基于ZEMAX的半导体激光准直仿真设计

合集下载

基于ZEMAX的半导体激光器非球面准直透镜设计

基于ZEMAX的半导体激光器非球面准直透镜设计
杜 彬彬 ,高 文宏 ,李 江澜 ,石云 波 ,徐 美 芳 Байду номын сангаас赵鹏 飞 ,王艳 红
(中北 大学 电子测试技术 国家重点实验室 ,山西 太原 030051)
摘 要 :为 了解 决半 导体 激光器 出射光 束发散 角 大 的 问题 ,根 据 几何 光 学原 理 ,分 别针 对 半 导 体 激 光器 弧矢和 子 午方 向的不 同发 散角度 建 立 数 学模 型 ,设 计 出 了在 两个 相 互 垂 直 的方 向上 具有 不 同非球 面面 型 的非球 面透 镜 ,并 在 ZEMAX光 学设 计 软 件 中进 行 了仿 真 。经 非球 面 准 直透镜 准 直之 后 ,半 导体 激光器 快 慢轴 方 向 的发 散 角 分别 从 35。和 7.5。压 缩 到 了 1.8 mrad和 0.84 mrad,在 距 离光 源 10 1TI处接 收 面上 的总 光功率 为 0.497 W ,光 能利用 率高 达 99.4% 。 结 果表 明,在 相 互垂直 的方 向上 具有 不 同面 型 的非球 面准 直 透 镜 对半 导 体 激 光器 的准 直具 有 良 好 的效果 。 关 键词 :半 导体 激光 器 ;非球 面透镜 ;ZEMAX;准 直 中图分 类 号 :TN248 文 献标 识码 :A DOI:10.3969/j.issn.1001-5078.2013.12.15
基金项 目:国家 自然科学 基金 (No.61078036);山西省 重大专 项 (No.20111101045)资 助 。
作者简介 :杜彬彬 (1988一),女 ,硕士研究生 ,主要从 事光学设 计 以及红外气体 传感 器气 室结 构设 计 等方 面研 究 。E-mail:dubinbin—
第 43卷 第 12期 2013年 12月

基于zcmax的半导体激光准直和整形设计

基于zcmax的半导体激光准直和整形设计

基于zcmax的半导体激光准直和整形设计摘要半导体激光技术作为一种新兴的光学技术,在现代光电领域有着广泛的应用。

其中,半导体激光的准直和整形技术在现代制造业中有着重要的作用。

本文将介绍基于zcmax的半导体激光准直和整形设计的原理、方法和实现过程,以期为相关领域的研究和应用提供参考。

引言近年来,半导体激光技术逐渐得到了广泛的应用。

其中,半导体激光准直和整形技术在检测、制造、医学和通信等领域中都有重要的应用。

半导体激光的准直和整形技术可以产生高纵向和横向质量的光束,使得光束更加聚焦和定位。

本文将介绍基于zcmax的半导体激光准直和整形设计的原理、方法和实现过程。

半导体激光的准直和整形技术半导体激光的准直和整形技术是为了使光束的质量达到更高的水平,使其更加符合实际的应用场景而产生的技术。

其中,准直和整形是两个相关的概念,它们可以分别被认为是光束纵向质量和横向质量的调整。

半导体激光的准直技术半导体激光的准直技术是为了使光束的纵向质量更好而产生的技术。

准直主要包括长腔和短腔两种。

长腔准直可以通过实现自相关和外相关来实现。

自相关是指在反射式或折射式镜子的集中位置改变镜子的位置以实现的过程,而外相关则是指通过调整共振腔长度来实现的过程。

短腔准直可以通过施加电流而实现,这种方式可以产生更好的横向和纵向模式。

半导体激光的整形技术半导体激光的整形技术是为了使光束的横向质量更好而产生的技术。

整形技术主要包括相位控制、空间滤波和阵列整形。

其中,相位控制可以通过电区调制器来实现;空间滤波可以通过使用球面透镜和非线性水晶来实现;阵列整形可以通过阵列型耦合器和固化紫色迈来实现。

基于zcmax的半导体激光准直和整形设计zcmax是一个用于实现基于半导体激光的准直和整形技术的自动化设计工具。

它可以实现自动设计高纵向和横向质量的光束。

zcmax包含了两个主要的设计部分:准直和整形。

其中,准直部分实现了长腔和短腔两种准直方式,整形部分实现了相位控制、空间滤波和阵列整形。

基于ZEMAX的半导体激光准直仿真设计

基于ZEMAX的半导体激光准直仿真设计

引言
半导体激光器( laser diode,LD) 以其体积小效率高易于集成可高速直接调制等优点,被广泛用于激光雷达激光测量激光照明激光制导激光打印以及高密度信息记录与读取等领域。

但是半导体激光器发射的激光光束具有在垂直和平行于结平面两个方向发散角不同光斑形状不规则( 如一般是椭圆型或长条型) 存在固有像散等缺点,这使得半导体激光3 维扫描成像雷达的测程测距精度大大受影响,为了适用于远距离空间激光测距,必须对半导体激光发散光束进行准直。

作者主要采用椭圆面柱透镜,对905nm 的半导体激光做准直整形处理,使得激光的发散角尽可能的小,接收物体表面的激光光斑尽可能的小,而且规则,从而达到提高测程和测距精度的目的。

1.理论分析及计算
采用OSARM 公司的型号为SPL LL90 _3 的半导体激光器查看使用说明书得到: SPL LL90_3 型号的半导体激光器在弧矢( 平行于结平面) 方向上的发散
角= 15°,在子午( 垂直于结平面) 方向上的发散角= 30°,整个激光器的峰值功率为70W半导体激光器有源区只有约0. 1 m ~0. 2 m 的厚度,可以近似看作沿慢轴方向的线光源根据半导体激光束两个方向的发散角不同的特点,采用两个互相垂直的柱透镜组分别对两个方向的光束进行准直,选用的两个柱面镜面型为椭圆面如图
1 所示,半导体激光器发出的子午光线先经过母线平行于激光束慢轴方向的柱透镜后变成准平行光束( 平行光束不可能实现) 由于第
2 个柱透镜M2对于子午光线的发散角无影响,可看作平板玻璃图2 显示弧矢光线经过第1 个透镜M1 时,光束会发生偏移,但不会影响光束的发散角,在经过第 2 个柱透镜时,弧矢光也同样得到准直,输出准平行光。

如有侵权请联系告知删除,感谢你们的配合!。

用ZEMAX设计简易LED准直镜[1]

用ZEMAX设计简易LED准直镜[1]

用ZEMAX设计简易LED准直镜一. 初始解的构建1. 为了简单采用此透镜由三部分构成:A. 全反射部分,B. 折射部分,C.切除部分(这一部分在设计时也可以不考虑,可以在设计完成后再加入)图中光束分两个部分, 一部分为折射部分,另一部分为全反射部分, 可以看出,折射部分光束为三段,全反射部分光束分为四段,由于是平行光出射, 所以在优化时只要考虑第三段就可以了.初始数据:1) 几何体部分TIR部分是一个非球面透镜,中间部分是一个标准透镜(有曲率和圆锥系数),切除部分是一个圆柱体;注意中间的透镜部分的材料为空气,因为它相当于也是被切除掉的.2) 光源部分我们用SOURCE RAY做为光源, 这样可以NSRA来进行优化; 光源的生成与操作数的建立按如下的MACRO可以自动生成:steps=90incr=90/steps #max angle is 90 degreepi = 4*ATAN(1)dr = pi/180startobj=4For i,0,steps,1angle = i*incroo=i+startobjInsertObject 1,ooSetNSCProperty 1,oo,0,0,"NSC_SRAY" # surface,object,code,face,value SetNSCProperty 1,oo,3,0,2 # source inside of object 2 SetNSCPosition 1,oo,4,angleSetNSCParameter 1,oo,1,1 #layout raysSetNSCParameter 1,oo,2,1 #analysis raystar = 0opr = i+1InsertMFO oprsetoperand opr, 11, "NSRA"setoperand opr, 3, oo # src#setoperand opr, 6, 3 # seg#setoperand opr, 9, 1 # weightsetoperand opr, 7, 5 # y coordinatesetoperand opr, 8, tar # tarNextupdate我们每隔一度产生一条光线,最终的结果如下, 从图中可以看出,光线都不是平行的. 这里注意要调整参数保证所有光线都大概的按预期的方向会聚!!二. 优化经过上面的准备工作,这时我们就可以优化了, 当然那几个物体的相对位置需要用PICKUP来约束, 这里不就详细说明了.初步优化的结果如下:可以再调整一下透镜的口径, 再优化一次. 可以看出, 透镜的口径是在增加的, 并且其底部是一直往左移的. 最终会达到一个比较平衡的状态;到这里优化工作就已经完成了. 我们可以对这三个部分进行一个布尔操作得到我们想要的透镜!三. 最终模型的建立和模拟1) 布尔操作后的结果2) 模拟,将所有的SOURCE RAY都删除, 我们用SOURCE RECTANGLE来代替LED, 大小取1*1, COSINE EXPONENT 取1.0来做为朗伯发光体, 把DECTOR 设置到1010MM处, 模拟1M处的光斑, DETECTOR的大小设为500*5003) 模拟结果:A. 光斑B. 发散角以上是一个简单的准直镜的构建. 采用ZEAMX的优化算法结果特定的建模完成该设计, 当然还可能存在诸多不足之处,但此思路可供参考. 也可以设计相似的透镜或变型.。

使用ZEMAX进行准直镜头设计

使用ZEMAX进行准直镜头设计
WAVELAB 光研科学
设计准备
• • • • •
ZEMAX-EE(专业版)光学设计软件 掌握准直径的特点:Afocal系统 使用的功能:ZEMAX像空间Afocal模式 优化方法:Afocal模式,RMS+Wavefront 分析方法:采用ZEMAX的Afocal的模式可以 直接读取镜头的发散角
WAVELAB
光研科学
设定初始结构:
WAVELAB
平板玻璃
光研科学
设定变量:
• 曲率半径 • 第二个面采用偶次非球面
– (本实例只采用1个单片透镜)
WAVELAB
光研科学
设定目标:
• • •
RMS+Wavefront Rings+Arms 这种系统的默认 的评价函数将可 以实现准直设计 (我们已经选择 了Afocal模式)
发散角度评价:
RMS为主要的评价标准: 发散角度<1.279 mrad GEO为参考的评价标准: 发散角度<3.009 mrad 设计结果符合设计要求 Afocla 的点列图 WAVELAB 光研科学
加工图纸输出:
WAVELAB
光研科学
加工图纸输出:
可以编定各种公差数据,以及其他信息
可以对镜头进行公差分析, 以及模拟装配等、 (此例中不做详细介绍)
光研科学
WAVELAB
设定目标:
• EFFL设定
有效焦距 控制 • 下面是系 统自动生 成的控制 光程差
WAVELAB 光研科学
优化:
• 自动收敛设计 • 观察MF(评价函
数的变化) • 自动update实时 观察系统变化
WAVELAB
光研科学
查看结果:
2D外型图形

激光变倍准直扩束系统设计

激光变倍准直扩束系统设计
收稿日期: 2 0 1 5 -0 5 -2 6 ;收到修改 稿 日 期 : 2 0 1 5 -0 6 -1 5 作者简介: 王 培 芳 (1 9 8 8 — ) , 女, 硕士研究生, 主 要 从 事 光 学 设 计 方 面 的 研 究 。 E - m a ih 8 4 1 6 2 0 9 8 3 @ q q .c o m 导师简介: 向 阳 (1 9 6 8 — ) , 男, 博士, 教授, 主 要 从 事 光 学 设 计 方 面 的 研 究 。 E - m a il:x y c io m @ 1 6 3 .c o m (通 信 联 系 人 )
4〜 24倍连续可调, 可 实 现 压 缩 光 束 的 发 散 角 ( 出 射 光 发 散 角 可 压 缩 至 0 .2 0 8 m r a d ) , 扩大光斑尺寸, 达到对激光准直和
扩 束 的 目 的 。 不 同 倍 率 下 波 像 差 最 大 均 方 根 (R M S ) 值 为 0 .1 7 6 9 A , 均 小 于 A /4 , 满 足 像 质 评 价 要 求 。此 设 计 结 构 简 单, 易于加工装调, 具有较高的实际应用价值。 关键词光学设计; 准直扩束; 无焦变倍; Z e m a x ; 激光 中 图 分 类 号 0439 文献识别码A
图 1 无 焦 变 倍 扩 束 系 统 原 理 图 。( a ) 定焦系统; (b) 变 焦 系 统
F i g . 1 A f o c a l z o o m b e a m e x p a n d e r s y s t e m s c h e m a t i c , (a) F i x e d f o c u s s y s t e m ; (b) v a r i f o c a l s y s t e m

基于Zemax的半导体激光准直和整形设计

基于Zemax的半导体激光准直和整形设计

基于Zemax的半导体激光准直和整形设计作者:陆兵兵来源:《科技视界》2015年第17期【摘要】通过对半导体激光光束特性进行分析,依据费马原理和非球面方程理论,对半导体激光准直系统进行数学建模,设计了利用两片式非球面透镜准直系统,并在zemax软件中进行了仿真,最后完成指标,具有良好的效果。

【关键词】Zemax;准直;非球面0 引言半导体激光器因其体积小、重量轻、阈值电流低等特点已被广泛应用于材料加工、激光通信、信号处理、医疗、军事等相关领域。

但由于半导体激光有源层在横向和侧向的尺寸不一样,导致出射光束发散角较大且不均匀,严重影响了能量的传播和后续的测量过程。

一般常用的激光准直的方法有圆柱透镜法、非球面柱镜法、光纤耦合法、渐变折射率透镜法和液体透镜法等。

本文主要介绍利用两片非球面柱透镜的方法进行激光准直,并在zamax软件中进行仿真,同时提出一种对点光源整形为线光源的方法。

1 半导体激光光束特性半导体激光的发光原理是基于受激光发射,满足粒子数翻转和阈值条件,模式可分为空间模和纵模。

因为在横向和侧向的尺寸不一样,导致的衍射效应叠加的结果也不一样,最后形成输出光束为椭圆高斯的光束。

本文讨论的是小功率半导体激光器,因为它的发光面尺寸较小,近似用基模高斯分布来分析,输出光束的光强分布可用下面的公式给出:2 非球面准直透镜组设计2.1 非球面方程介绍Z(r)为非球面的凹陷度;r为非球面的孔径半径,r2=x2+y2(若只考虑YOZ平面的话,x可以为零);c为曲率半径的倒数;k为圆锥系数。

2.2 非球面方程参数确定横向在光学设计中也可以理解为子午方向上,即YOZ平面,如下图所示。

在准直设计中会给出目标光斑大小y以及透镜折射率n,这样?琢■、y、n已知,计算得到,再代入式(6)~(8)中求出横向非球面透镜的参数。

侧向的柱透镜的非球面方程系数可通过上面过程同样可以得到。

3 软件仿真与整形系统介绍3.1 参数计算3.2 zemax仿真及结果对比在非序列模式下对光源建模可以用软件里面自带的Source Diode,然后设置它的子午方向和弧矢方向的发散角,两个柱透镜的建模可以使用软件里面集成的Biconic Lens,然后根据本章计算得到的参数输入到相应的位置中,再在透镜后的位置放置Detector面,最后对半导体激光光线进行追迹,用接收面积为60mm*60mm的接收面在距离光源50mm、100mm和200mm 处分别采集光斑图样,并与没有加准直透镜的系统进行比较。

用ZEMAX设计简易LED准直镜

用ZEMAX设计简易LED准直镜

用ZEMAX设计简易LED准直镜一. 初始解的构建1. 为了简单采用此透镜由三部分构成:A. 全反射部分,B. 折射部分,C.切除部分(这一部分在设计时也可以不考虑,可以在设计完成后再加入)图中光束分两个部分, 一部分为折射部分,另一部分为全反射部分, 可以看出,折射部分光束为三段,全反射部分光束分为四段,由于是平行光出射, 所以在优化时只要考虑第三段就可以了.初始数据:1) 几何体部分TIR部分是一个非球面透镜,中间部分是一个标准透镜(有曲率和圆锥系数),切除部分是一个圆柱体;注意中间的透镜部分的材料为空气,因为它相当于也是被切除掉的.2) 光源部分我们用SOURCE RAY做为光源, 这样可以NSRA来进行优化; 光源的生成与操作数的建立按如下的MACRO可以自动生成:steps=90incr=90/steps #max angle is 90 degreepi = 4*ATAN(1)dr = pi/180startobj=4For i,0,steps,1angle = i*incroo=i+startobjInsertObject 1,ooSetNSCProperty 1,oo,0,0,"NSC_SRAY" # surface,object,code,face,value SetNSCProperty 1,oo,3,0,2 # source inside of object 2 SetNSCPosition 1,oo,4,angleSetNSCParameter 1,oo,1,1 #layout raysSetNSCParameter 1,oo,2,1 #analysis raystar = 0opr = i+1InsertMFO oprsetoperand opr, 11, "NSRA"setoperand opr, 3, oo # src#setoperand opr, 6, 3 # seg#setoperand opr, 9, 1 # weightsetoperand opr, 7, 5 # y coordinatesetoperand opr, 8, tar # tarNextupdate我们每隔一度产生一条光线,最终的结果如下, 从图中可以看出,光线都不是平行的. 这里注意要调整参数保证所有光线都大概的按预期的方向会聚!!二. 优化经过上面的准备工作,这时我们就可以优化了, 当然那几个物体的相对位置需要用PICKUP来约束, 这里不就详细说明了.初步优化的结果如下:可以再调整一下透镜的口径, 再优化一次. 可以看出, 透镜的口径是在增加的, 并且其底部是一直往左移的. 最终会达到一个比较平衡的状态;到这里优化工作就已经完成了. 我们可以对这三个部分进行一个布尔操作得到我们想要的透镜!三. 最终模型的建立和模拟1) 布尔操作后的结果2) 模拟,将所有的SOURCE RAY都删除, 我们用SOURCE RECTANGLE来代替LED, 大小取1*1, COSINE EXPONENT 取1.0来做为朗伯发光体, 把DECTOR 设置到1010MM 处, 模拟1M处的光斑, DETECTOR的大小设为500*5003) 模拟结果:A. 光斑B. 发散角以上是一个简单的准直镜的构建. 采用ZEAMX的优化算法结果特定的建模完成该设计, 当然还可能存在诸多不足之处,但此思路可供参考. 也可以设计相似的透镜或变型.。

课程设计1半导体激光器准直物镜设计

课程设计1半导体激光器准直物镜设计

《半导体激光器准直物镜设计》
一、已知条件
充分掌握工程光学的理论和典型光路的基础上,利用像差理论进行简单光路的光学参数计算和设计,并利用Zemax光学设计软件进行仿真和参数优化,达到理论和实际应用相结合。

二、设计要求
灵活运用工程光学课程重所讲授的内容,进行近轴光路的计算,设定初始光学参数;熟悉Zemax光学设计软件的基本功能和用法,并进行简单光路的模拟和优化。

设计要求:采用双胶合(Doublet)结构,D/f=1/3,通光口径D:5 mm
半视场角:0°设计波长:0.656um
计算:系统焦距f,后焦距(BFL)
半导体激光器准直物镜设计(双胶合结构)参数
三、要完成的任务
1、根据设计要求完成参数的计算,并利用Zemax软件进行参数的优化,最终得到半导体激光器准直物镜的设计参数,以及相应物镜结构与光线追迹图。

2、撰写设计说明书,封皮统一,正文格式规范,用A4纸打印装订。

基于ZEMAX的半导体激光器匀光设计

基于ZEMAX的半导体激光器匀光设计

基于ZEMAX的半导体激光器匀光设计
基于ZEMAX的半导体激光器匀光设计
黄珊1,邓磊敏2,杨焕1,段军2*
【摘要】摘要:为了满足半导体激光器能量均匀化的应用需求,基于ZEMAX光学设计软件设计了一套光束整形匀光系统。

采用非球面镜与倒置柱面镜望远系统的透镜组合对单模半导体激光器进行准直,得到近似高斯圆光斑;在推导了基模高斯强度分布的匀光投影半径的基础上,利用ZEMAX优化得到两个非球面镜组成的匀光透镜组,在一定范围内可获得能量均匀度达96%以上的圆光斑。

同时,实现了一个大功率半导体激光器光纤耦合模块的能量匀化设计,满足对能量匀化要求较高的应用。

结果表明,该研究为半导体激光器能量均匀化的应用提供了有效方法。

【期刊名称】激光技术
【年(卷),期】2014(000)004
【总页数】5
【关键词】关键词:光学设计;光束匀化;ZEMAX;半导体激光器
引言
半导体激光器(laser diode,LD)由于具有电光转换效率高、输出功率大、体积小、寿命长、可靠性好以及价格低廉等优点,被广泛应用于照明、医疗、材料加工等诸多领域[1]。

然而,半导体激光器光束质量较差,远场光斑分布呈椭圆高斯型,且存在本征象散。

在激光焊接、熔覆及表面热处理等应用中,能量分布不均易导致材料局部温度过高而影响材料的性能[2];在光催化领域研究中,紫外激光光源因其一系列优点受到重视,利用能量均匀分布的紫外半导体激光器光源能得到均匀的催化效果;在半导体激光治疗仪的广泛应用中,输出能。

基于ZEMAX的半导体激光器非球面准直透镜设计

基于ZEMAX的半导体激光器非球面准直透镜设计

基于ZEMAX的半导体激光器非球面准直透镜设计杜彬彬;高文宏;李江澜;石云波;徐美芳;赵鹏飞;王艳红【摘要】为了解决半导体激光器出射光束发散角大的问题,根据几何光学原理,分别针对半导体激光器弧矢和子午方向的不同发散角度建立数学模型,设计出了在两个相互垂直的方向上具有不同非球面面型的非球面透镜,并在ZEMAX光学设计软件中进行了仿真.经非球面准直透镜准直之后,半导体激光器快慢轴方向的发散角分别从35°和7.5°压缩到了1.8 mrad和0.84 mrad,在距离光源10 m处接收面上的总光功率为0.497W,光能利用率高达99.4%.结果表明,在相互垂直的方向上具有不同面型的非球面准直透镜对半导体激光器的准直具有良好的效果.【期刊名称】《激光与红外》【年(卷),期】2013(043)012【总页数】5页(P1384-1388)【关键词】半导体激光器;非球面透镜;ZEMAX;准直【作者】杜彬彬;高文宏;李江澜;石云波;徐美芳;赵鹏飞;王艳红【作者单位】中北大学电子测试技术国家重点实验室,山西太原030051;中北大学电子测试技术国家重点实验室,山西太原030051;中北大学电子测试技术国家重点实验室,山西太原030051;中北大学电子测试技术国家重点实验室,山西太原030051;中北大学电子测试技术国家重点实验室,山西太原030051;中北大学电子测试技术国家重点实验室,山西太原030051;中北大学电子测试技术国家重点实验室,山西太原030051【正文语种】中文【中图分类】TN2481 引言半导体激光器(Laser diode,LD)具有体积小、成本低、波长范围宽、易于集成等优点,已被广泛应用于医疗、军事、材料加工、激光模拟、光信息处理以及生命科学研究等领域[1-3]。

但由于其自身量子阱波导结构的限制,半导体激光器出射光束存在不对称的较大发散角、输出光束不均衡、存在固有像散等缺点,尤其在大功率半导体激光器阵列的集成应用中,由于半导体激光器单管发散角太大,造成了严重的光能量损失,大大降低了耦合效率。

基于ZEMAX的多光束半导体激光器光纤耦合设计

基于ZEMAX的多光束半导体激光器光纤耦合设计

基于ZEMAX的多光束半导体激光器光纤耦合设计刘畅;别光【摘要】基于ZEMAX模拟了一组多光束半导体激光器的光纤耦合模块,采用14支波长为808 nm的输出功率为60 W的线列阵激光二极管作为耦合光源,采用偏振技术实现多光路的合束,最终耦合进入芯径400μm , NA为0.22的光纤中,最终输出功率超800 W ,耦合效率达97%,实现了高效耦合,并对光纤对接过程中的耦合效率进行了分析.%The paper simulate the actual situation of fiber coupling of multiple beam semiconductor based on ZEMAX, using fourteen pieces of mini-bar that its output power is 60W are arranged in two stack arrays as laser source by po-larization multiplexing. The beam could be coupled into the fiber of 400μm core di ameter with 0.22 numerical aperture. The output power is more than 800W and the coupling efficiency is about 97%. It is analysed that the system coupling efficiency can be affected by alignment error of fiber and optical elements.【期刊名称】《长春理工大学学报(自然科学版)》【年(卷),期】2015(038)005【总页数】4页(P22-25)【关键词】ZEMAX;偏振合束;耦合效率;误差分析【作者】刘畅;别光【作者单位】长春中国光学科学技术馆,长春 130117;长春中国光学科学技术馆,长春 130117【正文语种】中文【中图分类】TN248随着“超晶格”概念的出现,低维物理理论以及MBE、MOCVD等外延新工艺技术的发展,量子阱结构半导体激光器由此产生,这使得大输出功率的半导体激光器开始了它的实用化之路,如在民用方面的光通信、激光存储、激光打印机、激光测量、激光光谱以及泵浦光源等;在军用方面的激光武器、激光制导、激光引信等[1-3]。

推荐-基于980nm半导体激光器光束准直系统的设计 精品

推荐-基于980nm半导体激光器光束准直系统的设计  精品

说明书基于980nm半导体激光器光束准直系统的设计学生姓名:学号:学院:专业:指导教师:20XX年 6 月基于980nm半导体激光器光束准直系统的设计摘要:半导体激光器具有体积小、重量轻、功耗低和可直接调制等优点,在激光雷达、激光通信、固体激光器的抽运、激光泵浦、激光扫描、激光测距、激光指挥笔等方面得到了非常广泛的应用。

由于半导体激光器的结构特点,使得它发出的光束在垂直于结平面方向上远场发散角和平行于结平面方向的远场发散角相差较大。

所以在几乎所有要求较高的应用领域中,其输出光束都必须通过特殊的光学系统进行准直。

柱透镜因其结构简单、材料便宜以及加工容易而在半导体激光束准直领域获得较多的应用,但普通的柱透镜其准直能力非常有限,为了提高柱透镜的光束准直能力,就有必要设计出更加合理和可行的结构。

在本文中,基于柱透镜对半导体激光器光束准直的理论分析,设计了相互正交的柱透镜组作为设计模型,对980nm半导体激光器进行光束准直,并且利用ZEMAX软件对设计系统各部分准直效果进行模拟。

关键字:半导体激光器,光束准直,柱透镜,高斯光束清华大学20XX届说明书Based on the 980nm semiconductor laser beamcollimation system designAbstract:Owing to its pactness,lightness,and low cost,semiconductor laser play an important role as coherent source in various fields of technology such as military,industry and medicine use and so on.However,the output beam quality of semiconductor laser is poor.Because of the waveguide properties of their active areas,semiconductor lasers generate large divergence-angle beams with alliptically shaped intensity profile.And the beam of semiconductor laser has astigmatism.So,the output beam must be collimated by optical systems in most practical work.Because of simple structure and easy fabricating,the cylindrical lenses have been used in many practical applications for beam collimating of semiconductor lasers.In this paper, Based on the cylindrical lens for semiconductor laser beam collimation theory analysis, Design of orthogonal cylindrical lens group as a design model, The 980nm semiconductor laser beam collimation,and using the ZEMAX software to the design of each part of the system of collimating and shaping effects simulation.Key words:Semiconductor Laser,Beam collimation,Cylindrical lens,Gaussian beam目录1 绪论 (1)1.1 选题目的及意义 (1)1.2 980nm半导体激光器的发展及其应用 (1)1.2.1 半导体激光器发展史 (1)1.2.2 980nm半导体激光器的研究状况 (3)1.2.3 980nm半导体激光器的主要应用 (4)1.3 准直技术的意义与研究 (5)1.3.1 半导体激光器光束准直的意义 (5)1.3.2 准直技术的研究现状和发展方向 (6)1.4 本主要工作 (7)1.5 本章小结 (8)2 半导体激光器 (9)2.1 半导体激光器的基本原理 (9)2.1.1 受激辐射 (9)2.1.2 实现条件 (9)2.2 半导体激光器的器件结构 (10)2.2.1 异质结半导体激光器 (10)2.2.2 量子阱半导体激光器 (11)2.2.3 表面发射激光器 (13)2.3 半导体激光器的优缺点 (13)2.4 本章小结 (14)3 半导体激光器的光束准直理论 (15)清华大学20XX届说明书3.1 半导体激光器的光束特性 (15)3.2 高斯光束的基本理论 (15)3.3 激光束准直系统介绍 (16)3.3.1 圆柱透镜系统 (16)3.3.2 非球面柱透镜准直系统 (17)3.3.3 光纤耦合系统 (18)3.3.4 棱镜组折反射光束整形 (20)3.3.5 异型棱镜光束整形 (21)3.4 本章小结 (22)4 半导体激光器准直系统设计 (23)4.1 准直系统设计方案 (23)4.2 准直设计优化仿真 (27)4.2.1 光学设计软件 (27)4.2.2 ZEMAX软件仿真 (27)4.3 本章小结 (30)5 全文总结 (31)5.1 主要工作及结论 (31)5.2 工作展望 (31)参考文献 (32)致谢 (34)1 绪论自从1962年第一台半导体激光器发明以来,经历40多年的发展,半导体激光器以自身的优势,极大地推动了科学技术的进步,是二十世纪人类最伟大的发明之一。

用ZEMAX设计简易LED准直镜

用ZEMAX设计简易LED准直镜

用ZEMAX设计简易LED准直镜一. 初始解的构建1. 为了简单采用此透镜由三部分构成:A. 全反射部分,B. 折射部分,C.切除部分(这一部分在设计时也可以不考虑,可以在设计完成后再加入)图中光束分两个部分, 一部分为折射部分,另一部分为全反射部分, 可以看出,折射部分光束为三段,全反射部分光束分为四段,由于是平行光出射, 所以在优化时只要考虑第三段就可以了.初始数据:1) 几何体部分TIR部分是一个非球面透镜,中间部分是一个标准透镜(有曲率和圆锥系数),切除部分是一个圆柱体;注意中间的透镜部分的材料为空气,因为它相当于也是被切除掉的.2) 光源部分我们用SOURCE RAY做为光源, 这样可以NSRA来进行优化; 光源的生成与操作数的建立按如下的MACRO可以自动生成:steps=90incr=90/steps #max angle is 90 degreepi = 4*ATAN(1)dr = pi/180startobj=4For i,0,steps,1angle = i*incroo=i+startobjInsertObject 1,ooSetNSCProperty 1,oo,0,0,"NSC_SRAY" # surface,object,code,face,value SetNSCProperty 1,oo,3,0,2 # source inside of object 2 SetNSCPosition 1,oo,4,angleSetNSCParameter 1,oo,1,1 #layout raysSetNSCParameter 1,oo,2,1 #analysis raystar = 0opr = i+1InsertMFO oprsetoperand opr, 11, "NSRA"setoperand opr, 3, oo # src#setoperand opr, 6, 3 # seg#setoperand opr, 9, 1 # weightsetoperand opr, 7, 5 # y coordinatesetoperand opr, 8, tar # tarNextupdate我们每隔一度产生一条光线,最终的结果如下, 从图中可以看出,光线都不是平行的. 这里注意要调整参数保证所有光线都大概的按预期的方向会聚!!二. 优化经过上面的准备工作,这时我们就可以优化了, 当然那几个物体的相对位置需要用PICKUP来约束, 这里不就详细说明了.初步优化的结果如下:可以再调整一下透镜的口径, 再优化一次. 可以看出, 透镜的口径是在增加的, 并且其底部是一直往左移的. 最终会达到一个比较平衡的状态;到这里优化工作就已经完成了. 我们可以对这三个部分进行一个布尔操作得到我们想要的透镜!三. 最终模型的建立和模拟1) 布尔操作后的结果2) 模拟,将所有的SOURCE RAY都删除, 我们用SOURCE RECTANGLE来代替LED, 大小取1*1, COSINE EXPONENT 取1.0来做为朗伯发光体, 把DECTOR 设置到1010MM处, 模拟1M处的光斑, DETECTOR的大小设为500*5003) 模拟结果:A. 光斑B. 发散角以上是一个简单的准直镜的构建. 采用ZEAMX的优化算法结果特定的建模完成该设计, 当然还可能存在诸多不足之处,但此思路可供参考. 也可以设计相似的透镜或变型.。

基于ZEMAX的半导体激光准直仿真设计

基于ZEMAX的半导体激光准直仿真设计

引言
半导体激光器( laser diode,LD) 以其体积小效率高易于集成可高速直接调制等优点,被广泛用于激光雷达激光测量激光照明激光制导激光打印以及高密度信息记录与读取等领域。

但是半导体激光器发射的激光光束具有在垂直和平行于结平面两个方向发散角不同光斑形状不规则( 如一般是椭圆型或长条型) 存在固有像散等缺点,这使得半导体激光3 维扫描成像雷达的测程测距精度大大受影响,为了适用于远距离空间激光测距,必须对半导体激光发散光束进行准直。

作者主要采用椭圆面柱透镜,对905nm 的半导体激光做准直整形处理,使得激光的发散角尽可能的小,接收物体表面的激光光斑尽可能的小,而且规则,从而达到提高测程和测距精度的目的。

1.理论分析及计算
采用OSARM 公司的型号为SPL LL90 _3 的半导体激光器查看使用说明书得到: SPL LL90_3 型号的半导体激光器在弧矢( 平行于结平面) 方向上的发散
角= 15°,在子午( 垂直于结平面) 方向上的发散角= 30°,整个激光器的峰值功率为70W半导体激光器有源区只有约0. 1 m ~0. 2 m 的厚度,可以近似看作沿慢轴方向的线光源根据半导体激光束两个方向的发散角不同的特点,采用两个互相垂直的柱透镜组分别对两个方向的光束进行准直,选用的两个柱面镜面型为椭圆面如图
1 所示,半导体激光器发出的子午光线先经过母线平行于激光束慢轴方向的柱透镜后变成准平行光束( 平行光束不可能实现) 由于第
2 个柱透镜M2对于子午光线的发散角无影响,可看作平板玻璃图2 显示弧矢光线经过第1 个透镜M1 时,光束会发生偏移,但不会影响光束的发散角,在经过第 2 个柱透镜时,弧矢光也同样得到准直,输出准平行光。

如有侵权请联系告知删除,感谢你们的配合!。

Zemax激光设计

Zemax激光设计

Zemax激光设计1. 简介Zemax是一种用于光学设计和仿真的软件,可用于激光器系统的设计和优化。

本文将介绍如何使用Zemax进行激光设计,并讨论一些常见的激光设计问题和解决方案。

2. Zemax激光器模拟Zemax可以模拟激光系统中的光束传播、反射、折射和衍射等光学过程。

使用Zemax进行激光器模拟的一般步骤如下:1.创建系统:使用Zemax的系统编辑器创建一个光学系统,包括激光器和光学元件。

可以在系统中添加光源、透镜、反射镜、隔离器、偏振器等。

2.设置光源:选择合适的光源类型,并设置光源的参数,如波长、功率、光斑大小等。

可以根据实际需求选择不同的光源模型,如高斯光源、平面波光源等。

3.设计光路:通过添加透镜、镜片、反射镜等元件,设计出完整的光学路径。

可以对这些元件进行参数调整和优化,以达到所需的光束形状和品质。

4.分析结果:使用Zemax的分析工具,对模拟结果进行评估和优化。

例如,可以计算光束直径、聚焦度、能量分布等参数,并根据需要调整光学元件的位置和参数。

5.优化设计:根据实验结果和需求,对光学系统进行进一步的优化。

可以使用Zemax的优化工具,自动搜索最佳的光学参数组合。

3. 激光设计中的常见问题与解决方案3.1 光束修形在激光器设计中,常常需要将初始光束修形为所需的光束形状,如高斯光束、束腰等。

Zemax提供了优化工具,可以通过调整透镜和镜片的参数,使光束达到最佳形状和品质。

3.2 光路对齐光路对齐是指调整光学元件的位置和方向,以使光束尽可能准确地通过系统。

Zemax提供了光路径追踪和反射衍射分析工具,可以帮助用户找到最佳的光学元件位置和角度。

3.3 聚焦和能量分布在激光器设计中,聚焦度和能量分布是两个重要的参数。

Zemax可以计算和优化光束的聚焦度和能量分布,帮助用户实现所需的聚焦效果和能量分布。

3.4 光损耗分析光损耗是指光束在激光系统中发生的能量损失。

Zemax可以模拟光束的传输和反射、透射过程,计算光损耗,并帮助用户找到降低光损耗的方法。

半导体激光准直仪设计

半导体激光准直仪设计

半导体激光准直仪设计
范宁;杨林华;史瑞良
【期刊名称】《航天器环境工程》
【年(卷),期】2006(023)001
【摘要】根据KM6太阳模拟器光学装校系统的技术要求,文章提出了半导体激光器输出光束的两套准直方案.分别介绍了这两套技术方案的原理,并进行了比较,决定采用在激光器前加前准直光学系统的方案.介绍了准直光学系统的设计,并对所设计的光学镜头进行了像质分析;设计了与光学系统相配套的机械结构,给出了激光光束的准直性分析.结果表明:自行设计的半导体激光准直仪,技术指标明显优于市场上可提供的光束发散角为5~8 mrad的半导体激光准直仪.为KM6太阳模拟器光学系统装校工作顺利进行提供了保证.
【总页数】5页(P51-55)
【作者】范宁;杨林华;史瑞良
【作者单位】北京卫星环境工程研究所,北京,100094;北京卫星环境工程研究所,北京,100094;北京卫星环境工程研究所,北京,100094
【正文语种】中文
【中图分类】TN248.4
【相关文献】
1.基于ZEMAX的半导体激光准直仿真设计 [J], 陈国;赵长明;纪荣祎;李鲲;罗雄;白羽
2.基于Zemax的半导体激光准直和整形设计 [J], 陆兵兵
3.激光准直仪的设计性物理实验 [J], 黄水平;胡德敬
4.半导体激光准直仪及其激光束漂移补偿研究 [J], 胡新和;杨博雄
5.基于半导体激光光纤组件的激光准直仪 [J], 冯其波;刘依真;张斌;崔建英
因版权原因,仅展示原文概要,查看原文内容请购买。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

引言
半导体激光器( laser diode, LD) 以其体积小效率高易于集成可高速直接调制等优点,被广泛用于激光雷达激光测量激光照明激光制导激光打印以及高密度信息记录与读取等领域。

但是半导体激光器发射的激光光束具有在垂直和平行于结平面两个方向发散角不同光斑形状不规则( 如一般是椭圆型或长条型) 存在固有像散等缺点,这使得半导体激光3 维扫描成像雷达的测程测距精度大大受影响,为了适用于远距离空间激光测距,必须对半导体激光发散光束进行准直。

作者主要采用椭圆面柱透镜,对905nm 的半导体激光做准直整形处理,使得激光的发散角尽可能的小,接收物体表面的激光光斑尽可能的小,而且规则,从而达到提高测程和测距精度的目的。

1.理论分析及计算
采用 OSARM 公司的型号为 SPL LL90 _3 的半导体激光器查看使用说明书得
到: SPL LL90_3 型号的半导体激光器在弧矢( 平行于结平面) 方向上的发散角 = 15°,在子午( 垂直于结平面) 方向上的发散角= 30°,整个激光器的峰值功率为70W半导体激光器有源区只有约 0. 1 m ~ 0. 2 m 的厚度,可以近似看作沿慢轴方向的线光源根据半导体激光束两个方向的发散角不同的特点,采用两个互相垂直的柱透镜组分别对两个方向的光束进行准直,选用的两个柱面镜面型为椭圆面如图1 所示,半导体激光器发出的子午光线先经过母线平行于激光束慢轴方向的柱透镜后变成准平行光束( 平行光束不可能实现) 由于第
2 个柱透镜 M2对于子午光线的发散角无影响,可看作平板玻璃图2 显示弧矢光线经过第1 个透镜 M1 时,光束会发生偏移,但不会影响光束的发散角,在经过第 2 个柱透镜时,弧矢光也同样得到准直,输出准平行光。

相关文档
最新文档