比较Q 1,Q 2,Q 3的大小,只需比较线段A 1B 1,A 2B 2,A 3B 3中点纵坐标的大小,作图比较知Q 1最大.(2)若p i 为第i 名工人在这一天中平均每小时加工的零件数,则p i 为A i B i 中点与原点连线的斜率,故p 1,p 2,p 3中最大的是p 2.故答案为:Q 1,p 2.19.【答案】2;(−∞,−1)【解析】【分析】本题考查的知识点是分段函数的应用,函数的最值,难度中档.①将a =0代入,求出函数的导数,分析函数的单调性,可得当x =−1时,f(x)的最大值为2;②根据y =x 3−3x 与y =−2x 有三个交点,结合f(x)无最大值,可得答案.【解答】解:①若a =0,则f(x)={x 3−3x,x ≤0−2x,x >0,则f′(x)={3x 2−3,x ≤0−2,x >0, 当x <−1时,f′(x)>0,此时函数为增函数,当x >−1时,f′(x)<0,此时函数为减函数,故当x =−1时,f(x)的最大值为2;②对于y =x 3−3x ,可知y′=3x 2−3,令y′=3x 2−3=0得x =±1,当x ∈(−∞,−1)∪(1,+∞)时,y′>0,函数单调递增;当x ∈(−1,1)时,y′<0,函数单调递减;且易知y =x 3−3x 与y =−2x 有三个交点,坐标为(0,0),(1,−2),(−1,2),若f(x)无最大值,则a <−1,故答案为:2,(−∞,−1).20.【答案】−14【解析】【分析】本题考查利用正余弦定理解三角形,属于中档题.【解答】解:由已知得BD =√2AB =√6,∵D 、E 、F 重合于一点,∴AE =AD =√3,BF =BD =√6,∴ △ACE 中,由余弦定理得,∴CE =CF =1,∴在△BCF 中,由余弦定理得.故答案为.21.【答案】①③④【解析】【分析】本题考查含逻辑联结词的命题真假的判断以及立体几何相关知识,属于中档题.【解答】解:对于p1:可设l1与l2,所得平面为α.若l3与l1相交,则交点A必在平面α内.同理l2与l3的交点B在平面α内,故直线AB在平面α内,即l3在平面α内,故p1为真命题.对于p2:过空间中任意三点,若三点共线,可形成无数个平面,故p2为假命题.对于p3:空间中两条直线的位置关系有平行,相交,异面,故p3为假命题.对于p4:若m⊥α,则m垂直于平面α内的所有直线,故m⊥l,故p4为真命题.综上可知,p1∧p4为真命题,¬p2∨p3为真命题,¬p3∨¬p4为真命题.故答案为①③④.22.【答案】②③【解析】【分析】本题主要考查了三角函数的图象与性质及函数的奇偶性、对称性等有关知识,属于中档题.根据函数奇偶性定义可判断出函数图象的对称性;通过函数图象关于直线对称可得等量关系,进而检验等式是否成立即可;特殊值法可判断出函数的最值.【解答】解:根据题意,易得函数定义域关于原点对称,f(−x)=sin(−x)+1sin(−x)=−(sinx+1sinx)=−f(x),所以f(x)是奇函数,图象关于原点对称,故①错误,②正确;若函数f(x)关于直线x=π2对称,则有f(π2−x)=f(π2+x),即sin(π2−x)+1sin(π2−x)=sin(π2+x)+1sin(π2+x),通过化简可得等式成立.故③正确;当x=−π2时,f(−π2)=−2<2,故④错误.故答案为②③.23.【答案】16 132 【解析】【分析】 本题考查了向量在几何中的应用,考查了向量的共线和向量的数量积,以及二次函数的性质,属于中档题. 以B 为原点,以BC 为x 轴建立如图所示的直角坐标系,根据向量的平行和向量的数量积即可求出点D 的坐标,即可求出λ的值,再设出点M ,N 的坐标,根据向量的数量积可得关于x 的二次函数,根据二次函数的性质即可求出最小值.【解答】解:以B 为原点,以BC 为x 轴建立如图所示的直角坐标系,∵∠B =60°,AB =3,∴A(32,3√32), ∵BC =6,∴C(6,0),∵AD ⃗⃗⃗⃗⃗⃗ =λBC ⃗⃗⃗⃗⃗ ,∴AD//BC ,设D(x 0,3√32), ∴AD ⃗⃗⃗⃗⃗⃗ =(x 0−32,0),AB ⃗⃗⃗⃗⃗ =(−32,−3√32), ∴AD ⃗⃗⃗⃗⃗⃗ ⋅AB ⃗⃗⃗⃗⃗ =−32(x 0−32)+0=−32,解得x 0=52, ∴D(52,3√32), ∴AD ⃗⃗⃗⃗⃗⃗ =(1,0),BC ⃗⃗⃗⃗⃗ =(6,0),∴AD ⃗⃗⃗⃗⃗⃗ =16BC ⃗⃗⃗⃗⃗ , ∴λ=16,∵|MN⃗⃗⃗⃗⃗⃗⃗ |=1, 设M(x,0),则N(x +1,0),其中0≤x ≤5,∴DM ⃗⃗⃗⃗⃗⃗⃗ =(x −52,−3√32),DN ⃗⃗⃗⃗⃗⃗ =(x −32,−3√32), ∴DM ⃗⃗⃗⃗⃗⃗⃗ ⋅DN ⃗⃗⃗⃗⃗⃗ =(x −52)(x −32)+274=x 2−4x +212=(x −2)2+132,当x =2时取得最小值,最小值为132,第21页,共21页 故答案为:16,132. 24.【答案】7【解析】【分析】本题主要考查累加法求通项公式,等差数列的求和公式以及数列的递推关系,属较难题. 对n 取偶数,再结合条件可求得前16项中所有奇数项的和,对n 取奇数时,利用累加法求得a n+2的值,用其表示出前16项和可得答案.【解答】解:因为a n+2+(−1)n a n =3n −1,当n =2,6,10,14时,a 2+a 4=5,a 6+a 8=17, a 10+a 12=29,a 14+a 16=41因为前16项和为540,所以a 1+a 3+a 5+a 7+a 9+a 11+a 13+a 15=540−(5+17+29+41), 所以a 1+a 3+a 5+a 7+a 9+a 11+a 13+a 15=448,当n 为奇数时,a n+2−a n =3n −1,所以a 3−a 1=2,a 5−a 3=8,a 7−a 5=14⋯a n+2−a n =3n −1,累加得a n+2−a 1=2+8+14+⋯3n −1=(2+3n−1)⋅n+122,∴a n+2=(3n+1)⋅(n+1)4+a 1,∴a 3=2+a 1,a 5=10+a 1,a 7=24+a 1,a 9=44+a 1,a 11=70+a 1,a 13=102+a 1, a 15=140+a 1,因为a 1+a 3+a 5+a 7+a 9+a 11+a 13+a 15=448,所以8a 1+392=448,所以a 1=7. 故答案为7.。
新高考数学高考数学压轴题多选题专项训练分类精编含解析(2)
一、数列多选题1.意大利著名数学家斐波那契在研究兔子繁殖问题时,发现有这样一列数:1,1,2,3,5,…,其中从第三项起,每个数等于它前面两个数的和,后来人们把这样的一列数组成的数列{a n }称为“斐波那契数列”,记S n 为数列{a n }的前n 项和,则下列结论正确的是( ) A .a 8=34 B .S 8=54C .S 2020=a 2022-1D .a 1+a 3+a 5+…+a 2021=a 2022答案:BCD 【分析】由题意可得数列满足递推关系,依次判断四个选项,即可得正确答案. 【详解】对于A ,可知数列的前8项为1,1,2,3,5,8,13,21,故A 错误; 对于B ,,故B 正确; 对于C ,可解析:BCD 【分析】由题意可得数列{}na 满足递推关系()12211,1,+3nn n aa a aan --===≥,依次判断四个选项,即可得正确答案.【详解】对于A ,可知数列的前8项为1,1,2,3,5,8,13,21,故A 错误; 对于B ,81+1+2+3+5+8+13+2154S ==,故B 正确;对于C ,可得()112nn n a aan +-=-≥,则()()()()1234131425311++++++++++nn n a a a a aa a a aa a a aa+-=----即212++1nnn n S a a aa++=-=-,∴202020221Sa=-,故C 正确;对于D ,由()112n n n a aan +-=-≥可得,()()()135202124264202220202022++++++++a a a a a a a a a aaa=---=,故D 正确.故选:BCD. 【点睛】本题以“斐波那契数列”为背景,考查数列的递推关系及性质,解题的关键是得出数列的递推关系,()12211,1,+3nn n a a a aan --===≥,能根据数列性质利用累加法求解.2.已知数列{}na 中,11a =,1111n na a n n +⎛⎫-=+ ⎪⎝⎭,*n N ∈.若对于任意的[]1,2t ∈,不等式()22212n at a t a a n<--++-+恒成立,则实数a 可能为( )A .-4B .-2C .0D .2答案:AB 【分析】由题意可得,利用裂项相相消法求和求出,只需对于任意的恒成立,转化为对于任意的恒成立,然后将选项逐一验证即可求解. 【详解】 ,, 则,,,,上述式子累加可得:,, 对于任意的恒成立解析:AB 【分析】由题意可得11111n n a a n n n n +-=-++,利用裂项相相消法求和求出122n a n n =-<,只需()222122t a t a a --++-+≥对于任意的[]1,2t ∈恒成立,转化为()()210t a t a --+≤⎡⎤⎣⎦对于任意的[]1,2t ∈恒成立,然后将选项逐一验证即可求解. 【详解】111n n n a a n n++-=,11111(1)1n n a a n n n n n n +∴-==-+++, 则11111n n a a n n n n --=---,12111221n n a a n n n n ---=-----,,2111122a a -=-, 上述式子累加可得:111n a a n n -=-,122n a n n∴=-<, ()222122t a t a a ∴--++-+≥对于任意的[]1,2t ∈恒成立,整理得()()210t a t a --+≤⎡⎤⎣⎦对于任意的[]1,2t ∈恒成立, 对A ,当4a =-时,不等式()()2540t t +-≤,解集5,42⎡⎤-⎢⎥⎣⎦,包含[]1,2,故A 正确;对B ,当2a =-时,不等式()()2320t t +-≤,解集3,22⎡⎤-⎢⎥⎣⎦,包含[]1,2,故B 正确;对C ,当0a =时,不等式()210t t +≤,解集1,02⎡⎤-⎢⎥⎣⎦,不包含[]1,2,故C 错误;对D ,当2a =时,不等式()()2120t t -+≤,解集12,2⎡⎤-⎢⎥⎣⎦,不包含[]1,2,故D 错误,故选:AB. 【点睛】本题考查了裂项相消法、由递推关系式求通项公式、一元二次不等式在某区间上恒成立,考查了转化与划归的思想,属于中档题.3.著名数学家斐波那契在研究兔子繁殖问题时,发现有这样一列数:1,1,2,3,5,…,其中从第三项起,每个数等于它前面两个数的和,后来人们把这样的一列数组成的数列{}na 称为“斐波那契数列”,记Sn为数列{}na 的前n 项和,则下列结论正确的是( ) A .68a =B .733S =C .13520192022a a a aa++++=D .22212201920202019a a a aa+++=答案:ABD 【分析】根据,,,计算可知正确;根据,,,,,,累加可知不正确;根据,,,,,,累加可知正确. 【详解】依题意可知,,,, ,,,,故正确; ,所以,故正确; 由,,,,,, 可得,故不解析:ABD 【分析】根据11a =,21a =,21n n n aaa ++=+,计算可知,A B 正确;根据12a a =,342a a a =-,564a a a =-,786a a a =-,,201920202018aaa=-,累加可知C 不正确;根据2121a a a =,222312312()a a a a a a a a =-=-,233423423()a a a a a a a a =-=-,244534534()a a a a a a a a =-=-,,220192019202020182019202020182019()a aaaaaaa=-=-,累加可知D 正确. 【详解】依题意可知,11a =,21a =,21n n naaa ++=+,312112a a a =+=+=,423123a a a =+=+=,534235a a a =+=+=,645358a a a =+=+=,故A 正确;7565813a a a =+=+=,所以712345671123581333S a a a a a a a =++++++=++++++=,故B 正确;由12a a =,342a a a =-,564a a a =-,786a a a =-,,201920202018aaa=-,可得13572019a a a a a+++++=242648620202018a a a a a a a aa+-+-+-++-2020a=,故C 不正确;2121a a a =,222312312()a a a a a a a a =-=-,233423423()a a a a a a a a =-=-,244534534()a a a a a a a a =-=-,,220192019202020182019202020182019()a aaaaaaa=-=-,所以2222212342019a a a a a +++++122312342345342019202020182019a a a a a a a a a a a a a a aaaa=+-+-+-+-20192020aa=,所以22212201920202019a a a aa+++=,故D 正确.故选:ABD. 【点睛】本题考查了数列的递推公式,考查了累加法,属于中档题.4.已知数列{}na 满足112a =-,111n na a +=-,则下列各数是{}n a 的项的有( ) A .2-B .23C .32D .3答案:BD 【分析】根据递推关系式找出规律,可得数列是周期为3的周期数列,从而可求解结论. 【详解】 因为数列满足,, ; ; ;数列是周期为3的数列,且前3项为,,3; 故选:. 【点睛】 本题主要解析:BD 【分析】根据递推关系式找出规律,可得数列是周期为3的周期数列,从而可求解结论. 【详解】因为数列{}n a 满足112a =-,111n na a +=-,212131()2a ∴==--; 32131a a==-; 4131112a a a ==-=-; ∴数列{}n a 是周期为3的数列,且前3项为12-,23,3;故选:BD . 【点睛】本题主要考查数列递推关系式的应用,考查数列的周期性,解题的关键在于求出数列的规律,属于基础题.5.设数列{}na 的前n 项和为*()nS n N ∈,关于数列{}na ,下列四个命题中正确的是( ) A .若1*()n naa n N +∈=,则{}na 既是等差数列又是等比数列B .若2nS An Bn =+(A ,B 为常数,*n N ∈),则{}na 是等差数列C .若()11n nS =--,则{}na 是等比数列D .若{}na 是等差数列,则nS ,2n n SS -,*32()n nS S n N -∈也成等差数列答案:BCD 【分析】利用等差等比数列的定义及性质对选项判断得解. 【详解】选项A: ,得是等差数列,当时不是等比数列,故错; 选项B: ,,得是等差数列,故对; 选项C: ,,当时也成立,是等比数列解析:BCD 【分析】利用等差等比数列的定义及性质对选项判断得解. 【详解】 选项A: 1*()n n a a n N +∈=,10n n aa +∴-=得{}na 是等差数列,当0n a =时不是等比数列,故错; 选项B:2nS An Bn =+,12nn a aA -∴-=,得{}na 是等差数列,故对;选项C: ()11n nS =--,112(1)(2)n nn nS Sa n --∴-==⨯-≥,当1n =时也成立,12(1)n na -∴=⨯-是等比数列,故对;选项D: {}na 是等差数列,由等差数列性质得nS ,2n n SS -,*32()n nS S n N -∈是等差数列,故对; 故选:BCD 【点睛】熟练运用等差数列的定义、性质、前n 项和公式是解题关键.6.朱世杰是元代著名数学家,他所著的《算学启蒙》是一部在中国乃至世界最早的科学普及著作.《算学启蒙》中涉及一些“堆垛”问题,主要利用“堆垛”研究数列以及数列的求和问题.现有100根相同的圆形铅笔,小明模仿“堆垛”问题,将它们全部堆放成纵断面为等腰梯形的“垛”,要求层数不小于2,且从最下面一层开始,每一层比上一层多1根,则该“等腰梯形垛”应堆放的层数可以是( ) A .4B .5C .7D .8答案:BD 【分析】依据题意,根数从上至下构成等差数列,设首项即第一层的根数为,公差即每一层比上一层多的根数为,设一共放层,利用等差数列求和公式,分析即可得解. 【详解】依据题意,根数从上至下构成等差解析:BD 【分析】依据题意,根数从上至下构成等差数列,设首项即第一层的根数为1a ,公差即每一层比上一层多的根数为1d =,设一共放()2n n ≥层,利用等差数列求和公式,分析即可得解. 【详解】依据题意,根数从上至下构成等差数列,设首项即第一层的根数为1a ,公差为1d =,设一共放()2n n ≥层,则总得根数为:()()111110022n n n d n n S na na --=+=+= 整理得120021a n n=+-, 因为1a *∈N,所以n 为200的因数,()20012n n+-≥且为偶数,验证可知5,8n =满足题意. 故选:BD. 【点睛】关键点睛:本题考查等差数列的求和公式,解题的关键是分析题意,把题目信息转化为等差数列,考查学生的逻辑推理能力与运算求解能力,属于基础题.7.公差不为零的等差数列{}na 满足38aa =,n S 为{}n a 前n 项和,则下列结论正确的A .110S =B .10nnS S-=(110n ≤≤)C .当110S >时,5nS S ≥D .当110S <时,5nS S ≥答案:BC 【分析】设公差d 不为零,由,解得,然后逐项判断. 【详解】 设公差d 不为零, 因为, 所以, 即, 解得, ,故A 错误; ,故B 正确;若,解得,,故C 正确;D 错误; 故选:BC解析:BC 【分析】设公差d 不为零,由38a a =,解得192a d =-,然后逐项判断. 【详解】设公差d 不为零, 因为38a a =, 所以1127a d a d +=+, 即1127a d a d +=--,解得192a d =-, 11191111551155022S a d d d d ⎛⎫=+=⨯-+=≠ ⎪⎝⎭,故A 错误; ()()()()()()221101110910,10102222n n n n n n d d na d n n n a n n S S d ----=+=-=-+=-,故B 正确;若11191111551155022S a d d d d ⎛⎫=+=⨯-+=> ⎪⎝⎭,解得0d >,()()22510525222n d d d n n S n S =-=--≥,故C 正确;D 错误;8.设{}na 是等差数列,nS是其前n 项的和,且56S S <,678S S S =>,则下列结论正确的是( ) A .0d > B .70a =C .95S S >D .6S 与7S 均为nS 的最大值答案:BD 【分析】设等差数列的公差为,依次分析选项即可求解. 【详解】根据题意,设等差数列的公差为,依次分析选项: 是等差数列,若,则,故B 正确; 又由得,则有,故A 错误; 而C 选项,,即,可得,解析:BD 【分析】设等差数列{}na 的公差为d ,依次分析选项即可求解.【详解】根据题意,设等差数列{}na 的公差为d ,依次分析选项:{}na 是等差数列,若67SS =,则7670S S a -==,故B 正确;又由56S S <得6560S S a -=>,则有760d a a =-<,故A 错误; 而C 选项,95S S >,即67890a a a a +++>,可得()7820a a+>,又由70a =且0d <,则80a <,必有780a a +<,显然C 选项是错误的.∵56S S <,678S S S =>,∴6S 与7S 均为nS 的最大值,故D 正确;故选:BD. 【点睛】本题考查了等差数列以及前n 项和的性质,需熟记公式,属于基础题.9.已知等差数列{}na 的前n 项和为nS ()*n N ∈,公差0d ≠,690S=,7a 是3a 与9a 的等比中项,则下列选项正确的是( ) A .2d =-B .120a=-C .当且仅当10n =时,nS 取最大值D .当0nS <时,n 的最小值为22答案:AD 【分析】运用等差数列的通项公式和求和公式,解方程可得首项和公差,可判断A ,B ;由二次函数的配方法,结合n 为正整数,可判断C ;由解不等式可判断D . 【详解】等差数列的前n 项和为,公差,由,可解析:AD 【分析】运用等差数列的通项公式和求和公式,解方程可得首项和公差,可判断A ,B ;由二次函数的配方法,结合n 为正整数,可判断C ;由0nS <解不等式可判断D .【详解】等差数列{}na 的前n 项和为nS,公差0d ≠,由690S =,可得161590a d +=,即12530a d +=,①由7a 是3a 与9a 的等比中项,得2739a a a =,即()()()2111628a d a d a d +=++,化为1100a d +=,②由①②解得120a =,2d =-,则202(1)222na n n =--=-,21(20222)212n S n n n n =+-=-, 由22144124n S n ⎛⎫=--+ ⎪⎝⎭,可得10n =或11时,n S 取得最大值110; 由2102nS n n -<=,解得21n >,则n 的最小值为22.故选:AD 【点睛】本题考查等差数列的通项公式和求和公式,以及等比中项的性质,二次函数的最值求法,考查方程思想和运算能力,属于中档题. 10.下列命题正确的是( )A .给出数列的有限项就可以唯一确定这个数列的通项公式B .若等差数列{}na的公差0d >,则{}na 是递增数列C .若a ,b ,c 成等差数列,则111,,a b c可能成等差数列D .若数列{}na是等差数列,则数列{}12++nn aa也是等差数列答案:BCD 【分析】根据等差数列的性质即可判断选项的正误. 【详解】A 选项:给出数列的有限项不一定可以确定通项公式;B 选项:由等差数列性质知,必是递增数列;C 选项:时,是等差数列,而a = 1,解析:BCD 【分析】根据等差数列的性质即可判断选项的正误. 【详解】A 选项:给出数列的有限项不一定可以确定通项公式;B 选项:由等差数列性质知0d >,{}na必是递增数列;C 选项:1a b c ===时,1111a b c===是等差数列,而a = 1,b = 2,c = 3时不成立;D 选项:数列{}na是等差数列公差为d ,所以11112(1)223(31)nn a aa n d a nd a n d ++=+-++=+-也是等差数列;故选:BCD 【点睛】本题考查了等差数列,利用等差数列的性质判断选项的正误,属于基础题.11.在下列四个式子确定数列{}na 是等差数列的条件是( )A .na knb =+(k ,b 为常数,*n N ∈); B .2n naa d +-=(d 为常数,*n N ∈);C .()*2120n n n a a a n ++-+=∈N ; D .{}na 的前n 项和21nSn n =++(*n N ∈).答案:AC 【分析】直接利用等差数列的定义性质判断数列是否为等差数列. 【详解】A 选项中(,为常数,),数列的关系式符合一次函数的形式,所以是等差数列,故正确,B 选项中(为常数,),不符合从第二项起解析:AC 【分析】直接利用等差数列的定义性质判断数列是否为等差数列. 【详解】A 选项中na knb =+(k ,b 为常数,*n N ∈),数列{}na 的关系式符合一次函数的形式,所以是等差数列,故正确, B 选项中2n naa d +-=(d 为常数,*n N ∈),不符合从第二项起,相邻项的差为同一个常数,故错误; C 选项中()*2120n n n aaa n ++-+=∈N ,对于数列{}na 符合等差中项的形式,所以是等差数列,故正确;D 选项{}na 的前n 项和21nSn n =++(*n N ∈),不符合2nS An Bn =+,所以{}na 不为等差数列.故错误. 故选:AC 【点睛】本题主要考查了等差数列的定义的应用,如何去判断数列为等差数列,主要考查学生的运算能力和转换能力及思维能力,属于基础题型.12.无穷数列{}na 的前n 项和2nSan bn c =++,其中a ,b ,c 为实数,则( )A .{}na 可能为等差数列B .{}na 可能为等比数列 C .{}na 中一定存在连续三项构成等差数列 D .{}na 中一定存在连续三项构成等比数列 答案:ABC 【分析】由可求得的表达式,利用定义判定得出答案. 【详解】 当时,. 当时,. 当时,上式=. 所以若是等差数列,则所以当时,是等差数列, 时是等比数列;当时,从第二项开始是等差数列.解析:ABC 【分析】由2nS an bn c =++可求得na 的表达式,利用定义判定得出答案.【详解】当1n =时,11a S abc ==++.当2n ≥时,()()221112nnn a S San bn c a n b n c an a b -=-=++-----=-+.当1n =时,上式=+a b .所以若{}na 是等差数列,则0.ab a bc c +=++∴=所以当0c时,{}n a 是等差数列, 00a cb ==⎧⎨≠⎩时是等比数列;当0c ≠时,{}na 从第二项开始是等差数列. 故选:A B C 【点睛】本题只要考查等差数列前n 项和nS 与通项公式na 的关系,利用nS 求通项公式,属于基础题.二、等差数列多选题13.在等差数列{}na 中,公差0d ≠,前n 项和为nS,则( )A .4619a a a a >B .130S >,140S <,则78a a >C .若915S S =,则n S 中的最大值是12SD .若2nS n n a =-+,则0a =解析:AD 【分析】对于A ,作差后利用等差数列的通项公式运算可得答案;对于B ,根据等差数列的前n 项和公式得到70a >和780a a +<, 进而可得80a <,由此可知78||||a a <,故B 不正确;对于C ,由915S S =得到,12130a a +=,然后分类讨论d 的符号可得答案;对于D ,由nS 求出na 及1a ,根据数列{}na 为等差数列可求得0a =.【详解】对于A ,因为46191111(3)(5)(8)a a a a a d a d a a d -=++-+215d =,且0d ≠,所以24619150a a a a d -=>,所以4619a a a a >,故A 正确;对于B ,因为130S >,140S <,所以77713()1302a a a +=>,即70a >,787814()7()02a a a a +=+<,即780a a +<,因为70a >,所以80a <,所以7878||||0a a a a -=+<,即78||||a a <,故B 不正确;对于C ,因为915S S =,所以101114150a a a a ++++=,所以12133()0a a +=,即12130a a +=,当0d >时,等差数列{}na 递增,则12130,0a a <>,所以n S 中的最小值是12S ,无最大值;当0d <时,等差数列{}na 递减,则12130,0aa ><,所以n S 中的最大值是12S ,无最小值,故C 不正确;对于D ,若2nS n n a =-+,则11a S a ==,2n ≥时,221(1)(1)nnn a S Sn n a n n a -=-=-+--+--22n =-,因为数列{}n a 为等差数列,所以12120a a =⨯-==,故D 正确.故选:AD 【点睛】关键点点睛:熟练掌握等差数列的通项公式、前n 项和公式是解题关键.14.题目文件丢失!15.已知数列{}na 的前4项为2,0,2,0,则该数列的通项公式可能为( )A .0,2,nn a n ⎧=⎨⎩为奇数为偶数B .1(1)1n na -=-+C .2sin 2n n a π=D .cos(1)1na n π=-+解析:BD 【分析】根据选项求出数列的前4项,逐一判断即可. 【详解】解:因为数列{}na 的前4项为2,0,2,0,选项A :不符合题设;选项B :01(1)12,a =-+=12(1)10,a =-+=23(1)12,a =-+=34(1)10a =-+=,符合题设;选项C :,12sin2,2a π==22sin 0,a π==332sin 22a π==-不符合题设; 选项D :1cos012,a =+=2cos 10,a π=+=3cos212,a π=+=4cos310a π=+=,符合题设.故选:BD. 【点睛】本题考查数列的通项公式的问题,考查了基本运算求解能力,属于基础题.16.朱世杰是元代著名数学家,他所著的《算学启蒙》是一部在中国乃至世界最早的科学普及著作.《算学启蒙》中涉及一些“堆垛”问题,主要利用“堆垛”研究数列以及数列的求和问题.现有100根相同的圆形铅笔,小明模仿“堆垛”问题,将它们全部堆放成纵断面为等腰梯形的“垛”,要求层数不小于2,且从最下面一层开始,每一层比上一层多1根,则该“等腰梯形垛”应堆放的层数可以是( ) A .4 B .5 C .7D .8解析:BD 【分析】依据题意,根数从上至下构成等差数列,设首项即第一层的根数为1a ,公差即每一层比上一层多的根数为1d =,设一共放()2n n ≥层,利用等差数列求和公式,分析即可得解. 【详解】依据题意,根数从上至下构成等差数列,设首项即第一层的根数为1a ,公差为1d =,设一共放()2n n ≥层,则总得根数为:()()111110022n n n d n n S na na --=+=+=整理得120021a n n=+-, 因为1a *∈N ,所以n 为200的因数,()20012n n+-≥且为偶数, 验证可知5,8n =满足题意. 故选:BD. 【点睛】关键点睛:本题考查等差数列的求和公式,解题的关键是分析题意,把题目信息转化为等差数列,考查学生的逻辑推理能力与运算求解能力,属于基础题. 17.已知数列{}na :1,1,2,3,5,…其中从第三项起,每个数等于它前面两个数的和,记nS为数列{}na 的前n 项和,则下列结论正确的是( )A .68S a = B .733S =C .13520212022a a a aa++++=D .2222123202020202021a a a a aa++++=解析:BCD 【分析】根据题意写出8a ,6S ,7S ,从而判断A ,B 的正误;写出递推关系,对递推关系进行适当的变形,利用累加法即可判断C ,D 的正误. 【详解】对A ,821a =,620S =,故A 不正确;对B ,761333S S =+=,故B 正确;对C ,由12a a =,342a a a =-,564a a a =-,…,202120222020aaa=-,可得13520212022a a a aa +++⋅⋅⋅+=,故C 正确;对D ,该数列总有21n n n aaa ++=+,2121a a a =,则()222312321a a a a a a a a =-=-,()233423423a a a a a a a a =-=-,…,()220182018201920172018201920172018a a a a a a a a =-=-, 22019a =2019202020192018aaaa-,220202020202120202019a aaaa=-,故2222123202020202021a a a a a a+++⋅⋅⋅+=,故D 正确.故选:BCD 【点睛】关键点睛:解答本题的关键是对CD 的判断,即要善于利用21n n na aa ++=+对所给式子进行变形.18.已知等差数列{}na 的公差不为0,其前n 项和为nS,且12a 、8S 、9S 成等差数列,则下列四个选项中正确的有( )A .59823a a S +=B .27S S =C .5S 最小D .50a =解析:BD【分析】设等差数列{}na 的公差为d ,根据条件12a 、8S、9S 成等差数列可求得1a 与d 的等量关系,可得出na 、nS 的表达式,进而可判断各选项的正误.【详解】设等差数列{}na 的公差为d ,则8118788282S a d a d ⨯=+=+,9119899362S a d a d ⨯=+=+, 因为12a 、8S 、9S 成等差数列,则81922S a S =+,即11116562936a d a a d +=++,解得14a d =-,()()115n a a n d n d ∴=+-=-,()()219122nnn d n n dS na --=+=.对于A 选项,59233412a a d d +=⨯=,()2888942d S d -⨯==-,A 选项错误; 对于B 选项,()2229272d S d -⨯==-,()2779772d S d -⨯==-,B 选项正确;对于C 选项,()2298192224n d d S n n n ⎡⎤⎛⎫=-=--⎢⎥ ⎪⎝⎭⎢⎥⎣⎦. 若0d >,则4S 或5S 最小;若0d <,则4S 或5S 最大.C 选项错误;对于D 选项,50a =,D 选项正确.故选:BD. 【点睛】在解有关等差数列的问题时可以考虑化归为a 1和d 等基本量,通过建立方程(组)获得解,另外在求解等差数列前n 项和nS 的最值时,一般利用二次函数的基本性质或者数列的单调性来求解. 19.定义11222n nna a a H n-+++=为数列{}na 的“优值”.已知某数列{}na 的“优值”2n nH =,前n 项和为nS ,则( )A .数列{}na 为等差数列 B .数列{}na 为等比数列C .2020202320202S =D .2S ,4S ,6S 成等差数列解析:AC 【分析】由题意可知112222n n nna a a H n-+++==,即112222n n na a a n -+++=⋅,则2n ≥时,()()111221212n n n n na n n n ---=⋅--⋅=+⋅,可求解出1na n =+,易知{}na 是等差数列,则A 正确,然后利用等差数列的前n 项和公式求出nS ,判断C ,D 的正误.【详解】 解:由112222n n nna a a H n-+++==,得112222n n na a a n -+++=⋅,①所以2n ≥时,()211212212n n n a a an ---+++=-⋅,②得2n ≥时,()()111221212n n n n na n n n ---=⋅--⋅=+⋅, 即2n ≥时,1na n =+,当1n =时,由①知12a =,满足1na n =+.所以数列{}na 是首项为2,公差为1的等差数列,故A 正确,B 错,所以()32n n n S +=,所以2020202320202S =,故C 正确.25S =,414S =,627S =,故D 错, 故选:AC . 【点睛】本题考查数列的新定义问题,考查数列通项公式的求解及前n 项和的求解,难度一般.20.数列{}n a 满足11,121n n naa a a +==+,则下列说法正确的是( ) A .数列1n a ⎧⎫⎨⎬⎩⎭是等差数列B .数列1n a ⎧⎫⎨⎬⎩⎭的前n 项和2nS n =C .数列{}na 的通项公式为21nan =-D .数列{}na 为递减数列解析:ABD【分析】首项根据11,121n n n a a a a +==+得到1112n n a a +-=,从而得到1na ⎧⎫⎨⎬⎩⎭是以首项为1,公差为2的等差数列,再依次判断选项即可.【详解】对选项A ,因为121n n naa a +=+,11a =, 所以121112n n nna a a a ++==+,即1112n na a+-= 所以1n a ⎧⎫⎨⎬⎩⎭是以首项为1,公差为2的等差数列,故A 正确.对选项B ,由A 知:112121nn n a数列1n a ⎧⎫⎨⎬⎩⎭的前n 项和()21212n n n S n +-==,故B 正确. 对选项C ,因为121nn a =-,所以121n a n =-,故C 错误. 对选项D ,因为121n a n =-,所以数列{}n a 为递减数列,故D 正确. 故选:ABD 【点睛】本题主要考查等差数列的通项公式和前n 项和前n 项和,同时考查了递推公式,属于中档题.21.设等差数列{}na 的前n 项和为nS,若39S =,47a =,则( )A .2nS n =B .223nS n n =-C .21na n =-D .35na n =-解析:AC 【分析】利用等差数列{}na 的前n 项和公式、通项公式列出方程组,求出11a =,2d =,由此能求出na 与nS .【详解】等差数列{}na 的前n 项和为n S .39S =,47a =,∴31413239237S a d a a d ⨯⎧=+=⎪⎨⎪=+=⎩, 解得11a =,2d =,1(1)221na n n ∴+-⨯=-=.()21212nn nS n +-==故选:AC . 【点睛】本题考查等差数列的通项公式求和公式的应用,考查等差数列的性质等基础知识,考查运算求解能力,是基础题.22.已知数列{}na 满足:13a =,当2n ≥时,()21111nn a a-=++-,则关于数列{}na 说法正确的是( )A .28a =B .数列{}na 为递增数列C .数列{}na 为周期数列D .22na n n =+解析:ABD【分析】由已知递推式可得数列{}1na +是首项为112a +=,公差为1的等差数列,结合选项可得结果. 【详解】()21111nn a a-=++-得()21111nn a a-+=++,∴1111nn a a-+=++,即数列{}1na +是首项为112a +=,公差为1的等差数列,∴12(1)11na n n +=+-⨯=+,∴22na n n =+,得28a =,由二次函数的性质得数列{}na 为递增数列,所以易知ABD 正确, 故选:ABD. 【点睛】本题主要考查了通过递推式得出数列的通项公式,通过通项公式研究数列的函数性质,属于中档题.23.无穷数列{}na 的前n 项和2nSan bn c =++,其中a ,b ,c 为实数,则( )A .{}na 可能为等差数列 B .{}na 可能为等比数列 C .{}na 中一定存在连续三项构成等差数列 D .{}na 中一定存在连续三项构成等比数列 解析:ABC 【分析】由2nS an bn c =++可求得na 的表达式,利用定义判定得出答案.【详解】当1n =时,11a S abc ==++.当2n ≥时,()()221112nnn a S San bn c a n b n c an a b -=-=++-----=-+.当1n =时,上式=+a b .所以若{}na 是等差数列,则0.ab a bc c +=++∴=所以当0c时,{}na 是等差数列, 00a cb ==⎧⎨≠⎩时是等比数列;当0c ≠时,{}na 从第二项开始是等差数列.故选:A B C 【点睛】本题只要考查等差数列前n 项和nS 与通项公式na 的关系,利用nS 求通项公式,属于基础题.24.等差数列{}na 的前n 项和为n S ,若90a <,100a >,则下列结论正确的是( )A .109S S >B .170S <C .1819S S >D .190S>解析:ABD 【分析】先根据题意可知前9项的和最小,判断出A 正确;根据题意可知数列为递减数列,则190a >,又181919S S a =-,进而可知1516S S >,判断出C 不正确;利用等差中项的性质和求和公式可知()01179179172171722aaa Sa <+⨯⨯===,()1191019101921919022aaa S a +⨯⨯===>,故BD 正确.【详解】根据题意可知数列为递增数列,90a <,100a >,∴前9项的和最小,故A 正确; ()11791791721717022a a a S a +⨯⨯===<,故B 正确;()1191019101921919022aaa S a +⨯⨯===>,故D 正确;190a >,181919S S a ∴=-, 1819S S ∴<,故C 不正确. 故选:ABD . 【点睛】本题考查等差数列的综合应用,考查逻辑思维能力和运算能力,属于常考题.三、等比数列多选题25.题目文件丢失! 26.题目文件丢失!27.在数列{}na 中,如果对任意*n N ∈都有211n n n na a k aa+++-=-(k 为常数),则称{}na 为等差比数列,k 称为公差比.下列说法正确的是( ) A .等差数列一定是等差比数列 B .等差比数列的公差比一定不为0 C .若32n na =-+,则数列{}na是等差比数列D .若等比数列是等差比数列,则其公比等于公差比 解析:BCD 【分析】考虑常数列可以判定A 错误,利用反证法判定B 正确,代入等差比数列公式判定CD 正确. 【详解】对于数列{}na ,考虑121,1,1nn n aaa++===,211n n n na aa a+++--无意义,所以A 选项错误;若等差比数列的公差比为0,212110,0n n n n n na aa a a a+++++---==,则1n n a a +-与题目矛盾,所以B 选项说法正确;若32n n a =-+,2113n n n na aa a+++-=-,数列{}n a 是等差比数列,所以C 选项正确; 若等比数列是等差比数列,则11,1n n q a a q -=≠,()()11211111111111n n nn n n n n n na q q a a a q a q q a a a q a q a q q +++--+---===---,所以D 选项正确. 故选:BCD 【点睛】易错点睛:此题考查等差数列和等比数列相关的新定义问题.解决此类问题应该注意: (1)常数列作为特殊的等差数列公差为0; (2)非零常数列作为特殊等比数列公比为1.28.已知数列{}na 的前n 项和为n S 且满足11130(2),3n n n a S S n a -+=≥=,下列命题中正确的是( )A .1n S ⎧⎫⎨⎬⎩⎭是等差数列B .13n S n= C .13(1)n a n n =--D .{}3nS 是等比数列解析:ABD 【分析】由1(2)n n n a S S n -=-≥代入已知式,可得{}n S 的递推式,变形后可证1n S ⎧⎫⎨⎬⎩⎭是等差数列,从而可求得nS ,利用nS 求出na ,并确定3n S 的表达式,判断D.【详解】因为1(2)n n n a S S n -=-≥,1130n n n n S S S S ---+=,所以1113nn S S--=,所以1n S ⎧⎫⎨⎬⎩⎭是等差数列,A 正确;公差为3,又11113S a ==,所以133(1)3nn n S =+-=,13n S n =.B 正确; 2n ≥时,由1n n n a S S -=-求得13(1)n a n n =-,但13a =不适合此表达式,因此C 错; 由13n S n =得1311333n n n S +==⨯,∴{}3n S 是等比数列,D 正确. 故选:ABD. 【点睛】本题考查等差数列的证明与通项公式,考查等比数列的判断,解题关键由1(2)n n n a S S n -=-≥,化已知等式为{}n S 的递推关系,变形后根据定义证明等差数列.29.已知数列{}na 前n 项和为nS.且1a p =,122(2)nn S Sp n --=≥(p 为非零常数)测下列结论中正确的是( )A .数列{}na 为等比数列 B .1p =时,41516S = C .当12p =时,()*,m n m n a a a m n N +⋅=∈ D .3856a a a a +=+解析:AC 【分析】 由122(2)nn S Sp n --=≥和等比数列的定义,判断出A 正确;利用等比数列的求和公式判断B 错误;利用等比数列的通项公式计算得出C 正确,D 不正确. 【详解】由122(2)n n S S p n --=≥,得22p a =. 3n ≥时,1222n n SSp ---=,相减可得120nn a a--=,又2112a a =,数列{}n a 为首项为p ,公比为12的等比数列,故A 正确; 由A 可得1p =时,44111521812S -==-,故B 错误; 由A 可得mnm na a a+⋅=等价为2121122m n m n p p ++⋅=⋅,可得12p =,故C 正确;38271133||||22128a a p p ⎛⎫+=+=⋅ ⎪⎝⎭,56451112||||22128a a p p ⎛⎫+=+=⋅ ⎪⎝⎭, 则3856a a a a +>+,即D 不正确;故选:AC. 【点睛】本题考查等比数列的通项公式和求和公式,考查数列的递推关系式,考查学生的计算能力,属于中档题.30.设等比数列{}na 的公比为q ,其前n 项和为nS,前n 项积为nT ,并且满足条件11a >,671a a >,67101a a -<-,则下列结论正确的是( ) A .01q << B .8601a a <<C .nS 的最大值为7SD .nT 的最大值为6T解析:ABD 【分析】先分析公比取值范围,即可判断A,再根据等比数列性质判断B,最后根据项的性质判断C,D. 【详解】若0q <,则67670,00a a a a <>∴<与671a a >矛盾;若1q ≥,则11a >∴671,1a a >>∴67101a a ->-与67101a a -<-矛盾; 因此01q <<,所以A 正确;667710101a a a a -<∴>>>-,因此2768(,1)0a a a =∈,即B 正确;因为0na >,所以n S 单调递增,即n S 的最大值不为7S ,C 错误;因为当7n ≥时,(0,1)na ∈,当16n ≤≤时,(1,)na ∈+∞,所以nT 的最大值为6T ,即D正确; 故选:ABD 【点睛】本题考查等比数列相关性质,考查综合分析判断能力,属中档题.31.记单调递增的等比数列{}na 的前n 项和为nS,若2410a a +=,23464a a a =,则( ) A .112n n nSS ++-=B .12n naC .21n nS =-D .121n nS -=-解析:BC 【分析】先求得3a ,然后求得q ,进而求得1a ,由此求得1,,nnn na S SS +-,进而判断出正确选项.【详解】由23464a a a =得3334a =,则34a =.设等比数列{}na 的公比为()0q q ≠,由2410a a +=,得4410q q+=,即22520q q -+=,解得2q 或12q =.又因为数列{}na 单调递增,所以2q,所以112810a a +=,解得11a =.所以12n na,()1122112n nnS ⨯-==--,所以()1121212n n n n n S S ++-=---=.故选:BC 【点睛】本题考查等比数列的通项公式、等比数列的性质及前n 项和,属于中档题.32.已知数列{a n },{b n }均为递增数列,{a n }的前n 项和为S n ,{b n }的前n 项和为T n .且满足a n +a n +1=2n ,b n •b n +1=2n (n ∈N *),则下列说法正确的有( ) A .0<a 1<1 B .1<b 12< C .S 2n <T 2nD .S 2n ≥T 2n解析:ABC 【分析】利用代入法求出前几项的关系即可判断出a 1,b 1的取值范围,分组法求出其前2n 项和的表达式,分析,即可得解.【详解】∵数列{a n }为递增数列;∴a 1<a 2<a 3;∵a n+a n +1=2n ,∴122324a a a a +=⎧⎨+=⎩; ∴12123212244a a aa a a a +⎧⎨+=-⎩>> ∴0<a 1<1;故A 正确.∴S 2n =(a 1+a 2)+(a 3+a 4)+…+(a 2n ﹣1+a 2n )=2+6+10+…+2(2n ﹣1)=2n 2; ∵数列{b n}为递增数列;∴b 1<b 2<b 3; ∵b n•b n +1=2n∴122324b b b b =⎧⎨=⎩; ∴2132b b b b⎧⎨⎩>>; ∴1<b 12<,故B 正确.∵T 2n =b 1+b 2+…+b 2n=(b 1+b 3+b 5+…+b 2n ﹣1)+(b 2+b 4+…+b 2n )()()()()121212122122nnn b b b b⋅--=+=+-()()122212221n n b b ≥-=-; ∴对于任意的n ∈N*,S 2n <T 2n;故C 正确,D 错误.故选:ABC 【点睛】本题考查了分组法求前n 项和及性质探究,考查了学生综合分析,转化划归,数学运算的能力,属于较难题.33.定义在()(),00,-∞⋃+∞上的函数()f x ,如果对于任意给定的等比数列{}na ,数列(){}nf a 仍是等比数列,则称()f x 为“保等比数列函数”.现有定义在()(),00,-∞⋃+∞上的四个函数中,是“保等比数列函数”的为( )A .()2f x x =B .()2x f x =C .()f x x =D .()ln f x x =解析:AC 【分析】直接利用题目中“保等比数列函数”的性质,代入四个选项一一验证即可. 【详解】设等比数列{}na 的公比为q .对于A ,则2221112()()n n n n n nf a a a q f a a a +++⎛⎫=== ⎪⎝⎭ ,故A 是“保等比数列函数”; 对于B ,则111()22()2n n n na a a n a nf a f a ++-+==≠ 常数,故B 不是“保等比数列函数”; 对于C ,则111()()n n n nnnaf a aq f a aa+++=== ,故C 是“保等比数列函数”;对于D ,则11ln ln ln ln ln ()1()ln ln ln ln n n n n nnnnna a q a q q f a f a a a a a++⋅+====+≠ 常数,故D 不是“保等比数列函数”. 故选:AC. 【点睛】本题考查等比数列的定义,考查推理能力,属于基础题.34.已知等比数列{a n }的公比23q =-,等差数列{b n }的首项b 1=12,若a 9>b 9且a 10>b 10,则以下结论正确的有( ) A .a 9•a 10<0 B .a 9>a 10C .b 10>0D .b 9>b 10解析:AD 【分析】设等差数列的公差为d ,运用等差数列和等比数列的通项公式分析A 正确,B 与C 不正确,结合条件判断等差数列为递减数列,即可得到D 正确. 【详解】数列{a n }是公比q 为23-的等比数列,{b n }是首项为12,公差设为d 的等差数列,则8912()3a a =-,91012()3a a =-, ∴a 9•a 1021712()3a =-<0,故A 正确; ∵a 1正负不确定,故B 错误; ∵a 10正负不确定,∴由a 10>b 10,不能求得b 10的符号,故C 错误; 由a 9>b 9且a 10>b 10,则a 1(23-)8>12+8d ,a 1(23-)9>12+9d ,由于910,a a 异号,因此90a <或100a<故 90b <或100b <,且b 1=12可得等差数列{b n }一定是递减数列,即d <0, 即有a 9>b 9>b 10,故D 正确. 故选:AD 【点睛】本题考查了等差等比数列的综合应用,考查了等比数列的通项公式、求和公式和等差数列的单调性,考查了学生综合分析,转化划归,数学运算的能力,属于中档题.35.等差数列{}na 的公差为d ,前n 项和为nS,当首项1a 和d 变化时,3813++a a a 是一个定值,则下列各数也为定值的有( )A .7aB .8aC .15SD .16S解析:BC 【分析】根据等差中项的性质和等差数列的求和公式可得出结果. 【详解】由等差中项的性质可得381383a a a a ++=为定值,则8a 为定值,()11515815152a aS a +==为定值,但()()11616891682a aS a a +==+不是定值.故选:BC. 【点睛】本题考查等差中项的基本性质和等差数列求和公式的应用,考查计算能力,属于基础题.36.对于数列{}na ,若存在正整数()2k k ≥,使得1kk aa-<,1kk a a+<,则称ka 是数列{}na 的“谷值”,k 是数列{}na 的“谷值点”,在数列{}na 中,若98nan n=+-,下面哪些数不能作为数列{}na 的“谷值点”?( )A .3B .2C .7D .5解析:AD。
2024全国数学高考压轴题(数列选择题)附答案
2024全国数学高考压轴题(数列)一、单选题1.若数列{b n }、{c n }均为严格增数列 且对任意正整数n 都存在正整数m 使得b m ∈[c n ,c n+1] 则称数列{b n }为数列{c n }的“M 数列”.已知数列{a n }的前n 项和为S n 则下列选项中为假命题的是( )A .存在等差数列{a n } 使得{a n }是{S n }的“M 数列”B .存在等比数列{a n } 使得{a n }是{S n }的“M 数列”C .存在等差数列{a n } 使得{S n }是{a n }的“M 数列”D .存在等比数列{a n } 使得{S n }是{a n }的“M 数列”2.已知函数f(x)及其导函数f ′(x)的定义域均为R 记g(x)=f ′(x).若f(x +3)为奇函数 g(32+2x)为偶函数 且g(0)=−3 g(1)=2 则∑g 2023i=1(i)=( ) A .670B .672C .674D .6763.我们知道按照一定顺序排列的数字可以构成数列 那么按照一定顺序排列的函数可以构成函数列.设无穷函数列{f n (x)}(n ∈N +)的通项公式为f n (x)=n 2+2nx+x 2+1(n+x)(n+1)x ∈(0,1) 记E n 为f n (x)的值域 E =U n=1+∞E n 为所有E n 的并集 则E 为( )A .(56,109)B .(1,109)C .(56,54)D .(1,54)4.已知等比数列{x n }的公比q >−12则( )A .若|x 1+x 2+⋅⋅⋅+x 100|<1 则√|x 1|+√|x 2|+⋅⋅⋅+√|x 100|<10B .若|x 1+x 2+⋅⋅⋅+x 100|>1 则√|x 1|+√|x 2|+⋅⋅⋅+√|x 100|>10C .若|x 1+x 2+⋅⋅⋅+x 101|<1 则√|x 1|+√|x 2|+⋅⋅⋅+√|x 101|<10D .若|x 1+x 2+⋅⋅⋅+x 101|>1 则√|x 1|+√|x 2|+⋅⋅⋅+√|x 101|>105.已知数列{a n } {b n }满足a 1=2 b 1=12 {a n+1=b n +1an b n+1=a n +1bn,,,n ,∈,N ∗ 则下列选项错误的是( ) A .a 2b 2=14B .a 50⋅b 50<112C .a 50+b 50=52√a 50⋅b 50D .|a 50−b 50|≤156.已知数列{a n }满足:a 1=2 a n+1=13(√a n +2a n )(n ∈N ∗).记数列{a n }的前n 项和为S n 则( )A .12<S 10<14B .14<S 10<16C .16<S 10<18D .18<S 10<207.已知数列 {a n } 满足: a 1=100,a n+1=a n +1an则( )A .√200+10000<a 101<√200.01+10000B .√200.01+10000<a 101<√200.1+10000C .√200.1+10000<a 101<√201+10000D .√201+10000<a 101<√210+100008.已知数列 {a n } 满足 a 1=a(a >0) √a n+1a n =a n +1 给出下列三个结论:①不存在 a 使得数列 {a n } 单调递减;②对任意的a 不等式 a n+2+a n <2a n+1 对所有的 n ∈N ∗ 恒成立;③当 a =1 时 存在常数 C 使得 a n <2n +C 对所有的 n ∈N ∗ 都成立.其中正确的是( ) A .①②B .②③C .①③D .①②③9.已知F 为抛物线y 2=4x 的焦点 点P n (x n ,y n )(n =1,2,3,⋯)在抛物线上.若|P n+1F|−|P n F|=1 则( ) A .{x n }是等差数列 B .{x n }是等比数列 C .{y n }是等差数列D .{y n }是等比数列10.已知数列 11 21 12 31 22 13 41 32 23 14… 其中每一项的分子和分母均为正整数.第一项是分子与分母之和为2的有理数;接下来两项是分子与分母之和为3的有理数 并且从大到小排列;再接下来的三项是分子与分母之和为4的有理数 并且从大到小排列 依次类推.此数列第n 项记为 a n 则满足 a n =5 且 n ≥20 的n 的最小值为( ) A .47B .48C .57D .5811.已知△A n B n C n (n =1,2,3,⋯)是直角三角形 A n 是直角 内角A n ,B n ,C n 所对的边分别为a n ,b n ,c n 面积为S n .若b 1=4,c 1=3,b n+12=a n+12+c n 23,c n+12=a n+12+b n 23则下列选项错误的是( )A .{S 2n }是递增数列B .{S 2n−1}是递减数列C .数列{b n −c n }存在最大项D .数列{b n −c n }存在最小项12.已知数列{a n }的各项都是正数 a n+12−a n+1=a n (n ∈N ∗).记b n =(−1)n−1a n −1数列{b n }的前n 项和为S n 给出下列四个命题:①若数列{a n }各项单调递增 则首项a 1∈(0,2)②若数列{a n }各项单调递减 则首项a 1∈(2,+∞)③若数列{a n }各项单调递增 当a 1=32时 S 2022>2④若数列{a n }各项单调递增 当a 1=23时S2022<−5则以下说法正确的个数()A.4B.3C.2D.113.已知正项数列{a n}对任意的正整数m、n都有2a m+n≤a2m+a2n则下列结论可能成立的是()A.a nm+a mn=a mn B.na m+ma n=a m+n C.a m+a n+2=a mn D.2a m⋅a n=a m+n14.古希腊哲学家芝诺提出了如下悖论:一个人以恒定的速度径直从A点走向B点要先走完总路程的三分之一再走完剩下路程的三分之一如此下去会产生无限个“剩下的路程” 因此他有无限个“剩下路程的三分之一”要走这个人永远走不到终点.另一方面我们可以从上述第一段“三分之一的路程”开始通过分别计算他在每一个“三分之一距离”上行进的时间并将它们逐个累加不难推理出这个人行进的总时间不会超过一个恒定的实数.记等比数列{a n}的首项a1=13公比为q 前n项和为S n则造成上述悖论的原理是()A.q=16,∃t∈R,∀n∈N ∗,Sn<t B.q=13,∃t∈R,∀n∈N∗,S n<tC.q=12,∃t∈R,∀n∈N ∗,Sn<t D.q=23,∃t∈R,∀n∈N∗,S n<t15.已知sinx,siny,sinz依次组成严格递增的等差数列则下列结论错误的是()A.tanx,tany,tanz依次可组成等差数列B.cosx,cosy,cosz依次可组成等差数列C.cosx,cosz,cosy依次可组成等差数列D.cosz,cosx,cosy依次可组成等差数列16.记U={1,2,⋯,100}.对数列{a n}(n∈N∗)和U的子集T 若T=∅定义S T=0;若T={t1,t2,⋯,t k}定义S T=a t1+a t2+⋯+a tk.则以下结论正确的是()A.若{a n}(n∈N∗)满足a n=2n−1,T={1,2,4,8}则S T=15B.若{a n}(n∈N∗)满足a n=2n−1则对任意正整数k(1≤k≤100),T⊆{1,2,⋯,k},S T< a kC.若{a n}(n∈N∗)满足a n=3n−1则对任意正整数k(1≤k≤100),T⊆{1,2,⋯,k},S T≥a k+1D .若{a n }(n ∈N ∗)满足a n =3n−1 且C ⊆U ,D ⊆U ,S C ≥S D 则S C +S C∩D ≥2S D17.已知数列 {a n }、{b n }、{c n } 满足 a 1=b 1=c 1=1,c n =a n+1−a n ,c n+2=bn+1b n ⋅c n (n ∈N ∗),S n =1b 2+1b 3+⋯+1b n (n ≥2),T n =1a 3−3+1a 4−4+⋯+1a n −n (n ≥3) 则下列有可能成立的是( )A .若 {a n } 为等比数列 则 a 20222>b 2022B .若 {c n } 为递增的等差数列 则 S 2022<T 2022C .若 {a n } 为等比数列 则 a 20222<b 2022D .若 {c n } 为递增的等差数列 则 S 2022>T 202218.已知数列{a n }满足a 1=1 a n =a n−1+4(√a n−1+1√an−1)(n ∈N ∗,n ≥2) S n 为数列{1a n }的前n 项和 则( ) A .73<S 2022<83B .2<S 2022<73C .53<S 2022<2 D .1<S 2022<5319.已知数列{a n }满足a n ⋅a n+1⋅a n+2=−1(n ∈N ∗),a 1=−3 若{a n }的前n 项积的最大值为3 则a 2的取值范围为( ) A .[−1,0)∪(0,1] B .[−1,0)C .(0,1]D .(−∞,−1)∪(1,+∞)20.已知正项数列{a n }的前n 项和为S n (a n +1)2=4S n 记b n =S n ⋅sin nπ2+S n+1⋅sin (n+1)π2若数列{b n }的前n 项和为T n 则T 100=( ) A .-400B .-200C .200D .40021.设S n 是等差数列{a n }的前n 项和 a 2=−7 S 5=2a 1 当|S n |取得最小值时 n =( )A .10B .9C .8D .722.已知数列{a n }中 a 2+a 4+a 6=285 na n =(n −1)a n+1+101(n ∈N ∗) 当数列{a n a n+1a n+2}(n ∈N ∗)的前n 项和取得最大值时 n 的值为( ) A .53B .49C .49或53D .49或5123.定义在R 上的函数序列{f n (x)}满足f n (x)<1nf n ′(x)(f n ′(x)为f n (x)的导函数) 且∀x ∈N ∗ 都有f n (0)=n .若存在x 0>0 使得数列{f n (x 0)}是首项和公比均为q 的等比数列 则下列关系式一定成立的是( ).A .0<q <2√2e x 0B .0<q <√33e x 0C .q >2√2e x 0D .q >√33e x 024.已知数列{a n }的前n 项和为S n 满足a 1=1 a 2=2 a n =a n−1⋅a n+1(n ≥2) 则( )A .a 1:a 2:a 3=a 6:a 7:a 8B .a n :a n+1:a n+2=1:2:2C .S 6 S 12 S 18成等差数列D .S 6n S 12n S 18n 成等比数列25.已知S n 为数列{a n }的前n 项和 且a 1=1 a n+1+a n =3×2n 则S 100=( )A .2100−3B .2100−2C .2101−3D .2101−226.已知 {a n } 为等比数列 {a n } 的前n 项和为 S n 前n 项积为 T n 则下列选项中正确的是( )A .若 S 2022>S 2021 则数列 {a n } 单调递增B .若 T 2022>T 2021 则数列 {a n } 单调递增C .若数列 {S n } 单调递增 则 a 2022≥a 2021D .若数列 {T n } 单调递增 则 a 2022≥a 2021二、多选题27.“冰雹猜想”也称为“角谷猜想” 是指对于任意一个正整数x 如果x 是奇数㩆乘以3再加1 如果x 是偶数就除以2 这样经过若干次操作后的结果必为1 犹如冰雹掉落的过程.参照“冰雹猜想” 提出了如下问题:设k ∈N ∗ 各项均为正整数的数列{a n }满足a 1=1 a n+1={a n2,a n 为偶数,a n +k ,a n 为奇数,则( )A .当k =5时 a 5=4B .当n >5时 a n ≠1C .当k 为奇数时 a n ≤2kD .当k 为偶数时 {a n }是递增数列28.已知数列{a n } a 2=12且满足a n+1a n 2=a n −a n+1 n ∈N ∗ 则( ) A .a 4−a 1=1929B .a n 的最大值为1C .a n+1≥1n+1D .√a 1+√a 2+√a 3+⋅⋅⋅+√a 35>1029.已知数列{a n }的前n 项和为S n a 1=1 且4a n ⋅a n+1=a n −3a n+1(n =1 2 …) 则( )A .3a n+1<a nB .a 5=1243C .ln(1an )<n +1D .1≤S n <171430.如图 已知正方体ABCD −A 1B 1C 1D 1顶点处有一质点Q 点Q 每次会随机地沿一条棱向相邻的某个顶点移动 且向每个顶点移动的概率相同.从一个顶点沿一条棱移动到相邻顶点称为移动一次.若质点Q 的初始位置位于点A 处 记点Q 移动n 次后仍在底面ABCD 上的概率为P n 则下列说法正确的是( )A .P 2=59B .P n+1=23P n +13C .点Q 移动4次后恰好位于点C 1的概率为0D .点Q 移动10次后仍在底面ABCD 上的概率为12(13)10+1231.已知数列{a n } {b n } 有a n+1=a n −b n b n+1=b n −a n n ∈N ∗ 则( )A .若存在m >1 a m =b m 则a 1=b 1B .若a 1≠b 1 则存在大于2的正整数n 使得a n =0C .若a 1=a a 2=b 且a ≠b 则b 2022=−b ×22020D .若a 1=−1 a 2=−3 则关于x 的方程2a 3+(2a 3+1)cosx +2cos2x +cos3x =0的所有实数根可构成一个等差数列32.已知△A n B n C n (n =1,2,3,⋯)是直角三角形 A n 是直角 内角A n 、B n 、C n 所对的边分别为a n 、b n 、c n 面积为S n 若b 1=4 c 1=3 b n+12=a n+12+c n 23 c n+12=a n+12+b n 23则( ) A .{S 2n }是递增数列 B .{S 2n−1}是递减数列 C .{b n −c n }存在最大项D .{b n −c n }存在最小项33.已知S n 是数列{a n }的前n 项和 且S n+1=−S n +n 2 则下列选项中正确的是( ).A .a n +a n+1=2n −1(n ≥2)B .a n+2−a n =2C .若a 1=0 则S 100=4950D .若数列{a n }单调递增 则a 1的取值范围是(−14,13)三、填空题34.已知n ∈N ∗ 将数列{2n −1}与数列{n 2−1}的公共项从小到大排列得到新数列{a n } 则1a 1+1a 2+⋯+1a 10= .35.若函数f(x)的定义域为(0,+∞) 且f(x)+f(y)=f(xy) f(a n )=n +f(n) 则∑f ni=1(a i i )= .36.在数列{a n }中 a 1=1 a n+1=a n +1an(n∈N ∗) 若t ∈Z 则当|a 7−t|取得最小值时 整数t 的值为 .37.已知函数f(x)满足f(x −2)=f(x +2),0≤x <4时 f(x)=√4−(x −2)2 g(x)=f(x)−k n x(n ∈N ∗,k n >0).若函数g(x)的图像与x 轴恰好有2n +1个不同的交点 则k 12+k 22+⋅⋅⋅+k n 2= .38.已知复数z =1+i 对于数列{a n } 定义P n =a 1+2a 2+⋅⋅⋅+2n−1a n n为{a n }的“优值”.若某数列{a n}的“优值”P n =|z|2n 则数列{a n }的通项公式a n = ;若不等式a n 2−a n +4≥(−1)nkn 对于∀n ∈N ∗恒成立 则k 的取值范围是 .39.数列{a n }是公比为q(q ≠1)的等比数列 S n 为其前n 项和. 已知a 1⋅a 3=16 S3q=12 给出下列四个结论: ①q <0 ;②若存在m 使得a 1,a 2,⋅⋅⋅,a m 的乘积最大 则m 的一个可能值是3; ③若存在m 使得a 1,a 2,⋅⋅⋅,a m 的乘积最大 则m 的一个可能值是4; ④若存在m 使得a 1,a 2,⋅⋅⋅,a m 的乘积最小 则m 的值只能是2. 其中所有正确结论的序号是 .40.如图 某荷塘里浮萍的面积y (单位:m 2)与时间t (单位:月)满足关系式:y =a t lna (a 为常数) 记y =f(t)(t ≥0).给出下列四个结论:①设a n=f(n)(n∈N∗)则数列{a n}是等比数列;②存在唯一的实数t0∈(1,2)使得f(2)−f(1)=f′(t0)成立其中f′(t)是f(t)的导函数;③常数a∈(1,2);④记浮萍蔓延到2m23m26m2所经过的时间分别为t1t2t3则t1+t2>t3.其中所有正确结论的序号是.41.在现实世界很多信息的传播演化是相互影响的.选用正实数数列{a n}{b n}分别表示两组信息的传输链上每个节点处的信息强度数列模型:a n+1=2a n+b n,b n+1=a n+2b n(n=1,2⋯)描述了这两组信息在互相影响之下的传播演化过程.若两组信息的初始信息强度满足a1>b1则在该模型中关于两组信息给出如下结论:①∀n∈N∗,a n>b n;②∀n∈N∗,a n+1>a n,b n+1>b n;③∃k∈N∗使得当n>k时总有|a nb n−1|<10−10④∃k∈N∗使得当n>k时总有|a n+1a n−2|<10−10.其中所有正确结论的序号是答案解析部分1.【答案】C2.【答案】D3.【答案】C4.【答案】A5.【答案】D6.【答案】B7.【答案】A8.【答案】A9.【答案】A10.【答案】C11.【答案】B12.【答案】B13.【答案】D14.【答案】D15.【答案】B16.【答案】D17.【答案】B18.【答案】D19.【答案】A20.【答案】C21.【答案】C22.【答案】D23.【答案】D24.【答案】C25.【答案】D26.【答案】D27.【答案】A,C,D28.【答案】B,C,D29.【答案】A,D30.【答案】A,C,D 31.【答案】A,C,D 32.【答案】A,C,D 33.【答案】A,C 34.【答案】102135.【答案】n(n+1)236.【答案】4 37.【答案】n 4(n+1) 38.【答案】n+1;[−163,5] 39.【答案】①②③ 40.【答案】①②④ 41.【答案】①②③。
新高考数学高考数学压轴题 数列多选题专项训练分类精编附答案
一、数列多选题1.意大利人斐波那契于1202年从兔子繁殖问题中发现了这样的一列数:1,1,2,3,5,8,13,….即从第三项开始,每一项都是它前两项的和.后人为了纪念他,就把这列数称为斐波那契数列.下面关于斐波那契数列{}n a 说法正确的是( ) A .1055a = B .2020a 是偶数C .2020201820223a a a =+D .123a a a +++…20202022a a +=答案:AC 【分析】由该数列的性质,逐项判断即可得解. 【详解】对于A ,,,,故A 正确;对于B ,由该数列的性质可得只有3的倍数项是偶数,故B 错误; 对于C ,,故C 正确; 对于D ,,,, , 各式相加解析:AC 【分析】由该数列的性质,逐项判断即可得解. 【详解】对于A ,821a =,9211334a =+=,10213455a =+=,故A 正确; 对于B ,由该数列的性质可得只有3的倍数项是偶数,故B 错误;对于C ,20182022201820212020201820192020202020203a a a a a a a a a a +=++=+++=,故C 正确; 对于D ,202220212020a a a =+,202120202019a a a =+,202020192018a a a =+,32121,a a a a a ⋅⋅⋅=+=,各式相加得()2022202120202021202020192012182a a a a a a a a a ++⋅⋅⋅+=+++⋅⋅⋅++, 所以202220202019201811a a a a a a =++⋅⋅⋅+++,故D 错误. 故选:AC. 【点睛】关键点点睛:解决本题的关键是合理利用该数列的性质去证明选项.2.著名数学家斐波那契在研究兔子繁殖问题时,发现有这样一列数:1,1,2,3,5,…,其中从第三项起,每个数等于它前面两个数的和,后来人们把这样的一列数组成的数列{}n a 称为“斐波那契数列”,记S n 为数列{}n a 的前n 项和,则下列结论正确的是( )A .68a =B .733S =C .135********a a a a a ++++=D .22212201920202019a a a a a +++= 答案:ABD 【分析】根据,,,计算可知正确;根据,,,,,,累加可知不正确;根据,,,,,,累加可知正确. 【详解】依题意可知,,,, ,,,,故正确; ,所以,故正确; 由,,,,,, 可得,故不解析:ABD 【分析】根据11a =,21a =,21n n n a a a ++=+,计算可知,A B 正确;根据12a a =,342a a a =-,564a a a =-,786a a a =-,,201920202018a a a =-,累加可知C 不正确;根据2121a a a =,222312312()a a a a a a a a =-=-,233423423()a a a a a a a a =-=-,244534534()aa a a a a a a =-=-,,220192019202020182019202020182019()a a a a a a a a =-=-,累加可知D 正确. 【详解】依题意可知,11a =,21a =,21n n n a a a ++=+,312112a a a =+=+=,423123a a a =+=+=,534235a a a =+=+=,645358a a a =+=+=,故A 正确; 7565813a a a =+=+=,所以712345671123581333S a a a a a a a =++++++=++++++=,故B 正确;由12a a =,342a a a =-,564a a a=-,786a a a =-,,201920202018a a a =-,可得13572019a a a a a +++++=242648620202018a a a a a a a a a +-+-+-++-2020a =,故C 不正确;2121a a a =,222312312()a a a a a a a a =-=-,233423423()a a a a a a a a =-=-,244534534()a a a a a a a a =-=-,,220192019202020182019202020182019()a a a a a a a a =-=-,所以2222212342019a a a a a +++++122312342345342019202020182019a a a a a a a a a a a a a a a a a a =+-+-+-+- 20192020a a =,所以22212201920202019a a a a a +++=,故D 正确. 故选:ABD. 【点睛】本题考查了数列的递推公式,考查了累加法,属于中档题.3.(多选题)已知数列{}n a 中,前n 项和为n S ,且23n n n S a +=,则1n n a a -的值不可能为( ) A .2B .5C .3D .4答案:BD 【分析】利用递推关系可得,再利用数列的单调性即可得出答案. 【详解】 解:∵, ∴时,, 化为:,由于数列单调递减, 可得:时,取得最大值2. ∴的最大值为3. 故选:BD . 【点睛】 本解析:BD 【分析】利用递推关系可得1211n n a a n -=+-,再利用数列的单调性即可得出答案. 【详解】 解:∵23n n n S a +=, ∴2n ≥时,112133n n n n n n n a S S a a --++=-=-, 化为:112111n n a n a n n -+==+--, 由于数列21n ⎧⎫⎨⎬-⎩⎭单调递减,可得:2n =时,21n -取得最大值2. ∴1nn a a -的最大值为3. 故选:BD . 【点睛】本题考查了数列递推关系、数列的单调性,考查了推理能力与计算能力,属于中档题. 4.已知数列{}n a 是等差数列,前n 项和为,n S 且13522,a a S +=下列结论中正确的是( ) A .7S 最小B .130S =C .49S S =D .70a =答案:BCD 【分析】由是等差数列及,求出与的关系,结合等差数列的通项公式及求和公式即可进行判断. 【详解】设等差数列数列的公差为. 由有,即所以,则选项D 正确.选项A. ,无法判断其是否有最小解析:BCD 【分析】由{}n a 是等差数列及13522,a a S +=,求出1a 与d 的关系,结合等差数列的通项公式及求和公式即可进行判断. 【详解】设等差数列数列{}n a 的公差为d .由13522,a a S +=有()1112542252a a a d d ⨯+=++,即160a d += 所以70a =,则选项D 正确. 选项A. ()71176773212S a d a d d ⨯=+=+=-,无法判断其是否有最小值,故A 错误. 选项B. 113137131302a S a a +=⨯==,故B 正确. 选项C. 9876579450a a a a S a a S -=++++==,所以49S S =,故C 正确. 故选:BCD 【点睛】关键点睛:本题考查等差数列的通项公式及求和公式的应用,解答本题的关键是由条件13522,a a S +=得到160a d +=,即70a =,然后由等差数列的性质和前n 项和公式判断,属于中档题.5.已知递减的等差数列{}n a 的前n 项和为n S ,57S S =,则( ) A .60a > B .6S 最大 C .130S >D .110S >答案:ABD 【分析】转化条件为,进而可得,,再结合等差数列的性质及前n 项和公式逐项判断即可得解. 【详解】 因为,所以,即,因为数列递减,所以,则,,故A 正确; 所以最大,故B 正确; 所以,故C 错误解析:ABD 【分析】转化条件为670a a +=,进而可得60a >,70a <,再结合等差数列的性质及前n 项和公式逐项判断即可得解. 【详解】因为57S S =,所以750S S -=,即670a a +=,因为数列{}n a 递减,所以67a a >,则60a >,70a <,故A 正确; 所以6S 最大,故B 正确; 所以()113137131302a a S a+⨯==<,故C 错误; 所以()111116111102a a S a+⨯==>,故D 正确.故选:ABD.6.首项为正数,公差不为0的等差数列{}n a ,其前n 项和为n S ,则下列4个命题中正确的有( )A .若100S =,则50a >,60a <;B .若412S S =,则使0n S >的最大的n 为15;C .若150S >,160S <,则{}n S 中7S 最大;D .若89S S <,则78S S <.答案:ABD【分析】利用等差数列的求和公式及等差数列的性质,逐一检验选项,即可得答案. 【详解】对于A :因为正数,公差不为0,且,所以公差, 所以,即,根据等差数列的性质可得,又, 所以,,故A 正解析:ABD 【分析】利用等差数列的求和公式及等差数列的性质,逐一检验选项,即可得答案. 【详解】对于A :因为正数,公差不为0,且100S =,所以公差0d <, 所以1101010()02a a S +==,即1100a a +=, 根据等差数列的性质可得561100a a a a +=+=,又0d <, 所以50a >,60a <,故A 正确; 对于B :因为412S S =,则1240S S -=,所以561112894()0a a a a a a ++⋅⋅⋅++=+=,又10a >, 所以890,0a a ><, 所以115815815()15215022a a a S a +⨯===>,116891616()16()022a a a a S ++===, 所以使0n S >的最大的n 为15,故B 正确; 对于C :因为115815815()15215022a a a S a +⨯===>,则80a >, 116891616()16()022a a a a S ++===,则890a a +=,即90a <, 所以则{}n S 中8S 最大,故C 错误;对于D :因为89S S <,则9980S a S =->,又10a >, 所以8870a S S =->,即87S S >,故D 正确, 故选:ABD 【点睛】解题的关键是先判断d 的正负,再根据等差数列的性质,对求和公式进行变形,求得项的正负,再分析和判断,考查等差数列性质的灵活应用,属中档题. 7.已知正项数列{}n a 的前n 项和为n S ,若对于任意的m ,*n N ∈,都有m n m n a a a +=+,则下列结论正确的是( )A .11285a a a a +=+B .56110a a a a <C .若该数列的前三项依次为x ,1x -,3x ,则10103a = D .数列n S n ⎧⎫⎨⎬⎩⎭为递减的等差数列 答案:AC 【分析】令,则,根据,可判定A 正确;由,可判定B 错误;根据等差数列的性质,可判定C 正确;,根据,可判定D 错误. 【详解】令,则,因为,所以为等差数列且公差,故A 正确; 由,所以,故B 错误;解析:AC 【分析】令1m =,则11n n a a a +-=,根据10a >,可判定A 正确;由256110200a a a a d -=>,可判定B 错误;根据等差数列的性质,可判定C 正确;122n d d n a n S ⎛⎫=+- ⎪⎝⎭,根据02>d ,可判定D 错误. 【详解】令1m =,则11n n a a a +-=,因为10a >,所以{}n a 为等差数列且公差0d >,故A 正确;由()()22225611011119209200a a a a a a d daa d d -=++-+=>,所以56110a a a a >,故B错误;根据等差数列的性质,可得()213x x x -=+,所以13x =,213x -=, 故1011109333a =+⨯=,故C 正确; 由()111222nn n na dS d d n a nn -+⎛⎫==+- ⎪⎝⎭,因为02>d ,所以n S n ⎧⎫⎨⎬⎩⎭是递增的等差数列,故D 错误. 故选:AC . 【点睛】解决数列的单调性问题的三种方法;1、作差比较法:根据1n n a a +-的符号,判断数列{}n a 是递增数列、递减数列或是常数列;2、作商比较法:根据1(0n n na a a +>或0)n a <与1的大小关系,进行判定; 3、数形结合法:结合相应的函数的图象直观判断. 8.数列{}n a 满足11,121nn n a a a a +==+,则下列说法正确的是( ) A .数列1n a ⎧⎫⎨⎬⎩⎭是等差数列 B .数列1n a ⎧⎫⎨⎬⎩⎭的前n 项和2n S n = C .数列{}n a 的通项公式为21n a n =- D .数列{}n a 为递减数列答案:ABD 【分析】首项根据得到,从而得到是以首项为,公差为的等差数列,再依次判断选项即可. 【详解】对选项A ,因为,, 所以,即所以是以首项为,公差为的等差数列,故A 正确. 对选项B ,由A 知:解析:ABD 【分析】 首项根据11,121n n n a a a a +==+得到1112n n a a +-=,从而得到1n a ⎧⎫⎨⎬⎩⎭是以首项为1,公差为2的等差数列,再依次判断选项即可.【详解】对选项A ,因为121nn n a a a +=+,11a =, 所以121112n n n n a a a a ++==+,即1112n na a +-= 所以1n a ⎧⎫⎨⎬⎩⎭是以首项为1,公差为2的等差数列,故A 正确.对选项B ,由A 知:112121nn n a数列1n a ⎧⎫⎨⎬⎩⎭的前n 项和()21212n n n S n +-==,故B 正确.对选项C ,因为121n n a =-,所以121n a n =-,故C 错误.对选项D ,因为121n a n =-,所以数列{}n a 为递减数列,故D 正确. 故选:ABD 【点睛】本题主要考查等差数列的通项公式和前n 项和前n 项和,同时考查了递推公式,属于中档题.9.公差为d 的等差数列{}n a ,其前n 项和为n S ,110S >,120S <,下列说法正确的有( ) A .0d <B .70a >C .{}n S 中5S 最大D .49a a <答案:AD 【分析】先根据题意得,,再结合等差数列的性质得,,,中最大,,即:.进而得答案. 【详解】解:根据等差数列前项和公式得:, 所以,, 由于,, 所以,, 所以,中最大, 由于, 所以,即:解析:AD 【分析】先根据题意得1110a a +>,1120a a +<,再结合等差数列的性质得60a >,70a <,0d <,{}n S 中6S 最大,49a a <-,即:49a a <.进而得答案.【详解】解:根据等差数列前n 项和公式得:()111111102a a S +=>,()112121202a a S +=<所以1110a a +>,1120a a +<, 由于11162a a a +=,11267a a a a +=+, 所以60a >,760a a <-<, 所以0d <,{}n S 中6S 最大, 由于11267490a a a a a a +=+=+<, 所以49a a <-,即:49a a <. 故AD 正确,BC 错误.故选:AD. 【点睛】本题考查等差数列的前n 项和公式与等差数列的性质,是中档题.10.已知{}n a 为等差数列,其前n 项和为n S ,且13623a a S +=,则以下结论正确的是( ). A .10a =0B .10S 最小C .712S S =D .190S =答案:ACD 【分析】由得,故正确;当时,根据二次函数知识可知无最小值,故错误;根据等差数列的性质计算可知,故正确;根据等差数列前项和公式以及等差数列的性质可得,故正确. 【详解】因为,所以,所以,即解析:ACD 【分析】由13623a a S +=得100a =,故A 正确;当0d <时,根据二次函数知识可知n S 无最小值,故B 错误;根据等差数列的性质计算可知127S S =,故C 正确;根据等差数列前n 项和公式以及等差数列的性质可得190S =,故D 正确. 【详解】因为13623a a S +=,所以111236615a a d a d ++=+,所以190a d +=,即100a =,故A 正确;当0d <时,1(1)(1)922n n n n n S na d dn d --=+=-+2(19)2dn n =-无最小值,故B 错误;因为127891*********S S a a a a a a -=++++==,所以127S S =,故C 正确; 因为()1191910191902a a S a+⨯===,故D 正确.故选:ACD. 【点睛】本题考查了等差数列的通项公式、前n 项和公式,考查了等差数列的性质,属于中档题.。
高考数学压轴题100题汇总(含答案)
高考数学压轴题100题汇总(含答案)1. 设函数f(x) = x^3 3x + 1,求f(x)的极值点和极值。
答案:f(x)的极值点为x = 1和x = 1,极值分别为f(1) = 1和f(1) = 3。
2. 已知等差数列{an}的前n项和为Sn = n^2 + n,求该数列的通项公式。
答案:an = 2n + 1。
3. 已知三角形ABC中,AB = AC = 5,BC = 8,求三角形ABC的面积。
答案:三角形ABC的面积为12。
4. 设直线y = kx + b与圆x^2 + y^2 = 1相切,求k和b的值。
答案:k = ±√3/3,b = ±√6/3。
5. 已知函数f(x) = log2(x^2 + 1),求f(x)的导数。
答案:f'(x) = 2x/(x^2 + 1)ln2。
6. 已知向量a = (2, 3),向量b = (1, 4),求向量a和向量b的夹角。
答案:向量a和向量b的夹角为arccos(1/√5)。
7. 已知矩阵A = [1 2; 3 4],求矩阵A的逆矩阵。
答案:矩阵A的逆矩阵为[4 2; 3 1]。
8. 已知函数f(x) = x^3 6x^2 + 9x + 1,求f(x)的零点。
答案:f(x)的零点为x = 1和x = 3。
9. 已知函数f(x) = sin(x) cos(x),求f(x)在区间[0, π/2]上的最大值。
答案:f(x)在区间[0, π/2]上的最大值为√2。
10. 已知函数f(x) = x^2 + 4x + 4,求f(x)的顶点坐标。
答案:f(x)的顶点坐标为(2, 0)。
高考数学压轴题100题汇总(含答案)11. 已知函数f(x) = e^x 2x,求f(x)的导数。
答案:f'(x) = e^x 2。
12. 已知函数f(x) = x^2 4x + 4,求f(x)的极值点和极值。
答案:f(x)的极值点为x = 2,极值为f(2) = 0。
2020年高考数学复习之挑战压轴题(解答题):数列综合题(30题)
2020年高考数学复习之挑战压轴题(解答题):数列综合题(30题)一、解答题(共30小题)1.(2017•河西区二模)已知数列{}n a 的前n 项和为n S ,且*(1)()n S n n n N =+∈. (Ⅰ)求数列{}n a 的通项公式; (Ⅱ)若数列{}n b 满足:3122331313131n n n b b b ba =+++⋯+++++,求数列{}nb 的通项公式; (Ⅲ)令*()4n nn a b c n N =∈,求数列{}n ð的前n 项和n T . 2.(2016•天津一模)数列{}n a 满足12a =,2166()n nn a a a n N ⨯+=++∈ (Ⅰ)设5log (3)n n C a =+,求证{}n C 是等比数列; (Ⅱ)求数列{}n a 的通项公式; (Ⅲ)设21166n n n n b a a a =--+,数列{}n b 的前n 项和为n T ,求证:51164n T -<-…. 3.(2015•淮安校级四模)已知数列{}n a 的奇数项是首项为1的等差数列,偶数项是首项为2的等比数列.数列{}n a 前n 项和为n S ,且满足5452S a a =+,934a a a =+. (1)求数列{}n a 的通项公式;(2)若12m m m a a a ++=,求正整数m 的值; (3)是否存在正整数m ,使得221mm S S -恰好为数列{}n a 中的一项?若存在,求出所有满足条件的m 值,若不存在,说明理由.4.(2016•辽宁校级模拟)已知数列{}n a 的前n 项和为n S ,且满足112a =,120(2)n n n a S S n -+=….(1)判断1{}nS 是否为等差数列?并证明你的结论; (2)求n S 和n a ;(3)求证:222121124n S S S n++⋯+-…. 5.(2016•南京三模)已知数列{}n a ,{}n b 满足1n n n b a a +=-,其中1n =,2,3,⋯.(Ⅰ)若11a =,n b n =,求数列{}n a 的通项公式; (Ⅱ)若11(2)n n n b b b n +-=…,且11b =,22b =. (ⅰ)记61(1)n n a n -=…ð,求证:数列{}n ð为等差数列;(ⅱ)若数列{}n an中任意一项的值均未在该数列中重复出现无数次.求1a 应满足的条件.6.(2015•湖北二模)数列{}n a 中,11a =,22a =,数列{}n b 满足1(1)n n n n b a a +=+-,n N +∈. (Ⅰ)若数列{}n a 是等差数列,求数列{}n b 的前100项和100S ; (Ⅱ)若数列{}n b 是公差为2的等差数列,求数列{}n a 的通项公式.7.(2015•高邮市校级模拟)已知数列{}n a 的奇数项是首项为1的等差数列,偶数项是首项为2的等比数列.数列{}n a 前n 项和为n S ,且满足34S a =,3542a a a +=+ (1)求数列{}n a 的通项公式; (2)求数列{}n a 前2k 项和2k S ;(3)在数列{}n a 中,是否存在连续的三项m a ,1m a +,2m a +,按原来的顺序成等差数列?若存在,求出所有满足条件的正整数m 的值;若不存在,说明理由.8.(2016•丰台区一模)已知数列{}n a 是无穷数列,1a a =,2(a b a =,b 是正整数),11111(1),(1)nnn n n n n nn a a a a a a aa a --+--⎧>⎪⎪=⎨⎪⎪⎩….(Ⅰ)若12a =,21a =,写出4a ,5a 的值;(Ⅱ)已知数列{}n a 中*1()k a k N =∈,求证:数列{}n a 中有无穷项为1;(Ⅲ)已知数列{}n a 中任何一项都不等于1,记21{n n b max a -=,2}(1n a n =,2,3,⋯;{max m ,}n 为m ,n 较大者).求证:数列{}n b 是单调递减数列. 9.(2014•东城区二模)设a 是一个自然数,f (a )是a 的各位数字的平方和,定义数列1{}:n a a 是自然数,*1()(n n a f a n N -=∈,2)n ….(Ⅰ)求(99)f ,(2014)f ; (Ⅱ)若1100a …,求证:12a a >; (Ⅲ)求证:存在*m N ∈,使得100m a <.10.(2017•启东市校级模拟)已知数列{}n a 满足11a =,23a =,且2(12|cos|)|sin |22n n n n a a ππ+=++,*n N ∈, (1)求*21()k a k N -∈;(2)数列{}n y ,{}n b 满足21n n y a -=,11b y =,且当2n …时2222121111()n n n b y y y y -=++⋯+.证明当2n …时,有12221(1)n n b b n n n+-=+; (3)在(2)的条件下,试比较1231111(1)(1)(1)(1)nb b b b +++⋯+g g g g 与4的大小关系.11.(2014•南充模拟)对于函数()f x ,若存在0x R ∈,使00()f x x =成立,则称0x 为()f x 的不动点.如果函数2()x af x bx c+=-有且仅有两个不动点0和2.(1)试求b 、c 满足的关系式.(2)若2c =时,各项不为零的数列{}n a 满足14()1n n S f a =g ,求证:1111(1)(1)n n a a n na e a +-<<-. (3)设1n nb a =-,n T 为数列{}n b 的前n 项和,求证:2009200812009T ln T -<<. 12.(2019•上海)数列{}(*)n a n N ∈有100项,1a a =,对任意[2n ∈,100],存在n i a a d =+,[1i ∈,1]n -,若k a 与前n 项中某一项相等,则称k a 具有性质P .(1)若11a =,2d =,求4a 所有可能的值;(2)若{}n a 不为等差数列,求证:数列{}n a 中存在某些项具有性质P ;(3)若{}n a 中恰有三项具有性质P ,这三项和为c ,使用a ,d ,c 表示12100a a a ++⋯+. 13.(2019•天津)设{}n a 是等差数列,{}n b 是等比数列.已知14a =,16b =,2222b a =-,3324b a =+.(Ⅰ)求{}n a 和{}n b 的通项公式;(Ⅱ)设数列{}n c 满足11c =,11,22,,2,k k n kk n c b n +⎧<<⎪=⎨=⎪⎩其中*k N ∈. ()i 求数列22{(1)}n n a c -的通项公式; ()ii 求2*1()ni i i a c n N =∈∑.14.(2019•浙江)设等差数列{}n a 的前n 项和为n S ,34a =,43a S =.数列{}n b 满足:对每个*n N ∈,n n S b +,1n n S b ++,2n n S b ++成等比数列. (Ⅰ)求数列{}n a ,{}n b 的通项公式;(Ⅱ)记n c =*n N ∈,证明:12n c c c ++⋯+<,*n N ∈. 15.(2019•江苏)定义首项为1且公比为正数的等比数列为“M -数列”.(1)已知等比数列*{}()n a n N ∈满足:245a a a =,321440a a a -+=,求证:数列{}n a 为“M -数列”;(2)已知数列*{}()n b n N ∈满足:11b =,1122n n n S b b +=-,其中n S 为数列{}n b 的前n 项和. ①求数列{}n b 的通项公式;②设m 为正整数,若存在“M -数列” *{}()n c n N ∈,对任意正整数k ,当k m …时,都有1k k k c b c +剟成立,求m 的最大值.16.(2019•北京)已知数列{}n a ,从中选取第1i 项、第2i 项、⋯、第m i 项12()m i i i <<⋯<,若12m i i i a a a <<⋯<,则称新数列1i a ,2i a ,⋯,m i a 为{}n a 的长度为m 的递增子列.规定:数列{}n a 的任意一项都是{}n a 的长度为1的递增子列.(Ⅰ)写出数列1,8,3,7,5,6,9的一个长度为4的递增子列;(Ⅱ)已知数列{}n a 的长度为p 的递增子列的末项的最小值为0m a ,长度为q 的递增子列的末项的最小值为0n a .若p q <,求证:00m n a a <;(Ⅲ)设无穷数列{}n a 的各项均为正整数,且任意两项均不相等.若{}n a 的长度为s 的递增子列末项的最小值为21s -,且长度为s 末项为21s -的递增子列恰有12s -个(1s =,2,)⋯,求数列{}n a 的通项公式.17.(2019•新课标Ⅰ)为治疗某种疾病,研制了甲、乙两种新药,希望知道哪种新药更有效,为此进行动物试验.试验方案如下:每一轮选取两只白鼠对药效进行对比试验.对于两只白鼠,随机选一只施以甲药,另一只施以乙药.一轮的治疗结果得出后,再安排下一轮试验.当其中一种药治愈的白鼠比另一种药治愈的白鼠多4只时,就停止试验,并认为治愈只数多的药更有效.为了方便描述问题,约定:对于每轮试验,若施以甲药的白鼠治愈且施以乙药的白鼠未治愈则甲药得1分,乙药得1-分;若施以乙药的白鼠治愈且施以甲药的白鼠未治愈则乙药得1分,甲药得1-分;若都治愈或都未治愈则两种药均得0分.甲、乙两种药的治愈率分别记为α和β,一轮试验中甲药的得分记为X . (1)求X 的分布列;(2)若甲药、乙药在试验开始时都赋予4分,(0i p i =,1,⋯,8)表示“甲药的累计得分为i 时,最终认为甲药比乙药更有效”的概率,则00p =,81p =,11(1i i i i p ap bp cp i -+=++=,2,⋯,7),其中(1)a P X ==-,(0)b P X ==,(1)c P X ==.假设0.5α=,0.8β=. ()i 证明:1{}(0i i p p i +-=,1,2,⋯,7)为等比数列; ()ii 求4p ,并根据4p 的值解释这种试验方案的合理性.18.(2018•江苏)设{}n a 是首项为1a ,公差为d 的等差数列,{}n b 是首项为1b ,公比为q 的等比数列.(1)设10a =,11b =,2q =,若1||n n a b b -…对1n =,2,3,4均成立,求d 的取值范围;(2)若110a b =>,*m N ∈,(1q ∈,证明:存在d R ∈,使得1||n n a b b -…对2n =,3,⋯,1m +均成立,并求d 的取值范围(用1b ,m ,q 表示).19.(2018•浙江)已知等比数列{}n a 的公比1q >,且34528a a a ++=,42a +是3a ,5a 的等差中项.数列{}n b 满足11b =,数列1{()}n n n b b a +-的前n 项和为22n n +. (Ⅰ)求q 的值;(Ⅱ)求数列{}n b 的通项公式.20.(2018•上海)给定无穷数列{}n a ,若无穷数列{}n b 满足:对任意*n N ∈,都有||1n n b a -…,则称{}n b 与{}n a “接近”. (1)设{}n a 是首项为1,公比为12的等比数列,11n n b a +=+,*n N ∈,判断数列{}n b 是否与{}n a 接近,并说明理由;(2)设数列{}n a 的前四项为:11a =,22a =,34a =,48a =,{}n b 是一个与{}n a 接近的数列,记集合{|i M x x b ==,1i =,2,3,4},求M 中元素的个数m ;(3)已知{}n a 是公差为d 的等差数列,若存在数列{}n b 满足:{}n b 与{}n a 接近,且在21b b -,32b b -,⋯,201200b b -中至少有100个为正数,求d 的取值范围.21.(2017•北京)设{}n a 和{}n b 是两个等差数列,记11{n c max b a n =-,22b a n -,⋯,}(1n n b a n n -=,2,3,)⋯,其中1{max x ,2x ,⋯,}s x 表示1x ,2x ,⋯,s x 这s 个数中最大的数.(1)若n a n =,21n b n =-,求1c ,2c ,3c 的值,并证明{}n c 是等差数列; (2)证明:或者对任意正数M ,存在正整数m ,当n m …时,nc M n>;或者存在正整数m ,使得m c ,1m c +,2m c +,⋯是等差数列.22.(2017•江苏)对于给定的正整数k ,若数列{}n a 满足:11112n k n k n n n k n k n a a a a a a ka --+-++-+++⋯+++⋯++=对任意正整数()n n k >总成立,则称数列{}n a 是“()P k 数列”. (1)证明:等差数列{}n a 是“P (3)数列”;(2)若数列{}n a 既是“P (2)数列”,又是“P (3)数列”,证明:{}n a 是等差数列. 23.(2017•浙江)已知数列{}n x 满足:11x =,*11(1)()n n n x x ln x n N ++=++∈,证明:当*n N ∈时,(Ⅰ)10n n x x +<<;(Ⅱ)1122n n n n x x x x ++-…; (Ⅲ)121122nn n x --剟. 24.(2016•浙江)设数列满足1||12n n a a +-…,*n N ∈. (Ⅰ)求证:1*1||2(||2)()n n a a n N --∈…(Ⅱ)若3||()2n n a …,*n N ∈,证明:||2n a …,*n N ∈.25.(2016•上海)若无穷数列{}n a 满足:只要*(,)p q a a p q N =∈,必有11p q a a ++=,则称{}n a 具有性质P .(1)若{}n a 具有性质P ,且11a =,22a =,43a =,52a =,67821a a a ++=,求3a ; (2)若无穷数列{}n b 是等差数列,无穷数列{}n c 是公比为正数的等比数列,151b c ==;5181b c ==,n n n a b c =+,判断{}n a 是否具有性质P ,并说明理由;(3)设{}n b 是无穷数列,已知*1sin ()n n n a b a n N +=+∈,求证:“对任意1a ,{}n a 都具有性质P ”的充要条件为“{}n b 是常数列”.26.(2016•天津)已知{}n a 是各项均为正数的等差数列,公差为d ,对任意的n N +∈,n b 是n a 和1n a +的等比中项.(1)设221n n n c b b +=-,n N +∈,求证:数列{}n c 是等差数列;(2)设1a d =,221(1)nk n kk T b ==-∑,*n N ∈,求证:21112ni iT d =<∑. 27.(2016•四川)已知数列{}n a 的首项为1,n S 为数列{}n a 的前n 项和,11n n S qS +=+,其中0q >,*n N ∈.(Ⅰ)若22a ,3a ,22a +成等差数列,求n a 的通项公式;(Ⅱ)设双曲线2221n y x a -=的离心率为n e ,且253e =,证明:121433n n n n e e e --+++>g g g .28.(2016•北京)设数列1:A a ,2a ,⋯,N a (2)N ….如果对小于(2)n n N 剟的每个正整数k 都有k n a a <,则称n 是数列A 的一个“G 时刻”,记G (A )是数列A 的所有“G 时刻”组成的集合.(Ⅰ)对数列:2A -,2,1-,1,3,写出G (A )的所有元素; (Ⅱ)证明:若数列A 中存在n a 使得1n a a >,则G (A )≠∅;(Ⅲ)证明:若数列A 满足11(2n n a a n --=…,3,⋯,)N ,则G (A )的元素个数不小于1N a a -. 29.(2016•江苏)记{1U =,2,⋯,100},对数列*{}()n a n N ∈和U 的子集T ,若T =∅,定义0T S =;若1{T t =,2t ,⋯,}k t ,定义12k T t t t S a a a =++⋯+.例如:{1T =,3,66}时,1366T S a a a =++.现设*{}()n a n N ∈是公比为3的等比数列,且当{2T =,4}时,30T S =. (1)求数列{}n a 的通项公式;(2)对任意正整数(1100)k k 剟,若{1T ⊆,2,⋯,}k ,求证:1T k S a +<; (3)设C U ⊆,D U ⊆,C D S S …,求证:2C D CDS S S +I….30.(2018•天津)设函数123()()()()f x x t x t x t =---,其中1t ,2t ,3t R ∈,且1t ,2t ,3t 是公差为d 的等差数列.(Ⅰ)若20t =,1d =,求曲线()y f x =在点(0,(0))f 处的切线方程; (Ⅱ)若3d =,求()f x 的极值;(Ⅲ)若曲线()y f x =与直线2()y x t =---d 的取值范围.2020年高考数学复习之挑战压轴题(解答题):数列综合题(30题)参考答案与试题解析一、解答题(共30小题)1.(2017•河西区二模)已知数列{}n a 的前n 项和为n S ,且*(1)()n S n n n N =+∈. (Ⅰ)求数列{}n a 的通项公式; (Ⅱ)若数列{}n b 满足:3122331313131n n n b b b ba =+++⋯+++++,求数列{}nb 的通项公式; (Ⅲ)令*()4n nn a b c n N =∈,求数列{}n ð的前n 项和n T . 【考点】82:数列的函数特性;84:等差数列的通项公式;8E :数列的求和 【专题】15:综合题【分析】(Ⅰ)当1n =时,112a S ==,当2n …时,1(1)(1)2n n n a S S n n n n n -=-=+--=,由此能求出数列{}n a 的通项公式. (Ⅱ)由31223(1)31313131n n n b b b ba n =+++⋯+++++…,知311212313131313131n n n n n b b b b ba +++=+++⋯+++++++,所以111231n n n n b a a +++=-=+,由此能求出n b .(Ⅲ)(31)34n n n nn a b c n n n ==+=+g ,所以23123(1323333)(12)n n n T c c c n n =+++⋯+=⨯+⨯+⨯+⋯+⨯+++⋯+ð,令231323333nn H n =⨯+⨯+⨯+⋯+⨯,由错位相减法能求出1(21)334n n n H +-⨯+=,由此能求出数列{}n ð的前n 项和.【解答】解:(Ⅰ)当1n =时,112a S ==,当2n …时,1(1)(1)2n n n a S S n n n n n -=-=+--=, 知12a =满足该式,∴数列{}n a 的通项公式为2n a n =.(2分)(Ⅱ)Q 31223(1)31313131n n n b b b ba n =+++⋯+++++…① ∴311212313131313131n nn n n b b b b ba +++=+++⋯+++++++②(4分) ②-①得:111231n n n n b a a +++=-=+,112(31)n n b ++=+,故*2(31)()n n b n N =+∈.(6分) (Ⅲ)(31)34n n n nn a b c n n n ==+=+g , 23123(1323333)(12)n n n T c c c n n ∴=+++⋯+=⨯+⨯+⨯+⋯+⨯+++⋯+ð(8分) 令231323333n n H n =⨯+⨯+⨯+⋯+⨯,① 则234131323333n n H n +=⨯+⨯+⨯+⋯+⨯② ①-②得:231233333n n n H n +-=+++⋯+-⨯13(13)313n n n +-=-⨯-∴1(21)334n n n H +-⨯+=,⋯(10分)∴数列{}n ð的前n 项和1(21)33(1)42n n n n n T +-⨯++=+⋯(12分)【点评】本题首先考查等差数列、等比数列的基本量、通项,结合含两个变量的不等式的处理问题,对数学思维的要求比较高,要求学生理解“存在”、“恒成立”,以及运用一般与特殊的关系进行否定,本题有一定的探索性.综合性强,难度大,易出错.解题时要认真审题,注意错位相减法的灵活运用.2.(2016•天津一模)数列{}n a 满足12a =,2166()n nn a a a n N ⨯+=++∈ (Ⅰ)设5log (3)n n C a =+,求证{}n C 是等比数列; (Ⅱ)求数列{}n a 的通项公式; (Ⅲ)设21166n n n n b a a a =--+,数列{}n b 的前n 项和为n T ,求证:51164n T -<-…. 【考点】8E :数列的求和;8H :数列递推式;87:等比数列的性质 【专题】15:综合题;16:压轴题;35:转化思想【分析】()I 由已知可得,213(3)n n a a ++=+,利用构造法令5log (3)n n C a =+,则可得12n nc c +=,从而可证数列{}n c 为等比数列()II 由()I 可先求数列n c ,代入5log (3)n n c a =+可求n a ()III 把()II 中的结果代入整理可得,11166n n n b a a +=---,则代入12n n T b b b =++⋯+相消可证【解答】解:(Ⅰ)由2166n nn a a a +=++得213(3)n n a a ++=+, ∴1(3)(3)55log 2log n n a a +++=,即12n n c c +={}n c ∴是以2为公比的等比数列.(Ⅱ)又15log 51c ==,12n n c -∴=,即(3)15log 2n a n +-=,1235n n a -∴+=故1253n n a -=- (Ⅲ)2111116666n n n n n n b a a a a a +=-=--+--Q ,211111166459nn n T a a +∴=-=-----. 又221110591659n<=--…. 51164n T ∴-<-…【点评】本题考查了利用定义证明等比数列:数列{}n a 为等比数列⇔10nn a q a -=≠;利用构造法求数列的通项公式及数列的求和公式,属于对基本知识的综合考查.3.(2015•淮安校级四模)已知数列{}n a 的奇数项是首项为1的等差数列,偶数项是首项为2的等比数列.数列{}n a 前n 项和为n S ,且满足5452S a a =+,934a a a =+. (1)求数列{}n a 的通项公式;(2)若12m m m a a a ++=,求正整数m 的值; (3)是否存在正整数m ,使得221mm S S -恰好为数列{}n a 中的一项?若存在,求出所有满足条件的m 值,若不存在,说明理由.【考点】87:等比数列的性质;83:等差数列的性质 【专题】16:压轴题;54:等差数列与等比数列【分析】(1)设等差数列的公差为d ,等比数列的公比为q 由题意列式求出公差和公比,则等差数列和等比数列的通项公式即可得出;(2)分2m k =和21m k =-,利用12m m m a a a ++=即可求出满足该等式的正整数m 的值;(3)对于*k N ∈,有22(121)2(13)13213k k k k k S k +--=+=-+-.21212122132313k k k k k k S S a k k ---=-=-+-=-+g .假设存在正整数m ,使得221mm S S -恰好为数列{}n a 中的一项,设*221()m m S L L N S -=∈,则2211313m m m L m --+=-+,变形得到12(3)3(1)(1)m L L m --=--,由此式得到L 的可能取值,然后依次分类讨论求解. 【解答】解:(1)设等差数列的公差为d ,等比数列的公比为q , 则11a =,22a =,31a d =+,42a q =,914a d =+. 5452S a a =+Q ,1234a a a a ∴++=,即42d q +=,又934a a a =+. 1412d d q ∴+=++.解得:2d =,3q =.∴对于*k N ∈,有12121(1)221,23k k k a k k a --=+-=-=g g . 故*12,2123,2n n n n k a k N n k -=-⎧⎪=∈⎨⎪=⎩g; (2)若2m k =,则由12m m m a a a ++=,得123(21)23k k k -+=g g ,解得:1k =,则2m =; 若21m k =-,则由1(21)2321k k k --=+g g, 此时左边为偶数,右边为奇数,不成立. 故满足条件的正数为2;(3)对于*k N ∈,有22(121)2(13)13213k k k k k S k +--=+=-+-.21212122132313k k k k k k S S a k k ---=-=-+-=-+g . 假设存在正整数m ,使得221mm S S -恰好为数列{}n a 中的一项, 又由(1)知,数列中的每一项都为正数,故可设*221()mm S L L N S -=∈, 则2211313m m m L m --+=-+,变形得到 12(3)3(1)(1)m L L m --=--①.1m Q …,1L …,130m ->, 3L ∴….又*L N ∈,故L 可能取1,2,3.当1L =时,1(3)30m L -->,2(1)(1)0L m --=,∴①不成立;当2L =时,12(32)3(21)(1)m m --=--,即1231m m -=-. 若1m =,1231m m -≠-,令2*11(,2)3m m m T m N m --=∈…,则2211(1)1133m m m m m m T T +-+---=-22172()2232233m mm m m -++-++== 22222303m -+⨯+<….因此,231T T =>>⋯,故只有21T =,此时2m =,22L a ==. 当3L =时,12(33)3(31)(1)m m --=--. 1m ∴=,33L a ==.综上,存在正整数1m =,使得21S S 恰好为数列{}n a 中的第三项,存在正整数2m =,使得43S S 恰好为数列{}n a 中的第二项. 【点评】本题考查了等差数列和等比数列的性质,训练了分类讨论的数学思想方法,考查了学生综合分析问题和解决问题的能力,考查了学生的逻辑思维能力,是压轴题. 4.(2016•辽宁校级模拟)已知数列{}n a 的前n 项和为n S ,且满足112a =,120(2)n n n a S S n -+=….(1)判断1{}nS 是否为等差数列?并证明你的结论; (2)求n S 和n a ;(3)求证:222121124n S S S n++⋯+-…. 【考点】83:等差数列的性质;8E :数列的求和;8H :数列递推式;8K :数列与不等式的综合【专题】11:计算题;16:压轴题【分析】(1)当2n …时,112n n n n n a S S S S --=-=-,两边同除以1n n S S -,可得1112n n S S --=,从而可得1{}nS 为等差数列; (2)由(1)知1{}nS 是以首项为2,公差为2的等差数列,从而可得n S ,利用120(2)n n n a S S n -+=…,可求n a ;(3)利用12n S n =,表示22212n S S S ++⋯+,利用放缩法变为22122211111111()(1)41241223(1)n S S n n n+⋯+=++⋯++++⋯+⨯⨯-⨯…,从而利用裂项法求和,即可证得.【解答】解:(1)1112S a ==,∴112S =当2n …时,112n n n n n a S S S S --=-=-,∴1112n n S S --=∴1{}nS 为等差数列,首项为2,公差为2⋯(4分) (2)由(1)知12(1)22n n n S =+-⨯=,∴12n S n=⋯(6分) 当2n …时,11112222(1)2(1)n n n a S S n n n n -=-=-=---g g1,121,22(1)n n a n n n ⎧=⎪⎪∴=⋯⎨⎪-⎪-⎩…(9分)(3)2212221111111111111111()(1)(11)(2)41241223(1)421424n S S n n n n n n n+⋯+=++⋯++++⋯+=+-+⋯+-=-=-⋯⨯⨯-⨯-…(13分)【点评】本题的考点是数列与不等式的综合,主要考查数列的通项的求解,关键是利用当2n …时,1n n n a S S -=-,巧妙构建新数列,同时考查放缩法,考查裂项法求和,有一定的综合性.5.(2016•南京三模)已知数列{}n a ,{}n b 满足1n n n b a a +=-,其中1n =,2,3,⋯. (Ⅰ)若11a =,n b n =,求数列{}n a 的通项公式; (Ⅱ)若11(2)n n n b b b n +-=…,且11b =,22b =. (ⅰ)记61(1)n n a n -=…ð,求证:数列{}n ð为等差数列;(ⅱ)若数列{}n an中任意一项的值均未在该数列中重复出现无数次.求1a 应满足的条件.【考点】83:等差数列的性质;8H :数列递推式 【专题】11:计算题;16:压轴题;32:分类讨论【分析】(Ⅰ)根据数列的基本性质以及题中已知条件便可求出数列{}n a 的通项公式; (Ⅱ)(ⅰ)先根据题中已知条件推导出6n n b b +=,然后求出1n n c +-ð为定值,便可证明数列{}n ð为等差数列;(ⅱ)数列6{}n i a +均为以7为公差的等差数列,然后分别讨论当76i i a =时和当76i ia ≠时,数列{}n an是否满足题中条件,便可求出1a 应满足的条件.【解答】解:(Ⅰ)当2n …时, 有121321()()()n n n a a a a a a a a -=+-+-+⋯+- 1121n a b b b -=+++⋯+(2分)2(1)11222n n n n-⨯=+=-+.(3分)又因为11a =也满足上式,所以数列{}n a 的通项为2122n n na =-+.(4分)(Ⅱ)由题设知:0n b >,对任意的*n N ∈有21n n n b b b ++=,132n n n b b b +++=得31n n b b +=, 于是又361n n b b ++=,故6n n b b +=(5分)6511n b b -∴==,6422n b b -==,6332n b b -==,6241n b b -==,615611,22n n b b b -===(ⅰ)16561616616263641112217(1)22n n n n n n n n n n c a a b b b b b b n ++--++++-=-=+++++=+++++=…ð,所以数列{}n ð为等差数列.(7分)(ⅱ)设6(0)n n i d a n +=…,(其中i 为常数且{1i ∈,2,3,4,5,6}), 所以1666661626364657(0)n n n i n i n i n i n i n i n i n i d d a a b b b b b b n +++++++++++++++-=-=+++++=… 所以数列6{}n i a +均为以7为公差的等差数列.(9分) 设6777(6)7766666666i i k i i k i ii k a a a a k f k i i k i k i k+++--+====+++++, (其中6(0)n k i k =+…,i 为{1,2,3,4,5,6}中的一个常数), 当76i i a =时,对任意的6n k i =+有76n a n =;(10分) 由76i i a =,{1i ∈,2,3,4,5,6}知1741111,,,,,632362a =--; 此时76重复出现无数次. 当76i i a ≠时,1777117666()()()()6(1)666(1)66[6(1)](6)i i k k ii i ia a i i f f a a k i k i k i k i k i k i +----=-=--=-+++++++++ ①若76i ia >,则对任意的k N ∈有1k k f f +<,所以数列6{}6k i a k i ++为单调减数列; ②若76i ia <,则对任意的k N ∈有1k k f f +>,所以数列6{}6k i a k i ++为单调增数列;(12分)6{}(16k ia i k i+=+,2,3,4,5,6)均为单调数列,任意一个数在这6个数列中最多各出现一次,即数列{}n an中任意一项的值最多出现六次.综上所述:当174111{,,,,}63236a B ∈--=时,数列{}n a n 中必有某数重复出现无数次.当1a B ∉时,数列{}n an中任意一项的值均未在该数列中重复出现无数次.(14分)【点评】本题考查了等差数列的基本性质和数列的递推公式,考查了学生的计算能力和对数列的综合掌握,解题时分类讨论思想和转化思想的运用,属于中档题.6.(2015•湖北二模)数列{}n a 中,11a =,22a =,数列{}n b 满足1(1)n n n n b a a +=+-,n N +∈. (Ⅰ)若数列{}n a 是等差数列,求数列{}n b 的前100项和100S ; (Ⅱ)若数列{}n b 是公差为2的等差数列,求数列{}n a 的通项公式. 【考点】85:等差数列的前n 项和;8H :数列递推式 【专题】32:分类讨论;54:等差数列与等比数列【分析】(Ⅰ)先求出等差数列{}n a 的通项公式n a ,再求出{}n b 的通项公式,计算{}n b 的前100项和;(Ⅱ)先求出等差数列{}n b 的通项公式,再根据1(1)n n n n b a a +=+-,讨论n 为奇数或偶数时,求出n a .【解答】解:(Ⅰ)等差数列{}n a 中,11a =,22a =,n a n ∴=; 当n 为奇数时,11n n n b a a +=-=,即135211n b b b b -===⋯==; 当n 为偶数时,121n n n b a a n +=+=+,则25b =,49b =,613b =, {}n b ∴的前100项和为 10012100S b b b =++⋯+139924100()()b b b b b b =++⋯++++⋯+50494150(505)2⨯⨯=⨯+⨯+5200=;⋯(6分)(Ⅱ){}n b Q 是公差为2的等差数列,且1211b a a =-=,21n b n ∴=-;当n 为奇数时,121n n n b a a n +=-=-, 当n 为偶数时,121n n n b a a n +=+=-; 即2122122124341n n n n n n ba a nb a a n --+=-=-⎧⎨=+=-⎩,21212n n a a +-∴+= 21212n n a a +-∴=-;又11a =Q ,1351a a a ∴===⋯=,211n a -∴=,242n a n =-;∴()()1,22,n n a n n ⎧⎪=⎨-⎪⎩为奇数为偶数.⋯(12分)【点评】本题考查了等差数列的通项公式的应用问题,也考查了数列前n 项和的计算问题,考查了分类讨论思想的应用问题,是综合性题目.7.(2015•高邮市校级模拟)已知数列{}n a 的奇数项是首项为1的等差数列,偶数项是首项为2的等比数列.数列{}n a 前n 项和为n S ,且满足34S a =,3542a a a +=+ (1)求数列{}n a 的通项公式; (2)求数列{}n a 前2k 项和2k S ;(3)在数列{}n a 中,是否存在连续的三项m a ,1m a +,2m a +,按原来的顺序成等差数列?若存在,求出所有满足条件的正整数m 的值;若不存在,说明理由.【考点】83:等差数列的性质;85:等差数列的前n 项和;89:等比数列的前n 项和 【专题】54:等差数列与等比数列【分析】(1)等差数列和等比数列的通项公式即可得出; (2)利用等差数列的通项公式即可得出;(3)在数列{}n a 中,仅存在连续的三项1a ,2a ,3a ,按原来的顺序成等差数列,此时正整数m 的值为1.分类讨论2m k a a =,21m k a a -=,证明不成立即可. 【解答】解:(1)设等差数列的公差为d ,等比数列的公比为q , 则11a =,22a =,31a d =+,42a q =,512a d =+. 34S a =Q ,12(1)2d q ∴+++=,即42d q +=,又3542a a a +=+,11222d d q ∴+++=+,即32d q =,解得2d =,3q =.∴对于*k N ∈,有211(1)221k a k k -=+-=-g ,故12,2123,2n n n n k a n k -=-⎧⎪=⎨⎪=⎩g,*k N ∈.(2)21221321242(121)2(13)()()[13(21)]2(1333)13213k k kk k k k k S a a a a a a k k --+--=++⋯++++⋯+=++⋯+-++++⋯+=+=-+-.(3)在数列{}n a 中,仅存在连续的三项1a ,2a ,3a ,按原来的顺序成等差数列,此时正整数m 的值为1,下面说明理由若2m k a a =,则由212m m m a a a +++=,得123232(21)k k k -⨯+⨯=+. 化简得14321k k -=+g ,此式左边为偶数,右边为奇数,不可能成立. 若21m k a a -=,则由212m m m a a a +++=,得1(21)(21)223k k k --++=⨯⨯ 化简得13k k -=, 令*1()3k k k T k N -=∈,则111120333k k k k k k k kT T +-+--=-=<. 因此,1231T T T =>>>⋯,故只有11T =,此时1K =,2111m =⨯-=.综上,在数列{}n a 中,仅存在连续的三项1a ,2a ,3a ,按原来的顺序成等差数列,此时正整数m 的值为1.【点评】本题考查了等差数列与等比数列的通项公式性质及其前n 项和公式等基础知识与基本方法,属于难题.8.(2016•丰台区一模)已知数列{}n a 是无穷数列,1a a =,2(a b a =,b 是正整数),11111(1),(1)n nn n n n n nn a a a a a a aa a --+--⎧>⎪⎪=⎨⎪⎪⎩….(Ⅰ)若12a =,21a =,写出4a ,5a 的值;(Ⅱ)已知数列{}n a 中*1()k a k N =∈,求证:数列{}n a 中有无穷项为1;(Ⅲ)已知数列{}n a 中任何一项都不等于1,记21{n n b max a -=,2}(1n a n =,2,3,⋯;{max m ,}n 为m ,n 较大者).求证:数列{}n b 是单调递减数列. 【考点】82:数列的函数特性【专题】32:分类讨论;35:转化思想;54:等差数列与等比数列 【分析】()I 利用递推关系即可得出.(Ⅱ)*1()k a k N =∈,假设1k a m +=,对m 分类讨论,利用已知递推关系即可证明. (Ⅲ)由条件可知1(1n a n >=,2,3,)⋯.由于{}n a 中任何一项不等于1,可得1(1n n a a n +≠=,2,3,)⋯.分类讨论:①若212n n a a ->,则21n n b a -=.②若212n n a a -<,则2n n b a =.再利用递推关系即可证明.【解答】解:(Ⅰ)12a =Q ,21a =,∴21112a a =<,1322aa a ∴==. 同理可得:3422a a a ==,3541aa a ==. (Ⅱ)*1()k a k N =∈,假设1k a m +=, ①当1m =时,依题意有231k k a a ++==⋯=, ②当1m >时,依题意有2k a m +=,31k a +=, ③当1m <时,依题意有21k a m +=,321k a m +=,41k a m +=,51k a m+=,61k a +=.由以上过程可知:若*1()k a k N =∈,在无穷数列{}n a 中,第k 项后总存在数值为1 的项,以此类推,数列{}n a 中有无穷项为1.(Ⅲ)证明:由条件可知1(1n a n >=,2,3,)⋯,{}n a Q 中任何一项不等于1,1(1n n a a n +∴≠=,2,3,)⋯.①若212n n a a ->,则21n n b a -=. Q 21212n n na a a -+=,2121n n a a -+∴>. 若21221n n a a ->,则21222122n n n n a a a a -+-=<,于是2122n n a a -+>; 若21221n n a a -<,则22222222212121212n n n n n n n n n n na a a a a a a a a a a +----===<<g ,于是2122n n a a -+>; 若21221n n a a -=,则221n a +=,于题意不符; 2121{n n a max a -+∴>,22}n a +,即1n n b b +>.②若212n n a a -<,则2n n b a =. Q 22121nn n a a a +-=,221n n a a +∴>; Q 22221nn n a a a ++=,222n n a a +∴>; 221{n n a max a +∴>,22}n a +,即1n n b b +>.综上所述,对于一切正整数n ,总有1n n b b +>,所以数列{}n b 是单调递减数列.【点评】本题考查了递推关系、分类讨论方法、数列的周期性,考查了推理能力与计算能力,属于难题.9.(2014•东城区二模)设a 是一个自然数,f (a )是a 的各位数字的平方和,定义数列1{}:n a a 是自然数,*1()(n n a f a n N -=∈,2)n …. (Ⅰ)求(99)f ,(2014)f ; (Ⅱ)若1100a …,求证:12a a >; (Ⅲ)求证:存在*m N ∈,使得100m a <. 【考点】8B :数列的应用【专题】16:压轴题;54:等差数列与等比数列 【分析】(Ⅰ)利用新定义,可求(99)f ,(2014)f ;(Ⅱ)假设1a 是一个n 位数(3)n …,设出1a ,由21()a f a =可得,2222221321n n a b b b b b -=++⋯+++.作差,即可得证; (Ⅲ)利用反证法进行证明即可.【解答】(Ⅰ)解:22(99)99162f =+=;2222(2014)201421f =+++=. (Ⅱ)证明:假设1a 是一个n 位数(3)n …,那么可以设1221132110101010n n n n a b b b b b ---=++⋯+++gg g g , 其中09i b 剟且(1)i b N i n ∈剟,且0n b ≠. 由21()a f a =可得,2222221321n n a b b b b b -=++⋯+++.1221211332111(10)(10)(10)(10)(1)n n n n n n a a b b b b b b b b b b -----=-+-+⋯+-+-+- 12211332111(10)(10)(10)(10)(1)n n n n n n b b b b b b b b b b ----=-+-+⋯+-+-+- 所以11211(10)(1)n n n a a b b b b -----…. 因为0n b ≠,所以1(10)99n n n b b --…. 而11(1)72b b -…,所以120a a ->,即12a a >.(Ⅲ)证明:由(Ⅱ)可知当1100a …时,12a a >. 同理当100n a …时,1n n a a +>. 若不存在*m N ∈,使得100m a <.则对任意的*n N ∈,有100n a …,总有1n n a a +>. 则11n n a a --…,可得1(1)n a a n --…. 取1n a =,则1n a …,与100n a …矛盾. 存在*m N ∈,使得100m a <.【点评】本题考查数列的应用,考查新定义,考查反证法,考查学生分析解决问题的能力,难度较大.10.(2017•启东市校级模拟)已知数列{}n a 满足11a =,23a =,且2(12|cos|)|sin |22n n n n a a ππ+=++,*n N ∈, (1)求*21()k a k N -∈;(2)数列{}n y ,{}n b 满足21n n y a -=,11b y =,且当2n …时2222121111()n n n b y y y y -=++⋯+.证明当2n …时,有12221(1)n n b b n n n +-=+; (3)在(2)的条件下,试比较1231111(1)(1)(1)(1)nb b b b +++⋯+g g g g 与4的大小关系.【考点】8H :数列递推式;8K :数列与不等式的综合;9R :反证法与放缩法证明不等式 【专题】11:计算题;15:综合题;16:压轴题【分析】(1)设21n k =-,利用条件可证数列21(}k a -为等差数列.从而可求其通项; (2)先求得,222211112(1)n b n n =++⋯+-,然后再写一式,两式相减即可证得; (3)先计算的当1n =时,11124b +=<;当2n =时,12115(1)(1)244b b ++=⨯<g ,再证当3n …时,利用放缩法结合裂项求和即可的结论. 【解答】解:(1)设21n k =- 由212121(21)(21)(12|cos |)|sin |122k k k k k a a a ππ+----=++=+ 21211k k a a +-∴-=∴数列21(}k a -为等差数列.*21()k a k k N -∴=∈; ⋯(4分) (2)证:21n y a n -==.当2n …时,222211112(1)n b n n =++⋯+⋯-① ∴12222111(1)12n b n n+=++⋯+⋯+②⋯(6分) ②式减①式,有12221(1)n n b b n n n +-=+,得证. ⋯(8分)(3)解:当1n =时,11124b +=<; 当2n =时,12115(1)(1)244b b ++=⨯<g , 由(2)知,当2n …时,2211(1)n n b n b n ++=+,∴当3n …时,22123111111(1)(1)(1)(1)2[1]2n b b b b n+++⋯+=++⋯+g g g g Q21111(2)(1)1n n n n n n<=---…, ∴12311111(1)(1)(1)(1)2(2)4n b b b b n+++⋯+<-<g g g g ⋯(14分)【点评】本题以数列为载体,考查等差数列的定义,考查数列与不等式的结合,有较强的技巧性.11.(2014•南充模拟)对于函数()f x ,若存在0x R ∈,使00()f x x =成立,则称0x 为()f x 的不动点.如果函数2()x a f x bx c+=-有且仅有两个不动点0和2.(1)试求b 、c 满足的关系式.(2)若2c =时,各项不为零的数列{}n a 满足14()1n n S f a =g ,求证:1111(1)(1)n n a a n na e a +-<<-. (3)设1n nb a =-,n T 为数列{}n b 的前n 项和,求证:2009200812009T ln T -<<. 【考点】8K :数列与不等式的综合 【专题】15:综合题;16:压轴题【分析】(1)设2x a x bx c +=-的不动点为0和2,由此知0422ac a b c⎧=⎪⎪-⎨+⎪=⎪-⎩即012a c b =⎧⎪⎨=+⎪⎩即12c b =+且0c ≠.(2)由2c =,知2b =,2()(1)2(1)x f x x x =≠-,22n n nS a a =-,且1n a ≠.所以11n n a a --=-,n a n =-,要证待证不等式,只要证(1)111(1)(1)n n n e n -+-+<<+,即证111(1)(1)n n e n n ++<<+,只要证11(1)1(1)(1)nln n ln n n +<<++,即证111(1)1ln n n n<+<+.考虑证不等式(1)(0)1xln x x x x <+<>+,由此入手能导出1111(1)(1)n n a a n n a e a +-<<-.(3)由1n b n =,知111123n T n =+++⋯+.在111(1)1ln n n n<+<+中,令1n =,2,3,⋯,2008,并将各式相加,能得到2009200812009T ln T -<<.【解答】解:(1)设2x ax bx c+=-的不动点为0和2∴0422ac a b c⎧=⎪⎪-⎨+⎪=⎪-⎩即012a c b =⎧⎪⎨=+⎪⎩即12c b =+且0c ≠(2)222()(1)2(1)x c b f x x x =∴=∴=≠-Q ,由已知可得22n n n S a a =-①,且1n a ≠.当2n …时,21112n n n S a a ---=-②,①-②得11()(1)0n n n n a a a a --+-+=,1n n a a -∴=-或11n n a a -=--, 当1n =时,2111121a a a a =-⇒=-,若1n n a a -=-,则21a =与1n a ≠矛盾.11n n a a -∴-=-,n a n ∴=-∴要证待证不等式,只要证(1)111(1)(1)n n n e n-+-+<<+, 即证111(1)(1)n n e n n++<<+,只要证11(1)1(1)(1)nln n ln n n +<<++,即证111(1)1ln n n n<+<+.考虑证不等式(1)(0)**1xln x x x x <+<>+. 令()(1)g x x ln x =-+,()(1)(0)1xh x ln x x x =+->+. ()1xg x x'∴=+,2()(1)x h x x '=+,0x >Q ,()0g x '∴>,()0h x '>,()g x ∴、()h x 在(0,)+∞上都是增函数,()(0)0g x g ∴>=,()(0)0h x h >=,0x ∴>时,(1)1xln x x x <+<+. 令1x n=则**式成立,∴1111(1)(1)n n a a n n a e a +-<<-,(3)由(Ⅱ)知1n b n =,则111123n T n=+++⋯+ 在111(1)1ln n n n <+<+中,令1n =,2,3,2008,并将各式相加, 得1112320091111232009112008232008ln ln ln ++⋯+<++⋯+<+++⋯+. 即2009200812009T ln T -<<.【点评】本题考查不等式的性质和应用,解题时要认真审题,仔细解答,注意公式的合理运用.12.(2019•上海)数列{}(*)n a n N ∈有100项,1a a =,对任意[2n ∈,100],存在n i a a d =+,[1i ∈,1]n -,若k a 与前n 项中某一项相等,则称k a 具有性质P .(1)若11a =,2d =,求4a 所有可能的值;(2)若{}n a 不为等差数列,求证:数列{}n a 中存在某些项具有性质P ;(3)若{}n a 中恰有三项具有性质P ,这三项和为c ,使用a ,d ,c 表示12100a a a ++⋯+. 【考点】8B :数列的应用【专题】15:综合题;23:新定义;54:等差数列与等比数列;62:逻辑推理 【分析】(1)根据11a =,2d =逐一求出2a ,3a ,4a 即可;(2){}n a 不为等差数列,数列{}n a 存在m a 使得1m m a a d -=+不成立,根据题意进一步推理即可证明结论;(3)去除具有性质P 的数列{}n a 中的前三项后,数列{}n a 的剩余项重新排列为一个等差数列,且该数列的首项为a ,公差为d ,求12100a a a ++⋯+即可.【解答】解:(1)Q 数列{}n a 有100项,1a a =,对任意[2n ∈,100],存在n i a a d =+,[1i ∈,1]n -,∴若11a =,2d =,则当2n =时,213a a d =+=,当3n =时,[1i ∈,2],则313a a d =+=或325a a d =+=,当4n =时,[1i ∈,3],则413a a d =+=或425a a d =+=或431()5a a d a d d =+=++=或432()7a a d a d d =+=++= 4a ∴的所有可能的值为:3,5,7;(2){}n a Q 不为等差数列,∴数列{}n a 存在m a 使得1m m a a d -=+不成立,Q 对任意[2n ∈,10],存在n i a a d =+,[1i ∈,1]n -;∴存在[1p ∈,2]n -,使m p a a d =+,则对于m q i a a d -=+,[1i ∈,1]n q --,存在p i =,使得m q m a a -=, 因此{}n a 中存在具有性质P 的项;(3)由(2)知,去除具有性质P 的数列{}n a 中的前三项,则数列{}n a 的剩余项均不相等, Q 对任意[2n ∈,100],存在n i a a d =+,[1i ∈,1]n -,则一定能将数列{}n a 的剩余项重新排列为一个等差数列,且该数列的首项为a ,公差为d , 12100a a a ∴++⋯+97(96)2a a d c ++=+974656a d c =++.【点评】本题考查了等差数列的性质和前n 项和公式,考查了逻辑推理能力和计算能力,关键是对新定义的理解,属难题.13.(2019•天津)设{}n a 是等差数列,{}n b 是等比数列.已知14a =,16b =,2222b a =-,3324b a =+.(Ⅰ)求{}n a 和{}n b 的通项公式;(Ⅱ)设数列{}n c 满足11c =,11,22,,2,k k n kk n c b n +⎧<<⎪=⎨=⎪⎩其中*k N ∈. ()i 求数列22{(1)}n n a c -的通项公式; ()ii 求2*1()ni i i a c n N =∈∑.【考点】8E :数列的求和;84:等差数列的通项公式;88:等比数列的通项公式 【专题】11:计算题;35:转化思想;49:综合法;54:等差数列与等比数列;62:逻辑推理【分析】(Ⅰ)设等差数列{}n a 的公差为d ,等比数列{}n b 的公比为q ,利用等差数列、等比数列的通项公式列出方程组,能求出{}n a 和{}n b 的通项公式.(Ⅱ)()i 由222(1)(1)n n n n a c a b -=-,能求出数列22{(1)}n n a c -的通项公式. (Tex translation failed),由此能求出结果.【解答】解:(Ⅰ)设等差数列{}n a 的公差为d ,等比数列{}n b 的公比为q , 依题意有:26626124q d q d =+⎧⎨=+⎩,解得32d q =⎧⎨=⎩, 4(1)331n a n n ∴=+-⨯=+,16232n n n b -=⨯=⨯.(Ⅱ)()i Q 数列{}n c 满足11c =,11,22,,2,k k n kk n c b n +⎧<<⎪=⎨=⎪⎩其中*k N ∈. 222(1)(1)(321)(321)941n n n n n n n a c a b ∴-=-=⨯+⨯-=⨯-,∴数列22{(1)}n n a c -的通项公式为:22(1)941n n n a c -=⨯-.(Tex translation failed)12(21)(243)(941)2n n nni i =-=⨯+⨯+⨯-∑2114(14)(3252)914n n n n ---=⨯+⨯+⨯--2112725212n n n --=⨯+⨯--.*()n N ∈.【点评】本题考查等差数列、等比数列通项公式及前n 项和等基础知识,考查化归与转化思想和数列求和的基本方法以及运算求解能力.14.(2019•浙江)设等差数列{}n a 的前n 项和为n S ,34a =,43a S =.数列{}n b 满足:对每个*n N ∈,n n S b +,1n n S b ++,2n n S b ++成等比数列. (Ⅰ)求数列{}n a ,{}n b 的通项公式;(Ⅱ)记n c =*n N ∈,证明:12n c c c ++⋯+<,*n N ∈. 【考点】8I :数列与函数的综合【专题】14:证明题;35:转化思想;49:综合法;54:等差数列与等比数列;63:数学建模【分析】(Ⅰ)利用等差数列通项公式和前n 项和公式列出方程组,求出10a =,2d =,从而22n a n =-,*n N ∈.2n S n n =-,*n N ∈,利用212()()()n n n n n n S b S b S b +++=++,能求出n b .(Ⅱ)n c ==,*n N ∈,用数学归纳法证明,得到12n c c c ++⋯+<,*n N ∈.【解答】解:(Ⅰ)设数列{}n a 的公差为d , 由题意得11124333a d a d a d +=⎧⎨+=+⎩,解得10a =,2d =, 22n a n ∴=-,*n N ∈.2n S n n ∴=-,*n N ∈,Q 数列{}n b 满足:对每个*n N ∈,n n S b +,1n n S b ++,2n n S b ++成等比数列.212()()()n n n n n n S b S b S b ++∴+=++, 解得2121()2n n n n b S S S ++=-,解得2n b n n =+,*n N ∈.(Ⅱ)证明:n c ==,*n N ∈,用数学归纳法证明:①当1n =时,102c =<,不等式成立;②假设n k =,*()k N ∈时不等式成立,即12k c c c ++⋯+< 则当1n k =+时,121k k c c c c +++⋯++<<。
高考数学压轴专题2020-2021备战高考《数列》经典测试题含答案解析
【高中数学】数学《数列》复习知识点(1)一、选择题1.在等差数列{}n a 中,2436a a +=,则数列{}n a 的前5项之和5S 的值为( ) A .108 B .90C .72D .24【答案】B 【解析】由于152436a a a a +=+=,所以1555()5369022a a S +⨯===,应选答案A . 点睛:解答本题的简捷思路是巧妙运用等差数列的性质152436a a a a +=+=,然后整体代换前5项和中的15=36a a +,从而使得问题的解答过程简捷、巧妙.当然也可以直接依据题设条件建立方程组进行求解,但是解答过程稍微繁琐一点.2.已知数列22333311313571351,,,,,,,...,,,,...2222222222n n n,则该数列第2019项是( ) A .1019892 B .1020192C .1119892D .1120192【答案】C 【解析】 【分析】 由观察可得()22333311313571351,,,,,,,...,,,,...2222222222n n n ⎛⎫⎛⎫⎛⎫⎛⎫⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭项数为21,1,2,4,8,...,2,...k -,注意到101110242201922048=<<=,第2019项是第12个括号里的第995项. 【详解】 由数列()22333311313571351,,,,,,,...,,,,...2222222222n n n ⎛⎫⎛⎫⎛⎫⎛⎫⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,可发现其项数为 21,1,2,4,8,...,2,...k -,则前11个括号里共有1024项,前12个括号里共有2048项,故原数列第2019项是第12个括号里的第995项,第12个括号里的数列通项为11212m -, 所以第12个括号里的第995项是1119892. 故选:C. 【点睛】本题考查数列的定义,考查学生观察找出已知数列的特征归纳出其项数、通项,是一道中档题.3.已知数列{}n a 中,12a =,211n n n a a a +=-+,记12111n nA a a a =++⋯+,12111n nB a a a =⋅⋅⋯⋅,则( ) A .201920191A B +> B .201920191A B +< C .2019201912A B -> D .2019201912A B -< 【答案】C 【解析】 【分析】根据数列{}{},n n A B 的单调性即可判断n n A B -;通过猜想归纳证明,即可求得n n A B +. 【详解】注意到12a =,23a =,37a =,不难发现{}n a 是递增数列. (1)21210n n n n a a a a +-=-+≥,所以1n n a a +≥.(2)因为12a =,故2n a ≥,所以1n n a a +>,即{}n a 是增函数. 于是,{}n A 递增,{}n B 递减, 所以20192121156A A a a >=+=,20192121116B A a a <=⋅=, 所以2019201912A B ->. 事实上,111,A B +=221,A B +=331A B +=, 不难猜想:1n n A B +=. 证明如下:(1)211121111111111111n n n n n n n n a a a a a a a a a a ++-=-+⇒=-⇒++⋅⋅⋅+=----. (2)211n n n a a a +=-+等价于21111n n na a a +=--, 所以1111n n n a a a +-=-, 故12111111n n a a a a +⋅⋅⋯⋅=-, 于是12121111111n n a a a a a a ⎛⎫⋅⋅⋯⋅+++⋯+= ⎪⎝⎭, 即有1n n A B +=. 故选:C. 【点睛】本题考查数列的单调性,以及用递推公式求数列的性质,属综合中档题.4.已知数列{}n a 是正项等比数列,若132a =,3432a a ⋅=,数列{}2log n a 的前n 项和为n S ,则n S >0时n 的最大值为 ( ) A .5 B .6C .10D .11【答案】C 【解析】2525163412132323222log 62n n n n a a a q q q a a n --⋅===⇒=⇒=⨯=⇒=-⇒ max (56)011102n n n S n n +-=>⇒<⇒= ,故选C.5.已知椭圆221x y m n+=满足条件:,,m n m n +成等差数列,则椭圆离心率为( )A B C .12D 【答案】B 【解析】 【分析】根据满足条件,,m n m n +成等差数列可得椭圆为2212x ym m+=,求出,a c .再求椭圆的离心率即可. 【详解】()22n m m n n m =++⇒=,∴椭圆为2212x y m m+=,22c m m m =-=,得c =又a =2c e a ∴==.则椭圆离心率为2,故选B. 【点睛】一般求离心率有以下几种情况:①直接求出,a c ,从而求出e ;②构造,a c 的齐次式,求出e ;③采用离心率的定义以及圆锥曲线的定义来求解;④根据圆锥曲线的统一定义求解.6.如果等差数列128,,,a a a L 的各项都大于零,公差0d ≠,则正确的关系为( )A .1845a a a a >B .1845a a a a <C .1845a a a a +>+D .1845a a a a =【答案】B 【解析】 【分析】先根据等差中项的性质,可排除C ,再利用作差比较,即可得到答案. 【详解】根据等差数列的性质,可得1845a a a a +=+,所以C 不正确;又由218451111(7)(3)(4)120a a a a a a d a d a d d -=+-++=-<,所以1845a a a a <.故选B . 【点睛】本题主要考查了等差数列的性质,等差数列的通项公式,以及作差比较法的应用,着重考查了推理与运算能力.7.定义“穿杨二元函数”如:(,)248n C a n a a a a =++++L 144424443个.例如:()3,436122445C =+++=.若a Z +∃∈,满足(),C a n n =,则整数n 的值为( )A .0B .1C .0或1D .不存在满足条件的n【答案】B 【解析】 【分析】由(,)248n C a n a a a a =++++L 144424443个,得()()12,2112nn C a n a a -=⨯=--,然后根据(),C a n n =结合条件分析得出答案.【详解】由(,)248n C a n a a a a =++++L 144424443个,得()()12,2112nn C a n a a -=⨯=-- 由(),C a n n =,可得()21na n -=.当0n =时,对任意a Z +∈都满足条件. 当0n ≠时, 21nna =-,由a Z +∈,当1n =时,1a =满足条件. 当2n ≥且n Z ∈时,设()21xf x x =--,则()2ln 21xf x '=-在2x ≥上单调递增. 所以()()24ln 210f x f ''>=->,所以()f x 在2x ≥上单调递增. 所以()()24120f x f >=-->,即当2n ≥且n Z ∈时,恒有21n n ->.则()0,121nna =∈-这与a Z +∈不符合.所以此时不满足条件. 综上:满足条件的n 值为0或1.故选:B 【点睛】本题考查新定义,根据定义解决问题,关键是理解定义,属于中档题.8.设数列是公差的等差数列,为前项和,若,则取得最大值时,的值为A .B .C .或D .【答案】C 【解析】,进而得到,即,数列是公差的等差数列,所以前五项都是正数,或时,取最大值,故选C.9.设数列{}n a 是等差数列,1356a a a ++=,76a =.则这个数列的前7项和等于( ) A .12 B .21C .24D .36【答案】B 【解析】 【分析】根据等差数列的性质可得3a ,由等差数列求和公式可得结果. 【详解】因为数列{}n a 是等差数列,1356a a a ++=, 所以336a =,即32a =, 又76a =, 所以73173a a d -==-,1320a a d =-=, 故1777()212a a S +== 故选:B 【点睛】本题主要考查了等差数列的通项公式,性质,等差数列的和,属于中档题.10.已知单调递增的等比数列{}n a 中,2616a a ⋅=,3510a a +=,则数列{}n a 的前n 项和n S =( ) A .2124n -- B .1122n -- C .21n - D .122n +-【答案】B 【解析】 【分析】由等比数列的性质,可得到35,a a 是方程210160x x -+=的实数根,求得1,a q ,再结合等比数列的求和公式,即可求解. 【详解】由题意,等比数列{}n a 中,2616a a ⋅=,3510a a +=, 根据等比数列的性质,可得3516a a ⋅=,3510a a +=,所以35,a a 是方程210160x x -+=的实数根,解得352,8a a ==或358,2a a ==, 又因为等比数列{}n a 为单调递增数列,所以352,8a a ==, 设等比数列{}n a 的首项为1a ,公比为(1)q q >可得214128a q a q ⎧=⎨=⎩,解得11,22a q ==,所以数列{}n a 的前n 项和11(12)122122nn n S --==--. 故选:B . 【点睛】本题主要考查了等比数列的通项公式的基本量的运算,以及等比数列的前n 项和公式的应用,着重考查了推理与运算能力.11.已知数列{a n }的前n 项和为S n ,且a n +1=a n +a (n ∈N *,a 为常数),若平面内的三个不共线的非零向量OAOB OC u u u r u u u r u u u r,,满足10051006OC a OA a OB =+u u u r u u u r u u u r ,A ,B ,C 三点共线且该直线不过O 点,则S 2010等于( ) A .1005 B .1006C .2010D .2012【答案】A 【解析】 【分析】根据a n +1=a n +a ,可判断数列{a n }为等差数列,而根据10051006OC a OA a OB =+u u u r u u u r u u u r,及三点A ,B ,C 共线即可得出a 1+a 2010=1,从而根据等差数列的前n 项和公式即可求出S 2010的值. 【详解】由a n +1=a n +a ,得,a n +1﹣a n =a ; ∴{a n }为等差数列;由10051006OC a OA a OB =+u u u r u u u r u u u r ,所以A ,B ,C 三点共线; ∴a 1005+a 1006=a 1+a 2010=1,∴S 2010()12010201020101100522a a +⨯===. 故选:A. 【点睛】本题主要考查等差数列的定义,其前n 项和公式以及共线向量定理,还考查运算求解的能力,属于中档题.12.已知等比数列{}n a 的前n 项和为n S ,若1220a a +=,334S =,且2n a S a ≤≤+,则实数a 的取值范围是( ) A .[]1,0- B .11,2⎡⎤-⎢⎥⎣⎦C .1,12⎡⎤⎢⎥⎣⎦D .[]0,1【答案】B 【解析】 【分析】先求得等比数列的首项和公比,得到n S ,分析数列的单调性得到n S 的最值,从而列不等式求解即可. 【详解】由1220,a a += 334S =,得11211,,1232nn a q S ⎡⎤⎛⎫==-=--⎢⎥ ⎪⎝⎭⎢⎥⎣⎦,当1n =时,n S 取最大值1,当2n =时,n S 取最小值12, 所以1221a a ⎧≤⎪⎨⎪+≥⎩,112a -≤≤,故选B. 【点睛】本题主要考查了等比数列的单调性,结合首项和公比即可判断,属于中档题.13.等差数列{}n a 中,n S 为它的前n 项和,若10a >,200S >,210S <,则当n =( )时,n S 最大. A .8 B .9C .10D .11【答案】C 【解析】 【分析】根据等差数列的前n 项和公式与项的性质,得出100a >且110a <,由此求出数列{}n a 的前n 项和n S 最大时n 的值. 【详解】等差数列{}n a 中,前n 项和为n S ,且200S >,210S <, 即()()120201*********a a S a a +==+>,10110a a ∴+>,()1212111212102a a S a +==<,所以,110a <,则100a >,因此,当10n =时,n S 最大. 故选:C. 【点睛】本题考查了等差数列的性质和前n 项和最值问题,考查等差数列基本性质的应用,是中等题.14.在正整数数列中,由1开始依次按如下规则,将某些数取出.先取1;再取1后面两个偶数2,4;再取4后面最邻近的3个连续奇数5,7,9;再取9后面的最邻近的4个连续偶数10,12,14,16;再取此后最邻近的5个连续奇数17,19,21,23,25.按此规则一直取下去,得到一个新数列1,2,4,5,7,9,10,12,14,16,17,…,则在这个新数列中,由1开始的第2 019个数是( ) A .3 971 B .3 972C .3 973D .3 974【答案】D 【解析】 【分析】先对数据进行处理能力再归纳推理出第n 组有n 个数且最后一个数为n 2,则前n 组共1+2+3+…+n ()12n n +=个数,运算即可得解.【详解】解:将新数列1,2,4,5,7,9,10,12,14,16,17,…,分组为(1),(2,4),(5,7,9,),(10,12,14,16),(17,19,21,23,25)… 则第n 组有n 个数且最后一个数为n 2, 则前n 组共1+2+3+…+n ()12n n +=个数,设第2019个数在第n 组中,则()()120192120192n n n n ⎧+≥⎪⎪⎨-⎪⎪⎩<, 解得n =64,即第2019个数在第64组中,则第63组最后一个数为632=3969,前63组共1+2+3+…+63=2016个数,接着往后找第三个偶数则由1开始的第2019个数是3974,故选:D . 【点睛】本题考查了对数据的处理能力及归纳推理能力,考查等差数列前n 项和公式,属中档题.15.已知函数()2f x x mx =+图象在点()()1,1A f 处的切线l 与直线320x y ++=垂直,若数列()1f n ⎧⎫⎪⎪⎨⎬⎪⎪⎩⎭的前n 项和为n S ,则2018S 的值为( )A .20152016 B .20162017C .20172018D .20182019【答案】D 【解析】 【分析】求出原函数的导函数,得到()y f x =在1x =时的导数值,进一步求得m ,可得函数解析式,然后利用裂项相消法可计算出2018S 的值. 【详解】由()2f x x mx =+,得()2f x x m '=+,()12f m '∴=+,因为函数()2f x x mx =+图象在点()()1,1A f 处的切线l 与直线320x y ++=垂直,()123f m '∴=+=,解得1m =,()2f x x x ∴=+,则()()21111111f n n n n n n n ===-+++. 因此,20181111112018112232018201920192019S =-+-++-=-=L . 故选:D. 【点睛】本题考查利用导数研究过曲线上某点处的切线方程,训练了利用裂项相消法求数列的前n 项和,是中档题.16.已知等差数列{}n a 的前n 项和为n S ,若23109a a a ++=,则9S =( ) A .3 B .9C .18D .27【答案】D 【解析】设等差数列{}n a 的首项为1a ,公差为d . ∵23109a a a ++=∴13129a d +=,即143a d += ∴53a =∴1999()272a a S ⨯+== 故选D.17.在等差数列{}n a 中,3a ,15a 是方程2650x x -+=的根,则17S 的值是( ) A .41 B .51C .61D .68【答案】B 【解析】 【分析】由韦达定理得3156a a +=,由等差数列的性质得117315a a a a +=+,再根据等差数列的前n 项和公式求17S . 【详解】在等差数列{}n a 中,3a ,15a 是方程2650x x -+=的根,3156a a ∴+=.()()11731517171717651222a a a a S ++⨯∴====. 故选:B . 【点睛】本题考查等差数列的性质和前n 项和公式,属于基础题.18.设首项为1的数列{}n a 的前n 项和为n S ,已知121n n S S n +=+-, 现有下面四个结论①数列{}n S n +为等比数列; ②数列{}n a 的通项公式为121n n a -=-;③数列{}1n a +为等比数列;④数列{}2n S 的前n 项和为2224n n n +---. 其中结论正确的个数是( ) A .1 B .2 C .3 D .4【答案】B 【解析】 【分析】根据递推关系可得1+12()n n S n S n ++=+,可得①正确,利用等比数列求出2nn S n =-,根据前n 项和求n a ,可判断②③,计算2n S ,并分组求和可判断④. 【详解】因为121n n S S n +=+-,所以11222n n n n S n S nS n S n++++==++,又112S +=.所以数列{}n S n +为首项是2,公比是2的等比数列,所以2nn S n +=, 则2nn S n =-.当2n ≥时,1121n n n n a S S --=-=-, 但11121a -≠-,所以①正确,②③错误,因为1222n n S n +=-,所以{}2n S 的前n 项和为2224n n n +---, 所以④正确. 故选:B 【点睛】本题主要考查了数列的递推关系式,等比数列的证明,由n S 求数列的通项公式,属于中档题.19.已知n S 是等差数列{}n a 的前n 项和,且675S S S >>,给出下列五个命题: ①公差0d < ②110S < ③120S >④数列{}n S 中的最大项为11S ⑤67a a >其中正确命题的个数是( ) A .2 B .3C .4D .5【答案】B 【解析】 【分析】先由条件确定数列第六项和第七项的正负,进而确定公差的正负,最后11S ,12S 的符号由第六项和第七项的正负判定. 【详解】Q 等差数列{}n a 中,6S 最大,且675S S S >>,∴10a >,0d <,①正确; Q 675S S S >>,∴60a >,70a <,67 0a a +>,∴160a d +<,150a d +>,6S 最大, ∴④不正确;1111115511(5)0S a d a d =+=+>,12111267 126612()12()0S a d a a a a =+=+=+>, ∴③⑤正确,②错误.故选:B . 【点睛】本题考查等差数列的前n 项和的应用,考查逻辑思维能力和运算能力,属于常考题.20.执行如图所示的程序框图,若输入,则输出的S 的值是A .B .C .D .【答案】B 【解析】 【分析】本题首先可以通过程序框图明确输入的数值以及程序框图中所包含的关系式,然后按照程序框图所包含的关系式进行循环运算,即可得出结果. 【详解】由程序框图可知,输入,,,第一次运算:,;第二次运算:,; 第三次运算:,; 第四次运算:,;第五次运算:,; 第六次运算:,;第七次运算:,;第八次运算:,;第九次运算:,;第十次运算:,,综上所述,输出的结果为,故选B.【点睛】本题考查程序框图的相关性质,主要考查程序框图的循环结构以及裂项相消法的使用,考查推理能力,提高了学生从题目中获取信息的能力,体现了综合性,提升了学生的逻辑推理、数学运算等核心素养,是中档题.。
专题16 数列(选填压轴题)(原卷版)-【挑战压轴题】备战2023年高考数学高分必刷必过题
中
a1
1,数列
anan1
的前
n
项和为 Tn,若Tn≥10
恒成立,则
的最小值为(
)
A.8
B.9
C.10
D.20
10.(2022·全国·高三专题练习)设等差数列an 的前 n 项和为 Sn ,首项 a1 0 ,公差 d 0 ,
若对任意的 n N ,总存在 k N ,使 S2k1 (2k 1)Sn .则 k 9n 的最小值为( )
18.(2022·浙江·高二期末)已知数列an 满足 a1 0 ,对于每一个 n N* ,a4n3 ,a4n2 ,a4n1
构成公差为
2
的等差数列,
a4n1
, a4 n
, a4 n1
构成公比为
1 3
的等比数列,若
n
N*
,不等式
t2 an2 4t 4an 0 恒成立,则正整数 t 的最小值为______.
S n ___________(用含 n 的代数式表示).
21.(2022·全国·高三专题练习)已知有穷数列 an 各项均不相等,将 an 的项从大到小重
新排序后相应的项数构成新数列bn,称数列bn 为数列an 的“序数列”.例如数列 a1 , a2 ,
a3 满足 a1 a3 a2 ,则其序数列bn 为 1,3,2.若有穷数列dn 满足 d1 1 , dn1 dn
T2022 2022 S2022
0
成立.关于上述两个命题,
以上说法正确的是______.(填写序号) 20.(2022·广东深圳·高三阶段练习)设正整数 n a0 70 a1 7 a k1 7 k1 a k 7 k ,其中
ak 0,1, 2,3, 4,5, 6 ,记 n a0 a1 ak , S n 1 2 7n ,当 n 6 时,
2020年高考数学串讲之选择题填空题专练ppt完美课件(69页)
二.关于2020全国高考
1、数学试题注重“常规朴素”,可谓“光明磊落”. 2、数学试题注重“稳中有新”,凸显高考改革及新课程
改革理念的精髓. (变—形式,不变—本质). 3、数学试题注重考查数学本质,数学思维、运算、应用
2020年高考数学串讲之选择题填空题 专练课 件(共6 9张PPT )
2020年高考数学串讲之选择题填空题 专练课 件(共6 9张PPT )
2020年高考数学串讲之选择题填空题 专练课 件(共6 9张PPT )
3、解填空题的基本策略是:“巧做” 填空题与解答题比较,同属提供型的试题.但本质区别是: 解答题应答时,不仅要提供出最后的结论,还得写出或说出解答 过程的主要步骤,提供合理、合法的说明,而填空题则无此要求, 只要填写结果,省略过程,而且所填结果应力求简练、概括和准 确.
A 0 0 0 4 4 4 4 4 0 4 5 5 5 5 5 14 14 13 15 14 8
B 4 4 4 4 4 4 4 4 4 4 5 5 5 5 0 14 14 8 14 9 8
C 4 4 4 0 0 4 4 0 0 4 5 5 5 5 5 14 14 12 15 14 14
AB:127分 C:132分
3,11,13,21 14
5,12,19
8,18 22 23
2018(1) 2 1 6
16,17 4,14 7,12,18
5,9,21 13
8,11,19 15
3,10,20 22 23
2017(2) 2 1 12 17
3,15 4,10,19
8 11,14,21
高考数学压轴专题2020-2021备战高考《数列》专项训练及解析答案
数学《数列》高考知识点一、选择题1.设函数()mf x x ax =+的导数为()21f x x '=+,则数列()()2N n f n *⎧⎫⎪⎪∈⎨⎬⎪⎪⎩⎭的前n 项和是( ) A .1nn + B .21nn + C .21nn - D .()21n n+ 【答案】B 【解析】 【分析】函数()mf x x ax =+的导函数()21f x x '=+,先求原函数的导数,两个导数进行比较即可求出m ,a ,利用裂项相消法求出()()2N n f n *⎧⎫⎪⎪∈⎨⎬⎪⎪⎩⎭的前n 项和即可.【详解】Q 1()21m f x mx a x -'=+=+,1a \=,2m =,()(1)f x x x ∴=+,112()()(1)221f n n n n n ==-++, ∴111111122[()()()]2(1)1223111n n S n n n n =-+-++-=-=+++L ,故选:B . 【点睛】本题考查数列的求和运算,导数的运算法则,数列求和时注意裂项相消法的应用.2.将正整数20分解成两个正整数的乘积有120⨯,210⨯,45⨯三种,其中45⨯是这三种分解中两数差的绝对值最小的,我们称45⨯为20的最佳分解.当p q ⨯(p q ≤且*,p q ∈N )是正整数n 的最佳分解时我们定义函数()f n q p =-,则数列(){}5nf ()*n N ∈的前2020项的和为( )A .101051+B .1010514-C .1010512-D .101051-【答案】D 【解析】 【分析】首先利用信息的应用求出关系式的结果,进一步利用求和公式的应用求出结果. 【详解】解:依题意,当n 为偶数时,22(5)550n nn f =-=; 当n 为奇数时,111222(5)5545n n n n f +--=-=⨯,所以01100920204(555)S =++⋯+,101051451-=-g ,101051=-.故选:D 【点睛】本题考查的知识要点:信息题的应用,数列的求和的应用,主要考查学生的运算能力和转换能力及思维能力,属于中档题.3.已知等差数列{}n a 的前n 项和为n S ,若34322128,6a a S ⋅==,则数列{}(1)nn a -的前40项和为( ) A .0 B .20 C .40 D .80【答案】B 【解析】 【分析】先由题意求出34a +a =7,然后利用等差数列的前n 项和公式表示出134a a +=,前后两式作差,求出公差,进而代入求出首项,最后即得n a n =,代入题目中{}(1)nn a -,两两组合可求新数列前40项的和. 【详解】 依题意,()133362a a S +== ,∴134a a +=,①∵3422128a a ⋅=,即342128a a +=, ∴34a +a =7,② ②-①得33d =, ∴1d =, ∴11,n a a n ==, ∴(1)(1)n n n a n -=-,∴{}(1)nn a -的前40项和40(12)(34)(3940)20S -++-++⋅⋅⋅+-+==,故选:B . 【点睛】本题考查了指数运算:同底数幂相乘,底数不变,指数相加;主要考查等差数列的前n 和公式,等差中项的性质等等,以及常见的摆动数列的有限项求和,可以采用的方法为:分组求和法,两两合并的方法等等,对学生的运算能力稍有要求,为中等难度题4.已知数列{}n a 的前n 项和为n S ,若2n n S a n =-,则9S =( ) A .993 B .766 C .1013 D .885【答案】C 【解析】 【分析】计算11a =,()1121n n a a -+=+,得到21nn a =-,代入计算得到答案.【详解】当1n =时,11a =;当2n ≥时,1121n n n n a S S a --=-=+,∴()1121n n a a -+=+,所以{}1n a +是首项为2,公比为2的等比数列,即21nn a =-,∴1222n n n S a n n +=-=--,∴1092111013S =-=.故选:C . 【点睛】本题考查了构造法求通项公式,数列求和,意在考查学生对于数列公式方法的灵活运用.5.已知公比为q 的等比数列{}n a 的首项10a >,则“1q >”是“53a a >”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件【答案】A 【解析】 【分析】根据等比数列的性质可得530,0a a >>,若53a a >,可得21q >,然后再根据充分条件和必要条件的判断方法即可得到结果. 【详解】由于公比为q 的等比数列{}n a 的首项10a >, 所以530,0a a >>,若53a a >,则233a q a >,所以21q >,即1q >或1q <-,所以公比为q 的等比数列{}n a 的首项10a >, 则“1q >”是“53a a >”的充分不必要条件, 故选:A. 【点睛】本题主要考查了等比数列的相关性质和充分必要条件的判断方法,熟练掌握等比数列的性质是解题的关键.6.“中国剩余定理”又称“孙子定理”.1852年,英国来华传教士伟烈亚力将《孙子算经》中“物不知数”问题的解法传至欧洲.1874年,英国数学家马西森指出此法符合1801年由高斯得到的关于同余式解法的一般性定理,因而西方称之为“中国剩余定理”.“中国剩余定理”讲的是一个关于整除的问题,现有这样一个整除问题:将1到2019这2019个数中,能被3除余2且被5整除余2的数按从小到大的顺序排成一列,构成数列{}n a ,则此数列所有项中,中间项的值为( ) A .992 B .1022C .1007D .1037【答案】C 【解析】 【分析】首先将题目转化为2n a -即是3的倍数,也是5的倍数,也即是15的倍数.再写出{}n a 的通项公式,算其中间项即可. 【详解】将题目转化为2n a -即是3的倍数,也是5的倍数,也即是15的倍数. 即215(1)n a n -=-,1513n a n =-当135n =,135151351320122019a =⨯-=<, 当136n =,136151361320272019a =⨯-=>, 故1,2,n =……,135数列共有135项.因此数列中间项为第68项,681568131007a =⨯-=. 故答案为:C . 【点睛】本题主要考查数列模型在实际问题中的应用,同时考查了学生的计算能力,属于中档题.7.已知数列{}n a 满足12n n a a +-=,且134,,a a a 成等比数列.若{}n a 的前n 项和为n S ,则n S 的最小值为( )A .–10B .14-C .–18D .–20【答案】D 【解析】 【分析】利用等比中项性质可得等差数列的首项,进而求得n S ,再利用二次函数的性质,可得当4n =或5时,n S 取到最小值.【详解】根据题意,可知{}n a 为等差数列,公差2d =,由134,,a a a 成等比数列,可得2314a a a =,∴1112()4(6)a a a ++=,解得18a =-.∴22(1)981829()224n n n S n n n n -=-+⨯=-=--. 根据单调性,可知当4n =或5时,n S 取到最小值,最小值为20-. 故选:D. 【点睛】本题考查等差数列通项公式、等比中项性质、等差数列前n 项和的最值,考查函数与方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力,求解时注意当4n =或5时同时取到最值.8.执行下面程序框图输出S 的值为( )A .2542B .3764C .1730D .67【答案】A 【解析】 【分析】模拟执行程序框图,依此写出每次循环得到的,S i 的值并判断5i >是否成立,发现当6i =,满足5i >,退出循环,输出运行的结果111111324354657S =++⨯⨯⨯⨯⨯++,利用裂项相消法即可求出S . 【详解】 由题意可知,第1次循环时113S =⨯,2i =,否; 第2次循环111324S =+⨯⨯,3i =,否; 第3次循环时111132435S =++⨯⨯⨯,4i =,否; 第4次循环时111113243546S =++⨯⨯⨯⨯+,5i =,否;第5次循环时111111324354657S =+++⨯⨯⨯⨯⨯+,6i =,是; 故输出111111324354657S =++⨯⨯⨯⨯⨯++111111111112324354657⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-+-+-+-+- ⎪ ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦= 1111251226742⎛⎫=+--=⎪⎝⎭ 故选:A. 【点睛】本题主要考查程序框图中的循环结构,同时考查裂项相消法求和,属于基础题.9.定义“穿杨二元函数”如:(,)248n C a n a a a a =++++L 144424443个.例如:()3,436122445C =+++=.若a Z +∃∈,满足(),C a n n =,则整数n 的值为( )A .0B .1C .0或1D .不存在满足条件的n【答案】B 【解析】 【分析】由(,)248n C a n a a a a =++++L 144424443个,得()()12,2112nn C a n a a -=⨯=--,然后根据(),C a n n =结合条件分析得出答案.【详解】由(,)248n C a n a a a a =++++L 144424443个,得()()12,2112nn C a n a a -=⨯=-- 由(),C a n n =,可得()21na n -=.当0n =时,对任意a Z +∈都满足条件. 当0n ≠时, 21nna =-,由a Z +∈,当1n =时,1a =满足条件. 当2n ≥且n Z ∈时,设()21xf x x =--,则()2ln 21xf x '=-在2x ≥上单调递增. 所以()()24ln 210f x f ''>=->,所以()f x 在2x ≥上单调递增. 所以()()24120f x f >=-->,即当2n ≥且n Z ∈时,恒有21n n ->.则()0,121nna =∈-这与a Z +∈不符合.所以此时不满足条件. 综上:满足条件的n 值为0或1.故选:B 【点睛】本题考查新定义,根据定义解决问题,关键是理解定义,属于中档题.10.在等差数列{}n a 中,3a ,15a 是方程2650x x -+=的根,则17S 的值是( ) A .41 B .51C .61D .68【答案】B 【解析】 【分析】由韦达定理得3156a a +=,由等差数列的性质得117315a a a a +=+,再根据等差数列的前n 项和公式求17S . 【详解】在等差数列{}n a 中,3a ,15a 是方程2650x x -+=的根,3156a a ∴+=.()()11731517171717651222a a a a S ++⨯∴====.故选:B . 【点睛】本题考查等差数列的性质和前n 项和公式,属于基础题.11.已知等差数列{}n a 的公差0d ≠,且1313,,a a a 成等比数列,若11a =,n S 为数列{}n a 的前n 项和,则263n n S a ++的最小值为( )A .4B .3C.2D .2【答案】D 【解析】 【分析】由题意得2(12)112d d +=+,求出公差d 的值,得到数列{}n a 的通项公式,前n 项和,从而可得263n n S a ++,换元,利用基本不等式,即可求出函数的最小值.【详解】解:11a =Q ,1a 、3a 、13a 成等比数列,2(12)112d d ∴+=+. 得2d =或0d =(舍去),21n a n ∴=-,2(121)2n n n S n +-∴==, ∴()()22211426263322112n n n n S n n a n n n ++++++===+-+++. 令1t n =+,则2642223n n S t a t +=+-≥=+ 当且仅当2t =,即1n =时,∴263n n S a ++的最小值为2.故选:D . 【点睛】本题主要考查等比数列的定义和性质,等比数列的通项公式,考查基本不等式,属于中档题.12.已知数列{}n a 是1为首项,2为公差的等差数列,{}n b 是1为首项,2为公比的等比数列,设n n b c a =,12...,(*)n n T c c c n N =+++∈,则当2019n T <时,n 的最大值是( ) A .9 B .10C .11D .12【答案】A 【解析】 【分析】由题设知21n a n =-,12n nb -=,由1121124222n n n b b bn T a a a a a a a n -+=++⋯+=+++⋯+=--和2019n T <,得1222019n n +--<,由此能求出当2019n T <时n 的最大值.【详解】{}n a Q 是以1为首项,2为公差的等差数列,21n a n ∴=-,{}n b Q 是以1为首项,2为公比的等比数列,12n n b -∴=,()()()()1121121242211221241221n n n n b b bn T c c c a a a a a a a --∴=++⋯+=++⋯+=+++⋯+=⨯-+⨯-+⨯-+⋯+⨯-()121242n n -=+++⋯+- 12212nn -=⨯-- 122n n +=--,2019n T <Q ,1222019n n +∴--<,解得:10n <.则当2019n T <时,n 的最大值是9. 故选A . 【点睛】本题考查了等差数列、等比数列的通项公式,结合含两个变量的不等式的处理问题,易出错,属于中档题.13.在各项都为正数的等比数列{}n a 中,若12a =,且1564a a ⋅=,则数列1(1)(1)n n n a a a +⎧⎫⎨⎬--⎩⎭的前n 项和是( ) A .11121n +--B .1121n -+ C .1121n -+ D .1121n -- 【答案】A 【解析】由等比数列的性质可得:2153364,8a a a a ==∴=,则数列的公比:2q ===, 数列的通项公式:112n nn a a q -==,故:()()()()1112111121212121n n n n n n n n a a a +++==-------,则数列()()111n n n a a a +⎧⎫⎪⎪⎨⎬--⎪⎪⎩⎭的前n 项和是:1223111111111121212121212121n n n ++⎛⎫⎛⎫⎛⎫-+-++-=- ⎪ ⎪ ⎪-------⎝⎭⎝⎭⎝⎭L . 本题选择A 选项.点睛:使用裂项法求和时,要注意正负项相消时消去了哪些项,保留了哪些项,切不可漏写未被消去的项,未被消去的项有前后对称的特点,实质上造成正负相消是此法的根源与目的.14.数列{}n a 满足12a =,对于任意的*n N ∈,111n na a +=-,则2018a =( ) A .-1 B .12C .2D .3【答案】A【解析】 【分析】先通过递推公式111n na a +=-,找出此周期数列的周期,再计算2018a 的值. 【详解】111n na a +=-Q ,2111111111n n n na a a a ++∴===----, 32111111n nn n a a a a ++∴===-⎛⎫-- ⎪⎝⎭,故有3n n a a +=,则20183672221111a a a a ⨯+====-- 故选:A 【点睛】本题考查根据数列递推公式求数列各项的值,属于中档题.15.在等差数列{}n a 中,其前n 项和是n S ,若90S >,100S <,则在912129,,,S S S a a a ⋯中最大的是( ) A .11S a B .88S a C .55S a D .99S a 【答案】C 【解析】 【分析】由题意知5600a a >,< .由此可知569121256900...0,0,...0S S S S Sa a a a a ,,,>>><<,所以在912129...S S S a a a ,,,中最大的是55S a . 【详解】 由于191109510569()10()9050222a a a a S a S a a ++====+>,()< , 所以可得5600a a >,<.这样569121256900...0,0,...0S S S S S a a a a a ,,,>>><<, 而125125S S S a a a ⋯⋯<<<,>>>>0, ,所以在912129...S S S a a a ,,,中最大的是55S a . 故选C . 【点睛】本题考查等数列的性质和应用,解题时要认真审题,仔细解答.属中档题.16.已知{}n a 是各项都为正数的等比数列,n S 是它的前n 项和,若47S =,821S =,则16S =( )A .48B .90C .105D .106【答案】C 【解析】 【分析】根据4841281612,,,S S S S S S S ---成等比数列即可求出16S . 【详解】由等比数列的性质得4841281612,,,S S S S S S S ---成等比数列, 所以1216127,14,21,S S S --成等比数列,所以121216162128,49,4956,105S S S S -=∴=∴-=∴=. 故选:C 【点睛】本题主要考查等比数列的性质,意在考查学生对这些知识的理解掌握水平.17.数列{}n a 满足11a =,对任意的*n N ∈都有11n n a a n +=++,则122016111a a a +++=L ( ) A .20152016 B .40322017C .40342017D .20162017【答案】B 【解析】 【分析】首先根据题设条件,由11n n a a n +=++,可得到递推关系为11n n a a n +-=+;接下来利用累加法可求得()12n n n a +=,从而()1211211n a n n n n ⎛⎫==- ⎪++⎝⎭,由此就可求得122016111a a a +++L 的值. 【详解】因为111n n n a a a n a n +=++=++,所以11n n a a n +-=+, 用累加法求数列{}n a 的通项得:()()1211n n n a a a a a a -=+-+⋯+-()1122n n n +=++⋯+=, 所以()1211211n a n n n n ⎛⎫==- ⎪++⎝⎭, 于是1232016111111111212222320162017a a a a ⎛⎫⎛⎫⎛⎫ +++⋯+=-+-+⋯+-⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭121201*********⎛⎫==- ⎪⎝⎭. 故选:B. 【点睛】本题是一道考查数列的题目,掌握数列的递推关系以及求解前n 项和的方法是解答本题的关键,属于常考题.18.{}n a 为等差数列,公差为d ,且01d <<,5()2k a k Z π≠∈,223557sin 2sin cos sin a a a a +⋅=,函数()sin(4)(0)f x d wx d w =+>在20,3π⎛⎫⎪⎝⎭上单调且存在020,3x π⎛⎫∈ ⎪⎝⎭,使得()f x 关于0(,0)x 对称,则w 的取值范围是( ) A .20,3⎛⎤ ⎥⎝⎦ B .30,2⎛⎤ ⎥⎝⎦C .24,33⎛⎤⎥⎝⎦D .33,42⎛⎤⎥⎝⎦【答案】D 【解析】 【分析】推导出sin4d =1,由此能求出d ,可得函数解析式,利用在203x π⎛⎫∈ ⎪⎝⎭,上单调且存在()()0020203x f x f x x π⎛⎫∈+-= ⎪⎝⎭,,,即可得出结论. 【详解】∵{a n }为等差数列,公差为d ,且0<d <1,a 52k π≠(k ∈Z ), sin 2a 3+2sin a 5•cos a 5=sin 2a 7, ∴2sin a 5cos a 5=sin 2a 7﹣sin 2a 3=2sin 372a a +cos 732a a -•2cos 372a a +sin 732a a -=2sin a 5cos2d •2cos a 5sin2d , ∴sin4d =1,∴d 8π=.∴f (x )8π=cosωx ,∵在203x π⎛⎫∈ ⎪⎝⎭,上单调 ∴23ππω≥, ∴ω32≤; 又存在()()0020203x f x f x x π⎛⎫∈+-= ⎪⎝⎭,,, 所以f (x )在(0,23π)上存在零点, 即223ππω<,得到ω34>. 故答案为 33,42⎛⎤⎥⎝⎦故选D 【点睛】本题考查等差数列的公差的求法,考查三角函数的图象与性质,准确求解数列的公差是本题关键,考查推理能力,是中档题.19.《九章算术·均输》中有如下问题:“今有五人分十钱,令上二人所得与下三人等,问各得几何.”其意思为“已知甲、乙、丙、丁、戊五人分10钱,甲、乙两人所得与丙、丁、戊三人所得相同,且甲、乙、丙、丁、戊所得依次成等差数列,问五人各得多少钱?”(“钱”是古代的一种重量单位).这个问题中,甲所得为( ) A .43钱 B .73钱 C .83钱D .103钱 【答案】C 【解析】 【分析】依题意设甲、乙、丙、丁、戊所得钱分别为a ﹣2d ,a ﹣d ,a ,a +d ,a +2d ,由题意求得a =﹣6d ,结合a ﹣2d +a ﹣d +a +a +d +a +2d =5a =10求得a =2,则答案可求. 【详解】解:依题意设甲、乙、丙、丁、戊所得钱分别为a ﹣2d ,a ﹣d ,a ,a +d ,a +2d ,则由题意可知,a﹣2d+a﹣d=a+a+d+a+2d,即a=﹣6d,又a﹣2d+a﹣d+a+a+d+a+2d=5a=10,∴a=2,则a﹣2d=a48 333aa+==.故选:C.【点睛】本题考查等差数列的通项公式,考查实际应用,正确设出等差数列是计算关键,是基础的计算题.20.执行如图所示的程序框图,若输入,则输出的S的值是A.B.C.D.【答案】B【解析】【分析】本题首先可以通过程序框图明确输入的数值以及程序框图中所包含的关系式,然后按照程序框图所包含的关系式进行循环运算,即可得出结果.【详解】由程序框图可知,输入,,,第一次运算:,;第二次运算:,;第三次运算:,;第四次运算:,;第五次运算:,;第六次运算:,;第七次运算:,;第八次运算:,;第九次运算:,;第十次运算:,,综上所述,输出的结果为,故选B.【点睛】本题考查程序框图的相关性质,主要考查程序框图的循环结构以及裂项相消法的使用,考查推理能力,提高了学生从题目中获取信息的能力,体现了综合性,提升了学生的逻辑推理、数学运算等核心素养,是中档题.。
【高考专项】2020年高考数学数列解答题专项练习40题(含答案详解)
第 1 页 共30 页 2020年高考数学 数列 解答题专项练习40题1、数列、数列{a {a n }的前n 项和为S n ,,且成等差数列成等差数列. . .(1)(1)求求a 1的值,并证明为等比数列为等比数列; ; ;(2)(2)设设,若对任意的,不等式恒成立,试求实数的取值范围的取值范围. .2、已知数列、已知数列{a {a n }的前n 项和,{b n }是等差数列,且(1)求数列)求数列{b {b n }的通项公式;的通项公式; (2)令 求数列求数列{c {c n }的前n 项和.3、已知等差数列、已知等差数列{a {a n }的前n 项和为S n ,公差,且成等比数列.成等比数列.(1)(1)求数列求数列求数列{a {a n }的通项公式的通项公式; ; (2)(2)令令,求数列求数列{c {c n }的前n 项和.4、已知数列、已知数列{a {a n }满足,.(1)证明数列)证明数列{a {a n +1}+1}是等比数列,并求数列是等比数列,并求数列是等比数列,并求数列{a {a n }的通项公式;的通项公式; (2)令,求数列,求数列{b {b n }的前n 项和5、已知数列、已知数列{a {a n }前n 项和为。
(1)求数列)求数列{a {a n }的通项公式;的通项公式; (2)设数列;求数列的前n 项和。
6、设数列、设数列{a {a n }的前n 项和为S n ,若.(1)(1)求出数列求出数列求出数列{a {a n }的通项公式;的通项公式; (2)(2)已知已知,数列,数列{b {b n }的前n 项和记为,证明:.7、已知等差数列、已知等差数列{a {a n }满足,,数列,数列{b {b n }满足.(1)求数列)求数列{a {a n }、{b n }的通项公式;的通项公式; (2)求数列的前n 项和项和. .8、正项数列、正项数列{a {a n }的前n 项和为S n ,且.(1)试求数列)试求数列{a {a n }的通项公式;的通项公式; (2)设,求,求{b {b n }的前n 项和为. (3)在()在(22)的条件下,若对一切恒成立,求实数m 的取值范围的取值范围. .9、已知等差数列、已知等差数列{a {a n }的公差d ≠0,它的前n 项和为S n ,若,且a 2,a 6,a 18成等比数列.成等比数列.(1)求数列)求数列{a {a n }的通项公式;的通项公式; (2)设数列)设数列{{}的前n 项和为,求证:.1010、等差数列、等差数列、等差数列{a {a n }中,已知,且为递增的等比数列为递增的等比数列. .(1)求数列)求数列{a {a n }的通项公式;的通项公式;(2)若数列)若数列{b {b n }的通项公式(),求数列),求数列{b {b n }的前n 项和S n .1111、已知等比数列、已知等比数列、已知等比数列{a {a n }的前n 项和为S n ,且是S n 与2的等差中项,等差数列中,,点在一次函数的图象上.的图象上. (1)求数列)求数列{a {a n },{b n }的通项和;(2) 设,求数列,求数列{c {c n }的前n 项和.1212、已知公差不为零的等差数列、已知公差不为零的等差数列、已知公差不为零的等差数列{a {a n }的前n 项和为S n ,,且成等比数列成等比数列. .(1)(1)求数列求数列求数列{a {a n }的通项公式;的通项公式; (2)(2)若若,数列,数列{b {b n }的前n 项和为,求.1313、记、记为各项为正数的等比数列为各项为正数的等比数列{a {a n }的前S n 项和,已知.(1)求数列)求数列{a {a n }的通项公式的通项公式; ;(2)令,求的前n 项和.1414、设数列、设数列、设数列{a {a n }的前n 项和为S n ,已知3S n =4-4,.(1)1)求数列求数列求数列{a {a n }的通项公式;的通项公式; (2(2)令)令,求数列,求数列{b {b n }的前n 项和Tn.1515、已知数列、已知数列、已知数列{a {a n }的各项均为正数,对任意,它的前n 项和S n 满足,并且,,成等比数列.成等比数列.(1)求数列)求数列{a {a n }的通项公式;的通项公式; (2)设,为数列为数列{b {b n }的前n 项和,求.1616、已知数列、已知数列、已知数列{a {a n }的前n 项和为S n ,且,.(1)求数列)求数列{a {a n }的通项公式;的通项公式; (2)当时,求证:数列的前n 项和.1717、已知数列、已知数列为等差数列,且,.(1)求数列)求数列{a {a n }的通项公式;的通项公式; (2)证明:.1818、、已知已知{a {a n }是各项均为正数的等比数列,{b n }是等差数列,且,,;求:(求:(11){a n }和{b n }的通项公式;的通项公式; (2)设,,求数列,求数列{c {c n }的前n 项和.项和.1919、已知公差大于零的等差数列、已知公差大于零的等差数列、已知公差大于零的等差数列{a {a n }的前n 项和为S n ,且满足:,.(1)求数列)求数列{a {a n }的通项公式;(2)若数列)若数列{b {b n }是等差数列,且,求非零常数.2020、等差数列、等差数列、等差数列{a {a n }中,,.(1)求数列)求数列{a {a n }的通项公式;的通项公式; (2)设,求的值.的值.2121、已知等差数列、已知等差数列、已知等差数列{a {a n }的前n 项的和为S n ,(1)(1)求数列求数列求数列{a {a n }的通项公式;的通项公式; (2)(2)设设(3)(3)设设,表示不超过的最大整数的最大整数 ,求,求{c {c n }的前1000项的和项的和2222、、S n 为数列为数列{a {a n }的前n 项和项和..已知,.(1)求)求{a {a n }的通项公式;的通项公式; (2)设,求数列,求数列{b {b n }的前项和.2323、已知数列、已知数列、已知数列{a {a n }满足a 1=1=1,,a n+1=2S n +1+1,其中,其中S n 为{a n }的前n 项和,项和,n n ∈N *.(1)求a n ;(2)若数列)若数列{b {b n }满足b n =,{b n }的前n 项和为T n ,且对任意的正整数n 都有T n<m ,求m 的最小值.的最小值.2424、已知数列、已知数列、已知数列{a {a n },a =1=1,,=a-n ²-n-(1)求数列)求数列{a {a n }的通项公式;的通项公式; (2)证明++…+<(n ∈N ).2525、已知数列、已知数列、已知数列{a {a n }的首项a 1=a =a((a>0a>0),其前),其前n 项和为S n ,设().).(1)若a 2=a+1=a+1,,a 3=2a 2,且数列,且数列{b {b n }是公差为3的等差数列,求S2n S2n;;(2)设数列)设数列{b {b n}的前n 项和为T n,满足T n=n 2. ① 求数列求数列{a {a n }的通项公式;的通项公式;② 若对且n ≥2,不等式恒成立,求a 的取值范围.的取值范围.2626、设数列、设数列、设数列{a {a n }的各项均为不等的正整数,其前n 项和为S n ,我们称满足条件“对任意的m,n m,n∈∈N *.均有”的数列”的数列{a {a n }为“好”数列.为“好”数列.(1)试分别判断数列)试分别判断数列{a {a n },{b n }是否为“好”数列,其中,,n ∈N *,并给出证明;,并给出证明; (2)已知数列)已知数列{c {c n }为“好”数列.为“好”数列. ① 若c 2017=2018=2018,求数列,求数列,求数列{c {c n }的通项公式;的通项公式;② 若c 1=p =p,且对任意给定正整数,且对任意给定正整数p,s p,s((s>1s>1),有),有c 1,c 2,c 3成等比数列,求证:成等比数列,求证:t t ≥s 2.2727、已知数列、已知数列、已知数列{a {a n }的各项均为正数,,前n 项和为S n ,且,为正常数.正常数. (1)求数列)求数列{a {a n }的通项公式;的通项公式; (2)记,().).求证:①求证:① ;②;②.2828、已知数列、已知数列、已知数列{a {a n }满足….(1)求,,的值;的值;(2)猜想数列)猜想数列{a {a n }的通项公式,并证明.的通项公式,并证明.2929、等差数列、等差数列、等差数列{a {a n }的公差为正数,,其前n 项和为S n ;数列;数列{b {b n }为等比数列,,且.(1)(1)求数列求数列求数列{a {a n }和{b n }的通项公式;的通项公式; (2)(2)设设,求数列,求数列{c {c n }的前n 项和.3030、设数列、设数列、设数列{a {a n }的前n 项和为S n ,已知,().).(1)求证:数列)求证:数列{a {a n }为等比数列;为等比数列; (2)若数列)若数列{b {b n }满足:,.①求数列①求数列{b {b n }的通项公式;的通项公式; ②是否存在正整数n ,使得成立?若存在,求出所有n 的值;若不存在,请说明理由.3131、已知数列、已知数列、已知数列{a {a n }的前n 项和S n,且,数列是首项为1,公比为的等比数列的等比数列. .(1)若数列)若数列{a {a n +b n }是等差数列,求该等差数列的通项公式;是等差数列,求该等差数列的通项公式; (2)求数列)求数列{a {a n +n+b n }的前项和.3232、已知等比数列、已知等比数列、已知等比数列{a {a n }中,中, .(1)求)求{a {a n }的通项公式;的通项公式; (2)设,求数列的前项和.3333、已知数列、已知数列、已知数列{a {a n }为等差数列,为等差数列,S S n 为{a n }的前n 项和,.数列为等比数列且.(1)求数列)求数列{a {a n }和{b n }的通项公式;的通项公式; (2)记,其前n 项和为,求证:.3434、已知数列、已知数列、已知数列{a {a n }的前n 项和为S n ,满足(1)求证:数列)求证:数列{a {a n +2}+2}为等比数列;为等比数列;为等比数列; (2)求数列)求数列{a {a n }的通项;的通项; (3)若数列)若数列{b {b n }满足为数列的前n 项和,求.3535、已知各项均为正数的数列、已知各项均为正数的数列、已知各项均为正数的数列{a {a n },},满足满足 且.(1)(1)求数列求数列求数列{a {a n }的通项公式;的通项公式; (2)(2)设设,若的前n 项和为S n ,求S n ;(3)(3)在(在(在(22)的条件下)的条件下,,求使成立的正整数n 的最小值.的最小值.3636、设数列、设数列、设数列{a {a n }的前n 项和,数列满足.(1)求数列)求数列{a {a n }的通项公式;的通项公式; (2)求数列)求数列{a {a n }的前n 项和.3737、已知数列、已知数列、已知数列{a {a n }满足, 且.(1)求证:数列是等差数列,并求出数列是等差数列,并求出数列{a {a n }的通项公式;的通项公式; (2)令,求数列,求数列{b {b n }的前n 项和S n3838、已知、已知、已知{a {a n }是等比数列,满足,且成等差数列成等差数列(1)求数列)求数列{a {a n }的通项公式的通项公式 (2)设,数列,数列{b {b n }的前项和为,求正整数k 的值,使得对任意n ≥2均有g (k )≥)≥g g (n )3939、、已知二次函数f(x)=3x 2-2x.2x.,,数列数列{a {a n }的前n 项和为,点均在函数的图像上。
【精编版】2020年高考数学(文)重难点专练01 数列(解析版)
重难点01 数列【高考考试趋势】高考中考查数列难度不大,知识点考查比较简单,也是高考中务必拿分题目,对于大部分人来说,数列这一知识点是不容失分的.本重点专题是通过对高考中常见高考题型对应知识点的研究而总结出来的一些题目,通过本专题的学习补充巩固,让你对高考中数列题目更加熟练,做高考数列题目更加得心应手. 【高考常见题型分类总结】通项公式的求法q pa a n n +=1-的形式,主要是利用)()(1-m a p m a n n +=+的形式进行转化对于 11-++=n n p pa a n ,主要采用m p a p a n n n n =1-1--的形式进行转化运算对于11n-n n-n a =pa -a a 一般采用转化成=p a -a n-n 111的形式进行转化运算.对于求和问题裂项求和形如)12)(1-2(1+=n n a n 的形式一般采用裂项)121-1-21(21+=n n a n 的形式,注意前面的21此系数,是由系数只差确定与1212+n n-. 错位相减求和问题,本专题题目中有出现.分组求和问题,分为两种,一种是绝对值分组求和问题,另外一种是两种不同数列的分组求和问题.【常见题型限时检测】(建议用时:35分钟) 一、单选题1.(2019·全国高考模拟(文))在等差数列{}n a 中,157913100a a a a a ++++=,6212a a -=,则1a =( )A .1B .2C .3D .4【答案】B 【解析】 【分析】先由题意求出720a =,设等差数列{}n a 的公差为d ,求出公差,进而可求出结果. 【详解】因为157913100a a a a a ++++=,所以75100a =,即720a =, 设等差数列{}n a 的公差为d ,又6212a a -=,所以412d =,故3d =,所以17620182a a d =-=-= 故选B .【名师点睛】本题主要考查等差数列的基本量的计算,熟记等差数列的通项公式即可,属于基础题型.2.(2019·广东佛山实验中学高三月考(理))已知{}n a 是公差为1的等差数列,n S 为{}n a的前n 项和,若844S S =,则4a =( )A .52B .3C .72D .4【答案】C 【解析】利用等差数列前n 项和公式,代入844S S =即可求出112a =,再利用等差数列通项公式就能算出4a . 【详解】∵{}n a 是公差为1的等差数列,844S S =,∵1187143184422a a ⨯⨯⨯⨯⎛⎫+=⨯+ ⎪⎝⎭解得112a =,则4173122a =+⨯=,故选C. 【名师点睛】本题考查等差数列的通项公式及其前n 项和公式的运用,是基础题.3.(2019·河南高三月考(文))设{}n a 是首项为1a ,公差为-1的等差数列,n S 为其前n项和,若124,,S S S 成等比数列,则1a =( )A .2B .-2C .12D .12-【答案】D 【解析】 【分析】把已知2214S S S =用数列的首项1a 和公差d 表示出来后就可解得1a .,【详解】因为124S S S ,,成等比数列,所以2214S S S =,即211111(21)(46).2a a a a -=-=-,【名师点睛】本题考查等差数列的前n 项和,考查等比数列的性质,解题方法是基本量法.本题属于基础题.4.(2018·河南高考模拟(文))已知{}n a 为等差数列,135105a a a ++=,24699a a a ++=,以n S 表示{}n a 的前n 项和,则使得n S 达到最大值的n 是( ) A .21 B .20C .19D .18【答案】B【解析】试题分析:设等差数列{}n a 的公差为d ,则由已知135105a a a ++=,24699a a a ++=,得:11361053999a d a d +⎨+⎧=⎩=,解得:139{2a d ==-,412n a n =-,由4120n a n =-≥,得:1202n ≤, ∴当120n ≤≤时,0n a >,当21n ≥时,0n a <,故当20n =时,n S 达到最大值. 故选B .考点:等差数列的前n 项和.【易错点晴】本题主要考查了等差数列的通项公式,及等差数列前n 项和取最值的条件及求法,如果从等数列的前n 项和公的角度,由二次函数求最值时,对于n 等于21还是20时,取得最大值,学生是最容易出错的.5.(2019·湖南高考模拟(文))等差数列{}n a 中,12019a =,2019201516a a =-,则数列{}n a 的前n 项和n S 取得最大值时n 的值为( ) A .504 B .505C .506D .507【答案】B 【解析】【分析】先根据已知求得数列{}n a 的公差4d =-,再利用等差数列正负交界法求数列{}n a 的前n 项和n S 取得最大值时n 的值.【详解】∵数列{}n a 为等差数列,2019201516a a =-,∵数列{}n a 的公差4d =-, ∵()1120234n a a n d n =+-=-,令0n a ≥,得20234n ≤. 又*n N ∈,∵n S 取最大值时n 的值为505. 故选:B 【名师点睛】本题主要考查等差数列的基本量的计算和等差数列的通项的求法,考查等差数列前n 项和最值的求法,意在考查学生对这些知识的理解掌握水平和分析推理计算能力. 二、填空题6.(2019·广东高考模拟(文))设数列{}n a 的前n 项和为n S ,且满足11222n n a a a n -++⋯+=,则5S =____.【答案】3116【解析】【分析】由题意可得数列的首项为11a =,在11222n n a a a n -++⋯+=中将n 换为1n -,两方程相减可得数列{}n a 的通项公式,再由等比数列求和公式计算可得所求和. 【详解】解:11222n n a a a n -+++=L ,可得1n =时,11a = ,2n ≥时,2121221n n a a a n --++⋯+=-,又11222n n a a a n -++⋯+=,两式相减可得121n n a -=,即112n n a -⎛⎫= ⎪⎝⎭,上式对1n =也成立,可得数列{}n a 是首项为1,公比为12的等比数列, 可得551131211612S -==-. 故答案为:3116.【名师点睛】本题主要考查了赋值法及等比数列的前n 项和公式,考查计算能力及分析能力,属于中档题.7.(2017·安徽淮北一中高考模拟(文))若数列{}n a 满足111n nd a a +-=(*n N ∈,d 为常数),则称数列{}n a 为“调和数列”,已知正项数列1{}n b 为“调和数列”,且12990b b b +++=L ,则46b b 的最大值是__________.【答案】100 【解析】因为数列1{}nb 是“调和数列”,所以1n n b b d +-=,即数列{}n b 是等差数列,所以461299()902b b b b b ++++==L ,4620b b +=,所以4620b b +=≥,46100b b ≤,当且仅当46b b =时等号成立,因此46b b 的最大值为100.【名师点睛】:本题考查创新意识,关键是对新定义的理解与转化,由“调和数列”的定义及已知1{}nb 是“调和数列”,得数列{}n b 是等差数列,从而利用等差数列的性质可化简已知数列的和,结合基本不等式求得最值.本题难度不大,但考查的知识较多,要熟练掌握各方面的知识与方法,才能正确求解. 8.(2019·广东高考模拟(文))已知数列{}n a 满足()*12(1)2(1)1(1)3n n nn n a a nn N +⎡⎤⎡⎤--++-=+-⨯∈⎣⎦⎣⎦,则251aa -=____.【答案】300 【解析】 【分析】由[2﹣(﹣1)n ]a n +[2+(﹣1)n ]a n +1=1+(﹣1)n ×3n ,当n =2k (k ∵N *),可得:a 2k +3a 2k +1=1+6k ,n =2k ﹣1(k ∵N *),可得:3a 2k ﹣1+a 2k =1﹣6k +3,于是a 2k +1﹣a 2k ﹣1=4k ﹣1,利用“累加求和”方法与等差数列的前n 项和公式即可得出. 【详解】∵[2﹣(﹣1)n ]a n +[2+(﹣1)n ]a n +1=1+(﹣1)n ×3n , ∵n =2k (k ∵N *),可得: 221316k k a a k ++=+n =2k ﹣1(k ∵N *),可得: 2213163k k a a k -+=-+∵,212141k k a a k +--=-∵()()()2525232321311a a a a a a a a =-+-++-+L=(4×12﹣1)+(4×11﹣1)+…+(4×1﹣1)+1a ()1212142⨯+=⨯-12+1a =300+1a .则251a a -=300, 故答案为300.【名师点睛】本题考查了数列的递推关系、“累加求和”方法、等差数列的前n 项和公式,考查了分类讨论方法、推理能力与计算能力,属于中档题. 三、解答题9.(2019·山东高考模拟(文))已知数列{}n a 的前n 项和为n S ,且满足2n n S a n =-. (1)求证{}1n a +为等比数列; (2)求数列{}n S 的前n 项和n T .【答案】(1)见解析(2)225242n n n ++--【解析】 试题分析:(1)由2n n S a n =-可得()11212n n S a n n --=--≥,,两式相减后整理得121n n a a -=+,所以()1121n n a a -+=+,由112a +=,从而可得数列{}1n a +是以2为首项,以2为公比的等比数列.(2)由(1)可得到21nn a =-,故()21212n nS n -=--122n n +=--,再用分组求和法可得数列{}n S 的前n 项和n T .试题解析:(1)证明:当1n =时,11121S a a ==-,解得11a =.因为2n n S a n =-∵所以()11212?n n S a n n --=--≥,∵ ∵-∵得:1221n n n a a a -=--,整理得121n n a a -=+,所以()1112221n n n a a a --+=+=+,即()11221n n a n a -+=≥+,又112a +=,所以数列{}1n a +是以2为首项,以2为公比的等比数列.(2)由(1)知11222n nn a -+=⨯=,所以21nn a =-,所以()212122222212n n n nS n n n +-=+++-=-=---L ,所以123n n T S S S S =+++⋯+()()234122223452n n +⎡⎤=+++⋯+-+++⋯++⎣⎦()()41232122n n n -++=--225242n n n++=--.10.(2019·甘肃高三月考(文))已知公差不为0的等差数列{}n a 的首项12,a =且1241,1,1a a a +++成等比数列.(1)求数列{}n a 的通项公式;(2)设*11,,n n n n b n S a a +=∈N 是数列{}n b 的前n 项和,求使319n S <成立的最大的正整数n .【答案】(∵)31n a n =-,*N n ∈.(∵)11n =. 【解析】试题分析:(1)设数列{}n a 的公差为d ,由 11a +,21a +,41a +成等比数列,得()()23333d d +=+,解得3d =. 从而求得31n a n =-.(2)由(1)1111133132n n n b a a n n +⎡⎤==-⎢⎥-+⎣⎦, 得 ()11111111133253583313223219n n S n n n ⎡⎤⎡⎤⎡⎤=-+-++-=<⎢⎥⎢⎥⎢⎥-++⎣⎦⎣⎦⎣⎦L ,解得12n <.故最大的正整数11n =.试题解析:(∵)设数列{}n a 的公差为d ,则()21n a n d =+-,*N n ∈.由 11a +,21a +,41a +成等比数列,得()()()2214111a a a +=++, 即()()23333d d +=+,得0d =(舍去)或3d =.所以数列的通项公式为31n a n =-,*N n ∈.(∵)因为()()111111313233132n n n b a a n n n n +⎡⎤===-⎢⎥-+-+⎣⎦, 所以()111111111111325358331323232232n nS n n n n ⎡⎤⎡⎤⎡⎤⎡⎤=-+-++-=-=⎢⎥⎢⎥⎢⎥⎢⎥-+++⎣⎦⎣⎦⎣⎦⎣⎦L . 由319n S <,即()323219n n <+,得12n <. 所以使319n S <成立的最大的正整数11n =. 11.(2019·四川高考模拟(文))已知等差数列{}n a 的公差大于0,且47a =,2a ,612a a -,14a 分别是等比数列{}n b 的前三项.()1求数列{}n a 的通项公式;()2记数列{}n b 的前n 项和n S ,若39n S >,求n 的取值范围.【答案】(1)21n a n =-(2)3n > 【解析】 【分析】(I )设等差数列{}n a 的公差为d ,根据题设条件列出方程组,求得1,a d ,即可求解数列的通项公式;(II )由(I ),求得等比数列{}n b 的公比为3,首项为3,进而利用等比数列的前n 项和公式,求得n S ,即可求解39n S >,得到答案. 【详解】解:(I )设等差数列{}n a 的公差为d (0d >), 由47a =,得137a d +=,又∵2a ,612a a -,14a 是等比数列{}n b 的前三项, ∵()2612142a a a a -=,即()()()2111513d a a d a d -=++,化简得12d a =,联立解得11a =,2d =.∵()12121n a n n =+-=-.(II )∵123b a ==,26129b a a =-=,31427b a ==是等比数列{}n b 的前三项, ∵等比数列{}n b 的公比为3,首项为3.∵等比数列{}n b 的前n 项和()()313331132n nnS --==-.由39n S >,得()331392n ->,化简得327n>,解得3n >,*n N ∈.【名师点睛】在解决等差、等比数列的运算问题时,有两个处理思路,一是利用基本量,根据通项公式和求和公式,列出方程组,虽有一定量的运算,但思路简洁,目标明确;二是利用等差、等比数列的性质是两种数列基本规律的深刻体现,应有意识地去应用.但在应用性质时要注意性质的前提条件,有时需要进行适当变形. 在解决等差、等比数列的运算问题时,经常采用“巧用性质、整体考虑、减少运算量”的方法.12.(2019·四川双流中学高考模拟(文))设数列{}n a 的前n 项之和为13322n n S +=-,数列{}n b 满足2132113(21)log n n n b n a -+=+-.(1)求数列{}n a 的通项公式; (2)求数列{}n b 前n 项之和n T .【答案】(1)3nn a = ; (2)21332188n n n ++-+.【解析】 【分析】(1)利用递推关系,两式作差即可得出;(2)()212131321log 3n n n b n -+=+-,利用“分组求和法”与“裂项求和”方法即可得出.【详解】(1)当n =1时,a 1=S 1=3,由13322n n S +=-得()133,222n n S n -=-≥∵a n =S n -S n -1=3n (n≥2) 又a 1也符合, ∵a n =3n (n∵N +)(2)()()()2121212131111133321log 3212122121n n n n n b n n n n n ---+⎛⎫=+=+=-+ ⎪--+-+⎝⎭所以()35211111111333323352121n n T n n -⎛⎫=-+-++-+++++ ⎪-+⎝⎭L L ()2131911331221192188nn n n n +-⎛⎫=-+=+- ⎪+-+⎝⎭. 【名师点睛】本题考查了“分组求和法”、“裂项求和”方法、数列递推关系,考查了推理能力与计算能力,属于中档题.13.(2019·辽宁高考模拟(文))已知数列{}n a 的前n 项和为n S ,且1,n a ,n S 成等差数列.(1)求数列{}n a 的通项公式;(2)若数列{}n b 满足12n n n a b na =+,求数列{}n b 的前n 项和n T .【答案】(1)12n n a -=;(2)21122n n n -++-【解析】 【分析】(1)利用数列的递推关系式推出数列{}n a 是以1为首项,2为公比的等比数列,然后求解通项公式.(2)化简数列的通项公式,利用分组求和法求和即可. 【详解】(1)由已知1,n a ,n S 成等差数列得21n n a S =+∵,当1n =时,1121a S =+,∵11a =,当2n ≥时,203m/s B B BF m ga m μ-==∵∵─∵得122n n n a a a --=即12n n a a -=,因110a =≠,所以0n a ≠,∵12nn a a -=, ∵数列{}n a 是以1为首项,2为公比的等比数列,∵11122n n n a --=⨯=.(2)由12n n n a b na =+得111222n n n b n n a -=+=+, 所以()12121111n n nT b b b n n a a a =+++=+++++L L ()()1111211211212n n n n n n -⎡⎤⎛⎫⨯-⎢⎥⎪⎝⎭⎢⎥⎣⎦=++=-++-.【名师点睛】数列求和关键看通项的结构形式,如果通项是等差数列与等比数列的和,则用分组求和法;如果通项是等差数列与等比数列的乘积,则用错位相减法;如果通项可以拆成一个数列连 续两项的差,那么用裂项相消法;如果通项的符号有规律的出现,则用并项求和法.14.(2019·安徽合肥一中高考模拟(文))设等比数列{}n a 满足132420,10a a a a +=+=.(1)令123n n T a a a a =L ,求n T 的最大值; (2)令2log n n b a =,求数列{}n n a b 的前 n 项和n S . 【答案】(1)1024;(2)()59632nn S n -=+-⋅.【解析】 【分析】(1)根据条件求出等比数列通项公式512n n a -=,解不等式5112n n a -=≥可得前4项都大于1,51a =,从而求得n T 的最大值;(2)利用错位相减法进行求和. 【详解】(1)设等比数列{}n a 首项为1a ,公比为q ,所以23111120,10a a q a q a q +=+=,解得:116,1,2a q =⎧⎪⎨=⎪⎩所以512n n a -=,当5112n n a -=≥时,解得:5n ≤,所以123451a a a a a >>>>=,671a a >>>L ,所以n T 的最大值为45168421024T T ==⨯⨯⨯=.(2)由(1)知2log n n b a =251log 52n n -==-,则51(5)()2n n n a b n -⋅=-⋅,4351114()3()(5)()222n n S n ---=⋅+⋅++-⋅L ,两边同时乘以12得: 32411114()3()(5)()2222n n S n ---=⋅+⋅++-⋅L , 两式相减得:4354111114()[()()](5)()22222n n n S n ----=⋅-++--⋅L 31411()[1()]122416(5)()1212n n n ----=⨯---⋅-14116416[1()](5)()22n n n --=----⋅4148(3)()2n n -=+-⋅所以()59632nn S n -=+-⋅.【名师点睛】等比数列前n 项积达到最大,主要是根据各项与1的大小进行比较;错位相减法进行求和时,要注意最后得到的常数的准确性,即本题中的96必需确保没有算错,其它项可以合并,也可以不合并.15.(2019·江西临川一中高考模拟(文))已知数列{}n a 中,1a m =,且()*1321,n n n n a a n b a n n N +=+-=+∈.(1)判断数列{}n b 是否为等比数列,并说明理由; (2)当2m =时,求数列{}(1)nn a -的前2020项和2020S .【答案】(1)∵01x ≠时,不是等比数列;∵1m ≠-时,是等比数列;(2)2021340434-. 【解析】【分析】(1)将递推公式1321n n a a n +=+-变形为()113n n a n a n +++=+,则当01x ≠时,首项为零,{}n b 不是等比数列;当1m ≠-时,数列{}n b 是等比数列.(2)先求出{}n a 的通项,然后利用分组求和法、并项求和法以及公式法即可求出2020S . 【详解】(1)1321n n a a n +=+-Q ,()111321133n n n n n b a n a n n a n b ++∴=++=+-++=+=,∵∵当01x ≠时,10b =,故数列{}n b 不是等比数列;∵当1m ≠-时,数列{}n b 是等比数列,其首项为110b m =+≠,公比为3.(2)由(1)且当1m ≠-时有:1333n n n n b a n -=+=⨯=,即3nn a n =-,(1)(3)(1)n n n n a n ∴-=---,2020202031(3)S [(12)(34)(20192020)]1(3)⎡⎤-⨯--⎣⎦∴=--++-++⋯+-+--202120213334043101044-+-=-=. 【名师点睛】本题主要考查了等比数列证明、数列前n 项和的求解,属于中档题. 对于等比数列的证明主要有两种方法:(1)定义法,证得*1,0)(2,n n a qq n n N a -≠=≥∈即可,其中q 为常数; (2)等比中项法:证得211n n n a a a +-=即可.。
高考数学压轴专题2020-2021备战高考《数列》图文答案
高考数学《数列》课后练习一、选择题1.设数列是公差的等差数列,为前项和,若,则取得最大值时,的值为A .B .C .或D .【答案】C 【解析】,进而得到,即,数列是公差的等差数列,所以前五项都是正数,或时,取最大值,故选C.2.数列{}n a 的通项公式为()n a n c n N *=-∈.则“2c <”是“{}na 为递增数列”的( )条件. A .必要而不充分 B .充要C .充分而不必要D .即不充分也不必要【答案】A 【解析】 【分析】根据递增数列的特点可知10n n a a +->,解得12c n <+,由此得到若{}n a 是递增数列,则32c <,根据推出关系可确定结果. 【详解】 若“{}n a 是递增数列”,则110n n a a n c n c +-=+--->, 即()()221n c n c +->-,化简得:12c n <+, 又n *∈N ,1322n ∴+≥,32c ∴<, 则2c <¿{}n a 是递增数列,{}n a 是递增数列2c ⇒<,∴“2c <”是“{}n a 为递增数列”的必要不充分条件.故选:A . 【点睛】本题考查充分条件与必要条件的判断,涉及到根据数列的单调性求解参数范围,属于基础题.3.已知等差数列{}n a 的前n 项和为n S ,若34322128,6a a S ⋅==,则数列{}(1)nn a -的前40项和为( ) A .0 B .20C .40D .80【答案】B【解析】 【分析】先由题意求出34a +a =7,然后利用等差数列的前n 项和公式表示出134a a +=,前后两式作差,求出公差,进而代入求出首项,最后即得n a n =,代入题目中{}(1)nn a -,两两组合可求新数列前40项的和. 【详解】 依题意,()133362a a S +== ,∴134a a +=,①∵3422128a a ⋅=,即342128a a +=, ∴34a +a =7,② ②-①得33d =, ∴1d =, ∴11,n a a n ==, ∴(1)(1)n n n a n -=-,∴{}(1)nn a -的前40项和40(12)(34)(3940)20S -++-++⋅⋅⋅+-+==,故选:B . 【点睛】本题考查了指数运算:同底数幂相乘,底数不变,指数相加;主要考查等差数列的前n 和公式,等差中项的性质等等,以及常见的摆动数列的有限项求和,可以采用的方法为:分组求和法,两两合并的方法等等,对学生的运算能力稍有要求,为中等难度题4.已知数列{}n a 满足12n n a a +-=,且134,,a a a 成等比数列.若{}n a 的前n 项和为n S ,则n S 的最小值为( )A .–10B .14-C .–18D .–20【答案】D 【解析】 【分析】利用等比中项性质可得等差数列的首项,进而求得n S ,再利用二次函数的性质,可得当4n =或5时,n S 取到最小值.【详解】根据题意,可知{}n a 为等差数列,公差2d =,由134,,a a a 成等比数列,可得2314a a a =,∴1112()4(6)a a a ++=,解得18a =-.∴22(1)981829()224n n n S n n n n -=-+⨯=-=--. 根据单调性,可知当4n =或5时,n S 取到最小值,最小值为20-. 故选:D. 【点睛】本题考查等差数列通项公式、等比中项性质、等差数列前n 项和的最值,考查函数与方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力,求解时注意当4n =或5时同时取到最值.5.在数列{}n a 中,若10a =,12n n a a n +-=,则23111na a a +++L 的值 A .1n n- B .1n n+ C .11n n -+ D .1n n + 【答案】A 【解析】分析:由叠加法求得数列的通项公式(1)n a n n =-,进而即可求解23111na a a +++L 的和. 详解:由题意,数列{}n a 中,110,2n n a a a n +=-=,则112211()()()2[12(1)](1)n n n n n a a a a a a a a n n n ---=-+-++-+=+++-=-L L , 所以1111(1)1n a n n n n==--- 所以231111111111(1)()()12231n n a a a n n n n-+++=-+-++-=-=-L L ,故选A. 点睛:本题主要考查了数列的综合问题,其中解答中涉及到利用叠加法求解数列的通项公式和利用裂项法求解数列的和,正确选择方法和准确运算是解答的关键,着重考查了分析问题和解答问题的能力,以及推理与运算能力.6.已知椭圆221x y m n+=满足条件:,,m n m n +成等差数列,则椭圆离心率为( )A.2B.2C .12D【答案】B 【解析】 【分析】根据满足条件,,m n m n +成等差数列可得椭圆为2212x ym m+=,求出,a c .再求椭圆的离心率即可. 【详解】()22n m m n n m =++⇒=, ∴椭圆为2212x y m m +=,22c m m m =-=,得c =又a =2c e a ∴==.B. 【点睛】一般求离心率有以下几种情况:①直接求出,a c ,从而求出e ;②构造,a c 的齐次式,求出e ;③采用离心率的定义以及圆锥曲线的定义来求解;④根据圆锥曲线的统一定义求解.7.已知数列{}n a 中,732,1a a ==,又数列11n a ⎧⎫⎨⎬+⎩⎭是等差数列,则11a 等于( ) A .0 B .12C .23D .1-【答案】B 【解析】 【分析】先根据条件得等差数列11n a ⎧⎫⎨⎬+⎩⎭公差以及通项公式,代入解得11a .【详解】 设等差数列11n a ⎧⎫⎨⎬+⎩⎭公差为d ,则731111144,112324d d d a a =-∴=-=++, 从而31115(3)11242424n n n a a =+-⋅=+++ 11111115211242432a a =+=∴=+,选B. 【点睛】本题考查等差数列通项公式,考查基本求解能力,属基本题.8.等差数列的首项为125,且从第10项开始为比1大的项,则公差d 的取值范围是( )A .(0,)+∞B .8,75⎛⎫+∞⎪⎝⎭C .83,7525⎛⎫⎪⎝⎭ D .83,7525⎛⎤⎥⎝⎦ 【答案】D 【解析】 【分析】根据题意可知101a >,91a ≤,把1a 的值代入列不等式解得即可. 【详解】由题意,设数列{}n a 的公差为d ,首项1125a =,则10911a a >⎧⎨≤⎩,即101919181a a d a a d =+>⎧⎨=+≤⎩,解得837525d <≤. 故选:D. 【点睛】本题主要考查了等差数列的通项公式的应用,要熟练记忆等差数列的通项公式.9.设{a n }为等比数列,{b n }为等差数列,且S n 为数列{b n }的前n 项和.若a 2=1,a 10=16且a 6=b 6,则S 11=( ) A .20 B .30 C .44 D .88【答案】C 【解析】 【分析】设等比数列{a n }的公比为q ,由a 2=1,a 10=16列式求得q 2,进一步求出a 6,可得b 6,再由等差数列的前n 项和公式求解S 11. 【详解】设等比数列{a n }的公比为q ,由a 2=1,a 10=16, 得810216a q a ==,得q 2=2. ∴4624a a q ==,即a 6=b 6=4,又S n 为等差数列{b n }的前n 项和, ∴()1111161111442b b S b+⨯===.故选:C. 【点睛】本题考查等差数列与等比数列的通项公式及性质,训练了等差数列前n 项和的求法,是中档题.10.设等差数列{}n a 的前n 项和为n S ,若150S >,160S <,则n S 取最大值时n 的值为( ) A .6 B .7C .8D .13【答案】C 【解析】 【分析】根据题意推导出数列{}n a 为单调递减数列,且当8n ≤时,0n a >,当9n ≥时,0n a <,由此可得出结果. 【详解】()115158151502a a S a +==>Q ,()()116168916802a a S a a +==+<,80a ∴>,90a <,所以,等差数列{}n a 的公差980d a a =-<,则数列{}n a 为单调递减数列. 当8n ≤时,0n a >,当9n ≥时,0n a <, 因此,当8n =时,n S 取最大值. 故选:C. 【点睛】本题考查利用等差数列前n 项和的最值求对应的n 的值,主要分析出数列的单调性,考查分析问题和解决问题的能力,属于中等题.11.已知数列{}n a 满足:()()2*112,10n n n a a S S n +=+-=∈N ,其中n S 为数列{}n a 的前n 项和.设()()()12111()1n S S S f n n +++=+L ,若对任意的n 均有(1)()f n kf n +<成立,则k 的最小整数值为( ) A .2 B .3C .4D .5【答案】A 【解析】 【分析】当1n ≥时,有条件可得()211n n n nS S S S +--=-,从而111n n nS S S +--=,故111111n n S S +-=--,得出 11n S ⎧⎫⎨⎬-⎩⎭是首项、公差均为1的等差数列,从而求出n S 【详解】当1n ≥时,有条件可得()211n n n nS S S S +--=-,从而111n n nS S S +--=,故111111111n n n n n S S S S S +-=-=----,又1111121S ==--,11n S ⎧⎫∴⎨⎬-⎩⎭是首项、公差均为1的11n n S ∴=-,1n n S n +=,由()()()12111()1n S S S f n n +++=+L , 得()1(1)1(1)23152,2()2223n n S f n n f n n n n +++++⎡⎫===-∈⎪⎢+++⎣⎭, 依题意知(1)()f n k f n +>, min 2k ∴=.故选:A 【点睛】本题考查数列的综合应用.属于中等题.12.已知等差数列{}n a 的前n 项和为n S ,若23109a a a ++=,则9S =( ) A .3 B .9C .18D .27【答案】D 【解析】设等差数列{}n a 的首项为1a ,公差为d . ∵23109a a a ++=∴13129a d +=,即143a d += ∴53a = ∴1999()272a a S ⨯+== 故选D.13.在等差数列{}n a 中,3a ,15a 是方程2650x x -+=的根,则17S 的值是( ) A .41 B .51C .61D .68【答案】B 【解析】 【分析】由韦达定理得3156a a +=,由等差数列的性质得117315a a a a +=+,再根据等差数列的前n 项和公式求17S . 【详解】在等差数列{}n a 中,3a ,15a 是方程2650x x -+=的根,3156a a ∴+=.()()11731517171717651222a a a a S ++⨯∴====.【点睛】本题考查等差数列的性质和前n 项和公式,属于基础题.14.在递减等差数列{}n a 中,21324a a a =-.若113a =,则数列11{}n n a a +的前n 项和的最大值为 ( ) A .24143B .1143C .2413D .613【答案】D 【解析】设公差为,0d d < ,所以由21324a a a =-,113a =,得213(132)(13)42d d d +=+-⇒=- (正舍),即132(1)152n a n n =--=- ,因为111111()(152)(132)2215213n n a a n n n n +==----- ,所以数列11n n a a +⎧⎫⎨⎬⎩⎭的前n 项和等于1111116()()213213213261313n --≤--=-⨯- ,选D. 点睛:裂项相消法是指将数列的通项分成两个式子的代数和的形式,然后通过累加抵消中间若干项的方法,裂项相消法适用于形如1n n c a a +⎧⎫⎨⎬⎩⎭(其中{}n a 是各项均不为零的等差数列,c 为常数)的数列. 裂项相消法求和,常见的有相邻两项的裂项求和(如本例),还有一类隔一项的裂项求和,如1(1)(3)n n ++或1(2)n n +.15.等比数列{n a }的前n 项和为n S ,若103010,30,S S ==则20S = A .10 B .20 C .20或-10 D .-20或10【答案】B 【解析】 【分析】由等比数列的性质可得,S 10,S 20﹣S 10,S 30﹣S 20成等比数列即(S 20﹣S 10)2=S 10•(S 30﹣S 20),代入可求. 【详解】由等比数列的性质可得,S 10,S 20﹣S 10,S 30﹣S 20成等比数列,且公比为10q∴(S 20﹣S 10)2=S 10•(S 30﹣S 20)即()()22020101030S S -=- 解20S =20或-10(舍去) 故选B .本题主要考查了等比数列的性质(若S n 为等比数列的前n 项和,且S k ,S 2k ﹣S k ,S 3k ﹣S 2k 不为0,则其成等比数列)的应用,注意隐含条件的运用16.定义“穿杨二元函数”如:(,)248n C a n a a a a =++++L 144424443个.例如:()3,436122445C =+++=.若a Z +∃∈,满足(),C a n n =,则整数n 的值为( )A .0B .1C .0或1D .不存在满足条件的n【答案】B 【解析】 【分析】由(,)248n C a n a a a a =++++L 144424443个,得()()12,2112nn C a n a a -=⨯=--,然后根据(),C a n n =结合条件分析得出答案.【详解】由(,)248n C a n a a a a =++++L 144424443个,得()()12,2112nn C a n a a -=⨯=-- 由(),C a n n =,可得()21na n -=.当0n =时,对任意a Z +∈都满足条件. 当0n ≠时, 21nna =-,由a Z +∈,当1n =时,1a =满足条件. 当2n ≥且n Z ∈时,设()21xf x x =--,则()2ln 21xf x '=-在2x ≥上单调递增. 所以()()24ln 210f x f ''>=->,所以()f x 在2x ≥上单调递增. 所以()()24120f x f >=-->,即当2n ≥且n Z ∈时,恒有21n n ->.则()0,121nna =∈-这与a Z +∈不符合.所以此时不满足条件. 综上:满足条件的n 值为0或1.故选:B 【点睛】本题考查新定义,根据定义解决问题,关键是理解定义,属于中档题.17.已知等差数列{}n a 的前n 项和为n S ,若816S =,61a =,则数列{}n a 的公差为( ) A .32B .32-C .23D .23-【解析】 【分析】根据等差数列公式直接计算得到答案. 【详解】依题意,()()183********a a a a S ++===,故364a a +=,故33a =,故63233a a d -==-,故选:D . 【点睛】 本题考查了等差数列的计算,意在考查学生的计算能力.18.在一个数列中,如果*n N ∀∈,都有12n n n a a a k ++=(k 为常数),那么这个数列叫做等积数列,k 叫做这个数列的公积.已知数列{}n a 是等积数列,且11a =,22a =,公积为8,则122020a a a ++⋅⋅⋅+=( )A .4711B .4712C .4713D .4715【答案】B 【解析】 【分析】计算出3a 的值,推导出()3n n a a n N *+=∈,再由202036731=⨯+,结合数列的周期性可求得数列{}n a 的前2020项和. 【详解】由题意可知128n n n a a a ++=,则对任意的n *∈N ,0n a ≠,则1238a a a =,31284a a a ∴==, 由128n n n a a a ++=,得1238n n n a a a +++=,12123n n n n n n a a a a a a +++++∴=,3n n a a +∴=,202036731=⨯+Q ,因此,()1220201231673673714712a a a a a a a ++⋅⋅⋅+=+++=⨯+=.故选:B. 【点睛】本题考查数列求和,考查了数列的新定义,推导出数列的周期性是解答的关键,考查推理能力与计算能力,属于中等题.19.根据下面的程序框图,输出的S 的值为( )A .1007B .1009C .0D .-1【答案】A【解析】【分析】 按照程序框图模拟运行即可得解.【详解】1i =,1112x ==--,0(1)1S =+-=-;2i =,111(1)2x ==--, 11122S =-+=-;3i =,12112x ==-, 13222S =-+=;4i =,1112x ==--, 31(1)22S =+-=,…, 由此可知,运行程序过程中,x 呈周期性变化,且周期为3, 所以输出112672110072S ⎛⎫=-++⨯-= ⎪⎝⎭. 故选A【点睛】本题主要考查程序框图和数列的周期性,意在考查学生对这些知识的理解掌握水平和分析推理能力.20.{}n a 为等差数列,公差为d ,且01d <<,5()2k a k Z π≠∈,223557sin 2sin cos sin a a a a +⋅=,函数()sin(4)(0)f x d wx d w =+>在20,3π⎛⎫ ⎪⎝⎭上单调且存在020,3x π⎛⎫∈ ⎪⎝⎭,使得()f x 关于0(,0)x 对称,则w 的取值范围是( ) A .20,3⎛⎤ ⎥⎝⎦ B .30,2⎛⎤ ⎥⎝⎦ C .24,33⎛⎤ ⎥⎝⎦ D .33,42⎛⎤ ⎥⎝⎦【答案】D【解析】【分析】推导出sin4d =1,由此能求出d ,可得函数解析式,利用在203x π⎛⎫∈ ⎪⎝⎭,上单调且存在()()0020203x f x f x x π⎛⎫∈+-= ⎪⎝⎭,,,即可得出结论. 【详解】 ∵{a n }为等差数列,公差为d ,且0<d <1,a 52k π≠(k ∈Z ), sin 2a 3+2sin a 5•cos a 5=sin 2a 7,∴2sin a 5cos a 5=sin 2a 7﹣sin 2a 3=2sin372a a +cos 732a a -•2cos 372a a +sin 732a a -=2sin a 5cos2d •2cos a 5sin2d , ∴sin4d =1, ∴d 8π=.∴f (x )8π=cosωx , ∵在203x π⎛⎫∈ ⎪⎝⎭,上单调 ∴23ππω≥, ∴ω32≤; 又存在()()0020203x f x f x x π⎛⎫∈+-= ⎪⎝⎭,,,所以f (x )在(0,23π)上存在零点, 即223ππω<,得到ω34>. 故答案为 33,42⎛⎤⎥⎝⎦ 故选D【点睛】本题考查等差数列的公差的求法,考查三角函数的图象与性质,准确求解数列的公差是本题关键,考查推理能力,是中档题.。
2020年高考数学选择、填空压轴题综合考法深度揭秘 - 专题8 数列与不等式
2020年高考数学选择、填空压轴题考法深度揭秘专题八、数列与不等式数列的性质及不等式的应用,在近几年全国及各省市高考的选择、填空题的压轴题中多次出现,数列的性质主要考查递推数列的应用和数列与函数、不等式的综合,而不等式主要考查多元条件下利用基本不等式求最值(范围)问题.考法16 递推数列的应用(2016·山西太原二模,10)已知函数f (n )=n 2cos(n π),且a n =f (n )+f (n +1),则a 1+a 2+a 3+…+a 100= ( )A .0B .-100C .100D .10 200【知识揭秘】 揭秘:通项公式中cos(n π)=⎩⎨⎧1,n =2k ,-1,n =2k +1(k ∈Z ).(-1)n 的一类数列在求和时,要注意n 是奇数还是偶数.【思维揭秘】 先求出分段函数f (n )的解析式,找出规律,直接求和. 【解析揭秘】 因为f (n )=n 2cos(n π)=⎩⎨⎧n 2,n =2k ,-n 2,n =2k +1(k ∈Z ),所以a 1+a 2+a 3+…+a 100=[f (1)+f (2)+…+f (100)]+[f (2)+…+f (101)]. 因为f (1)+f (2)+…+f (100)=-12+22-32+42-…-992+1002=(22-12)+(42-32)+…+(1002-992)=3+7+…+199=50(3+199)2=5 050,f (2)+…+f (101)=22-32+42-…-992+1002-1012=(22-32)+(42-52)+…+(1002-1012)=-5-9-…-201=50(-5-201)2=-5 150,所以a 1+a 2+a 3+…+a 100=[f (1)+f (2)+…+f (100)]+[f (2)+…+f (101)]=-5 150+5 050=-100.【答案】 B1.(2016·吉林长春二模,12)已知数列{a n }中,a n >0,a 1=1,a n +2=1a n +1,a 100=a 96,则a 2 016+a 3=( ) A.52 B.1+52 C.52 D.-1+521.C 因为a 1=1,故a 3=1a 1+1=12,a 100=1a 98+1=11a 96+1+1=a 96.因为a n >0,故a 96=5-12,则a 98=1a 96+1=5-12,a 100=5-12,故当n 为偶数时,a n =5-12,则a 2 016+a 3=52,故选C.2.(2016·广西南宁模拟,16)数列{a n }的通项a n =n 2·⎝ ⎛⎭⎪⎫cos 2n π3-sin 2n π3,其前n项的和为S n ,则S 30=________.2.【解析】 由题意可知,a n =n 2·cos 2n π3,若n =3k -2,则a n =(3k -2)2·⎝ ⎛⎭⎪⎫-12=-9k 2+12k -42(k ∈N *);若n =3k -1,则a n=(3k -1)2·⎝ ⎛⎭⎪⎫-12=-9k 2+6k -12(k ∈N *);若n =3k ,则a n =(3k )2·1=9k 2(k ∈N *),∴a 3k -2+a 3k -1+a 3k =9k -52,k ∈N *,∴S 30=∑10k =1 ⎝ ⎛⎭⎪⎫9k -52=9-52+90-522×10=470.【答案】 4703.(2016·河南洛阳一模,16)已知数列{a n }中,对任意的n ∈N *若满足a n +a n+1+a n +2=s (s 为常数),则称该数列为3阶等和数列,其中s 为3阶公和;若满足a n ·a n +1=t (t 为常数),则称该数列为2阶等积数列,其中t 为2阶公积.已知数列{p n }是首项为1的3阶等和数列,且满足p 3p 2=p 2p 1=2;数列{q n }是首项为-1,公积为2的2阶等积数列.设S n 为数列{p n ·q n }的前n 项和,则S 2 016=__________.3.【解析】 由题意可知,p 1=1,p 2=2,p 3=4,p 4=1,p 5=2,p 6=4,p 7=1,…,又{p n }是3阶等和数列,又因该数列将会照此规律循环下去,同理,q 1=-1,q 2=-2,q 3=-1,q 4=-2,q 5=-1,q 6=-2,q 7=-1,…,又{q n }是2阶等积数列,因此该数列将会照此规律循环下去,由此可知对于数列{p n ·q n },每6项循环一次,易求出p 1·q 1+p 2·q 2+…+p 6·q 6=-21,又因为S 2 016中有336组循环,故S 2 016=-21×336=-7 056.【答案】 -7 056考法17 数列与函数、不等式的综合问题(2011·浙江文,17)若数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫n (n +4)⎝ ⎛⎭⎪⎫23n 中的最大项是第k 项,则k =________.【知识揭秘】 揭秘:由不等式组⎩⎨⎧a k ≥a k +1,a k ≥a k -1可说明a k 为最大项.【思维揭秘】 若对a n =n (n +4)⎝ ⎛⎭⎪⎫23n 构造函数模型f (x )=x (x +4)⎝ ⎛⎭⎪⎫23x,显然比较烦琐,所以对于摆动数列,可考虑用数列的单调性来求解,即列出不等式组求解.【解析揭秘】 设最大项为第k 项,则由不等式组⎩⎨⎧a k ≥a k +1,a k ≥a k -1得⎩⎪⎨⎪⎧k (k +4)⎝ ⎛⎭⎪⎫23k ≥(k +1)(k +5)⎝ ⎛⎭⎪⎫23k +1,k (k +4)⎝ ⎛⎭⎪⎫23k ≥(k -1)(k +3)⎝ ⎛⎭⎪⎫23k -1, 即⎩⎪⎨⎪⎧k (k +4)≥(k +1)(k +5)·23,k (k +4)·23≥(k -1)(k +3),解得10≤k ≤10+1,故k =4.【答案】 41.(2016·黑龙江哈尔滨二模,12)已知定义在R 上的函数f (x )满足:f (x +1)=f (x )-f 2(x )+12,数列{a n }满足a n =f 2(n )-f (n ),n ∈N *.若其前n 项和为-3516,则n 的值为( )A .16B .17C .18D .191.B 由题意得⎣⎢⎡⎦⎥⎤f (x +1)-122=f (x )-f 2(x ),则f 2(x +1)-f (x +1)+14=f (x )-f 2(x ).又-14≤f 2(n )-f (n )=a n ≤0,所以a n +1+14=-a n ,即a n +1+a n =-14.若n 为偶数,则其前n 项和为-14×n 2=-3516,n =352∉N *,所以n 不可能是偶数,排除A 和C ;若n =17,则a 17=S 17-S 16=-3516+14×8=-316∈⎣⎢⎡⎦⎥⎤-14,0,符合题意;若n =19,则a 19=S 19-S 18=-3516+14×9=116>0,不符合题意,故选B.2.(2016·湖南长沙二模,15)已知数列{a n }中,a 1=3,a n +1+a n =3b n (b >0,n ∈N *).给出以下命题:①b =1时,S 7=12;②存在l ∈R ,数列{a n -lb n }成等比数列; ③当b ∈(1,+∞)时,数列{a 2n }是递增数列; ④当b ∈(0,1)时,数列{a n }是递增数列.以上命题为真命题的是________(写出所有真命题对应的序号).2.【解析】 ①当b =1时,数列{a n }的前7项依次为3,0,3,0,3,0,3,所以S 7=12成立;②若数列{a n -lb n }成等比数列,设a n +1-lb n +1=-(a n -lb n ),即a n +1+a n =3b n =l (b +1)b n (b >0),n ∈N *,则l =3b +1,所以存在l ∈R ,数列{a n -lb n }成等比数列,此时公比为-1,故②正确;③因为a n +1+a n =3b n (b >0),则a n+2+a n +1=3b n +1(b >0),两式相减得a n +2-a n =3b n +1-3b n ,则a 2n +2-a 2n =3b 2n +1-3b 2n =3b 2n ·(b -1),当b ∈(1,+∞)时,3b 2n (b -1)>0,即a 2n +2>a 2n ,则数列{a 2n }为递增数列,故③正确;④当b ∈(0,1)时,不妨设b =12,则由a n +1+a n =3b n (b >0),得a 2+a 1=3×12=32,则a 2=-a 1+32=-32<a 1,,则此时数列{a n }不是递增数列,故④错误.综上所述,①②③是真命题.【答案】 ①②③3.(2016·上海静安区一模,13)已知各项皆为正数的等比数列{a n }(n ∈N *),满足a 7=a 6+2a 5,若存在两项a m ,a n 使得a m a n =4a 1,则1m +4n的最小值为________.3.【解析】 设各项皆为正数的等比数列{a n }的公比为q >0(n ∈N *),∵a 7=a 6+2a 5,∴a 5q 2=a 5q +2a 5,即q 2-q -2=0,解得q =2.∵存在两项a m ,a n 使得a m a n =4a 1,∴a 212m +n -2=4a 1, ∴2m +n -2=24,∴m +n =6. 则1m +4n =16(m +n )⎝ ⎛⎭⎪⎫1m +4n=16⎝ ⎛⎭⎪⎫5+n m +4m n ≥16⎝⎛⎭⎪⎫5+2n m ·4m n =32, 当且仅当n =2m =4时取等号. ∴1m +4n 的最小值为32. 【答案】 32考法18 利用基本不等式求多元代数式的最值(范围)(2014·辽宁理,16)对于c >0,当非零实数a ,b 满足4a 2-2ab +4b 2-c =0且使|2a +b |最大时,3a -4b +5c 的最小值为________.【知识揭秘】 揭秘1:由柯西不等式得,⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫a -b 42+1516b 2⎣⎢⎡⎦⎥⎤22+⎝ ⎛⎭⎪⎫6152≥⎣⎢⎡2⎝ ⎛⎭⎪⎫a -b 4+⎦⎥⎤154b ·6152=|2a +b |2或令2a +b =t ,将4a 2-2ab +4b 2-c =0化为关于a 的方程,方程有根,则判别式不小于0;揭秘2:把3a -4b +5c转化为二次函数,配方法求最值.【思维揭秘】 方法一:令2a +b =t ,把4a 2-2ab +4b 2-c =0化为关于a 的方程,利用判别式找到t 的最大值,从而a ,b 均用c 表示,代入3a -4b +5c 转化成关于c 的二次函数求最值.方法二:首先把4a 2-2ab +4b 2-c =0,转化为c 4=⎝ ⎛⎭⎪⎫a -b 42+1516b 2,再由柯西不等式得到|2a +b |2,分别用b 表示a ,c ,再代入到3a -4b +5c 得到关于b 的二次函数,求出最小值即可.【解析揭秘】 方法一(判别式法):令2a +b =t ,则b =t -2a ,代入到4a 2-2ab +4b 2-c =0中,得4a 2-2a (t -2a )+4(t -2a )2-c =0,即24a 2-18ta +4t 2-c =0.因为关于a 的二次方程有实根,所以Δ=182t 2-4×24(4t 2-c )≥0,可得t 2≤8c5.当|2a +b |取最大值时,有(2a +b )2=85c , ∴4a 2+4ab +b 2=85c . 又∵4a 2-2ab +4b 2=c ,① ∴b a =23,∴b =23a ,代入①得4a 2-2a ×23a +49a 2×4=c , ∴⎩⎪⎨⎪⎧a =32c10,b =c 10或⎩⎪⎨⎪⎧a =-32c10,b =-c 10.当⎩⎪⎨⎪⎧a =32c 10,b =c 10时,3a -4b +5c =210c -410c+5c =-210c +⎝⎛⎭⎪⎫5c 2=⎝⎛⎭⎪⎫5c -22-2≥-2; 当5c =2,即c =52时等号成立.此时a =34,b =12.当⎩⎪⎨⎪⎧a =-32c10,b =-c 10时,3a -4b +5c =-210c +410c +5c =210c+5c >0.综上可知,当c =52,a =34,b =12时,⎝ ⎛⎭⎪⎫3a -4b +5c min =-2.方法二:∵4a 2-2ab +4b 2-c =0, ∴c 4=a 2-12ab +b 2=⎝ ⎛⎭⎪⎫a -b 42+1516b 2.由柯西不等式得,⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫a -b 42+1516b 2⎣⎢⎡⎦⎥⎤22+⎝ ⎛⎭⎪⎫6152≥⎣⎢⎡⎦⎥⎤2⎝⎛⎭⎪⎫a -b 4+154b ·6152=|2a +b |2, 故当|2a +b |最大时,有a -b42=154b615,∴a =32b ,c =10b 2, ∴3a -4b +5c =332b -4b +510b 2=12⎝ ⎛⎭⎪⎫1b 2-2b =12⎝ ⎛⎭⎪⎫1b -22-2,当b =12时,取得最小值为-2. 【答案】 -21.(2016·山东烟台二模,15)若正数x ,y ,z 满足x +2y +3z =1,则1x +z +8(x +z )y +z的最小值为________. 1.【解析】 由x +2y +3z =1得(x +z )+2(y +z )=1,所以1x +z +8(x +z )y +z =(x +z )+2(y +z )x +z +8(x +z )y +z =1+2⎣⎢⎡⎦⎥⎤y +z x +z +4(x +z )y +z ≥9,当且仅当y +z =2(x+z)=25时取等号.【答案】92.(2016·广东汕头一模,16)已知函数f(x)=x+sin x(x∈R),且f(y2-8x+11)+f(x2-6y+10)≤0,则当y≥3时,函数F(x,y)=x2+y2的最小值与最大值的和为________.2.【解析】易知f(x)=x+sin x(x∈R),f(-x)=-x+sin(-x)=-(x+sin x)=-f(x),则f(x)是奇函数.又f′(x)=1+cos x≥0,所以f(x)在R上为增函数,所以f(y2-8x+11)+f(x2-6y+10)≤0,为f(y2-8x+11)≤-f(x2-6y+10)=f(-x2+6y-10),则y2-8x+11≤-x2+6y-10,即x2+y2-8x-6y+21≤0,即(x-4)2+(y-3)2≤4.又y≥3,则(x,y)对应的可行域是以(4,3)为圆心,2为半径的上半圆面,函数F(x,y)=x2+y2的几何意义是(x,y)与原点的距离的平方.连接点(2,3)和(0,0)的距离为13,连接原点和圆心(4,3)延长交半圆于P,则PO的距离为42+32+2=7,即有F(x,y)min=13,F(x,y)max=49,其和为62.【答案】62。
2020高考数学压轴题专题训练数列(36页WORD)
2020高考数学压轴题专题训练数列(36页WORD )第六章 数列 2018年高考题三、解答题22.〔2018全国卷Ⅰ理〕在数列{}n a 中,11111,(1)2n n nn a a a n ++==++ 〔I 〕设nn a b n=,求数列{}n b 的通项公式 〔II 〕求数列{}n a 的前n 项和n S 分析:〔I 〕由有1112n n n a a n n +=++112n n n b b +∴-= 利用累差迭加即可求出数列{}n b 的通项公式: 1122n n b -=-(*n N ∈) 〔II 〕由〔I 〕知122n n n a n -=-, ∴n S =11(2)2nk k k k -=-∑111(2)2n nk k k kk -===-∑∑而1(2)(1)nk k n n ==+∑,又112nk k k-=∑是一个典型的错位相减法模型, 易得1112422nk n k k n --=+=-∑ ∴n S =(1)n n +1242n n -++- 评析:09年高考理科数学全国(一)试题将数列题前置,考查构造新数列和利用错位相减法求前n 项和,一改往年的将数列结合不等式放缩法咨询题作为押轴题的命题模式。
具有让考生和一线教师重视教材和基础知识、差不多方法差不多技能,重视两纲的导向作用。
也可看出命题人在有意识降低难度和求变的良苦用心。
23.〔2018北京理〕数集{}()1212,,1,2n n A a a a a a a n =≤<<≥具有性质P ;对任意的(),1i j i j n ≤≤≤,i j a a 与j ia a 两数中至少有一个属于A .〔Ⅰ〕分不判定数集{}1,3,4与{}1,2,3,6是否具有性质P ,并讲明理由; 〔Ⅱ〕证明:11a =,且1211112nn na a a a a a a ---+++=+++;〔Ⅲ〕证明:当5n =时,12345,,,,a a a a a 成等比数列.【解析】此题要紧考查集合、等比数列的性质,考查运算能力、推理论证能力、分 分类讨论等数学思想方法.此题是数列与不等式的综合题,属于较难层次题.〔Ⅰ〕由于34⨯与43均不属于数集{}1,3,4,∴该数集不具有性质P. 由于66123612,13,16,23,,,,,,231236⨯⨯⨯⨯都属于数集{}1,2,3,6,∴该数集具有性质P. 〔Ⅱ〕∵{}12,,n A a a a =具有性质P ,∴n n a a 与nna a 中至少有一个属于A , 由于121n a a a ≤<<<,∴n n n a a a >,故n n a a A ∉.从而1nna A a =∈,∴11a =. ∵121n a a a =<<<, ∴k n n a a a >,故()2,3,,k n a a A k n ∉=.由A 具有性质P 可知()1,2,3,,nka A k n a ∈=.又∵121n n n nn n a a a a a a a a -<<<<, ∴211211,,,n n n n n n n n a aa aa a a a a a a --====, 从而121121n n n nn n n n a aa a a a a a a a a a --=+++=++++,∴1211112nn na a a a a a a ---+++=+++. 〔Ⅲ〕由〔Ⅱ〕知,当5n =时,有552343,a a a a a a ==,即25243a a a a ==, ∵1251a a a =<<<,∴34245a a a a a >=,∴34a a A ∉,由A 具有性质P 可知43a A a ∈.2243a a a =,得3423a a A a a =∈,且3221a a a <=,∴34232a aa a a ==,∴534224321a a a a a a a a a ====,即12345,,,,a a a a a 是首项为1,公比为2a 成等比数列. 24.〔2018江苏卷〕设{}n a 是公差不为零的等差数列,n S 为其前n 项和,满足222223457,7a a a a S +=+=。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020年全国高考数学·培优复习 第30讲 数列高考选择填空压轴题A 组一、选择题1.若数列{}{},n n a b 的通项公式分别为()20161?n n a a +=-, ()201712n nb n+-=+,且n n a b <,对任意*n N ∈恒成立,则实数a 的取值范围是( ) A. 11,2⎡⎫-⎪⎢⎣⎭ B. [)1,1- C. [)2,1- D. 32,2⎡⎫-⎪⎢⎣⎭【答案】D2.已知数列{}n a 满足11a =, 213a =,若()()*1111232,n n n n n a a a a a n n N -+-++=⋅≥∈,则数列{}n a 的通项n a =( )A.112n - B. 121n - C. 113n - D. 1121n -+【答案】B3.等比数列{}n a 的前n 项和11·32n n S c +=+(c 为常数),若23n n a S λ≤+恒成立,则实数λ的最大值是( ) A. 3 B. 4 C. 5 D. 6 【答案】C4.已知数列{}n a 是各项均不为0的正项数列, n S 为前n项和,且满足+1n a =, *n N ∈,若不等()1281nn a +≤+-对任意的*n N ∈恒成立,求实数λ的最大值为A. 21-B. 15-C. 9-D. 2- 【答案】D5.各项均为正数的等差数列{}n a 中,前n 项和为n S ,当*,2n N n ∈≥时,有()2211n n nS a a n =--,则20102S S -= A. 50 B. 50- C. 100 D. 100- 【答案】A6.已知函数()()936,10{,10x a x x f x a x ---≤=>,若数列{}n a 满足()()*n a f n n N =∈,且{}n a 是递增数列,则实数a 的取值范围是A. (1,3)B. (]1,2 C. (2,3) D. 24,311⎡⎫⎪⎢⎣⎭【答案】C二、填空题7.已知数列{}n a 的首项为()0a a ≠,前n 项和为n S ,且1n n S tS a +=+(0t ≠且*1,t n N ≠∈),1n n b S =+.若122n n c b b b =++++L ,则使数列{}n c 为等比数列的所有数对(),a t 为__________.【答案】()1,28.已知函数()12f x x =+,点O 为坐标原点,点()()()*,n A n f n n N ∈,向量()0,1i =r ,θn 是向量OAn u u u u r 与i r 的夹角,则使得1212cos cos cos sin sin sin n nt θθθθθθ++<L 恒成立的实数t 的取值范围为 ___________. 【答案】3,4⎡⎫+∞⎪⎢⎣⎭9.若数列{}n a 满足111n nd a a +-=(*n N ∈, d 为常数),则称数列{}n a 为“调和数列”,已知正项数列1n b ⎧⎫⎨⎬⎩⎭为“调和数列”,且12990b b b +++=L ,则46b b 的最大值是__________. 【答案】10010.若,x y 满足约束条件50{210210x y x y x y +-≤--≥-+≤,等差数列{}n a 满足1a x =, 5a y =,其前n 项为n S ,则52S S -的最大值为__________. 【答案】33411.在数列的每相邻两项之间插入此两项的积,形成新的数列,这样的操作叫做该数列的一次“扩展”. 将数列1,2进行 “扩展”,第一次得到数列1,2,2;第二次得到数列1,2,2,4,2;…. 设第次“扩展”后所得数列为121,,,,,2m x x x L ,并记()212log 12n m a x x x =⋅⋅⋅⋅⋅L ,则数列{}n a 的通项公式为______.【答案】312n n a +=12.已知数列{}n a 的首项为9,且()21122n n a a a n --=+≥,若1112n n n b a a +=++,则数列{}n b 的前n 项和n S =__________.【答案】2119101n --B组一、选择题1.设数列{}n a为等差数列,n S为其前n项和,若113S≤,410S≥,515S≤,则4a的最大值为()A. 3 B. 4 C. 7- D. 5-【答案】B2.设等差数列{}n a的前n项和为11,13,0,15n m m mS S S S-+===-,其中*m N∈且2m≥.则数列11n na a+⎧⎫⎨⎬⎩⎭的前n项和的最大值为()A.24143B.1143C.2413D.613【答案】D3.已知递增数列{}n a对任意*n N∈均满足*,3nn aa N a n∈=,记()123*nnb a n N-⋅=∈,则数列{}n b的前n项和等于()A. 2n n+ B. 121n+- C.1332n n+-D.1332n+-【答案】D4.斐波那契数列{}n a满足:()*12121,1,3,n n na a a a a n n N--===+≥∈.若将数列的每一项按照下图方法放进格子里,每一小格子的边长为1,记前n项所占的格子的面积之和为nS,每段螺旋线与其所在的正方形所围成的扇形面积为nc,则下列结论错误的是()A. 2111·n n n nS a a a+++=+ B.12321n na a a a a+++++=-LC.1352121n na a a a a-++++=-L D. ()1214?n n n nc c a aπ--+-=【答案】C位: L ).现将甲容器中的液体倒人乙容器中,直至甲容器中液体倒完或乙容器盛满,搅拌使乙容器中两种液体充分混合,再将乙容器中的液体倒人甲容器中直至倒满,搅拌使甲容器中液体充分混合,如此称为一次操作,假设操作过程中溶液体积变化忽略不计.设经过()*n n N ∈次操作之后,乙容器中含有纯酒精n a (单位: L ),下列关于数列{}n a 的说法正确的是( ) A. 当x y a ==时,数列{}n a 有最大值2aB. 设()*1n n n b a a n N +=-∈,则数列{}n b 为递减数列 C. 对任意的*n N ∈,始终有n xy a z≤ D. 对任意的*n N ∈,都有n xya x y≤+ 【答案】D6.一个机器人每一秒钟前进一步或后退一步,程序设计师设计的程序是让机器人以先前进3步,然后再后退2步的规律移动,如果将机器人放在数轴的原点,面向正的方向在数轴上移动(1步的距离为1个单位长度).令()P n 表示第n 秒时机器人所在位置的坐标,且记()00P =,则下列结论错误的是( ) A. ()33P = B. ()()20132017P P =C. ()()20072006P P >D. ()()20032006P P < 【答案】C二、填空题7.各项均为正数的等差数列{}n a 中,前n 项和为n S ,当*,2n N n ∈≥时,有()2211n n nS a a n =--,则20102S S -=__________.【答案】50 8.已知数列{}n a 的前n 项和为12,1,2n S a a ==且()*21320,n n n n S S S a n N ++-++=∈,记()*12111,n nT n N S S S =+++∈L ,若()6n n T λ+≥对*n N ∈恒成立,则λ的最小值为__________. 【答案】169.等比数列{}n a 的首项为2,公比为3,前n 项的和为n S ,若()34114log 19,2n m a S n m⎡⎤+=+⎢⎥⎣⎦则的最小值为____. 【答案】5210.已知数列{}a 满足1a =-, +11n n n n n a b b a b +=+,且()()*115nb n N +-=∈,则数列{}a 的前2n 项和2nS【答案】8.11.在数列{}n a 中, 1a 2=,若平面向量()2,1n b n =+u u r 与()11,n n n n c a a a +=-+-u u r平行,则{}n a 的通项公式为__________.【答案】22313n n n a ++=12.已知数列中, ()*110,31nn n a a a n N a +<=∈+,数列满足: ()*n n b na n N =∈,设为数列的前项和,当时有最小值,则的取值范围是____________.【答案】11,1821⎛⎫-- ⎪⎝⎭13.已知数列{}n a 的前 n 项和为 n S ,且满足111,2n n n a a a S +=⋅=,设3nnn a a b =,若存在正整数,()p q p q <,使得1,,p q b b b 成等差数列,则p q +=__________. 【答案】514.设数列{}n a 的前n 向和为n S ,且(){}121,2n n a a nS n a ==++ 为等差数列,则{}n a 的通项公式n a =__________.【答案】12n n - 15.已知数列{}n a 的首项1a t =,其前n 项和为n S ,且满足212n n S S n n ++=+,若对n N +∀∈, 1n n a a +<恒成立,则实数t 的取值范围是__________. 【答案】13,44⎛⎫ ⎪⎝⎭C 组1.已知正项数列{}n a 的前n 项和为n S ,且1161n n n n a S nS S +++=-+, 1a m =, 现有下列说法:①25a =; ②当n 为奇数时, 33n a n m =+-; ③224232n a a a n n ++⋅⋅⋅+=+.则上述说法正确的个数为( )A. 0B. 1C. 2D. 3 【答案】D2.已知函数()a f x x =的图象过点()4,2,令()()11n a f n f n =++(*n N ∈),记数列{}n a 的前n 项和为n S ,则2017S =( )A.1B. 1C. 1D. 1+【答案】B3.设()'f x 是函数()y f x =的导数, ()''f x 是()'f x 的导数,若方程()''0f x =有实数解0x ,则称点()()00,x f x 为函数()y f x =的“拐点”.已知:任何三次函数既有拐点,又有对称中心,且拐点就是对称中心.设()32182133f x x x x =-++,数列{}n a 的通项公式为27n a n =-,则()()()128f a f a f a ++⋯+=( ) A. 5 B. 6 C. 7 D. 8【答案】D4.在各项均为正数的等比数列{}n a 中,若()·21·2m m m a a a m N ++=∈,数列{}n a 的前n 项积为m T ,且21128m T +=,则m 的值为( )A. 3B. 4C. 5D. 6 【答案】D5.设等差数列{}n a 的前n 项和为n S ,已知()355134a a -+=, ()388132a a -+=,则下列选项正确的是( )A. 1212S =, 58a a >B. 1224S =, 58a a >C. 1212S =, 58a a <D. 1224S =, 58a a < 【答案】A6.数列{}n a 满足113a =,且对任意211N*,,1n n n n n n a a a c a +∈=+=+,数列{}n c 的前n 项和为n S ,则2017S 的整数部分是 ( )A. 1B. 2C. 3D. 4【答案】B二、填空题数列(按原来的顺序)是等比数列,则所有可能满足条件的n 值为__________. 【答案】48.已知各项都为整数的数列{}n a 中, 12a =,且对任意的*N n ∈,满足1122n n n a a +-<+, 2n n a a +- 321n >⨯-,则2017a =__________.【答案】201729.在数列{}n a 及{}n b 中,1n n n a a b +=+1n n n b a b +=+ 111,1a b ==.设11n n nc a b =+,则数列{}n c 的前2017项和为__________. 【答案】403410.已知()42,{4,a x x ax f x x x a x⎛⎫-+< ⎪⎝⎭=-≥①当1a =时, ()3f x =,则x =__________.当1a ≤-时,若()3f x =有三个不等实数根,且它们成等差数列,则a =___________. 【答案】4 116-11.已知n S 为数列{}n a 的前n 项和, ()1*23n n a n N -=⋅∈,若11n n n n a b S S ++=,则12n b b b +++=L __________.【答案】111231n +-- 12.已知定义在R 上的奇函数()f x 满足()()3,232f x f x f ⎛⎫-=-=-⎪⎝⎭, n S 为数列{}n a 的前n 项和,且2n n S a n =+,则()()56f a f a +=__________.【答案】313.已知()f x 是R 上可导的增函数, ()g x 是R 上可导的奇函数,对1x ∀, 2x R ∈都有()()()()1212g x g x f x f x +≥+成立,等差数列{}n a 的前n 项和为n S , ()f x 同时满足下列两条件:()211f a -=, ()911f a -=-,则10S 的值为__________.【答案】1014.已知数列{}n a 满足()2*1232n n a a a a n N =∈L ,且对任意*n N ∈都有12111nt a a a +++<L ,则实数t 的【答案】2,3⎡⎫+∞⎪⎢⎣⎭15.已知定义域为[)0,+∞的函数()f x 满足()()22f x f x =+,当[)0,2x ∈时, ()224f x x x =-+,设()f x 在[)22,2n n -上的最大值为()*n a n N ∈,且数列{}n a 的前n 项和为n S ,则n S =__________.【答案】2142n --16.把正偶数数列{2n }的各项从小到大依次排成如图的三角形数阵,记M (r ,t )表示该数阵中第r 行的第t 个数,则数阵中的数2 018对应于________.【答案】(45,19)。