超疏水表面

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

关于超疏水表面的基本介绍及其制备

【摘要】超疏水表面材料具有防水,防污,可减少流体的粘滞等优良特性,是目前功能材料研究的热点之一。其中关于超疏水表面材料性能的研究及其制备是关键,从微观角度对其性能的说明,介绍和评述超疏水的制备方法,并对该领域的发展进行了展望。

【引言】尽管人们很早就知道荷叶表面“自清洁”效应,但是一直无法了解荷叶表面的秘密。直到20世纪90年代,德国的两个科学家首先用扫描电子显微镜观察了荷叶表面的微观结构,认为“自清洁”效应是由荷叶表面上的微米级乳突以及表面蜡状物共同引起的。其后江雷等人对荷叶表面微米结构进行深入分析,发现荷叶表面乳突上还存在纳米结构,这种微米与纳米结构同时存在的二元结构才是引起荷叶表面“自清洁”的根本原因。自从Onda等1996年首次报道在实验室合成出人造超疏水表面以来,这引起了研究人员的广泛兴趣。总体来说,目前的研究主要集中以下几个领域:1)研究自然界中具有超疏水表面的植物和动物,为开发具有新型表面结构的材料提供灵感。2)使用无机物或在金属表面制备具有超疏水性表面的材料。3)使用高分子材料制备具有超疏水性的表面。4)理论研究,主要是通过构建模型以探讨表面结构状况与接触角或滚动角的关系。

超疏水表面一般可以通过两类技术路线来制备:一类是在低表面能的疏水材料表面上构建微米纳米级粗糙结构;另外一类是用低表面能物质在微米纳米级粗糙结构上进行修饰处理。其中,制备合适微米纳米级粗糙结构的方法是相关研究的关键。从制备方法来说,主要有蒸汽诱导相分离法、模板印刷法、电纺法、溶胶凝胶法、模板挤压法、激光和等离子体刻蚀法、拉伸法、腐蚀法以及其他方法。在此对各种制备方法进行分类评述。

【超疏水表面特性】根据水在固体表面的浸润程度,固体可以分为亲水性和疏水性,所谓超疏水(憎水)表面一般是指与水的接触角大于150度的表面。对于一个疏水性的固体表面来说,当表面有微小突起的时候,有一些空气会被“关到”水与固体表面之间,导致水珠大部分与空气接触,与固体直接接触面积反而大大减小。由于水的表面张力作用使水滴在这种粗糙表面的形状接近于球形,其接触角可达150度以上,并且水珠可以很自由地在表面滚动。只有拥有较大的接触角(CA>150和较小的滚动角(SA<10)的表面才是真正意义上的超疏水表面。所谓接触角,就是液滴在固体表面形成热力学平衡时所持有的角。通过液体-固体-气体接合点中水珠曲线的终点和固体表面的接触点测定出来。滚动角可作为评价表面浸润性的另一指标,指的是一定质量的液滴在倾斜面上开始滚动的临界角度。滚动角越小,固体表面表现出的疏水性越好。因为地球的重力作用,水滴在倾斜的固体表面有下滑的趋势。随着固体倾斜角的变大,水滴沿斜面方向的下滑分力也在不断增大,当倾斜角增大到某一临界角度时,水滴会从固体表面滑落下来,这时的临界角就是水在此种固体表面的滚动角。滚动角越小,固体表面的超疏水性能越好。

接触角三大理论

杨氏方程(1805年)

Wenzel’s Theory(1936年):

Cassic’s Theory(1944年):cosq C = f s cosq s + f v cos q v

q s= q, q v = 180°

f s + f v=1

cos q C= -1+f s (cos q + 1

研究表明,材料的表面能与表面结构是影响表观接触角大小的重要因素,单纯通过改变表面能可获得光滑表面接触角的极限是120°,因此表面微细粗糙结构是获得超疏水表面的关键。随着微纳米科技的发展,超疏水表面的可控加工成为可能,由于其广阔的应用前景,超疏水表面的浸润性及其应用成为研究的热点。

【制备方法】1 蒸汽诱导相分离法

在一定条件下,高分子溶液在溶剂蒸发过程中,溶液热力学状态不稳定,高分子链间易发生自聚集,形成高分子聚集相。当高分子链聚集到一定程度时,高分子聚集相间发生相分离过程,并形成具有微米纳米级粗糙结构的表面,这种制膜方法被称为蒸汽诱导相分离法。

蒸汽诱导相分离法具有原料来源广泛、工艺简洁、成本低、所制备表面大小不受限制等优点,但可能存在膜强度不够好的缺点。

2 模板印刷法

使用荷叶作为原始模板得到PDM S 的凹模板,再使用该凹模板得到PDM S 凸模板,该凸模板是荷叶的复制品,它与荷叶有同样的表面结构,因此表现出良好的超疏水性和很低的滚

动角。该工艺类似于“印刷”,因此称为模板印刷法。用金属镍来

代替PDM S ,获得竹叶的凹模板。再在金属镍凹模板上使用紫外光固化的高分子材料复制,得到类似竹叶的复制品(图),该复制品具有超疏水能力。金属镍模板更耐磨、刚性更好、更易准确复制。

3 电纺法

通过一种简单的电纺技术,将溶于DMF 溶剂中的PS 制成具有多孔微球与纳米纤维复合结

构的超疏水薄膜图。其中多孔微球对超疏水性能起主要作用,纳米纤维起固定多孔微球的作用,该膜的WCA 达到160. 4。

4 溶胶-凝胶法

溶胶凝胶法就是用含有高化学活性组份的化合物作前驱体进行水解得到溶胶后使其发生缩合反应,在溶液中形成稳定的凝胶,最后干燥凝胶。溶剂去除后,有时留下一些微纳米孔,这些微纳米孔结构赋予材料某些特殊性能,包括超疏水性。如有机硅气凝胶,由于孔结构发达使它具有非常高的比表面积、已知材料中最低的密度、非常低的导热系数以及其他特性,因此它被称为“第四代材料”。有些方法制备的有机硅气凝胶还具有超疏水功能。

溶胶-凝胶法对于无机超疏水材料如ZnO、和的制备具有一定的优势,但存在着工艺路线较长、有溶剂污染和成本较高等缺点。

5 模板挤压法

模板挤压法就是使用孔径接近纳米级的多孔氧化铝膜作为模板,将溶解于溶剂的高分子滴于其上,干燥后得到超疏水表面。通过模板挤压法用亲水性聚乙烯醇材料制备了超疏水表面,接触角可以达到171. 2°。这可能是由于聚乙烯醇分子在纳米结构上发生重排,使得疏水烷基基团向外,亲水羟基基团向内并形成分子间氢键,体系表面能降低造成的。图:

通过模板挤压法制备了超疏水阵列聚苯乙烯纳米管膜。该膜不但有超疏水特性,还具有对水超强的高粘滞力,甚至水滴完全反转都不掉落,类似“壁虎脚”。图:

模板挤压法效果好、工艺较简单,但如何获得价格便宜、尺寸大并且性能可靠的模板是关键。

6 激光和等离子体刻蚀法

在室温环境下用CO2脉冲激光处理聚二甲基硅氧烷(PDMS),其表面的WCA高达175°。可能的原因为在激光处理后,PDM S 表面产生多孔结构,PDM S 的分子链排列规整。在氧气

相关文档
最新文档