新课标高中数学知识点归纳总结

合集下载

高中数学新课标知识点总结

高中数学新课标知识点总结

高中数学新课标知识点总结高中数学新课标知识点总结一、函数与方程1. 函数:函数的概念和性质,函数的表示与图像,函数的性质与运算,反函数2. 一次函数与二次函数:一次函数的性质与图像,二次函数的性质与图像,二次函数的解与判别式3. 指数与对数函数:指数函数的性质与图像,对数函数的性质与图像,指数方程与对数方程的解法4. 三角函数:弧度与角度的转化,常用三角函数的计算,三角函数图像与性质,三角函数的单调性与奇偶性,三角函数的解析式,解三角函数方程与不等式5. 幂函数与反比例函数:幂函数的性质与图像,反比例函数的性质与图像二、数列与数列极限1. 数列与数列极限的概念2. 等差数列与等差数列的通项公式与求和公式3. 等比数列与等比数列的通项公式与求和公式4. 数列极限的定义与性质,数列极限的求解方法,夹逼定理与极限存在准则,无穷小,无穷大,无穷小的比较三、三角恒等变换1. 弧度制与角度制的互化2. 三角函数基本关系式:弧度与角度的关系,终边的位置关系,三角函数的定义,三角函数的基本关系式(倒数关系、余角关系、和角差角关系、倍角关系、半角关系)3. 三角函数的恒等变换:和角公式、差角公式、倍角公式、半角公式、辅助角公式、平方和与平方差公式等四、立体几何1. 空间几何体的概念与性质:点、线、面、体的关系与性质2. 直线与平面的位置关系:直线与平面的交点,直线与面的垂直关系3. 球的性质与计算:球面积与体积的计算4. 锥体与圆台的性质与计算:锥体表面积与体积的计算,圆台表面积与体积的计算五、排列与组合1. 排列的概念与计算:全排列与部分排列的计算2. 组合的概念与计算:组合的计算与性质,二项式定理的应用3. 基本计数原理与容斥原理:简单计数原理的应用,容斥原理的应用六、概率与统计1. 事件与概率:样本空间与事件的关系,事件的运算与概率运算,经典概型与概率的计算2. 条件概率与独立事件:条件概率的计算与性质,乘法定理与独立事件的判定3. 随机变量与概率分布:离散型与连续型随机变量,随机变量的分布律与分布函数,期望值与方差的计算4. 统计与抽样:样本与总体,统计量与抽样分布,正态分布的应用5. 统计图与描述统计:直方图、折线图、饼图的绘制与分析,集中趋势与离散程度的度量综上所述,高中数学新课标知识点主要涵盖了函数与方程、数列与数列极限、三角恒等变换、立体几何、排列与组合、概率与统计等内容。

新课标高中数学知识点总结汇总表

新课标高中数学知识点总结汇总表

新课标高中数学知识点总结汇总表一、函数与导数1. 函数基础- 函数的概念与表示法- 函数的性质:定义域、值域、单调性、奇偶性、周期性- 函数的运算:四则运算、复合函数、反函数、基本初等函数(幂函数、指数函数、对数函数、三角函数)2. 极限与连续- 极限的定义与性质- 无穷小与无穷大- 极限的运算法则- 函数的连续性与间断点3. 导数与微分- 导数的定义与几何意义- 导数的运算法则- 高阶导数- 隐函数与参数方程的导数- 微分的概念与应用4. 导数的应用- 函数的极值与最值问题- 曲线的切线与法线- 罗尔定理、拉格朗日中值定理、柯西中值定理- 泰勒公式与麦克劳林公式5. 不定积分- 积分的概念与性质- 基本积分表- 积分的运算法则- 特殊积分技巧:换元法、分部积分法二、平面向量与立体几何1. 平面向量- 向量的基本概念与运算- 向量的几何意义与线性运算- 向量的数量积与向量积- 平面向量的坐标表示与运算2. 立体几何- 空间几何体的性质与计算- 直线与平面的方程- 空间向量及其运算- 立体图形的表面积与体积三、解析几何1. 圆锥曲线- 圆的方程- 椭圆、双曲线、抛物线的方程与性质 - 圆锥曲线的切线与法线- 圆锥曲线的应用问题2. 参数方程与极坐标- 参数方程的概念与应用- 极坐标系与直角坐标系的转换- 简单曲线的极坐标方程四、概率与统计1. 概率论基础- 随机事件与概率的定义- 条件概率与独立事件- 全概率公式与贝叶斯公式- 随机变量与分布函数2. 统计学基础- 统计量的概念:均值、方差、标准差、中位数、众数 - 抽样与估计- 假设检验- 线性回归分析五、数学分析进阶1. 定积分- 定积分的概念与性质- 微积分基本定理- 定积分的计算方法- 定积分的应用:面积、体积、弧长、工作量2. 级数- 数项级数的概念与性质- 正项级数与收敛性判别法- 交错级数与绝对收敛- 幂级数与泰勒级数3. 多元函数微分学- 多元函数的偏导数与全微分- 多元函数的极值与最优化问题- 多重积分的概念与计算4. 常微分方程- 微分方程的基本概念- 可分离变量的微分方程- 一阶线性微分方程- 二阶常系数线性微分方程以上是新课标高中数学的主要知识点汇总,涵盖了函数、几何、概率统计以及数学分析等领域的核心内容。

新高考高中数学知识点全总结

新高考高中数学知识点全总结

新高考高中数学知识点全总结一、集合与简易逻辑1. 集合定义:集合是由确定的对象所组成,这些对象称为集合的元素。

表示方法:列举法、描述法。

集合之间的关系:子集、真子集、相等。

集合的运算:并集、交集、补集。

2. 简易逻辑充分条件与必要条件。

四种命题及其关系:原命题、逆命题、否命题、逆否命题。

逻辑联结词:且、或、非。

二、函数1. 函数的概念定义:设A、B是两个非空数集,如果按照某种确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数。

记作y=f(x),x∈A。

其中,x称为自变量,x的取值范围A称为函数的定义域;与x的值对应的y值称为因变量,因变量的取值范围称为函数的值域。

2. 函数的性质单调性:函数在某一区间内,函数值随自变量增大而增大(或减少)的性质。

奇偶性:若对于定义域内的任意x,都有f(-x)=-f(x),则称f(x)为奇函数;若f(-x)=f(x),则称f(x)为偶函数。

3. 常见函数一次函数:f(x)=kx+b (k≠0)。

二次函数:f(x)=ax²+bx+c (a≠0)。

指数函数:f(x)=a^x (a>0, a≠1)。

对数函数:f(x)=logₐx (a>0, a≠1)。

幂函数:f(x)=x^α (α为实数)。

三、数列1. 数列的概念定义:按一定顺序排列的一列数称为数列。

通项公式:表示数列中每一项与项数之间关系的公式。

2. 等差数列定义:从第二项起,每一项与它的前一项的差等于同一个常数的一种数列。

通项公式:aₙ=a₁+(n-1)d。

前n项和公式:Sₙ=n/2[2a₁+(n-1)d]。

3. 等比数列定义:从第二项起,每一项与它的前一项的比等于同一个常数的一种数列。

通项公式:aₙ=a₁q^(n-1)。

前n项和公式:Sₙ=a₁(1-q^n)/(1-q)(q≠1)。

四、三角函数1. 角度与弧度角度制:用度(°)、分(')、秒('')来表示角的大小的制度。

新高考数学归纳知识点

新高考数学归纳知识点

新高考数学归纳知识点新高考数学的知识点归纳是帮助学生系统地掌握高中数学知识,提高解题能力的重要环节。

以下是对新高考数学知识点的归纳总结:一、集合与函数- 集合的概念:元素、子集、并集、交集、补集等。

- 函数的概念:定义域、值域、单调性、奇偶性、周期性等。

- 函数的表示方法:解析法、图像法、列表法等。

二、数列- 数列的基本概念:通项公式、前n项和等。

- 等差数列与等比数列:通项公式、求和公式。

- 数列的极限:无穷等比数列的极限、单调有界定理等。

三、三角函数与三角恒等变换- 三角函数的定义:正弦、余弦、正切等。

- 三角函数的基本性质:周期性、奇偶性、单调性等。

- 三角恒等变换:和角公式、差角公式、倍角公式、半角公式等。

四、解析几何- 平面直角坐标系:点的坐标、直线方程、圆的方程等。

- 空间直角坐标系:空间直线与平面的方程。

- 圆锥曲线:椭圆、双曲线、抛物线的性质与方程。

五、立体几何- 空间几何体:柱、锥、台、球等的体积与表面积。

- 空间直线与平面的位置关系:平行、垂直、相交等。

- 空间向量:向量的加减、数乘、点积、叉积等。

六、概率与统计- 随机事件的概率:古典概型、几何概型、条件概率等。

- 统计初步:数据的收集、整理、描述等。

- 离散型随机变量及其分布列:期望、方差等。

七、导数与微分- 导数的概念:导数的定义、几何意义、物理意义等。

- 基本初等函数的导数:幂函数、三角函数、指数函数、对数函数等。

- 导数的应用:函数的单调性、极值、最值等。

八、积分- 不定积分与定积分的概念:原函数、积分区间、积分值等。

- 积分的基本公式与计算方法:换元积分法、分部积分法等。

- 定积分的应用:面积、体积、物理量等。

九、复数- 复数的概念:复平面、复数的四则运算等。

- 复数的代数形式与三角形式:欧拉公式、德摩弗定理等。

- 复数的应用:解析几何、电路分析等。

十、逻辑与推理- 逻辑连接词:与、或、非、蕴含等。

- 推理方法:演绎推理、归纳推理、类比推理等。

高中数学新课标要点总结

高中数学新课标要点总结

高中数学新课标要点总结随着教育改革的不断深入,高中数学新课程标准(简称新课标)对数学教学提出了新的要求和目标。

新课标强调数学学科的核心素养,注重学生的全面发展,旨在培养学生的数学思维、解决问题的能力以及创新精神。

以下是高中数学新课标的主要要点总结:1. 课程目标的转变新课标将课程目标从单纯的知识传授转变为培养学生的数学核心素养,包括数学抽象、逻辑推理、数学建模、直观想象、数学运算和数据分析等六个方面。

2. 课程内容的整合与优化新课标对高中数学课程内容进行了整合与优化,将原有的知识点重新组织,形成了更加系统和连贯的知识体系。

同时,新课标还增加了一些现代数学的内容,如概率统计、算法初步等,以适应社会和科技发展的需要。

3. 教学方法的创新新课标鼓励教师采用多样化的教学方法,如探究式学习、合作学习、项目学习等,以激发学生的学习兴趣和主动性。

同时,新课标还强调信息技术在数学教学中的应用,提倡利用计算机和网络资源辅助教学。

4. 评价方式的多样化新课标提倡多元化的评价方式,不仅包括传统的笔试,还包括口试、实验操作、项目报告等多种评价形式。

这样的评价方式更能够全面地反映学生的学习过程和能力。

5. 课程资源的开发与利用新课标鼓励教师和学校开发和利用各种课程资源,包括教材、教辅资料、网络资源等,以丰富教学内容和提高教学效果。

6. 教师专业发展新课标强调教师的专业发展,要求教师不断更新教育理念,提高教学技能,以适应新课程的要求。

同时,新课标还鼓励教师进行教学研究和创新,以促进教学质量的提升。

7. 学生学习方式的转变新课标倡导学生从被动接受知识转变为主动探究和学习,鼓励学生在学习过程中提出问题、解决问题,培养自主学习和终身学习的能力。

8. 课程实施的灵活性新课标允许学校和教师根据学生的实际情况和需求,灵活地调整课程内容和教学进度,以满足不同学生的学习需求。

通过上述要点的总结,我们可以看出高中数学新课标旨在通过课程改革,提高学生的数学素养,培养学生的创新能力和实践能力,以适应未来社会的发展需求。

高中数学知识知识点总结2024

高中数学知识知识点总结2024

高中数学知识知识点总结2024一、集合与函数1. 集合的基本概念集合是数学中最基本的概念之一,表示具有某种共同属性的事物的全体。

常见的集合表示方法有列举法和描述法。

列举法:将集合中的元素一一列举出来,如 \( A = \{1, 2, 3\} \)。

描述法:用集合中元素的共同属性来表示,如 \( B = \{x \mid x > 0\} \)。

2. 集合的运算集合的运算包括并集、交集、补集和差集。

并集:\( A \cup B = \{x \mid x \in A \text{ 或 } x \in B\} \)。

交集:\( A \cap B = \{x \mid x \in A \text{ 且 } x \in B\} \)。

补集:\( C_U A = \{x \mid x \in U \text{ 且 } x \notin A\} \),其中 \( U \) 是全集。

差集:\( A B = \{x \mid x \in A \text{ 且 } x \notin B\} \)。

3. 函数的概念函数是数学中描述两个变量之间依赖关系的重要工具。

函数的定义域、值域和对应关系是函数的三要素。

定义域:函数中自变量 \( x \) 的取值范围。

值域:函数中因变量 \( y \) 的取值范围。

对应关系:自变量 \( x \) 和因变量 \( y \) 之间的对应法则。

4. 常见函数类型一次函数:\( y = ax + b \),图像为一条直线。

二次函数:\( y = ax^2 + bx + c \),图像为一条抛物线。

指数函数:\( y = a^x \),其中 \( a > 0 \) 且 \( a \neq 1 \)。

对数函数:\( y = \log_a x \),其中 \( a > 0 \) 且 \( a \neq 1 \)。

三角函数:包括正弦函数 \( y = \sin x \)、余弦函数 \( y = \cos x \) 和正切函数 \( y = \tan x \)。

新课程高中数学知识点归纳(完整版)

新课程高中数学知识点归纳(完整版)

新课程高中数学必备知识点归纳 ----必须理解、记忆和应用第一册第一章 集合与常用逻辑用语一、集合的定义与表示1.集合的定义:把研究对象统称为元素,把一些元素组成的总体叫做集合2.集合的表示:常用大写拉丁字母 ,,,C B A 表示,集合中的元素一般用小写拉丁字母 ,,,c b a 表示3.集合的性质:确定性、互异性、无序性(集合中元素的性质)4.元素与集合的关系:属于(A a ∈) , 不属于(A a ∉)5.常用数集:R Q,Z,,N N N,*+或 6.集合的表示:列举法:把集合中的所有元素一一列举出来,并用“{ }”括起来表示集合的方法叫做列举法。

描述法:设A 是一个集合,把集合A 中所具有共同特征)(x P 的元素x 所组成的集合表示为)}(|{x P A x ∈,这种表示集合的方法称为描述法。

二、集合间的基本关系(从文字语言、图形语言、符号语言等方面理解) 1.子集:一般地,对于两个集合,A B ,如果集合A 中任意一个元素都是集合B 中的元素,称集合A 是集合B 的子集,记作B A ⊆(读作A 包含于B )或A B ⊇(读作B 包含A )。

韦恩表示图略 2.集合相等:如果集合A 中的任何一个元素都是集合B 的元素,同时集合B 中的任何一个元素都是集合A 的元素,那么集合A 与集合B 相等。

记作A B =。

若B A ⊆且A B ⊆,则A B =。

韦恩表示图略 3.真子集:如果集合B A ⊆,但存在元素,x B ∈且,x A ∉称集合A 是集合B 的真子集,记作B A ≠⊂(读作A真含于B )或A B ≠⊃(读作B 真包含A )。

韦恩表示图略4.空集:不含任何元素的集合叫做空集。

空集是任何集合的子集,空集是任何非空集合的真子集 拓展:集合的子集个数含有n 个元素的集合的子集个数为n2,真子集个数为12-n,非空真子集个数为22-n三、集合的基本运算(从文字语言、图形语言、符号语言等方面理解) 1.并集:一般地,由所有属于集合A 或属于集合B 的元素组成的集合,称为集合A 与集合B 的并集,记作A B(读作:“A 并B ”),即{},A B x x A x B =∈∈或,韦恩表示图略,数轴表示略。

新课标人教版高中数学全册考点及题型归纳总结

新课标人教版高中数学全册考点及题型归纳总结

新课标人教版高中数学全册考点及题型归纳总结新课标人教版高中数学全册的考点及题型如下:一、函数与方程1.函数的基本概念和性质:定义域、值域、图像、增减性、奇偶性等。

2.一次函数:函数的表示方式及性质、函数的图像与应用、函数的图像性质与参数关系。

3.二次函数:函数的表示方式及性质、函数的图像与应用、函数的图像性质与参数关系。

4.指数函数:函数的表示方式及性质、函数的图像与应用、指数函数的性质与指数关系。

5.对数函数:函数的表示方式及性质、函数的图像与应用、对数函数的性质与底数关系。

6.三角函数:函数的表示方式及性质、函数的图像与应用、三角函数的性质与周期关系。

二、数列与数学归纳法1.数列的基本概念与表示:公式、通项、前n项和、数列的性质等。

2.等差数列:公差、前n项和、等差数列的性质及应用。

3.等比数列:公比、前n项和、等比数列的性质及应用。

4.通项公式及求和公式的推导与应用。

5.数学归纳法的基本概念和使用。

三、三角函数基本关系式与证明1.正弦函数与余弦函数的关系。

2.正切函数与余切函数的关系。

3.正割函数与余割函数的关系。

4.辅助角公式及证明。

5.万能角公式及证明。

6.统一化问题的求解及应用。

四、解析几何基本定理与推理1.重矢量的定义与性质。

2.数量积的基本性质与运算规则。

3.向量的线性相关性与线性独立性。

4.解析几何定理的证明与推理。

五、概率与统计1.基本概念与方法:样本空间、随机事件、概率、频率、统计量等。

2.概率的基本性质:加法原理、乘法原理、条件概率等。

3.随机变量和概率分布的基本概念与性质。

4.离散型随机变量与连续型随机变量的概率分布。

5.正态分布的基本性质和应用。

以上是新课标人教版高中数学全册的考点及题型的总结,希望对你有帮助。

高中数学新课标的考点汇总

高中数学新课标的考点汇总

高中数学新课标的考点汇总高中数学新课标是针对高中阶段数学教学内容和要求的指导性文件,它涵盖了高中数学教育的核心知识点和能力要求。

以下是高中数学新课标的考点汇总:1. 数与式:包括实数的概念、性质和运算;复数的概念、性质和运算;指数与对数的概念、性质和运算;多项式的概念、性质和运算;分式的概念、性质和运算。

2. 函数:包括函数的概念、性质和图像;一次函数、二次函数、指数函数、对数函数、三角函数等基本初等函数的性质和图像;函数的单调性、奇偶性、周期性等性质;函数的复合、反函数、函数的极限等概念。

3. 解析几何:包括平面直角坐标系、极坐标系、参数方程等坐标系的概念和性质;直线、圆、椭圆、双曲线、抛物线等基本几何图形的方程和性质;点、线、面的位置关系;向量的概念、运算和应用。

4. 立体几何:包括空间直角坐标系的概念和性质;空间直线、平面、多面体、旋转体等基本几何图形的方程和性质;空间几何体的体积、表面积的计算;空间向量的概念、运算和应用。

5. 概率与统计:包括随机事件、概率、条件概率的概念和计算方法;离散型随机变量、连续型随机变量的概念和分布;统计图表、统计量(均值、方差、标准差等)的概念和计算方法;数据的收集、处理和分析。

6. 三角学:包括任意角的概念、三角函数的概念和性质;三角恒等式、和差化积、积化和差等公式;反三角函数的概念和性质;三角函数的图像和性质。

7. 数列与级数:包括数列的概念、性质和通项公式;等差数列、等比数列、递推数列等特殊数列的性质和求和方法;级数的概念、性质和收敛性判断。

8. 微积分:包括极限的概念、性质和运算;导数的概念、性质和运算;微分的概念和运算;积分的概念、性质和运算;定积分和不定积分的计算方法;微分方程的基本概念和求解方法。

9. 线性代数:包括矩阵的概念、运算和性质;行列式的概念、性质和计算方法;线性方程组的概念、性质和求解方法;向量空间、子空间、基、维数等概念;线性变换的概念和性质。

高中数学新课标知识点梳理

高中数学新课标知识点梳理

高中数学新课标知识点梳理高中数学作为基础教育的重要组成部分,其课程标准不断更新以适应时代的发展和学生的需求。

新课标强调了数学知识的应用性、创新性和实践性,旨在培养学生的数学思维和解决问题的能力。

以下是对高中数学新课标知识点的梳理:1. 函数与方程- 函数的概念、性质和图像- 一次函数、二次函数、指数函数、对数函数、三角函数等基本函数类型- 函数的单调性、奇偶性、周期性等性质- 函数的复合、反函数、函数的极值和最值- 方程的解法,包括一元一次方程、一元二次方程、二元一次方程组等2. 数列- 数列的概念和分类- 等差数列和等比数列的性质和求和公式- 数列的通项公式和递推关系- 数列的极限和收敛性3. 三角学- 三角函数的定义、图像和性质- 三角恒等式和三角变换- 解三角形问题,包括正弦定理和余弦定理- 三角函数的应用,如周期问题、角度问题等4. 空间几何- 平面几何的基本性质和定理- 空间直线和平面的位置关系- 空间多面体和旋转体的性质- 空间向量及其在几何问题中的应用5. 概率与统计- 随机事件的概率计算- 离散型和连续型随机变量的概率分布- 统计数据的收集、整理和分析- 统计图表的绘制和解读6. 微积分初步- 极限的概念和运算- 导数的定义、性质和应用- 积分的概念、性质和计算方法- 微分方程的初步介绍7. 线性代数初步- 矩阵的概念、运算和性质- 行列式的定义和计算- 线性方程组的解法- 向量空间和线性变换的基本概念8. 算法初步- 算法的概念和设计原则- 基本算法结构,如顺序结构、选择结构、循环结构- 算法的效率分析和优化新课标还强调了数学与其他学科的交叉融合,鼓励学生在实际问题中应用数学知识,培养创新思维和实践能力。

同时,新课标也注重数学文化的传承,让学生了解数学的历史和文化背景,增强数学学习的趣味性和深度。

通过这些知识点的系统学习,学生能够构建起扎实的数学基础,为未来的学术和职业生涯打下坚实的基础。

新课标高中数学知识点总结

新课标高中数学知识点总结

新课标高中数学知识点总结新课标高中数学知识点总结一、函数与方程1. 函数的概念与性质:定义域、值域、奇偶性、周期性等。

2. 渐近线的性质和求法。

3. 函数的运算与复合函数。

4. 一次函数、二次函数、幂函数、指数函数、对数函数、三角函数等的性质和图像。

5. 一元二次方程与二元一次方程的解法。

6. 不等式的性质和解法。

7. 等差数列、等比数列和等差数列的性质与求法。

二、数列与数学归纳法1. 数列的概念与性质:首项、公差、通项、前n项和等。

2. 递推数列和直线递推数列的求法与特点。

3. 手动计算数列的前n项和及其极限。

4. 数学归纳法的概念与应用。

三、平面向量1. 平面向量的概念与性质:平行、共线、反向、单位向量等。

2. 平面向量的加法、减法和数量乘法。

3. 平面向量的线性运算:向量的模、角、投影等。

4. 平面向量的数量积和向量积的概念及其计算方法。

四、立体几何与空间向量1. 空间直线与平面的性质与方程的求法。

2. 空间向量与几何应用:垂直、共面、距离等。

3. 空间图形的投影与旋转。

4. 空间向量的数量积和向量积的应用。

五、三角函数与解三角形1. 弧度制与角度制的换算。

2. 三角函数的概念与基本性质。

3. 三角函数的图像与性质:周期、对称等。

4. 三角函数的运算与公式。

5. 解三角形的基本概念与方法。

六、数学证明与二次函数1. 数学证明的方法与实例。

2. 不等式证明与恒等式证明的基本方法。

3. 二次函数的性质与图像:顶点、对称轴、增减性、最值等。

4. 二次函数的变形与应用:平移、伸缩等。

七、导数与微分1. 导数的概念、性质与计算方法。

2. 导数与函数的关系:切线、极值、凹凸等。

3. 函数的微分及其应用。

八、积分与不定积分1. 积分的概念与性质。

2. 定积分和不定积分的概念与计算方法。

3. 积分的应用:面积、体积、质量等。

九、数理统计与概率论1. 随机事件与概率的定义与性质。

2. 条件概率与贝叶斯公式。

高中数学知识点总结(新高考地区)精选全文完整版

高中数学知识点总结(新高考地区)精选全文完整版

一:集合与简易逻辑1.元素与集合(1)集合中元素的三个特性:确定性、互异性、无序性.(2)元素与集合的关系是属于或不属于,表示符号分别为∈和∉.(3)集合的三种表示方法:列举法、描述法、图示法.2.集合间的基本关系文字语言符号语言集合间的基本关系相等集合A与集合B中的所有元素都相同A=B 子集集合A中任意一个元素均为集合B中的元素A⊆B 真子集集合A中任意一个元素均为集合B中的元素,且集合B中至少有一个元素不是集合A中的元素BA⊂≠空集空集是任何集合的子集,是任何非空集合的真子集3.集合的基本运算集合的并集集合的交集集合的补集符号表示A∪B A∩B若全集为U,则集合A的补集为∁U A 图形表示集合表示{x|x∈A,或x∈B}{x|x∈A,且x∈B}{x|x∈U,且x∉A} 4.集合的运算性质(1)A∩A=A,A∩∅=∅,A∩B=B∩A.(2)A∪A=A,A∪∅=A,A∪B=B∪A.(3)A∩(∁U A)=∅,A∪(∁U A)=U,∁U(∁U A)=A.[方法技巧](1).若有限集A中有n个元素,则A的子集有2n个,真子集有2n-1个.(2)子集的传递性:A⊆B,B⊆C⇒A⊆C.(3)A⊆B⇔A∩B=A⇔A∪B=B⇔∁U A⊇∁U B.(4)∁U(A∩B)=(∁U A)∪(∁U B),∁U(A∪B)=(∁U A)∩(∁U B).15q pqq6、全称量词与存在量词(1)全称量词:短语“所有”在陈述中表示所述事物的全体,逻辑中通常叫做全称量词,并用符号“∀”表示.(2)存在量词:短语“有一个”或“有些”或“至少有一个”在陈述中表示所述事物的个体或部分,逻辑中通常叫做存在量词,并用符号“∃”表示.7、全称命题和存在性命题(命题p的否定记为⌝p,读作“非p”)[方法技巧]1.区别A是B的充分不必要条件(A⇒B且B⇏A),与A的充分不必要条件是B(B⇒A且A⇏B)两者的不同.2.A是B的充分不必要条件⇔⌝B是⌝A的充分不必要条件.3.含有一个量词的命题的否定规律是“改量词,否结论”.2二:函数基本知识(1)1、函数三要素32、函数性质43、指数和对数运算4、函数图象变换55、一元二次方程根的分布⎧Δ=067三:函数基本知识(2)1、一次函数2、反比例函数o yxyxo4、指数函数和对数函数(0∞)8点,且在第一象限是减函数.,1)点).“指大图低”).910四:三角函数1、任意角的三角函数(1)定义:角可以看成平面内的一条射线绕着端点从一个位置旋转到另一个位置所成的图形.(2)分类⎩⎪⎨⎪⎧按旋转方向不同分为正角、负角、零角.按终边位置不同分为象限角和轴线角.(3)终边相同的角:所有与角α终边相同的角,连同角α在内,可构成一个集合S ={β|β=α+k ·360°,k ∈Z }. 2.弧度制的定义和公式(1)定义:把长度等于半径长的弧所对的圆心角叫做1弧度的角,弧度记作rad. (2)公式角α的弧度数公式 |α|=lr (弧长用l 表示)角度与弧度的换算1°=π180rad ;1 rad =⎝⎛⎭⎫180π° 弧长公式 弧长l =|α|r 扇形面积公式S =12lr =12|α|r 2 3.任意角的三角函数(1)定义:设α是一个任意角,它的终边与单位圆交于点P (x ,y ),那么sin α=y ,cos α=x ,tan α=yx(x ≠0).(2)几何表示:三角函数线可以看作是三角函数的几何表示,正弦线的起点都在x 轴上,余弦线的起点都是原点,正切线的起点都是(1,0).如图中有向线段MP ,OM ,AT 分别叫做角α的正弦线、余弦线和正切线.[提醒](1)若α∈⎝⎛⎭⎫0,π2,则tan α>α>sin α. (2)角度制与弧度制可利用180°=π rad 进行互化,在同一个式子中,采用的度量制度必须一致,不可混用.114.象限角的集合5.轴线角的集合6.同角三角函数的基本关系(1)平方关系:sin 2α+cos 2α=1. (2)商数关系:sin αcos α=tan α.2k πα+ α− πα− πα+ 2πα− 2πα−2πα+2πα−sinsin αsin α−sin αsin α−sin α−cos αcos αcos α−coscos αcos αcos α−cos α−cos αsin α sin α− sin αtan tan α tan α− tan α− tan α tan α− cot α cot α− cot α−8.两角和与差的三角函数:S αβ+:sin()sin cos cos sin αβαβαβ+=⋅+⋅ S αβ−:sin()sin cos cos sin αβαβαβ−=⋅−⋅ C αβ+:cos()cos cos sin sin αβαβαβ+=⋅−⋅ C αβ−:cos()cos cos sin sin αβαβαβ−=⋅+⋅ T αβ+: βαβαβαtan tan 1tan tan )tan(−+=+T αβ−: βαβαβαtan tan 1tan tan )tan(+−=−129.二倍角公式:2S α:sin 22sin cos ααα= 2T α:22tan tan 21tan ααα=− 2C α2222cos 2cos sin 2cos 112sin ααααα=−=−=−10.降幂公式:1sin cos sin 22ααα= 21cos 2sin 2αα−= 21cos 2cos 2αα+=11.半角公式:12.合一变形 22sin cos )a x b x a b x ϕ+=++, 其中 tan b aϕ=1313.三角函数的图像与性质 sin y x =cos y x = tan y x =图象定义域R R,2x x k k ππ⎧⎫≠+∈Z ⎨⎬⎩⎭值域 []1,1−[]1,1−R最值 当22x k ππ=+()k ∈Z 时,max 1y =;当22x k ππ=− ()k ∈Z 时,min 1y =−.当()2x k k π=∈Z 时,max 1y =;当2x k ππ=+()k ∈Z 时,min 1y =−.既无最大值也无最小值周期性 2π2ππ奇偶性奇函数 偶函数奇函数单调性在2,222k k ππππ⎡⎤−+⎢⎥⎣⎦()k ∈Z 上是增函数;在32,222k k ππππ⎡⎤++⎢⎥⎣⎦()k ∈Z 上是减函数.在[]()2,2k k k πππ−∈Z 上是增函数;在[]2,2k k πππ+()k ∈Z 上是减函数.在,22k k ππππ⎛⎫−+⎪⎝⎭()k ∈Z 上是增函数.对称中心 ()(),0k k π∈Z(),02k k ππ⎛⎫+∈Z⎪⎝⎭ (),02k k π⎛⎫∈Z ⎪⎝⎭对称轴()2x k k ππ=+∈Z()x k k π=∈Z无对称轴函 数性 质四:平面向量“三角形法则”λ(μa)=(λμ)aλ+μ)a=λa+μa14五:解三角形1、正弦定理和余弦定理2、解三角形的四种模型153、解三角形的多解分析已知两边和其中一边的对角解三角形时,应分析解的情况:如已知a,b,A,则当A为锐角时当A为钝角或直角时图示关系式a<b sin A a=b sin A b sin A<a<b a≥b a>b a≤b解的情况无解一解两解一解一解无解16六:数列1、数列基本性质172、求数列通项公式(1).前n项和型(2)递推公式型183、数列求和19七:圆锥曲线1、椭圆a b-a≤x≤a,-b≤y≤b≤x≤b,-a≤y≤对称轴:对称中心:原点F1(-c,0),F2(c,0)(0,-c),F2(0,2、双曲线≤-a或x≥a;y∈∈R;y≤-a或y对称中心:原点203、抛物线x≥0;y∈R x≤0;y∈R x∈R;y≥0x∈R;y≤0对称轴:轴轴214、圆锥曲线的常用性质2223八:直线方程与圆的方程【公式】1.斜率公式(1)若直线l 的倾斜角α≠90°,则斜率k =tan α.(2)P 1(x 1,y 1),P 2(x 2,y 2)在直线l 上,且x 1≠x 2,则l 的斜率k =y 2-y 1x 2-x 1.3.几种距离公式(1)两点P 1(x 1,y 1),P 2(x 2,y 2)之间的距离:|P 1P 2|=(x 2-x 1)2+(y 2-y 1)2.(2)点P 0(x 0,y 0)到直线l :Ax +By +C =0的距离:d =|Ax 0+By 0+C |A 2+B 2.(3)两条平行线Ax +By +C 1=0与Ax +By +C 2=0(其中C 1≠C 2)间的距离:d =|C 1-C 2|A 2+B 2.4.圆的标准方程:(x -a )2+(y -b )2=r 2(r >0),其中(a ,b )为圆心,r 为半径.5.圆的一般方程:x 2+y 2+Dx +Ey +F =0该方程表示圆的充要条件是D 2+E 2-4F >0其中圆心为⎝⎛⎭⎫-D 2,-E 2,半径r =D 2+E 2-4F 2.6.判断直线与圆的位置关系常用的两种方法(1)几何法:利用圆心到直线的距离d 和圆半径r 的大小关系:d <r ⇔相交;d =r ⇔相切;d >r ⇔相离.(2)代数法:利用判别式Δ=b 2-4ac 进行判断:Δ>0⇔相交;Δ=0⇔相切;Δ<0⇔相离.247.圆与圆的位置关系:设圆O 1:(x -a 1)2+(y -b 1)2=r 21(r 1>0),圆O 2:(x -a 2)2+(y -b 2)2=r 22(r 2>0).则:d >r 1+r 2⇔外离; d =r 1+r 2⇔外切; |r 1-r 2|<d <r 1+r 2⇔相交;d =|r 1-r 2|⇔内切; 0≤d <|r 1-r 2|⇔内含【必备结论】1.斜率与倾斜角的关系:由正切图象可以看出:①当α∈⎣⎡⎭⎫0,π2时,斜率k ∈[0,+∞)且随着α增大而增大; ②当α=π2时,斜率不存在,但直线存在;③当α∈⎝⎛⎭⎫π2,π时,斜率k ∈(-∞,0)且随着α增大而增大.2.两条直线的位置关系(1)斜截式判断法:①两条直线平行:对于两条不重合的直线l 1、l 2:(ⅰ)若其斜率分别为k 1、k 2,则有l 1∥l 2⇔k 1=k 2.(ⅱ)当直线l 1、l 2不重合且斜率都不存在时,l 1∥l 2.②两条直线垂直:(ⅰ)如果两条直线l 1、l 2的斜率存在,设为k 1、k 2,则有l 1⊥l 2⇔k 1·k 2=-1.(ⅱ)当其中一条直线的斜率不存在,而另一条的斜率为0时,l 1⊥l 2.(2)一般式判断法:设两直线A 1x +B 1y +C 1=0与A 2x +B 2y +C 2=0,则有:①l 1∥l 2⇔A 1 B 2=A 2B 1且A 1 C 2≠A 2 C 1; ②l 1⊥l 2⇔A 1A 2+B 1B 2=0.3.直线系方程:(1)平行线系:与直线Ax +By +C =0平行的直线方程可设为:Ax +By +m =0(m ≠C );(2)垂直线系:与直线Ax +By +C =0垂直的直线方程可设为:Bx -Ay +n =0;(3)交点线系:过A 1x +B 1y +C 1=0与A 2x +B 2y +C 2=0的交点的直线可设:A 1x +B 1y +C 1+λ(A 2x +B 2y +C 2)=0.4.点与圆的位置关系圆方程(x-a)2+(y-b)2=r2,一般方程x2+y2+Dx+Ey+F=0,点M(x0,y0),则有:(1)点在圆上:(x0-a)2+(y0-b)2=r2,x02+y02+Dx0+E y0+F=0;(2)点在圆外:(x0-a)2+(y0-b)2>r2,x02+y02+Dx0+E y0+F>0;(3)点在圆内:(x0-a)2+(y0-b)2<r2,x02+y02+Dx0+E y0+F<0.5.圆的切线方程常用结论(1)过圆x2+y2=r2上一点P(x0,y0)的圆的切线方程为:x0x+y0y=r2.(2)过圆(x-a)2+(y-b)2=r2上一点P(x0,y0)的圆的切线方程为:(x0-a)(x-a)+(y0-b)(y-b)=r2.(3)过圆C:x2+y2+Dx+Ey+F=0外一点M(x0,y0)作圆的两条切线,则两切点所在直线方程的求法:①以M为圆心,切线长为半径求圆M的方程;②用圆M的方程减去圆C的方程即得;6.圆与圆的位置关系的常用结论(1)两圆的位置与公切线的条数:①内含:0条;②内切:1条;③相交:2条;④外切:3条;⑤外离:4条.(2)公共弦直线:当两圆相交时,两圆方程(x2,y2项系数相同)相减便可得公共弦所在直线的方程.7.常用口诀:①直线带参,必过定点;②弦长问题,用勾股.【方法】1.直线的对称问题:(1)点关于线对称:方程组法,设对称后点的坐标为(x,y),根据中点坐标及垂直斜率列方程组;(2)线关于线对称:①求交点;②已知直线上取一个特殊点,并求其关于直线的对称点;③两点定线即可.(3)圆关于线对称:圆心对称,半径不变.25262.直线与圆的相关问题:(1)切线问题:一般设直线点斜式(讨论斜率存在),然后依据d =r 列方程求解;(2)弦长问题:用勾股,即圆的半径为r ,弦心距为d ,弦长为l ,则根据勾股得⎝⎛⎭⎫l 22=r 2-d 2;3.轨迹求法:①直译法:直接根据题目提供的动点条件,直接列出方程,化简可得;②几何法:根据动点满足的几何特征,判断其轨迹类型,然后根据轨迹定义直接写出方程.③代入法:找到要求点与已知点的关系,代入已知点满足的关系式等.27九:立体几何与空间向量【公式】1.空间几何体的表面积与体积公式:(1)基本公式:①圆:面积S 圆=πr 2, 周长C 圆=2πr ;②扇形:弧长l 扇形=αR , 面积S 扇形=12lR =12αR 2,周长C 扇形=l +2R .S 圆柱侧=2πrl S 圆锥侧=πrl 圆台侧=π(r 1+(3)柱、锥、台和球的体积公式①柱体(棱柱和圆柱):S 表面积=S 侧+2S 底,V 柱=Sh ;②锥体(棱锥和圆锥) :S 表面积=S 侧+S 底,V 锥=13Sh ;③台体(棱台和圆台) : S 表面积=S 侧+S 上+S 下,V 台=13(S 上+S 下+S 上S 下)h ;④球:S 球=4πR 2 ,V 球=43πR 3;2.平行关系的判定及性质定理:283.垂直关系的判定及性质定理:图形语言4.空间向量与立体几何的求解公式:(1)异面直线成角:设a ,b 分别是两异面直线l 1,l 2的方向向量,则l 1与l 2所成的角θ满足:cos θ=|a ·b ||a ||b |;(2)线面成角:设直线l 的方向向量为a ,平面α的法向量为n ,a 与n 的夹角为β,则直线l 与平面α所成的角为θ满足:sin θ=|cos β|=|a ·n ||a ||n |.(3)二面角:设n 1,n 2分别是二面角α-l -β的两个半平面α,β的法向量,则两面的成角θ满足:cos θ=cos 〈n 1,n 2〉=n 1·n 2|n 1|·|n 2|;(4)点到平面的距离:如右图所示,已知AB 为平面α的一条斜线段,n 为平面α的法向量,则点B 到平面α的距离为:|BO →|=|AB →·n ||n |,即向量在法向量n 的方向上的投影长.29【结论】1.直观图与原图的关系:(1)作图关系:①位置:平行性、相交性不变;②长度:平行x (z )轴的长度不变,平行y 轴的长度减半.(2)面积关系:S 直观图′=24×S 原图;2.几个与球有关的内切、外接常用结论:(1)正方体的棱长为a ,球的半径为R ,则: ①若球为正方体的外接球,则2R =3a ; ②若球为正方体的内切球,则2R =a ; ③球与正方体的各棱相切,则2R =2a .(2)长方体的长、宽、高分别为a ,b ,c ,则外接球直径=长方体对角线,即:2R =a 2+b 2+c 2.(3)正四面体的外接球与内切球的半径之比为:3∶1.3.几种常见角的取值范围:①异面直线成角∈(0,π2]②二面角∈[0,π]③线面角∈[0,π2]④向量夹角∈[0,π] ⑤直线的倾斜角∈[0,π)【方法】1.三视图还原方法:提点连线法,具体步骤:①根据三视图轮廓画长方体或正方体; ②在底面画俯视图;③综合正视图和左视图进行提点连线; ④验证与完善.2.平行构造的常用方法:①三角形中位线法; ②平行四边形线法; ③比例线段法.3.垂直构造的常用方法:①等腰三角形三线合一法; ②勾股定理法; ③投影法.4.用向量证明空间中的平行关系(1)线线平行:设直线l1和l2的方向向量分别为v1和v2,则l1∥l2(或l1与l2重合)⇔v1∥v2.(2)线面平行:设直线l的方向向量为v,平面α的法向量为u,则l∥α或l⊂α⇔v⊥u.(3)面面平行:设平面α和β的法向量分别为u1,u2,则α∥β⇔u1∥u2.5.用向量证明空间中的垂直关系(1)线线垂直:设直线l1和l2的方向向量分别为v1和v2,则l1⊥l2⇔v1⊥v2⇔v1·v2=0.(2)线面垂直:设直线l的方向向量为v,平面α的法向量为u,则l⊥α⇔v∥u.(3)面面垂直:设平面α和β的法向量分别为u1和u2,则α⊥β⇔u1⊥u2⇔u1·u2=0.6.点面距常用方法:①作点到面的垂线,点到垂足的距离即为点到平面的距离;②等体积法;③向量法7.外接球常用方法:①将几何体补成长方体或正方体,则球直径=体对角线;②过两个三角形的外接圆圆心作圆面垂线,则垂线交点即为外接球球心,找到球心即可求半径.3031十:排列组合与二项式定理1、分类加法计数原理:做一件事,完成它有类办法,在第一类办法中有种不同的方法,在第二类办法中有种不同的方法……在第类办法中,有种不同的方法.那么完成这件事共有种不同的方法.2、分步乘法计数原理:做一件事,完成它需要分成个步骤,做第一个步骤有种不同的方法,做第一个步骤有种不同的方法……做第个步骤有种不同的方法.那么完成这件事共有种不同的方法.3、排列:(1)、排列:从个不同元素中任取个元素,按照一定的顺序排成一列,叫做从个不同元素中取出个元素的一个排列(2)、排列数从个不同元素中取出个元素的所有排列的个数,叫做从个不同元素中取出个元素的排列数,用符号表示:当时,为全排列.的阶乘:排列数公式可写成(规定)n 1m 2m n n m 12n N m m m =+++n 1m 2m n 12n N m m m =⨯⨯⨯n ()m m n ≤n m n ()m m n ≤n m mn A ()()()121mn A n n n n m =−−−+m n =()()12321nn A n n n =−−⨯⨯n ()()12321!nn A n n n n =−−⨯⨯=()!!mn n A n m =−0!1=324、组合 (1)组合:从n 个元素中取出m 个元素合成一组,叫做从n 个元素中取出m 个元素的一个组合。

高中数学新课标重难点

高中数学新课标重难点

高中数学新课标重难点
高中数学新课标重难点主要集中在以下几个方面:
1. 函数与方程:函数的概念、性质、图像以及函数与方程的关系是高
中数学的重点。

特别是复合函数、分段函数、函数的单调性、奇偶性、周期性等性质,以及函数的极值和最值问题。

2. 导数与微积分:导数的概念、运算法则、导数的应用(如速度、加
速度、曲线的切线斜率等)以及微积分的初步知识(如定积分、不定
积分)是高中数学的难点。

3. 几何与空间几何:平面几何中的三角形、四边形、圆的性质和定理,以及空间几何中的立体几何、向量、空间直线与平面的位置关系等是
高中数学的重点内容。

4. 概率与统计:概率的基本概念、事件的独立性、条件概率、随机变
量及其分布、统计图表的绘制与解读、数据的描述性分析等是高中数
学的重要组成部分。

5. 数列与极限:数列的概念、通项公式、求和公式、数列的极限以及
极限的运算是高中数学的难点之一。

6. 解析几何:直线、圆、椭圆、双曲线、抛物线等圆锥曲线的性质、
方程以及它们的位置关系是高中数学的重点。

7. 矩阵与变换:矩阵的概念、运算、逆矩阵、行列式以及矩阵在几何
变换中的应用是高中数学的难点。

8. 算法与逻辑:算法的基本思想、流程图的绘制、逻辑推理、证明方法等是培养学生逻辑思维和问题解决能力的重要内容。

这些重难点不仅要求学生掌握相应的数学知识和技能,还要求他们能够运用这些知识和技能解决实际问题,提高他们的数学素养和创新能力。

高中数学新课标要点汇总

高中数学新课标要点汇总

高中数学新课标要点汇总高中数学新课程标准(简称新课标)是为了适应新时代教育改革的要求,培养学生的数学素养和创新能力而制定的。

新课标强调数学知识与实际生活的联系,注重学生的主动探索和实践应用,旨在提高学生的数学思维能力和解决问题的能力。

以下是高中数学新课标的主要要点汇总:1. 课程目标:新课标明确了高中数学教育的目标是培养学生的数学素养,包括数学知识、数学思维、数学应用和数学文化等方面。

通过高中数学学习,学生应能够理解数学概念,掌握数学方法,运用数学工具解决实际问题,并具备一定的创新意识和批判性思维。

2. 课程内容:新课标对高中数学课程内容进行了重新整合和优化,主要包括数与代数、几何与拓扑、概率与统计、函数与方程、微积分初步等五大模块。

每个模块都强调基础知识与实际应用的结合,以及数学思想方法的渗透。

3. 教学方法:新课标提倡以学生为中心的教学方法,鼓励教师采用探究式、合作式、项目式等多种教学方式,激发学生的学习兴趣和主动性。

同时,新课标也强调信息技术在数学教学中的应用,利用多媒体和网络资源丰富教学内容,提高教学效果。

4. 评价方式:新课标改革了传统的评价方式,强调过程性评价与结果性评价相结合,注重学生在学习过程中的表现和进步。

评价内容不仅包括数学知识掌握情况,还包括学生的数学思维、问题解决能力和创新能力等方面。

5. 课程资源:新课标鼓励教师和学校充分利用各种课程资源,包括教材、教辅资料、网络资源等,为学生提供丰富多样的学习材料。

同时,新课标也提倡开发校本课程,结合学校和地区的实际情况,设计符合学生需求的数学课程。

6. 教师发展:新课标对教师的专业发展提出了更高的要求,强调教师应不断更新教育理念,提高教学技能,积极参与教学研究和学术交流。

同时,新课标也鼓励教师进行跨学科教学,拓宽知识视野,提高综合教学能力。

7. 学生发展:新课标关注学生的全面发展,鼓励学生在学习数学的同时,培养良好的学习习惯和自主学习能力。

高中数学新课标必背

高中数学新课标必背

高中数学新课标必背高中数学新课标必背的内容涵盖了高中数学的基础知识和核心概念,这些内容是学生必须掌握的,以便于在高考中取得良好的成绩。

以下是一些重要的必背知识点:1. 集合与简易逻辑:- 集合的概念、表示法、子集、并集、交集、补集。

- 逻辑联结词:非、且、或、蕴含。

- 命题的真假判断。

2. 函数:- 函数的概念、定义域、值域、函数的单调性、奇偶性。

- 一次函数、二次函数、指数函数、对数函数、三角函数的图像和性质。

- 函数的复合、反函数。

3. 导数与微分:- 导数的概念、几何意义、物理意义。

- 基本初等函数的求导公式。

- 导数的应用:求切线方程、单调区间、极值、最值。

4. 积分:- 不定积分和定积分的概念、性质、计算方法。

- 定积分在几何和物理中的应用。

5. 三角函数与三角恒等变换:- 三角函数的定义、图像、性质。

- 三角恒等式:和差公式、倍角公式、半角公式、和差化积、积化和差。

6. 平面向量:- 向量的概念、表示法、向量的加减、数乘、点积、叉积。

- 向量的应用:表示平面几何问题、解决物理问题。

7. 数列:- 数列的概念、通项公式、求和公式。

- 等差数列和等比数列的性质和求和公式。

- 数列的极限概念。

8. 不等式:- 不等式的性质、解法。

- 绝对值不等式、一元二次不等式的解法。

- 基本不等式:算术平均数-几何平均数不等式、柯西不等式。

9. 解析几何:- 直线的方程、圆的方程、椭圆、双曲线、抛物线的标准方程。

- 直线与圆的位置关系、圆与圆的位置关系。

- 圆锥曲线的应用。

10. 立体几何:- 空间直线、平面的位置关系。

- 多面体、旋转体的体积和表面积的计算。

- 空间向量在立体几何中的应用。

11. 概率与统计:- 随机事件、概率的计算。

- 离散型随机变量和连续型随机变量的概率分布。

- 统计图表、数据的描述性统计。

12. 复数:- 复数的概念、表示法、复数的四则运算。

- 复数的几何意义、复数的模和辐角。

高中数学新课标总复习

高中数学新课标总复习

高中数学新课标总复习高中数学新课标总复习是针对高中数学课程的全面回顾和巩固,它涵盖了高中数学的主要知识点和技能,以帮助学生为高考或进一步的数学学习做好准备。

以下是高中数学新课标总复习的主要内容:1. 集合与简易逻辑:包括集合的概念、表示法、运算(交集、并集、补集),以及简易逻辑中的命题、逻辑连接词、真值表等。

2. 函数:函数的概念、表示法、函数的性质(单调性、奇偶性、周期性)、基本初等函数(一次函数、二次函数、幂函数、指数函数、对数函数、三角函数)及其图像和性质。

3. 导数与微积分初步:导数的概念、求导法则、导数的应用(极值、最值、曲线的切线方程),以及微积分的初步概念,如定积分和不定积分。

4. 三角函数与解三角形:三角函数的定义、图像和性质,包括正弦、余弦、正切函数,以及三角恒等变换和解三角形的方法。

5. 不等式:不等式的基本性质、解法,包括一元一次不等式、一元二次不等式、绝对值不等式和不等式的证明。

6. 数列:数列的概念、通项公式、求和公式,包括等差数列和等比数列的性质和应用。

7. 立体几何:空间几何体的表面积和体积计算,包括柱体、锥体、球体等,以及空间直线和平面的位置关系。

8. 解析几何:直线和圆的方程、直线与圆的位置关系、椭圆、双曲线、抛物线的标准方程和性质。

9. 概率与统计:随机事件的概率、条件概率、离散型随机变量的分布列和期望值、方差,以及统计图表的绘制和数据分析。

10. 算法初步:算法的概念、流程图的绘制、基本的算法设计方法。

在进行总复习时,学生应该系统地回顾每个章节的知识点,通过练习题和模拟试卷来检验自己的理解和应用能力。

同时,注意总结解题技巧和方法,提高解题效率。

此外,对于易错点和难点,应该特别关注并加以强化训练。

通过这样的复习,学生可以更好地掌握高中数学的知识体系,为未来的学习和考试打下坚实的基础。

高中数学新课标的考点总结

高中数学新课标的考点总结

高中数学新课标的考点总结高中数学新课标是指导高中数学教学的重要文件,它涵盖了高中数学教学的主要内容和要求。

以下是对高中数学新课标考点的总结:1. 函数与方程- 理解函数的概念,掌握函数的表示方法。

- 学习函数的性质,包括单调性、奇偶性、周期性等。

- 掌握函数的图像,包括函数的图像变换。

- 理解方程的解法,包括一元二次方程、高次方程和分式方程等。

2. 数列- 理解数列的概念,包括等差数列和等比数列。

- 掌握数列的通项公式和求和公式。

- 学习数列的应用,如在几何、物理等领域的应用。

3. 三角函数- 理解任意角的概念,掌握三角函数的定义。

- 学习三角函数的基本性质,包括周期性、奇偶性等。

- 掌握三角恒等变换,包括和差化积、积化和差等。

- 理解三角函数的图像,包括正弦、余弦、正切等函数的图像。

4. 平面向量- 理解向量的概念,掌握向量的表示方法。

- 学习向量的运算,包括向量的加法、减法、数乘等。

- 掌握向量的坐标表示和向量的数量积。

- 理解向量的应用,如在解析几何中的应用。

5. 立体几何- 理解空间几何体的概念,包括多面体和旋转体。

- 掌握空间几何体的表面积和体积的计算方法。

- 学习空间几何体的位置关系,包括平行、垂直等。

- 理解空间向量的概念,掌握空间向量的坐标表示和运算。

6. 解析几何- 理解坐标系的概念,掌握直角坐标系和极坐标系。

- 学习直线和圆的方程,包括直线的一般式和圆的标准式。

- 掌握圆锥曲线的方程,包括椭圆、双曲线和抛物线。

- 理解解析几何的应用,如在物理、工程等领域的应用。

7. 概率与统计- 理解随机事件的概念,掌握概率的计算方法。

- 学习离散型随机变量和连续型随机变量。

- 掌握统计的基本概念,包括总体、样本、样本容量等。

- 理解统计图表的绘制,包括条形图、折线图、饼图等。

8. 微积分初步- 理解极限的概念,掌握极限的计算方法。

- 学习导数的概念,包括导数的定义和运算法则。

- 掌握积分的概念,包括不定积分和定积分。

高中数学-新教材知识点全归纳

高中数学-新教材知识点全归纳

第1章集合与常用逻辑用语§1.1集合的概念1.集合定义:把研究的对象统称为元素,把一些元素组成的总体叫做集合.集合三要素:确定性.互异性.无序性.2.集合的相等:只要构成两个集合的元素是一样的,就称这两个集合相等.3.元素和集合的关系:属于(a∈A)和不属于(a∉A).4.常见数集:自然数集:N,正整数集:n或m1,整数集:Z,有理数集:Q,实数集R.5.集合的表示方法:(1)列举法:把集合的所有元素一一列举出来,并用花括号“ ”括起来表示集合的方法叫列举法.,这种(2)描述法:设A是一个集合,我们把集合A中所有具有共同特征P x 的元素x所组成的集合表示为x∈A P(x)表示集合的方法称为描述法.§1.2集合间的基本关系1.子集:对于两个集合A,B,如果集合A中任意一个元素都是集合B中的元素,则称集合A是集合B的子集,记作m2.2.真子集:如果集合n,但存在元素m n,且N=m1+m2+⋯+m n,则称集合A是集合B的真子集.记作:集合A⊊B(或B⊋A).3.空集:把不含任何元素的集合叫做空集.记作:n.并规定:空集合是任何集合的子集.4.子集个数:如果集合A中含有n个元素,则集合A有m1个子集,2n-1个真子集.§1.3集合的基本运算1.并集:由所有属于集合A或集合B的元素组成的集合,称为集合集合A是集合B与B的并集.记作:m2.即A∪B= .x x∈A,或x∈B2.交集:由属于集合A且属于集合B的所有元素组成的集合,称为集合A是集合B与B的交集.记作:n.即A∩B= .x x∈A,且x∈B3.补集:对于集合A,由全集U中不属于集合A的所有元素组成的集合称为集合A相对于全集U的补集,记作:∁U A,即∁U A={x|x∈U,且x∉U}.§1.4充分条件与必要条件1.命题:可以判断真假的陈述句叫命题;2.充分条件.必要条件与充要条件如果“若p,则q”为真命题,是指由p通过推理可以得出q,我们就说由p可以推出q,记作p⇒q,并且说p是q的充分条件,q 是p的必要条件;如果“若p,则q”为假命题,那么由条件p不能提出结论q,记作p⇏q,我们就说p不是q的充分条件,q不是p的必要条件;如果“若p,则q”和它的逆命题“若q,则p”均是真命题,即既有p⇒q,又有q⇒p,就记作p⇔q此时则p是q的充分条件,也是q的必要条件,我们就说p是q的充分必要条件,简称为充要条件.如果p⇔q,那么p与q互为充要条件.§1.5全称量词与存在量词1.全称量词与存在量词(1)全称量词与全称量词命题短语“所有的”“任意一个”在逻辑中通常叫做全称量词,并用符号“∀”表示.含有全称量词的命题,叫做全称量词命题.记为∀x∈Μ,p(x).(2)存在量词与存在量词命题短语“存在一个”“至少有一个”在逻辑中通常叫做存在量词,并用符号“∃”表示.含有存在量词的命题,叫做存在量词命题.记为∃x∈Μ,p(x).2.全称量词命题与存在量词命题的否定(1)全称量词命题p:∀x∈Μ,p(x),它的否定¬p:∃x∈Μ,¬p(x).(2)存在量词命题p:∃x∈Μ,p(x),它的否定¬p:∀x∈Μ,¬p(x).第2章一元二次函数、方程和不等式§2.1等式性质与不等式性质1.作差法比较大小a >b ⇔a -b >0;a <b ⇔a -b <0;a =b ⇔a -b =0.2.不等式的基本性质(1)(对称性)a >b ⇔b >a (2)(传递性)a >b ,b >c ⇒a >c (3)(可加性)a >b ⇔a +c >b +c(4)(可乘性)a >b ,c >0⇒ac >bc ;a >b ,c <0⇒ac <bc (5)(同向可加性)a >b ,c >d ⇒a +c >b +d (6)(正数同向可乘性)a >b >0,c >d >0⇒ac >bd (7)(正数乘方法则)a >b >0⇒a n >b n (n ∈N ,且n >1)§2.2基本不等式①重要不等式:a 2+b 2≥2ab a ,b ∈R ,(当且仅当a =b 时取"="号).变形公式:2(a 2+b 2)≥(a +b )2a ,b ∈R②基本不等式:a +b2≥ab a ,b ∈R + ,(当且仅当a =b 时取到等号).变形公式:a +b ≥2ab ;ab ≤a +b 22.用基本不等式求最值时(积定和最小,和定积最大),要满足条件:“一正.二定.三相等”.§2.3二次函数与一元二次方程.不等式Δ>0Δ=0Δ<0y =ax 2+bx +c a >0 的图象ax 2+bx +c =0(a >0)的根x 1,x 2(x 1<x 2)x 1=x 2=-b2a 没有实数根ax 2+bx +c >0(a >0)的解集x x <x 1,或x >x 2 x x ≠-b 2aRax 2+bx +c <0(a >0)的解集x x 1<x <x 2∅∅第3章函数的概念与性质§3.1函数的概念及其表示1. 设A,B是非空的实数集,使对于集合A中的任意一个数x,如果按照某种确定的对应关系f,在集合B中都有惟一确定的数y和它对应,那么就称f:A→B为集合A到集合B的一个函数,记作:y=f x ,x∈A.2. 函数的构成要素为:定义域.对应关系.值域.3. 区间:闭区间、开区间、半开半闭区间.4. 函数的三种表示方法:解析法、图象法、列表法.5. 分段函数§3.2.函数的基本性质§3.2.1单调性与最大(小)值1.函数单调性的定义:设函数f(x)的定义域为I,区间D⊆I,如果∀x1、x2∈D,当x1<x2时,都有:f(x1)<f(x2)或f(x1)-f(x2)<0,就称f(x)在区间D上单调递增;特别地,当函数在它的定义域上单调递增时,就称它是增函数;f(x1)>f(x2)或f(x1)-f(x2)>0,就称f(x)在区间D上单调递减.特别地,当函数在它的定义域上单调递减时,就称它是减函数;2. 最大值、最小值:设函数f(x)的定义域为I,如果存在实数M满足:(1)∀x∈I,都有f(x)≤M;(2)∃x0∈I,使得f(x0)=M,我们就称M是函数y=f(x)的最大值.如果存在实数N满足:(1)∀x∈I,都有f(x)≥N;(2)∃x0∈I,使得f(x0)=N,我们就称N是函数y=f(x)的最小值.§3.2.2奇偶性1.定义:设函数n的定义域为I, 如果∀x∈I,都有-x∈I,且n(或f(-x)-f(x)=0),那么就称函数f x 为偶函数.偶函数图象关于y轴对称.且若f(-x)=-f(x)(或f(-x)+f(x)=0),那么就称函数f x 为奇函数.奇函数图象关于原点对称.2.奇函数的性质:若奇函数n的定义域为I, 如果0∈I,则有f(0)=0.3.奇偶性与单调性:奇函数在关于原点对称的区间上单调性相同;偶函数在关于原点对称的区间上单调性相反.§3.3幂函数1.幂函数的解析式:y=xα,x是自变量,α是常数.2.几种幂函数的图象:3.幂函数的性质:(1)定点:1,1.(2)单调性:当α>0时,y=xα在0,+∞上单调递增;当α<0时,y=xα在0,+∞上单调递减;第4章指数函数与对数函数§4.1指数§4.1.1n 次方根与分数指数幂1.如果x n =a ,那么x 叫做a 的n 次方根.其中n >1,n ∈N +.2.当n 为奇数时,na n =a ;当n 为偶数时,na n =a .3.规定:⑴a mn =na m (a >0,m ,n ∈N *,n >1);⑵a -m n =1a m n=1n a m (a >0,m ,n ∈N *,n >1) .(3)0的正分数指数幂等于0.0的负分数指数幂无意义.4. 运算性质:⑴a r a s=a r +sa >0,r ,s ∈Q ;⇒a ras =a r -s⑵a r s =a rs a >0,r ,s ∈Q ;⇒a r s =a s r =a rs⑶ab r =a r b r a >0,b >0,r ∈Q .§4.1.2无理指数幂及其运算性质运算性质:⑴a r a s=a r +sa >0,r ,s ∈R ;⇒a ras =a r -s⑵a r s =a rs a >0,r ,s ∈R ;⇒a r s =a s r =a rs⑶ab r =a r b r a >0,b >0,r ∈R .§4.2指数函数1.定义:函数y =a x a >0,a ≠1 叫做指数函数,定义域为R .2.性质:a >10<a <1图象性质(1)定义域:R (2)值域:(0,+∞)(3)过定点(0,1),即x =0时,y =1(4)增函数(4)减函数(5)x >0,a x>1;x <0,0<a x <1(5)x >0,0<a x<1;x <0,a x >1§4.3.对数1.定义:如果a x =N a >0,a ≠1 ;那么数x 叫做以a 为底N 的对数,记作:x =log a N ,a 叫对数的底数,N 叫真数.2.指数与对数间的关系:当a >0,a ≠1时,a x =N ⇔x =log a N3.对数恒等式:a log aN =N ,log a a N =N .4.两个特殊对数:(1)以10为底的对叫做常用对数,并把log 10N 记为lg N ;(2)以无理数e =2.71828⋯⋯为底数的对数称为自然对数,并把log e N 记为ln N ;5.基本性质:⑴log a 1=0;⑵log a a =1;⑶负数和0没有对数.6.积、商、幂的对数运算法则:当a >0,a ≠1,M >0,N >0时:⑴a MN log =a M log +a N log ;⑵a MNlog =a M log -a N log ;⑶a M n log =n a M log .5.换底公式:a b log =c blog c a log a >0,a ≠1,c >0,c ≠1,b >0 .6.推论:⑴log a nb m =m n log a b ⑵log a b =1log b a a >0,a ≠1,b >0,b ≠1 .§4.4.对数函数1.定义:函数y =log a x a >0,a ≠1 叫做对数函数,定义域是0,+∞ .2.性质:a >10<a <1图象性质(1)定义域:(0,+∞)(2)值域:R (3)过定点(1,0),即x =1时,y =0(4)在(0,+∞)上是增函数(4)在(0,+∞)上是减函数(5)x >1,log a x >0;0<x <1,log a x <0(5)x >1,log a x <0;0<x <1,log a x >0§4.5.函数的应用4.5.1函数的零点与方程的解1.方程f x =0有实数解⇔函数y =f x 的图象与x 轴有公共点⇔函数y =f x 有零点.2. 函数零点存在性定理:如果函数y =f x 在区间a ,b 上的图象是连续不断的一条曲线,并且有f a ⋅f b <0,那么函数y =f x 在区间a ,b 内至少有一个零点,即存在c ∈a ,b ,使得f c =0,这个c 也就是方程f x =0的解.3.用二分法求方程的近似解对于在区间a ,b 上图象连续不断且f a ⋅f b <0的函数y =f x ,通过不断地把它零点所在区间一分为二,使所得区间的两个端点逐步逼近零点,进而得到零点近似值的方法叫做二分法.第5章三角函数§5.1.1.任意角1.正角、负角、零角、象限角的概念.正角:一条射线绕其端点按逆时针方向旋转形成的角叫做正角;负角:按顺时针方向旋转形成的角叫做负角;零角:一条射线没有任何旋转,就称它形成了一个零角。

新高考数学常用知识点

新高考数学常用知识点

新高考数学常用知识点一、函数及其性质函数的概念:函数是一种描述两个变量之间关系的规律或规则。

函数的表示方法:函数可以用方程、图表或者词语描述。

函数的性质:单调性、奇偶性、周期性、对称性等。

二、集合与运算集合的概念:集合是由一些确定的元素组成的整体。

集合的表示方法:列举法、描述法、区间法等。

集合运算:并集、交集、差集、补集等。

三、数与代数实数与有理数:实数是指全部的数,有理数是可写成两个整数之比的数。

绝对值:一个实数的绝对值是它到原点的距离,用|a|表示。

代数式:用字母表示数的式子,包括多项式、分式等。

四、平面几何和空间几何几何图形:点、线、面等几何基本元素构成的图形。

平面几何:研究点、线、面在平面上的性质和关系。

空间几何:研究点、线、面在空间中的性质和关系。

五、概率与统计概率的概念:事件发生的可能性大小,范围从0到1。

概率的计算:基本事件的概率计算、事件关系的概率计算等。

统计学:对数据进行收集、整理、分析和解释的学科。

六、数列与数学归纳法数列:按一定规则排列的数的序列。

等差数列:相邻两项之差相等的数列。

等比数列:相邻两项之比相等的数列。

数学归纳法:证明数学命题在自然数上成立的方法。

七、导数与微分导数的概念:描述函数变化率的指标,表示函数在某一点上的瞬时变化率。

导数的计算:使用导数的定义或一些基本公式进行计算。

八、不等式与不等式的应用不等式的概念:关于未知数的相对大小的数学陈述。

解不等式:求出使不等式成立的未知数范围。

不等式的应用:在实际问题中,利用不等式来求解和判断。

九、数理逻辑与证明数理逻辑:研究正确推理的规律、方法和规则。

命题与命题连接词:由语句构成的有确定真假的陈述称为命题。

十、立体几何多面体:具有三维形状的几何体,如正方体、长方体等。

圆锥、圆柱和圆台:具有特定形状的立体几何体。

体积与表面积:立体几何体的容积和表面积的计算。

以上是新高考数学常用知识点的概要介绍,希望能对你的学习有所帮助。

请根据个人实际情况进行详细学习和深入理解,并结合具体问题进行练习和应用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学必修+选修知识点归纳新课标人教A版引言1.课程内容:必修课程由5个模块组成:必修1:集合、函数概念与基本初等函数(指、对、幂函数)必修2:立体几何初步、平面解析几何初步。

必修3:算法初步、统计、概率。

必修4:基本初等函数(三角函数)、平面向量、三角恒等变换。

必修5:解三角形、数列、不等式。

以上是每一个高中学生所必须学习的。

上述内容覆盖了高中阶段传统的数学基础知识和基本技能的主要部分,其中包括集合、函数、数列、不等式、解三角形、立体几何初步、平面解析几何初步等。

不同的是在保证打好基础的同时,进一步强调了这些知识的发生、发展过程和实际应用,而不在技巧与难度上做过高的要求。

此外,基础内容还增加了向量、算法、概率、统计等内容。

选修课程有4个系列:系列1:由2个模块组成。

选修1—1:常用逻辑用语、圆锥曲线与方程、导数及其应用。

选修1—2:统计案例、推理与证明、数系的扩充与复数、框图系列2:由3个模块组成。

选修2—1:常用逻辑用语、圆锥曲线与方程、空间向量与立体几何。

选修2—2:导数及其应用,推理与证明、数系的扩充与复数选修2—3:计数原理、随机变量及其分布列,统计案例。

系列3:由6个专题组成。

选修3—1:数学史选讲。

选修3—2:信息安全与密码。

选修3—3:球面上的几何。

选修3—4:对称与群。

选修3—5:欧拉公式与闭曲面分类。

选修3—6:三等分角与数域扩充。

系列4:由10个专题组成。

选修4—1:几何证明选讲。

选修4—2:矩阵与变换。

选修4—3:数列与差分。

选修4—4:坐标系与参数方程。

选修4—5:不等式选讲。

选修4—6:初等数论初步。

选修4—7:优选法与试验设计初步。

选修4—8:统筹法与图论初步。

选修4—9:风险与决策。

选修4—10:开关电路与布尔代数。

2.重难点及考点:重点:函数,数列,三角函数,平面向量,圆锥曲线,立体几何,导数难点:函数、圆锥曲线高考相关考点:⑴集合与简易逻辑:集合的概念与运算、简易逻辑、充要条件⑵函数:映射与函数、函数解析式与定义域、值域与最值、反函数、三大性质、函数图象、指数与指数函数、对数与对数函数、函数的应用⑶数列:数列的有关概念、等差数列、等比数列、数列求和、数列的应用⑷三角函数:有关概念、同角关系与诱导公式、和、差、倍、半公式、求值、化简、证明、三角函数的图象与性质、三角函数的应用⑸平面向量:有关概念与初等运算、坐标运算、数量积及其应用⑹不等式:概念与性质、均值不等式、不等式的证明、不等式的解法、绝对值不等式、不等式的应用⑺直线和圆的方程:直线的方程、两直线的位置关系、线性规划、圆、直线与圆的位置关系⑻圆锥曲线方程:椭圆、双曲线、抛物线、直线与圆锥曲线的位置关系、轨迹问题、圆锥曲线的应用⑼直线、平面、简单几何体:空间直线、直线与平面、平面与平面、棱柱、棱锥、球、空间向量⑽排列、组合和概率:排列、组合应用题、二项式定理及其应用⑾概率与统计:概率、分布列、期望、方差、抽样、正态分布⑿导数:导数的概念、求导、导数的应用 ⒀复数:复数的概念与运算必修1数学知识点第一章:集合与函数概念 §1.1.1、集合1、 把研究的对象统称为元素,把一些元素组成的总体叫做集合。

集合三要素:确定性、互异性、无序性。

2、 只要构成两个集合的元素是一样的,就称这两个集合相等。

3、 常见集合:正整数集合:*N 或+N ,整数集合:Z ,有理数集合:Q ,实数集合:R .4、集合的表示方法:列举法、描述法. §1.1.2、集合间的基本关系1、 一般地,对于两个集合A 、B ,如果集合A 中任意一个元素都是集合B 中的元素,则称集合A 是集合B 的子集。

记作B A ⊆.2、 如果集合B A ⊆,但存在元素B x ∈,且A x ∉,则称集合A 是集合B 的真子集.记作:A B. 3、 把不含任何元素的集合叫做空集.记作:∅.并规定:空集合是任何集合的子集. 4、 如果集合A 中含有n 个元素,则集合A 有n2个子集,21n-个真子集.§1.1.3、集合间的基本运算1、 一般地,由所有属于集合A 或集合B 的元素组成的集合,称为集合A 与B 的并集.记作:B A . 2、 一般地,由属于集合A 且属于集合B 的所有元素组成的集合,称为A 与B 的交集.记作:B A . 3、全集、补集?{|,}U C A x x U x U =∈∉且 §1.2.1、函数的概念1、 设A 、B 是非空的数集,如果按照某种确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有惟一确定的数()x f 和它对应,那么就称B A f →:为集合A 到集合B 的一个函数,记作:()A x x f y ∈=,.2、 一个函数的构成要素为:定义域、对应关系、值域.如果两个函数的定义域相同,并且对应关系完全一致,则称这两个函数相等. §1.2.2、函数的表示法1、 函数的三种表示方法:解析法、图象法、列表法. §1.3.1、单调性与最大(小)值 1、注意函数单调性的证明方法:(1)定义法:设2121],,[x x b a x x <∈、那么],[)(0)()(21b a x f x f x f 在⇔<-上是增函数; ],[)(0)()(21b a x f x f x f 在⇔>-上是减函数.步骤:取值—作差—变形—定号—判断 格式:解:设[]b a x x ,,21∈且21x x <,则:()()21x f x f -=…(2)导数法:设函数)(x f y =在某个区间内可导,若0)(>'x f ,则)(x f 为增函数; 若0)(<'x f ,则)(x f 为减函数.§1.3.2、奇偶性1、 一般地,如果对于函数()x f 的定义域内任意一个x ,都有()()x f x f =-,那么就称函数()x f 为偶函数.偶函数图象关于y 轴对称.2、 一般地,如果对于函数()x f 的定义域内任意一个x ,都有()()x f x f -=-,那么就称函数()x f 为奇函数.奇函数图象关于原点对称. 知识链接:函数与导数1、函数)(x f y =在点0x 处的导数的几何意义: 函数)(x f y =在点0x 处的导数是曲线)(x f y =在))(,(00x f x P 处的切线的斜率)(0x f ',相应的切线方程是))((000x x x f y y -'=-. 2、几种常见函数的导数①'C 0=;②1')(-=n n nxx ;③x x cos )(sin '=;④x x sin )(cos '-=; ⑤a a a x x ln )('=;⑥xx e e =')(; ⑦a x x a ln 1)(log '=;⑧xx 1)(ln '= 3、导数的运算法则 (1)'v . (2)'''()uv u v uv =+.(3)'''2()(0)u u v uv v v v -=≠.4、复合函数求导法则复合函数(())y f g x =的导数和函数(),()y f u u g x ==的导数间的关系为x u x y y u '''=⋅,即y 对x 的导数等于y 对u 的导数与u 对x 的导数的乘积.解题步骤:分层—层层求导—作积还原. 5、函数的极值 (1)极值定义:极值是在0x 附近所有的点,都有)(x f <)(0x f ,则)(0x f 是函数)(x f 的极大值;极值是在0x 附近所有的点,都有)(x f >)(0x f ,则)(0x f 是函数)(x f 的极小值. (2)判别方法:①如果在0x 附近的左侧)('x f >0,右侧)('x f <0,那么)(0x f 是极大值;②如果在0x 附近的左侧)('x f <0,右侧)('x f >0,那么)(0x f 是极小值. 6、求函数的最值(1)求()y f x =在(,)a b 内的极值(极大或者极小值)(2)将()y f x =的各极值点与(),()f a f b 比较,其中最大的一个为最大值,最小的一个为极小值。

注:极值是在局部对函数值进行比较(局部性质);最值是在整体区间上对函数值进行比较(整体性质)。

第二章:基本初等函数(Ⅰ) §2.1.1、指数与指数幂的运算1、 一般地,如果a x n=,那么x 叫做a 的n 次方根。

其中+∈>N n n ,1. 2、 当n 为奇数时,a a nn=;当n 为偶数时,a a n n=. 3、 我们规定: ⑴m n mna a=()1,,,0*>∈>m Nn m a ;⑵()01>=-n aan n; 4、 运算性质: ⑴()Q s r a aa a sr sr∈>=+,,0;⑵()()Q s r a a a rs sr∈>=,,0;⑶()()Q r b a b a ab rr r∈>>=,0,0.§2.1.2、指数函数及其性质 1、记住图象:()1,0≠>=a a a y x2、性质:§2.2.1、对数与对数运算1、指数与对数互化式:log xa a N x N =⇔=;2、对数恒等式:log a NaN =.3、基本性质:01log =a ,1log =a a .4、运算性质:当0,0,1,0>>≠>N M a a 时: ⑴()N M MN a a a log log log +=; ⑵N M N M a a a log log log -=⎪⎭⎫⎝⎛; ⑶M n M a na log log =.5、换底公式:abb c c a log log log =()0,1,0,1,0>≠>≠>b c c a a .6、重要公式:log log n ma a mb b n=7、倒数关系:ab b a log 1log =()1,0,1,0≠>≠>b b a a .§2..2.2、对数函数及其性质1、记住图象:()1,0log ≠>=a a x y a2、性质: 1、几种幂函数的图象:第三章:函数的应用§3.1.1、方程的根与函数的零点 1、方程()0=x f 有实根⇔函数()x f y =的图象与x 轴有交点 ⇔函数()x f y =有零点.2、 零点存在性定理:如果函数()x f y =在区间[]b a , 上的图象是连续不断的一条曲线,并且有()()0<⋅b f a f ,那么函数()x f y =在区间()b a ,内有零点,即存在()b a c ,∈,使得()0=c f ,这个c 也就是方程()0=x f 的根. §3.1.2、用二分法求方程的近似解 1、掌握二分法.§3.2.1、几类不同增长的函数模型 §3.2.2、函数模型的应用举例1、解决问题的常规方法:先画散点图,再用适当的函数拟合,最后检验.必修2数学知识点第一章:空间几何体1、空间几何体的结构⑴常见的多面体有:棱柱、棱锥、棱台;常见的旋转体有:圆柱、圆锥、圆台、球。

相关文档
最新文档