飞机部件与系统设计
飞机结构与系统(第四章 飞机机身结构)
桁梁剖面
南京航空航天大学民航学院
机身结构组成
3. 机身蒙皮 1)功用: • 构成机身气动外形,保持表面光滑,承受局部空气动力; • 承受xoy,xoz两个平面内的剪力和绕x轴扭矩; • 和长桁一起组成壁板承 受两个平面内弯矩引起 的轴力; • 气密增压座舱部位的蒙 皮还要承受环向和轴向 的张应力。
南京航空航天大学民航学院
机身结构组成
2. 长桁与桁梁
1)功用: 长桁: • 承受和传递机身弯矩引起的轴力; • 与蒙皮组成承力壁板; • 承受部分作用在蒙皮上的气动力并传给隔框。 桁梁的截面积大于长桁,功用类似。
2)构造型式 简单式:从横剖面看只有一个结构元件; 组合式:从横剖面看有几个结构元件。 长桁多为简单式,桁梁有时采用组合式。
机身垂直面内剪力图及弯矩图
南京航空航天大学民航学院
机身结构组成
机身主要构件: • 蒙皮 • 纵向骨架:长桁、桁梁 • 横向骨架:隔框
南京航空航天大学民航学院
机身结构组成
机身主要构件: • 蒙皮 • 纵向骨架:长桁、桁梁 • 横向骨架:隔框
南京航空航天大学民航学院
机身结构组成
1. 隔框 1)分类
南京航空航天大学民航学院
机身与其它部件的连接
四、发动机在机身上的安装
1. 机身内发动机的安装 另一种典型的发动机安装形式。
南京航空航天大学民航学院
飞行控制系统设计
飞行控制系统设计飞行控制系统是保障飞机正常飞行的核心系统。
它通过感知环境、收集数据、分析信息,并采取相应的控制措施,确保飞机在各种飞行阶段和飞行任务中保持安全、平稳和可靠。
本文将从飞行控制系统的组成部分、设计原则和优化策略等方面来讨论飞行控制系统的设计。
一、飞行控制系统的组成部分飞行控制系统主要包括飞行引导、航向控制、姿态控制和自动驾驶等几个主要功能模块。
1. 飞行引导:飞行引导是飞行控制系统的基础部分,负责获取飞机的位置、速度、姿态等基本信息,并根据这些数据提供相应的引导指令,保证飞机在指定的航线上飞行。
2. 航向控制:航向控制是确保飞机在水平面上维持所需的航向的功能。
它通过调整飞机的方向舵和副翼等控制面,实现对飞机航向的控制。
3. 姿态控制:姿态控制是确保飞机在各种飞行动作中能够保持合适的姿态,如升降、俯仰和滚转等。
它通过调整飞机的副翼、方向舵和升降舵等控制面,实现对飞机姿态的控制。
4. 自动驾驶:自动驾驶是飞行控制系统的高级功能之一,它能够根据设定的飞行计划和任务要求,实现自主导航、自主飞行和自主着陆等操作。
自动驾驶的实现需要依赖精密的惯性导航系统、电子航图以及先进的控制算法。
二、飞行控制系统设计原则在设计飞行控制系统时,需要考虑以下几个原则:1. 安全可靠性原则:飞行控制系统是飞机的核心系统,设计时必须确保其安全性和可靠性。
系统需要具备故障检测与容错能力,能够在出现故障时及时切换到备用控制模式,保证飞机飞行的安全。
2. 稳定性原则:飞行控制系统设计应保证飞机在各种飞行阶段和飞行任务中保持稳定。
系统需要具备良好的控制性能,能够对飞机的姿态和航向进行精确的控制,确保飞机飞行平稳。
3. 灵活性原则:飞行控制系统应具备一定的灵活性,能够适应不同飞行任务的需求。
系统需要具备可调节参数和可编程控制算法等功能,能够在不同的飞行条件下进行自适应控制。
4. 性能优化原则:飞行控制系统的设计需要尽可能优化系统的性能。
飞机航电系统设计与优化
飞机航电系统设计与优化飞机航电系统是保证飞机正常运行和飞行安全的重要组成部分。
合理的航电系统设计和优化能够提高飞机的性能、降低维护成本、提高飞行安全性能。
本文将从航电系统设计原则、航电系统的重要组成部分和优化策略等方面进行探讨。
一、航电系统设计原则航电系统的设计应遵循以下原则:1. 安全性原则:航电系统的设计应符合航空安全标准,确保系统的可靠性和耐久性,能够在各种恶劣环境下正常工作,防止事故发生。
2. 可维护性原则:航电系统的设计应考虑到维护和检修的便捷性,确保故障能够快速排除并确保系统的可靠性。
3. 兼容性原则:航电系统的设计应与其他飞机系统相兼容,确保系统的协同工作,提高整体系统性能。
4. 可扩展性原则:航电系统的设计应具备一定的可扩展性,能够适应未来的技术发展和需求变化。
二、航电系统重要组成部分航电系统由多个重要组成部分构成,包括飞行仪表、导航设备、通信设备、控制器等。
下面将对这些组成部分进行简要介绍:1. 飞行仪表:飞行仪表是飞行员用来监视飞机运行和导航的设备,如航向指示器、空速指示器、高度表等。
这些仪表需要具备高精度和稳定性,确保飞行员能够准确地了解飞机的状态和位置。
2. 导航设备:导航设备包括全球定位系统(GPS)、惯性导航系统等,用于提供飞机的导航信息。
这些设备需要具备高精度的定位能力和可靠的导航功能,确保飞机能够准确到达目的地。
3. 通信设备:通信设备包括无线电台、卫星通信设备等,用于与地面站和其他飞机进行通信。
这些设备需要具备稳定的信号传输能力和广泛的通信覆盖范围,确保飞机与外界保持良好的通信联系。
4. 控制器:控制器是航电系统的核心部件,用于控制和管理各个组成部分的工作。
控制器需要具备高性能的处理能力和良好的可靠性,确保航电系统能够协调工作,保证飞机的正常运行。
三、航电系统优化策略为了提高航电系统的性能和安全性,可以采取以下优化策略:1. 引入先进的技术:应用先进的航电技术,如数字化、自适应控制等,提高系统的性能和稳定性。
飞机起落架结构及其系统设计
本科毕业论文题目:飞机起落架结构及其故障分析专业:航空机电工程姓名:指导教师:职称:完成日期: 2013 年 3 月 5 日飞机起落架结构及其故障分析摘要:起落架作为飞机在地面停放、滑行、起降滑跑时用于支持飞机重量、吸收撞击能量的飞机部件。
为适应飞机起飞、着陆滑跑和地面滑行的需要,起落架的最下端装有带充气轮胎的机轮。
为了缩短着陆滑跑距离,机轮上装有刹车或自动刹车装置。
同时起落架又具有空气动力学原理和功能,因此人们便设计出了可收放的起落架,当飞机在空中飞行时就将起落架收到机翼或机身之内,以获得良好的气动性能,飞机着陆时再将起落架放下来。
本文重点介绍了飞机的起落架结构及其系统。
对起落架进行了系统的概述,对起落架的组成、起落架的布置形式、起落架的收放形式、起落架的收放系统、以及起落架的前轮转弯机构进行了系统的论述。
并且给出了可以借鉴的起落架结构及其相关结构的图片。
关键词:起落架工作系统凸轮机构前轮转弯收放形式目录1. 引言 (1)2. 起落架简述 (1)2.1 减震器 (1)2.2 收放系统 (1)2.3 机轮和刹车系统 (2)2.4 前三点式起落架 (2)2.5 后三点式起落架 (3)2.6 自行车式起落架 (5)2.7 多支柱式起落架 (5)2.8 构架式起落架 (6)2.9 支柱式起落架 (6)2.10 摇臂式起落架 (7)3 起落架系统 (7)3.1 概述 (7)3.2 主起落架及其舱门 (7)3.2.1 结构 (8)3.2.2 保险接头 (8)3.2.3 维护 (8)3.2.4 主起落架减震支柱 (8)3.2.5 主起落架阻力杆 (9)3.2.6 主起落架耳轴连杆 (10)3.3 前起落架和舱门 (10)3.4 起落架的收放系统 (10)3.4.1起落架收放工作原理 (10)3.4.2 起落架收放过程中的的液压系统 (11)3.4.3 主起落架收起时的液压系统工作过程 (12)3.4.4 主起落架放下时的液压系统工作原理 (13)3.4.5 在液压系统发生故障时应急放起 (14)3.4.6 起落架收放的工作电路 (15)3.5 前轮转弯系统 (17)3.5.1 功用 (17)3.5.2 组成 (17)3.5.3 工作原理 (17)3.6 机轮和刹车系统 (17)4 歼8飞机主起落架机轮半轴裂纹故障分析 (17)4.1 主起落架机轮半轴故障概况 (17)4.2 主起落架机轮半轴失效分析 (18)4.3 机轮半轴裂纹检测及断口分析 (20)4.3.1 外场机轮半轴断裂检查 (20)4.3.2 大修厂机轮半轴裂纹检查 (21)4.4 主起落架机轮半轴疲劳试验结果 (22)4.4.1 机轮半轴疲劳试验破坏部位 (22)4.4.2 试验结果与使用情况差异分析 (23)4.5 主起落架机轮半轴失效分析结论 (24)4.6 主起落架机轮半轴结构设计改进 (24)4.6.1 半轴结构设计改进原则 (24)4.6.2 半轴结构细节设计改进 (25)5 经验教训 (25)5.1 设计载荷谱、变形预测与实际使用情况相符 (25)5.2 完善细节抗疲劳设计和强化工艺是提高结构抗疲劳开裂的重要技术途径 .. 255.3 地面疲劳试验验证刚度模拟要真实 (25)5.4 制定合理的检修周期是确保使用安全的重要措施 (26)结束语 (27)参考文献 (28)致谢 (30)1. 引言通过对歼强飞机的起落架结构及其系统的论述,进行该方面知识的总结,同时也阐明了起落架对于飞机起飞和着陆的重要意义。
飞机液压系统的设计与优化
飞机液压系统的设计与优化飞机液压系统是飞机的重要组成部分,它为飞机提供了动力和控制。
在飞机的飞行过程中,液压系统承担着许多重要的功能,如起落架、翼面可控、刹车、齿轮箱、尾翼、水舱、载货舱等。
因此,液压系统的设计和优化对于飞机的飞行安全和可靠性至关重要。
液压系统是由液压油箱、液压泵、液压阀、液压管道、油压缸、油缸和控制系统等组成的,其功能非常复杂。
有效地设计和优化液压系统,可以提高飞机的性能,减少故障和维护成本,增强安全性能和可靠性,从而满足飞机在不同飞行条件下的需求。
液压系统设计原则合理设计和优化液压系统的关键是尽可能提高液压系统的效率。
这意味着液压系统的设计需要符合一定的原则和技术标准,以达到优化的效果。
下面是几个液压系统设计的原则:1.安全性:液压系统设计必须遵循安全原则,在设计和制造中必须考虑到使用的环境和所有操作的安全性,并将其纳入液压系统的设计中。
2.简单性:液压系统设计要简单有效,以便更好的维护和操作。
设计要尽可能地避免使用不必要的部件或操作开关,这样可以降低成本。
3.可靠性:液压系统的设计还必须充分保证其可靠性。
这意味着需要在系统设计和选择液压部件时,选择质量可靠的组件和供应商以及测试设备。
4.高效性:液压系统设计必须尽可能地提高系统效率,以满足不同应用场合下的需求。
这要求在设计过程中充分考虑液压系统的性能和功率。
液压系统的优化在液压系统设计的过程中,不仅要考虑系统的结构和功能,还要考虑优化其性能和效率。
以下几个方面是液压系统优化的关键因素:1.选择合适的工作压力:选择合适的工作压力是液压系统设计的关键因素之一。
过高或过低的工作压力都会影响系统的性能和寿命。
在选择液压系统的工作压力时需要综合考虑液压部件的性能和输出功率,以确保系统的稳定性。
2.合理的布置管路:管路的设计和安置也对液压系统的性能和寿命有影响。
对于结构复杂的液压系统,必须在管路设计、制作、安装和调试等方面精心处理细节,以实现更高的性能。
现代飞机结构与总体设计ppt课件
❖ 通常垂直尾翼后缘设有方向舵,某些高速飞机,
没有独立的方向舵,整个垂尾跟着操纵而偏转, 称为全动垂尾。
18
水平尾翼
飞机的结构
❖ 水平尾翼水平安装在机身尾部,主要功能为保持 俯仰平衡和俯仰操纵。
❖ 低速飞机水平尾翼前段为水平安定面,是不可操 纵的,其后缘设有升降舵,飞行员利用升降舵进行 俯仰操纵。
36
什么是飞机设计
❖飞机设计是指设计人员应用气动、结构、 动力、材料、工艺等学科知识通过分析综 合和创造思维,将设计要求转化为一组能 完整描述飞机的参数的过程
37
什么是飞机设计
❖飞机研制过程 —五个阶段的划分方式
▪ 论证阶段 —研究设计新飞机的可行性
▪ 方案阶段 —设计出可行的飞机总体技术方案
▪ 工程研制阶段 —进行详细设计,提供图纸试制原型机
飞机结构与总体设计
蔡波
通航产品部
主要内容
❖1.现代飞机结构 ❖2.飞机总体设计
2
航空发展历程
➢第一次有动力飞行
❖ 自从1903年12月17号,莱特兄弟的“飞行者”一号离开地 面的那刻起,人类已经开始把目光投向天空,此后的一百多 年来,这片领域已经发生了翻天覆地的变化。
3
航空发展历程
4
航空发展历程
也有三、四或六叶的。
26
飞机的结构
发动机的分类
二 涡轮喷气发动机: ❖ 又称空气涡轮喷气发动机,简称“涡喷” ❖ 以空气为氧化剂,靠喷管高速喷出的燃气产生反
作用推力的燃气涡轮航空发动机,。 ❖ 组成:压气机、燃烧室、涡轮和尾喷管。推力用
牛或千克表示。
27
飞机的结构
发动机的分类
三 涡轮螺旋桨发动机: ❖从涡喷发动机派生而来 ❖涡轮螺旋桨发动机是一种由螺旋桨提供拉力和喷气
飞机液压系统设计与优化
飞机液压系统设计与优化随着航空工业的发展,飞机液压系统在飞机设计中扮演着重要的角色。
一个合理的液压系统设计可以确保飞机在运行过程中具备稳定可靠的工作性能。
本文将探讨飞机液压系统的设计原理与优化方法。
一、飞机液压系统的设计原理飞机液压系统的设计原理是基于流体力学和控制原理的。
液压系统通过液体的压力传递力和能量,进行控制和驱动飞机各种执行器的运动。
一个完整的飞机液压系统主要包括液压源、液压执行器、控制阀和液压传动管路等组成部分。
液压源是指液压系统中负责产生稳定高压液体的部件,通常是液压泵。
液压执行器则负责接受液压能的转化,将其转化为机械能,并执行相应的动作。
常见的液压执行器包括液压缸、液压马达等。
控制阀是飞机液压系统中的关键组成部分,通过控制液体的流通来实现对执行器的控制。
常见的液压控制阀有单向阀、双向阀、减压阀等。
液压传动管路则起到连接各个组件的作用,它们将液体能量传输到需要的部位,同时也具备控制液体流动方向的功能。
二、飞机液压系统的优化方法为了提高飞机液压系统的工作效率和可靠性,需要对其进行优化。
以下是一些常用的飞机液压系统优化方法。
1. 液压系统的布局优化液压系统的布局优化是指对液压元件的位置和管路的布置进行合理设计。
通过优化布局,可以减少管路长度和弯头数量,降低压力损失和泄漏风险,提高系统的工作效率和可靠性。
2. 液压元件的选型优化液压元件的选型优化是指选择合适的液压元件以满足系统的工作需求。
要考虑元件的额定压力、流量和尺寸等参数,以及其可靠性和维修性能。
选用优质的液压元件可以提高系统的工作效率和可靠性。
3. 控制策略的优化控制策略的优化是指优化液压系统的控制逻辑和工作模式。
通过改进控制算法和参数设置,可以提高系统的响应速度和控制精度,进而提高整个飞机系统的性能。
4. 液压系统的参数优化液压系统的参数优化是指对系统中各个元件的参数进行调整和优化。
包括液压泵的转速、液压缸的直径和行程、控制阀的开启时间等。
飞机液压系统设计与优化
飞机液压系统设计与优化飞机液压系统是现代航空器中非常关键的一个部分,它负责提供动力和控制信号传输,确保飞机各个部件的正常运行。
本文将着重探讨飞机液压系统的设计原理和优化方法。
一、飞机液压系统概述飞机液压系统是由压力源、执行器、控制器和储存器等组成的复杂系统。
它可以将动力转换为压力能,并通过液压管路传递到各个执行器上,以实现飞机的起落、操纵、襟翼等功能。
二、液压系统参数的设计在设计液压系统时,需要确定以下参数:工作压力、流量需求、系统阻力和功率损失。
这些参数的合理选择对于系统的性能和效率至关重要。
1. 工作压力工作压力是液压系统设计中的基本参数之一。
它一方面需要满足系统工作的需求,另一方面又不能过高,以避免对系统组件造成过大的压力冲击和损坏。
2. 流量需求流量需求是液压系统设计的另一个关键参数。
不同的飞机系统具有不同的流量需求,需要根据实际情况进行合理的估算和选择。
过小的流量会导致系统动作缓慢,而过大的流量则会造成能量浪费和系统不稳定。
3. 系统阻力系统阻力是指液压系统中因液流通过管路和元件而产生的阻力。
合理的系统阻力设计可以降低功率损失和能量消耗,提高系统的效率。
4. 功率损失在液压系统中,由于流体的粘性和管路的摩擦等原因,会产生一定的功率损失。
优化液压系统结构、减少管路长度和直径等措施可以降低功率损失,提高系统的效能。
三、液压系统优化方法针对飞机液压系统的设计和优化问题,可以采用以下方法进行改进:1. 使用高效元件选择高效的液压元件是提高系统效率的重要手段之一。
例如,使用低压降、大流量的液控阀门和高效率的液压泵等,可以降低能量损失和提高系统的响应速度。
2. 优化管路设计合理的管路设计可以减小系统的阻力,提高能量传递效率。
因此,在设计过程中需要注意管路的长度、直径、弯头和支撑等因素,尽可能减小管路的损失。
3. 采用先进控制策略对于飞机液压系统来说,控制策略的优化是提高系统性能的重要方面。
可以采用先进的控制算法和流量调节技术,实现对液压系统的精确控制和优化。
飞机结构与系统
飞机结构与系统一、引言飞机结构与系统是飞机设计与制造中至关重要的一部分。
它涵盖了飞机的设计、材料选择、结构安全性、机载系统等多个方面。
本文将介绍飞机结构与系统的基本概念、主要组成部分以及设计原则。
二、飞机结构的基本概念1.主要组成部分–机身:飞机的主体结构,通常包括机头、机尾和机翼的连接部分。
–机翼:产生升力的关键部件,通常由主翼和副翼组成。
–尾翼:控制飞机姿态的部件,通常由水平尾翼和垂直尾翼组成。
–起落架:支撑飞机在地面行驶和起降的部件。
–发动机支架:固定安装发动机的结构。
2.结构材料–金属材料:如铝合金、钛合金等,常用于飞机的结构部件。
–复合材料:如碳纤维、玻璃纤维等,具有较高的强度和轻质化特性,广泛应用于现代飞机。
–纺织品:如织物、缝合线等,用于飞机内饰和安全带等部件。
三、飞机系统的主要组成部分1.动力系统–发动机:提供飞机所需的推力,通常有涡轮喷气发动机和涡桨发动机等类型。
–燃油系统:负责存储和供应燃油。
–冷却系统:确保发动机和其他关键部件的温度控制。
2.控制系统–飞行控制系统:包括飞行操纵系统、自动驾驶系统等,用于控制飞机的姿态和操纵。
–电气控制系统:用于飞机各个系统的电力供应和控制。
–液压控制系统:用于操纵和控制飞机的液压系统。
3.气源系统–压气机:用于提供机载气源,供应给相关系统使用。
4.辅助系统–环境控制系统:负责飞机的空调、供氧等工作。
–消防系统:用于应对可能发生的火灾事故。
–导航系统:用于飞机的导航和定位。
–通信系统:用于飞机与地面的通信。
四、飞机结构与系统的设计原则1.安全性:飞机结构与系统的设计必须满足航空器运行的安全要求,保证在各种工况下的结构安全和系统可靠性。
2.结构轻量化:采用轻质材料和合理的结构设计,以降低飞机自重,提高机载有效载荷和航程。
3.系统模块化:将飞机系统划分为独立的模块,并通过标准化接口进行连接,以方便维护和升级。
4.节能环保:优化动力系统和控制系统设计,降低燃料消耗和排放。
飞机总体(系统设计方向)工程师岗位岗位职责
飞机总体(系统设计方向)工程师岗位岗位职责
飞机总体(系统设计方向)工程师是一种技术性较高的职务,
主要负责飞机总体设计及系统设计方面的工作。
下面是飞机总体
(系统设计方向)工程师岗位职责:
1.负责飞机总体设计及系统设计方面的工作;
2.制定飞机总体设计及系统设计方案,掌握飞机总体设计及系
统设计的理论与技术,了解现有各种不同类型的飞机结构及系统设计;
3.对飞机的组成部分进行研究分析,根据市场需求和技术发展
趋势,制定可行的设计方案;
4.计算机辅助设计与分析、三维模型绘制等,掌握数学、力学、材料学等多门学科知识,熟练掌握一种以上的CAD软件和一种以上
的仿真分析软件,并能运用这些软件进行工作;
5.对设计方案进行评估、设计调整、实验测试,保证飞机系统
的安全、性能和可靠性;
6.协调各个部门间的工作,确保整个设计流程的顺利进行,保
证与客户交流准确、高效;
7.解决设计中的各种技术问题,做到对任何问题都要认真地分析,提出合理的解决方案;
8.根据领域最新科技发展趋势,不断优化设计方案,以提高工
作效率及质量,推进飞机总体设计的技术创新;
9.配合管理层参与项目计划和成本估算等管理工作。
以上就是飞机总体(系统设计方向)工程师岗位职责。
该岗位需要有严谨的理工科思维和较高的掌握工程技术能力,同时,良好的沟通协调能力也是必不可少的。
飞机起落架与制动系统设计与优化
飞机起落架与制动系统设计与优化一、引言飞机起落架与制动系统是飞机重要的组成部分,直接关系到飞机在地面和空中的安全性和可靠性。
本文将从设计和优化的角度探讨飞机起落架与制动系统的相关内容。
二、飞机起落架设计1. 起落架类型选择:根据飞机的用途和性能要求选择合适的起落架类型,常见的有固定式起落架、可收放起落架和自行式起落架。
2. 结构设计:考虑起落架的承载能力、重量、结构强度和刚度等因素,采用合适的材料和结构形式进行设计。
3. 减震系统设计:起落过程中要能够有效吸收冲击力并保护飞机和乘客的安全,采用减震系统对起落架进行设计。
4. 操纵系统设计:起落架的操纵系统需要确保起落架在合适的时间内与地面接触,并能够收放稳定。
三、制动系统设计1. 制动器类型选择:根据飞机的尺寸和性能要求选择合适的制动器类型,常见的有碟式制动器和钳式制动器。
2. 制动功效计算:根据飞机的重量、速度和着陆距离等参数计算需要的制动功效,确保飞机能够在地面上安全停下。
3. 制动系统液压设计:设计合理的制动系统液压传动装置,保证制动力的传递和控制。
4. 制动温度管理:制动系统在使用过程中会产生大量热量,需要设计合理的散热系统来管理制动温度,避免过热导致制动力下降。
四、飞机起落架与制动系统的优化1. 轻量化设计:通过采用轻量化材料和结构设计,减轻起落架和制动系统的重量,提高飞机运载能力和燃油效率。
2. 系统集成优化:将起落架与制动系统与其他飞机系统进行集成设计,减少冗余部件,提高整体性能和可靠性。
3. 制动效能优化:通过优化制动力分配和制动系统的参数调整,提高制动效能,缩短制动距离。
4. 耐久性优化:对起落架与制动系统的关键零部件进行优化设计,提高其耐久性和可靠性,延长使用寿命。
五、结论飞机起落架与制动系统的设计与优化对飞机的安全性和可靠性至关重要。
通过合理选择起落架类型、设计结构、操纵系统和制动系统等,以及进行轻量化设计和耐久性优化等措施,可以提高飞机的性能和经济效益。
飞机的动力系统设计原理
飞机的动力系统设计原理飞机是一种通过动力系统驱动的交通工具,其动力系统的设计原理是保证飞机能够安全、高效地进行飞行。
本文将从飞机的动力需求、动力系统的基本组成部分、不同类型飞机的动力系统设计原理以及未来动力系统的发展方向等方面进行探讨。
一、飞机的动力需求飞机的动力需求主要包括推动飞机飞行的动力来源、提供飞行所需的推力和控制飞机姿态的能力等。
动力源主要有内燃机、涡轮发动机和电力系统等。
在设计飞机动力系统时,需要考虑到飞机的尺寸、重量、巡航速度和航程等参数,以及实际飞行环境和任务要求。
二、动力系统的基本组成部分飞机的动力系统主要由发动机、传动系统和推进装置三部分组成。
1. 发动机:发动机是动力系统的核心部分,负责将燃料的化学能转化为动力能,推动飞机飞行。
常见的发动机类型包括喷气发动机、涡轮螺旋桨发动机和活塞发动机等。
2. 传动系统:传动系统将发动机产生的动力传递到推进装置上,提供推力。
传动系统通常由齿轮、链条等机械传动装置组成,通过传递转矩将发动机的动力传输到推进装置上。
3. 推进装置:推进装置将发动机提供的动力转化为推力,推动飞机前进。
根据不同飞机类型和设计要求,推进装置可以是喷气式发动机喷出的高速气流,也可以是螺旋桨带动的气流。
三、不同类型1. 客机:客机通常采用高 bypass 比的喷气发动机,其原理是在发动机芯部产生高温高速的燃气流,通过外延喷气管道将一部分气流绕过发动机芯部,形成低速高推力的大气流,从而提供足够的推力推动飞机飞行。
2. 直升机:直升机的动力系统由气动轮发动机和旋翼组成。
气动轮发动机通过压气机产生高压空气,驱动燃烧室中的燃料燃烧,产生高温高速的燃气流,然后通过喷嘴喷出来推动旋翼旋转,提供提升力和推力。
3. 军用战斗机:战斗机通常采用喷气发动机,其原理是通过压气机压缩空气、喷油喷燃产生高温高速的燃气流,从喷嘴喷出形成喷气推力,推动飞机高速飞行和机动。
四、未来动力系统的发展方向随着科技的进步和环境保护意识的提高,未来飞机动力系统的发展重点将放在提高能源利用效率、降低污染排放和减少噪音等方面。
飞机结构与系统(飞行操纵系统)课件
04
飞行操纵系统维护与检修
飞行操纵系统日常维护
01
02
03
每日检查
检查飞行操纵系统外观, 确保没明显损坏或异常情 况。
清洁润滑
飞行操纵系统进行清洁润 滑,保持其良好工作状态 。
校准
飞行操纵系统进行校准, 确保其准确性可靠性。
飞行操纵系统定期检修
定期检查
按照规定周期飞行操纵系 统进行检查,包括内部结 构元件。
飞行管理系统
飞行管理系统现代飞行操纵系统核心组 成部它集成导航、气象、通讯等多种功 能,能够飞行员提供全面飞行信息支持
。
飞行管理系统通过接收处理自各种传感 器数据,飞行员提供实时飞行计划、航 向、速度、高度等信息,帮助飞行员更
好掌握飞行状态决策。
飞行管理系统还可根据气象条件飞行计 划,飞行员提供最佳飞行轨迹发动机管
安全标准与规范
参考相关安全标准规范,如国际民航组织(ICAO)美国联邦航空局(FAA)等发布相关指南标准,飞行操纵系统进 行安全性评估。些标准规范评估提供指导参考框架。
安全改进措施
根据安全性评估结果,制定并实施相应安全改进措施,提高飞行操纵系统安全性可靠性。些措施可能包 括硬件升级、软件修复、操作程序改进等各方面。
飞行操纵系统历史与发展
历史
早期飞机采简单机械式操纵系统,通过钢索、连杆等机械部件实现飞行员翼面舵面直接控制。随着技术发展,液 压式操纵系统电传式操纵系统逐渐取代机械式操纵系统。电传式操纵系统目前最先进飞行操纵系统,具更高可靠 性灵活性。
发展
未飞行操纵系统将朝着更加智能化、自主化协同化方向发展。智能化能够提高系统自主决策能力容错能力;自主 化能够减轻飞行员工作负担提高飞行安全性;协同化则能够实现飞行员与无机之间效协作,提高整体作战效能。
飞机装配工装智能设计关键技术研究与系统开发
内容摘要
为了将计划与调度更好地应用于实际工作中,企业需要从以下几个方面着手: 1、加强生产计划与调度的实时监控:通过采集生产线上的实时数据,对生产 计划和调度进行实时调整,以确保生产计划的准确性和调度的高效性。
内容摘要
2、提高生产计划的灵活性:针对客户需求的多样化,企业应具备快速调整生 产计划的能力,以满足不同客户的需求。
内容摘要
飞机装配工装制造执行系统(Aerospace Assembly Tooling Manufacturing Execution System,简称ATMES)是一种专门针对飞机装配工装 制造企业的信息化管理系统。它通过集成了生产计划、物料管理、生产调度等核 心功能,为企业提供了一套完整的生产管理与监控方案。然而,随着市场竞争的 加剧以及客户需求的多样化,ATMES在计划与调度方面仍面临诸多挑战。
内容摘要
3、在线维修决策:根据故障诊断和预测结果,制定相应的维修决策,指导飞 行员或维修人员进行及时的维修和更换,确保机载系统的正常运行。
内容摘要
4、健康管理系统:建立健康管理系统,对机载系统的运行状态进行实时监控, 记录系统的历史运行数据,为飞行员和维修人员提供参考和帮助。
内容摘要
大型飞机机载系统预测与健康管理关键技术在航空、航天、运输等领域都有 广泛的应用。例如,航空公司可以利用该技术对客机进行实时监控和预测,及时 发现潜在的问题和故障,提高飞行的安全性。航天公司可以利用该技术对火箭、 卫星等航天器进行健康管理,确保航天任务的顺利进行。
系统开发
系统开发
基于上述研究,已经开发出了一款飞机装配工装智能设计系统。该系统具有 以下功能和优势:
系统开发
1、数字化设计:利用计算机技术实现飞机装配工装的数字化设计,提高了设 计效率和精度。
某型飞机前起落架驱动系统设计与性能分析
某型飞机前起落架驱动系统设计与性能分析1. 引言某型飞机前起落架是飞机的关键部件之一,负责飞机起飞和降落时的支撑和缓冲作用。
由于其承受的载荷和工作条件特殊,其驱动系统必须具备高可靠性和稳定性,以确保飞机的安全运行。
本文将详细介绍某型飞机前起落架驱动系统的设计原理和性能分析。
2. 设计原理2.1 驱动系统结构某型飞机前起落架驱动系统由电动液压马达、液压控制阀、液压缸、液压储油箱和控制单元等组成。
其中,电动液压马达与液压控制阀通过液压管路相连,以实现驱动力的传递和调节。
液压控制阀通过控制液压油的流动和压力来控制起落架的运动状态。
2.2 控制单元控制单元是驱动系统的核心部件,负责接收飞机操纵信号并将其转化为液压马达的控制信号。
控制单元采用先进的控制算法,能够实现起落架的快速升降、平稳运动和位置精确控制。
同时,控制单元还具备自诊断和故障保护功能,能够及时检测到驱动系统的故障并采取相应措施。
3. 性能分析3.1 负载能力驱动系统的负载能力是指驱动系统能够承受的最大载荷大小。
某型飞机前起落架驱动系统经过严格的实验和测试,其设计的负载能力为X吨,能够满足正常工作状态下起降时的载荷要求。
3.2 运动速度驱动系统的运动速度是指起落架升降的速度。
某型飞机前起落架驱动系统具备高速、中速和低速三档运动速度,可根据不同的工作需求进行调节。
高速运动适用于飞机起飞和降落时,中速运动适用于飞机在起飞和降落之间的飞行过程中,低速运动适用于飞机停靠和维护时。
3.3 控制精度驱动系统的控制精度是指驱动系统能够达到的起落架位置精确度。
某型飞机前起落架驱动系统经过精密的控制算法设计和实验验证,能够实现高度精准的起落架位置控制,保证飞机的安全起飞和降落。
3.4 可靠性驱动系统的可靠性是指系统在一定时间内正常工作的能力。
某型飞机前起落架驱动系统采用优质的材料和先进的制造工艺,经过严格的测试和验证,具备高可靠性和稳定性。
同时,控制单元还具备自诊断和故障保护功能,能够及时检测到驱动系统的故障并采取相应措施。
飞机结构与系统(飞机机身结构)通用课件
铝合金飞机机身结构中最常材料 之一,因其具较高比强度、耐腐
蚀性易加工等特点。
铝合金可变形铝合金铸造铝合金 ,广泛应飞机大梁、机身蒙皮、
翼肋等部件。
铝合金缺点疲劳性能较差,易发 生疲劳裂纹,因此设计时需进行
疲劳强度析试验。
复合材料
复合材料由两种或多种材料组成新型材料,具高强度、高刚性、抗疲劳等优点。
热稳定性析
评估机身高温环境稳定性,保证结构 因温度变化而发生变形或失效。
05
机身结构损伤容限与疲劳寿命
损伤容限设计
01
损伤容限设计指飞机结构受损伤后仍能保持一定承载能力设计方 法。它通过合理设计结构细节、选择适当材料工艺,提高结构抗
损伤能力。
02
损伤容限设计包括结构进行强度析、疲劳析损伤评估,确保预期 服役期内,结构能够承受各种载荷环境条件影响。
中段
包括机身中部后部,主承 载着机身纵向横向受力, 并连接机翼行稳定性,发动 机吊舱则安装固定发动机 。
机身结构设计求
01
02
03
04
强度求
机身结构必须能够承受飞行过 程中各种载荷,包括气动载荷
、惯性载荷重力载荷等。
刚度求
机身结构必须具一定刚度,确 保飞机飞行过程中稳定性舒适
焊接工艺
总结词
焊接工艺飞机机身结构制造中重连接方式,通过熔融金属将 两零件连接一起。
详细描述
焊接工艺具强度高、密封性好、重量轻等特点,广泛应飞机 机身结构制造中。焊接工艺可电弧焊、激光焊、等离子焊等 多种方式,根据同材料连接求选择合适焊接工艺。
铆接工艺
总结词
铆接工艺飞机机身结构制造中传统连 接方式,通过铆钉将两零件连接一起 。
参数优化
飞机设计手册17 (2)
飞机设计手册17引言概述:飞机设计手册17是一本关于飞机设计的重要参考资料。
它包含了丰富的内容,涵盖了飞机设计的各个方面。
本文将从五个大点展开论述,分别是飞机结构设计、飞行控制系统设计、动力系统设计、航电系统设计和安全系统设计。
正文内容:1. 飞机结构设计1.1 结构材料的选择:飞机结构设计中,材料的选择是至关重要的一环。
考虑到飞机的重量、强度和耐久性等因素,设计师需要选择合适的材料,如铝合金、复合材料等。
1.2 结构布局的优化:飞机结构布局的优化可以提高飞机的性能和安全性。
设计师需要考虑飞机的重心、气动布局等因素,以实现最佳的结构布局。
2. 飞行控制系统设计2.1 飞行控制原理:飞机的飞行控制系统是保证飞机安全运行的重要组成部分。
设计师需要了解飞行控制原理,包括舵面操纵、自动驾驶系统等。
2.2 系统可靠性设计:飞行控制系统的可靠性是保证飞机安全飞行的关键。
设计师需要考虑系统的冗余设计、故障检测与排除等,以提高系统的可靠性。
3. 动力系统设计3.1 发动机选择与安装:飞机的动力系统设计需要选择合适的发动机,并进行合理的安装。
设计师需要考虑发动机的推力、燃油效率等因素,以满足飞机的性能需求。
3.2 冷却系统设计:飞机的动力系统需要合理的冷却系统来保证发动机的正常运行。
设计师需要考虑冷却系统的散热效果、冷却液的循环等因素。
4. 航电系统设计4.1 电气系统设计:飞机的航电系统设计需要考虑电气系统的可靠性和安全性。
设计师需要合理布局电气系统,选择合适的电气设备,并进行合理的线路设计。
4.2 通信与导航系统设计:飞机的通信与导航系统是保证飞机正常飞行的重要组成部分。
设计师需要考虑通信与导航设备的选择与安装,以实现飞机的正常通信和导航功能。
5. 安全系统设计5.1 防火与灭火系统设计:飞机的安全系统设计需要考虑防火与灭火系统的设计。
设计师需要合理布局灭火设备,确保飞机在发生火灾时能够及时灭火。
5.2 逃生系统设计:飞机的安全系统设计需要考虑逃生系统的设计。
ARJ21飞机部件和功能
ARJ21飞机部件和功能1.机体结构:ARJ21飞机的机体采用复合材料制造,具有轻质、高强度和防腐蚀等特点。
它的机体结构经过优化设计,提高了飞机的燃油效率和飞行性能。
2.发动机系统:ARJ21飞机配备的发动机采用国际先进的涡桨发动机技术,具有高效、低噪音和低排放的特点。
这种发动机具有较大的推力,提供了足够的动力为飞机提供推进力。
3.机翼和升降舵:ARJ21飞机的机翼和升降舵采用先进的气动设计,以提高飞机的升力和操纵性能。
机翼的设计使得飞机在低速和高速时都能保持稳定的飞行状态,升降舵则用于控制飞机的上升和下降。
4.起落架系统:ARJ21飞机的起落架系统采用了现代化的设计和制造技术,以提供安全可靠的起落功能。
它包括主起落架和前起落架,能够在各种地面情况下平稳地起降。
5.机载系统:ARJ21飞机配备了先进的机载系统,包括导航系统、通信系统、自动驾驶系统和客舱娱乐系统等。
这些系统提供了准确的飞行导航和通信功能,提高了飞行操作的便利性和安全性。
6.机载设备:ARJ21飞机配备了客舱内的各种设备,包括座椅、厨房、洗手间和行李舱等。
这些设备提供了舒适的旅行环境和方便的服务,满足旅客的需求。
7.客舱布局:ARJ21飞机的客舱布局合理,能够容纳一定数量的乘客。
它提供了舒适的座椅、宽敞的腿部空间和舒适的环境,使乘客在飞行中能够轻松地休息和工作。
8.安全系统:ARJ21飞机配备了多项安全系统,包括防冰系统、防火系统和紧急逃生系统等。
这些系统能够确保飞机在飞行过程中的安全和可靠性,保护乘客和机组人员的生命安全。
9.航电系统:ARJ21飞机的航电系统采用了现代化的设计,包括雷达、仪表、通讯设备和导航系统等。
这些系统能够提供准确的导航和飞行信息,确保飞机按照预定航线和时刻飞行。
10.自动化系统:ARJ21飞机的自动化系统包括自动驾驶系统和机载计算机等。
它们能够实现飞机的自动起飞、自动导航和自动降落等功能,减轻机组人员的工作负担,提高飞行的安全性和效率。
飞机液压系统设计与优化
飞机液压系统设计与优化随着航空技术的不断发展,飞机液压系统在航空工程中扮演着重要的角色。
液压系统在飞机的起落架、襟翼、方向舵等关键部件的控制中起到至关重要的作用。
本文将探讨飞机液压系统的设计与优化。
一、液压系统的基本原理液压系统是利用液体的力学性质传递能量的系统。
在飞机液压系统中,主要采用油液作为传递介质。
液压系统的基本原理是利用液体在容器中的压力均匀分布的特性,通过液压泵将液体压力增大后送入执行元件,从而实现对飞机各部件的控制。
二、液压系统的设计考虑因素1. 工作条件:液压系统的设计需要考虑飞机在不同的工作条件下的性能需求。
比如在高海拔地区的气候条件下,液压系统的工作温度范围需扩大,以确保系统的正常运行。
2. 系统性能:液压系统的设计应保证其输出能力、稳定性、响应速度等性能指标能够满足飞机的使用需求。
同时,还要考虑系统的可靠性和安全性,确保系统能在各种极端条件下正常工作。
3. 材料选择:在液压系统的设计中,材料的选择尤为重要。
因为液压系统需要承受高压力的工作环境,所以需要选择具有高耐压和耐腐蚀性能的材料,如不锈钢、特殊合金等。
三、液压系统的优化策略1. 提高系统效率:液压系统的效率对飞机性能有着重要的影响。
通过合理的管路布置和优化元件的尺寸选择,可以减小系统中的能量损失,提高系统的效率。
2. 降低系统重量:飞机对于重量的要求很高,所以在液压系统的设计中需要尽量减轻系统的重量。
可以采用高强度材料、轻量化的元件和结构等方式来实现系统的轻量化。
3. 提高系统的可靠性:液压系统的可靠性对于飞机的安全性至关重要。
通过采用双重液压系统、合理的备件选择和良好的维护保养,可以提高系统的可靠性。
四、液压系统的未来发展趋势随着科技的不断进步,飞机液压系统也会不断进行创新和改进。
下面是液压系统未来发展的一些趋势:1. 电液混合系统:电液混合系统将电力和液压系统相结合,提高了系统的效率和响应速度。
2. 智能化控制:将传感器和计算机技术应用于液压系统中,可以实现对系统的智能化控制和故障诊断。
飞机机载设备与航电系统的集成设计与优化
飞机机载设备与航电系统的集成设计与优化一、引言飞机的机载设备和航电系统是现代航空技术的重要组成部分,其集成设计和优化对于飞机运行的安全性、可靠性和效率起着关键性的作用。
本文将探讨飞机机载设备与航电系统的集成设计与优化的重要性以及相关的技术和方法。
二、飞机机载设备的集成设计与优化1. 设备选型与布局在飞机的设计阶段,需要根据飞机的任务和性能要求,选择合适的机载设备,并进行布局设计。
这需要考虑到设备之间的相互影响和相容性,以及对飞机结构和重心的影响。
通过合理的机载设备选型和布局设计,可以提高飞机的操作效率和人机界面的友好性。
2. 数据通信与集成现代飞机的机载设备需要进行数据通信和集成,以实现信息的交互和共享。
这要求设计师充分考虑不同设备之间的接口和协议,确保数据的准确传输和处理。
通过数据通信和集成,可以实现飞机系统的协同工作,提高飞机的整体性能和工作效率。
3. 电源供应与管理飞机机载设备的电源供应和管理是一个关键性的问题。
设计师需要考虑到不同设备的功耗和电源需求,合理设计电源系统,并采用先进的电源管理技术,以确保设备的可靠运行和航电系统的稳定性。
三、航电系统的集成设计与优化1. 航电系统组成航电系统是飞机的核心系统之一,包括飞行控制系统、导航系统、通信系统等。
这些系统之间需要进行集成设计,以实现飞机的自动控制和导航功能。
通过合理的航电系统组成和集成设计,可以提高飞机的飞行安全性和操作效率。
2. 系统优化与性能提升在航电系统的设计和开发过程中,需要进行系统优化和性能提升。
这包括优化系统的算法和控制策略,提高系统的响应速度和自适应性。
通过系统优化和性能提升,可以实现飞机的飞行精确控制和导航定位,提升飞机的飞行性能和操作效率。
3. 故障诊断与维修支持航电系统的故障诊断和维修支持是确保飞机安全运行的重要环节。
设计师需要考虑到故障检测和诊断的方法和技术,实现航电系统的自动检测和故障定位。
同时,还需要提供可靠的维修支持,确保故障设备的及时修复和更换,以保证飞机的连续可用性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
不可逆助力机械控制系统
在超音速飞机全动平尾的铰链力矩很大,以致于无法选 出合适的回力比,于是就取消了回力杆,舵面上的气动载 荷不能反传到中央操纵机构上去,因此称为不可逆助力控 制系统。
在下列情况下应采用不可逆的助力控制系统:
➢ 气动铰链力矩很大 ➢ 气动铰链力矩是非线性 ➢ 液压助力器直接与舵面连接,以把舵面刚性地保持
增稳飞控系统原理图
增稳控制系统组成
x x1 x2
复合摇臂
控制增稳飞控系统
飞机的稳定性和操纵性是相互矛盾的。增稳系统有增大 阻尼和静稳定性的作用,但另一方面又在一定程度上削弱 了飞机操纵的灵敏度。
因此,为了获得更好的飞行性能,又发展了控制增稳 系统,在增稳系统的基础上,增加了驾驶员指令回路, 使得它既能起到增稳作用,又能增加操纵系统的反应能 力。
可逆助力机械控制系统
随着飞机尺寸的增大和飞行速度增加,舵面铰链力矩增 大,现代高速和重型飞机的操纵系统出现了助力操纵,即 利用液压或电力来带动舵面,以减小或消除驾驶杆力,改 善飞机的操纵性能。
通过在系统中设置一个回力杆实现把舵面上的空气动力 载荷传一部分到驾驶杆上去。这种助力控制系统,简称 为可逆助力控制系统。
在其固有的位置上
不可逆助力控制系统的组成
液压助力器 载荷感觉器
力臂调节器 调整片效应机构
驾驶杆
力臂调节器
调整片效应机构
载荷机构
液压助力器
全动平尾
增稳控制系统
在高空高速飞行时,产生明显的、又不易衰减的短周期 振荡。为此,现代高性能的超音速飞机上,在不可逆助力 控制系统中广泛地加装自动增稳器,从而构成了飞机的增 稳飞行控制系统。
三、飞机控制系统发展
简单机械飞控系统 速度提高,舵面载荷增大
可逆助力飞控系统 超音速,杆力变化增大
不可逆助力飞控系统 高空出现高频周期振荡
增稳和控制增稳飞控系统 宽范围高精度控制要求
电传飞控系统
四、飞机控制系统的分类
飞机控 制系统
人工飞行 控制系统
主控制系 统
辅助控制 系统
自动驾驶仪
升降舵 副翼 方向舵
➢ 而电传飞控系统,由于驾驶员控制的是飞机的响应, 因此能获得满意的飞行品质。 一般把数字式电传飞控系统做为正常飞控系统,而模
拟式电传飞控系统或直接电气连接或机械式备份系统 用做应急备份系统。
下课
简单机械飞控系统
P
载荷感觉器
回力杆
P1
Pm
P2
液压助力器
可逆式助力飞控系统
控制增稳飞控系统工作图
襟翼 调整片 减速板
自动飞行 控制系统
自动增稳器 发动机油门自动控制系统
简单机械控制系统
简单机械式飞控系统是驾驶员操纵驾驶杆(盘)或脚蹬, 通过机械传动机构,如拉杆、摇臂、钢索和滑轮等驱动操 纵面的飞控系统。
由于其构造筒单,工作可靠,至今仍广泛地用于一些低 速飞机和一些运输机上。
简单机械飞控系统原理图
控制增稳飞控系统原理图
控制增强飞控系统对飞机稳定性和操纵品质的作用
➢ 由于它的杆力变化可以随意设计,增加了操纵对杆 力的灵敏度,改善了操纵性;
➢ 提高了飞机的静稳定性。采用高增益的增稳回路 (相对增稳操纵系统),增加了飞机的稳定性;
➢ 改善操纵系统的杆力特性 。
考虑到安全性问题,控制增稳操纵系统中控制回路的权 限一般为3制系统设计
۞ 功用与演变 ۞ 设计要求 ۞ 类型与组成 ۞ 线路敷设 ۞ 传动系数和传动比 ۞ 主要部件功能及基本工作原理 ۞ 随控布局飞机(CCV)
一、飞机控制系统的功用
飞机的控制系统是指驾驶员在座舱内通过发出操纵指令, 操纵驾驶杆(驾驶盘),驱动舵面或其它装置运动,从而 实现对飞机的姿态控制的系统。是飞机的主要组成部分之 一。
其主要任务包括:
➢ 将操纵信号传递到操纵机构和舵面; ➢ 保证有足够的功率来操纵舵面; ➢ 保证系统有静态和动态稳定性; ➢ 产生自动操纵指令,实现自动操纵; ➢ 限制系统保证飞机的安全性; ➢ 满足在允许的飞行条件下的各种飞行性能指标。
二、飞机控制系统的要求
➢ 操纵动作应与人类运动本能反应相一致 ➢ 在纵向操纵或横向操纵时互不干扰 ➢ 脚操纵机构应该能够按驾驶员的身材来调节 ➢ 有合适的杆力和位移的感觉 ➢ 纵向操纵杆力与横向操纵杆力之间必须有一个合适的比值 ➢ 杆力应随速度增加而增加,并随舵面偏转角度增大而增大 ➢ 启动力应该在合适的范围内 ➢ 中央操纵机构附近应该有极限偏转角度的止动器 ➢ 操纵系统延迟不应超过人的反应速度
混合式线路敷设
电传飞控系统
随着可靠性理论、余度技术的发展,可靠性问题已得到 解决,在这种情况下,把操纵权限完全赋予电气通道,并 取代机械操纵系统的地位,这就变成了电传操纵系统。
电传飞控系统的组成
电传飞控系统工作图
电传飞控系统的工作原理
➢ 常规的机械飞控系统,驾驶员控制的是操纵面的偏度, 凭驾驶员对飞机响应的感觉来掌握操纵量;