(文章)常见几何体的表面展开图
常见几何体的表面展开图
常见几何体的外表展开图将一个几何体的外外表展开,就像掀开一件礼物的包装纸.礼物外形不同,包装纸的形状也各不一样.那么咱们熟悉的一些几何体,如圆柱、圆锥、棱柱的外表展开图是什么形状呢?(1)圆柱的外表展开图是两个圆(作底面)和一个长方形(作侧面).(2)圆锥的外表展开图是一个圆(作底面)和一个扇形(作侧面).(3)棱柱的外表展开图是两个完全一样的多边形(作底面)和几个长方形(作侧面)(4)正方体的平面展开图在讲义中、习题中会常常碰到让大伙儿识别正方体外表展开图的题目.下面列出正方体的十一种展开图,供大伙儿参考.例1 以下四张图中,通过折叠能够围成一个棱柱的是( )分析:由平面图围成一个棱柱,咱们能够动手实践操作,也能够展开丰硕的想像,但咱们最关键的是要抓住棱柱的特点,棱柱的平面图是由两个完全一样的多边形(且在平面图的双侧)和几个长方形组成的.解:正确答案选C.点评:专门要注意的是两个完全一样的多边形是棱柱的上下两个底面图形(棱柱展开后,这两个图形是位于展开图的双侧),故不选D,另外定几个长方形,究竟是几个呢,它的个数确实是上下底多边形的边数,应选C.例2如以下图的平面图形是由哪几种几何体的外表展开的?(1) (2) (3)分析:找几何体的外表展开图,关键是看侧面和底面的形状.底面是圆的几何体有圆柱、圆锥、圆台.侧面是扇形的几何体是圆锥.侧面是长方形的几何体是棱柱、圆柱.解答:(1)圆锥;(2)圆柱;(3)圆台.例3如以下图,在正方体的两个相距最远的极点处停留着一只苍蝇和一只蜘蛛,蜘蛛能够从哪条最短的途径爬到苍蝇处?说明你的理由.分析:在解这道题时,正方体的展开图对解题有专门大的帮忙,由于作展开图有各类不同的方式,因此从蜘蛛到苍蝇能够用6种不同方式选择最短途径,而其中每一条途径都通过连结正方体2个极点的棱的中点.解:由于蜘蛛只能在正方体的外表爬行,因此只需作出那个正方体的展开图并用点标出苍蝇和蜘蛛的位置,依照“两点之间线段最短〞这一常识可知,连结这两个点的线段确实是最短的途径.点评:这种求最短路程是多少及求与棱的夹角是多少等问题,同窗们容易犯的错误是:用棱柱来计算路程,可求出的却不是最短的.通过对该节内容的学习,咱们必然要养成擅长观看,随时寻觅规律的良好适应,只有如此,才能把所学知识融会贯穿.。
初中数学精品课件:简单几何体的表面展开图
E
C
B D
H A
G F
E´
E D
4cm
H A
C ´´
C B
点A在前侧面
C´
G G´
F
D’
A’
A’
E D
4cm
H
A
点A在左侧面
C B
G F
E D
4cm
H A
A´
C B
G
E D
4cm
H
A
点A在前侧面 2条 点A在左侧面 2条 点A在下底面 2条 C 这六条路线均相等.
2
42
5 1 34
51
6 63
如图是一个正方体纸盒的展开图,图中的6个正 方形中分别已填入了-1、7、 2 、a、b、c,使展开 图沿虚线折叠成正方体后相对面上的两个数互为 相反数,则:a= 2 ,b= -7 ,c= 1 .
2
c 7 -1 b
a
你能只改变其中一个正方形的位置, 使得这个新的平面图形能围成正方体吗?
若沿圆锥侧面爬到过母线AB的轴截面上另一母线 AC上中点D,问它爬行的最短路线是多少?
C
C
C
AC 42 72 65m
A
7cm 3
B
在
A
4cm
H
A
H
4
4
D
左
侧 面
A
8m
C
3m A L
3 A4
C B
L
4
D
AC 82 32 73m
AC 42 72 65m
C
C
B
3
7m
A4
D4
A
A
G
4m
G
简单几何体表面展开图 ppt课件
根据下面几个表面展开图你能制作出这些立体 图形吗?
ppt课件
22
下列的三幅平面图都是三棱柱的表面展开图吗?
三 棱 柱
甲
ppt课件 乙
丙
23
下面的图形是正方体的平面展开图,如果把
它们叠成正方体,哪个字母与哪个字母对应(即 哪个面与哪个面是对面的)
AB CD E F
AB C D EF
ppt课件
杜登尼(Dudeney,1857-1930年)是19世纪英国知 名的谜题创作者.“蜘蛛和苍蝇”问题最早出现 在1903年的英国报纸上,它是杜登尼最有名的谜 题之一.它对全世界难题爱好者的挑战,长达四 分之三个世纪.
B
ppt课件
A
1
把你们小组所做的立方体纸盒沿着某些棱剪开, 且使六个面连在一起,然后铺平,把你所得到的图形画 出来,数一数剪了几刀?并比一比,有何异同?
2
c 7 -1 b
a
ppt课件
9
合作游戏----争连做连小看小数学家
有如一图种,牛上奶面包的装图盒形如分图别所是示下。面为哪了个生立产体这图种形包展装开 盒的,形需状要?先把画它出们展用开线图连纸起样来。。
(1)如图给出的三种纸样,它们都正确吗? (2)从已知正确的纸样中选出一种,标注上尺寸; (3)利用你所选的一种纸样,求出包装盒的侧面积 和表面积(侧面积与两个底面积的和)
甲
乙 ppt课件
丙 10
如图,有一边长4米立方体形的房间,一只蜘蛛在A处,一只 苍蝇在B处。⑴试问,蜘蛛去抓苍蝇需要爬行的最短路程是多少?
⑵若苍蝇在C处,则最短路程是多少? C”(C)
C
4cm
B
4cm
C’(C)
A
常见几何体的表面展开图
常见几何体的表面展开图将一个几何体的外表面展开,就像打开一件礼物的包装纸.礼物外形不同,包装纸的形状也各不相同.那么我们熟悉的一些几何体,如圆柱、圆锥、棱柱的表面展开图是什么形状呢?(1)圆柱的表面展开图是两个圆(作底面)和一个长方形(作侧面).(2)圆锥的表面展开图是一个圆(作底面)和一个扇形(作侧面).(3)棱柱的表面展开图是两个完全相同的多边形(作底面)和几个长方形(作侧面)(4)正方体的平面展开图在课本中、习题中会经常遇到让大家辨认正方体表面展开图的题目.下面列出正方体的十一种展开图,供大家参考.例1 下列四张图中,经过折叠可以围成一个棱柱的是( )分析:由平面图围成一个棱柱,我们可以动手实践操作,也可以展开丰富的想像,但我们最关键的是要抓住棱柱的特征,棱柱的平面图是由两个完全一样的多边形(且在平面图的两侧)和几个长方形组成的.解:正确答案选C.点评:特别要注意的是两个完全一样的多边形是棱柱的上下两个底面图形(棱柱展开后,这两个图形是位于展开图的两侧),故不选D,另外定几个长方形,到底是几个呢,它的个数就是上下底多边形的边数,故选C.例2如图所示的平面图形是由哪几种几何体的表面展开的?(1)(2)(3)分析:找几何体的表面展开图,关键是看侧面和底面的形状.底面是圆的几何体有圆柱、圆锥、圆台.侧面是扇形的几何体是圆锥.侧面是长方形的几何体是棱柱、圆柱.解答:(1)圆锥;(2)圆柱;(3)圆台.例3如图所示,在正方体的两个相距最远的顶点处逗留着一只苍蝇和一只蜘蛛,蜘蛛可以从哪条最短的路径爬到苍蝇处?说明你的理由.分析:在解这道题时,正方体的展开图对解题有很大的帮助,由于作展开图有各种不同的方法,因而从蜘蛛到苍蝇可以用6种不同方法选择最短路径,而其中每一条路径都通过连结正方体2个顶点的棱的中点.解:由于蜘蛛只能在正方体的表面爬行,所以只需作出这个正方体的展开图并用点标出苍蝇和蜘蛛的位置,根据“两点之间线段最短”这一常识可知,连结这两个点的线段就是最短的路径.点评:这类求最短路程是多少及求与棱的夹角是多少等问题,同学们容易犯的错误是:用棱柱来计算路程,可求出的却不是最短的.通过对该节内容的学习,我们一定要养成善于观察,随时寻找规律的良好习惯,只有这样,才能把所学知识融会贯通.。
冀教版数学七年级上册1.3 几何体的表面展开图
1.3 几何体的表面展开图
基础训练
一、画一画下面立体图形的表面展开图
二、填一填:哪种几何体的表面能展开成下面图形
三、选一选
1.下面图形中,哪个是正方体的展开图()
A B C D
2.将一个无盖长方体纸盒沿着某些棱展开,能成为的平面图形是()
A B C
综合训练
四、你能把右图形状的纸片折成一个正方体吗?
请你试着画一画.
五、如图是一个正方体表面展开图,如果把它重新折成正方体,那么与点G 重合的是哪两点?并用字母指出三对相对的面。
拓展与探究训练 六、做一做
由6个大小相同的小正方形连成的一块硬纸板,可折叠成一个正方体纸盒,若把6个小正方形每种不同位置的排列作为一种纸样,你能做出几种这样的纸样(用图表示)?
N M L
K J
I
H G
F E D
C
B A
参考答案
一、略. 二、圆柱,长方体,正方体,三棱柱,圆锥. 三、1.D.2.B. 四、略. 五、点
A和点C;ABMN与FEJI,LMJK与CBED,MJEB与HIFG. 六、略.
初中数学试卷。
立体图形的表面展开图例题与讲解
立体图形的表面展开图例题与讲解(总4页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--立体图形的表面展开图1.圆柱、圆锥、棱柱的表面展开图将一个几何体的外表面展开,就像打开一件礼物的包装纸.礼物外形不同,包装纸的形状也各不相同.那么我们熟悉的一些几何体,如圆柱、圆锥、棱柱的表面展开图是什么形状呢(1)圆柱的表面展开图是两个圆(作底面)和一个长方形(作侧面).(2)圆锥的表面展开图是一个圆(作底面)和一个扇形(作侧面).(3)棱柱的表面展开图是两个完全相同的多边形(作底面)和几个长方形(作侧面).【例1】如图,将图中的阴影部分剪下来,围成一个几何体的侧面,使AB,DC重合,则所围成的几何体图形是().解析:此题可用排除法.因为阴影部分是个扇环,而圆柱的侧面展开图是长方形,所以排除A;圆锥的侧面展开图是扇形,所以排除B;长方体的侧面展开图是长方形,所以C 也要排除;故选D.答案:D2.正方体的表面展开图(1)正方体的表面展开图按展开图中正方形所在的行数及正方形的个数,归纳起来有四种情形,各种类型的共同特点是行与行之间有且只有一个“日”型结构,由此可知正方体的展开图不会出现如下面图形所示的“凹”字型和“田”字型结构,因为这里的行与行之间出现了两组“日”型结构.(2)正方体展开图中相对面的寻找技巧:相间的两个小正方形(中间隔着一个小正方形)是正方体的两个对面,如图1中的A面和B面;‘Z’字两端处的小正方形是正方体的对面,如图2、图3的A面和B面.此种方法简称为“相间、‘Z’端是对面”.解技巧正方体的表面展开图的判断思路(1)是否满足四种阵型中的一种;(2)行与行之间有且只有一个“日”型结构.【例2】一个正方形的每一个面上都写有一个汉字,其平面展开图如图所示,那么在该正方形中,与“爱”相对的字是().A.家B.乡C.孝D.感解析:本题以热爱家乡为素材,考查正方体的表面展开图.解题时可亲自动手剪一剪、折一折,即可得到与“爱”相对的字是“乡”;另外也可对展开图加以分析,根据展开图对面之间不能有公共边或公共的顶点,“爱”的对面不可能是“我”或“家”,折叠起来后“孝”、“感”与“爱”相邻,所以“爱”的对面不可能是“孝”、“感”,所以与“爱”相对的字是“乡”;但如果本题应用正方体展开图的对面寻找技巧——“相间、‘Z’端是对面”来解决,会非常简单,由相间的两个小正方形(中间隔着一个小正方形)是正方体的两个对面易知“爱”与“乡”相对.答案:B【例3】如图是正方体的展开图,则原正方体相对两个面上的数字和最小是().A.4 B.6 C.7D.8解析:将展开图还原成正方体,2和6相对,3和4相对,1和5相对,则原正方体相对两个面上的数字和最小为6.答案:B谈重点解决正方体展开图问题的关键熟练掌握正方体展开图的对面寻找技巧可以有效降低解题的难度,起到事半功倍的效果.3.正方体表面展开图的应用如果不考虑由于旋转等造成的相对位置的不同,正方体表面展开图一共有11个.正方体表面展开图的特点是每一个顶点周围的棱不超过三条.(1)“1–4–1”型有6个,其中通过“1”的移动可以由一个得到另外的5个,如图.(2)“1–3–2”型有3个,其中通过“1”的移动可以由1个得到另外的2个,如图.(3)“3–3”型有一个,“2–2–2”型有一个,如图.【例3-1】一个正方体的每一个面上都写着一个汉字,其表面展开图如图所示,那么,在该正方体中和“超”所对的汉字是__________.解析:这是“1–3–2”型的正方体表面展开图.根据展开图可知对面之间不能有公共边或公共顶点,所以“超”字的对面不能是“沉”、“着”、“越”,根据上下相对和左右相对,由于“信”和“着”相对,“着”和“超”相邻,所以“信”和“超”相邻.这样和“超”相对的字只能是“自”.答案:自【例3-2】六一儿童节时,阿兰准备用硬纸片通过裁剪、折叠制作一个封闭的正方体礼盒.她先在硬纸片上设计了一个如图1所示的裁剪方案(实线部分),经裁剪、折叠后成为一个封闭的正方体礼盒.请你参照如图,帮她设计另外两种不同的裁剪方案,使之经裁剪、折叠后也能成为一个封闭的正方体礼盒.图1 图2分析:阿兰设计的是正方体的11种展开图中的一种,可以从剩下的10种展开图中任选两种在如图的小方格中画出.解:如图2所示.4.其他立体图形展开图的应用由平面图形围成的立体图形叫多面体,其表面展开图可以有不同的形状.应多实践,观察,并大胆想象立体图形与表面展开图的关系.立体图形的表面展开图包括侧面展开图和底面展开图,画立体图形的展开图时,一定先观察立体图形的每一个面的形状.圆柱的侧面展开图是长方形,底面是圆;圆锥的侧面展开图是扇形,底面是圆;n棱柱的侧面展开图是n个高相等的长方形,底面是n边形;n棱锥的侧面展开图是n个三角形,底面是n边形.【例4】小新的茶杯是圆柱形,如图所示.左边下方有一只蜘蛛,从A处爬行到对面的中点B处,如果蜘蛛爬行路线最短,请画出这条最短路线图.分析:先画出圆柱的侧面展开图,再连接得到最短路线.解:如图所示.5.立体图形展开图的应用立体图形展开图的考查一般以选择题为主要方式,答案的获得需要学生经历一定的实验操作过程,当然学生也可以将操作活动转化为思维活动,在头脑中模拟(想象)折纸、翻转活动,较好地考查了学生的空间观念.解决此类问题,要充分考虑带有各种符号和各种图案的面的特点及位置,解题时,先正确画出立体图形的表面展开图,再仔细观察图案以及符号的不同特点,从而选出正确的答案.有时,根据图案的位置和方向可以先把一些很明显的不符合题目要求的选择项先排除掉,再一步步的寻找正确的选项.要想灵活解决此类问题,一要熟练掌握立体图形展开图的基本知识和解题技巧;二要充分发挥自己的空间想象力;三要不断积累生活经验和解题经验.【例5-1】如图所示的正方体的展开图是().解析:利用正方体及其表面展开图的特点解题.选项A和选项D折叠后,箭头不指向白三角形,C项折叠后与原正方体不符.B折叠后与原正方体相同.故选B.答案:B【例5-2】图1是由白色纸板拼成,将其中两面涂上颜色,如图2所示.下列四个中哪一个是图2的表面展开图().解析:由图中阴影部分的位置,首先可以排除B,D,又阴影部分正方形在左,三角形在右.故选A.答案:A。
几何体的表面展开图PPT课件
Thank
在别人的演说中思考,在自己的故事里成长
Thinking In Other People‘S Speeches,Growing Up In Your Own Story 讲师:XXXXXX XX年XX月XX日
28
你有何高招?
● 蚊子
壁虎 ●
26
写在最后
经常不断地学习,你就什么都知道。你知道得越多,你就越有力量 Study Constantly, And You Will Know Everything. The More
You Know, The More Powerful You Will Be
27
2
4
5
提示:先想好从哪剪开
6
14
活动二 用剪刀把桌上的正方体纸盒按任意方式沿 棱展开,你能得到哪些不同的展开图?比 比哪一小组的展开图更与众不同。
15
16
第一类,中间四连方,两侧各一 个,共六种。(一四一型)
17
第二类,中间三连方,两侧各有 一、二个,共三种。(二三一型)
18
第三类,中间二连方,两侧各有二 个,只有一种。(二二二型)
第四类,两排各三个,只有一种。 (三三型)
19
试一试
下面六个正方形连在一起的图形,经折 叠后能围成正方体的图形有哪几个?(动手试 试)
A
B
C
D
E
F
G
20
下面的图形是正方体的表面展开图吗?
×
×
×
×
×
√
21
“考考你”活动
1.下图是一个长方体展开图,图中已标出三个 面在正方体中的位置,f表示前面,r表示右面,d表 示上面,你能判断另外三个面a,b,c在正方体中的位 置吗?
简单几何体表面展开图
开图的智能化生成,提高设计效率和质量。
02
虚拟现实与增强现实技术结合
结合虚拟现实和增强现实技术,可以在虚拟环境中实现几何体的动态展
开和交互操作,为设计、教学和娱乐等领域带来新的体验。
03
拓展应用领域
随着科技的进步和社会的发展,几何体表面展开图的应用领域将不断拓
展,例如在生物医学、环境科学等领域发挥更大的作用。
便于计算与制造
在制造和设计领域,展开图可用于计算材料的用 量和成本,以及指导实际的生产和加工过程。
3
广泛应用于多个领域
几何体表面展开图在建筑、机械、电子、艺术等 领域都有广泛的应用,是不可或缺的技术手段。
未来发展趋势和应用前景
01
智能化生成
随着计算机图形学和人工智能技术的发展,未来有望实现几何体表面展
THANKS
感谢观看
可变性
由于锥体的形状和大小可 以变化,因此其展开图也 具有可变性。
04
球体表面展开图
球体的基本概念
球体定义
球体是一个连续曲面的立 体图形,所有点到中心的 距离都相等。
球心与半径
球体的中心称为球心,从 球心到球面上任意一点的 距离称为球的半径。
球面与截面
球体的表面称为球面,通 过球心且与球面相交的平 面截得的圆称为截面圆。
真实性
展开图是按照一定的比例和投影 规律绘制的,能够真实地反映组
合体的实际形状和大小。
多样性
由于组合体的形状和结构各异, 其表面展开图也具有多样性,需 要根据具体情况进行分析和绘制
。
06
总结与展望
几何体表面展开图的重要性
1 2
直观理解三维形状
通过展开图,可以直观地理解三维几何体的表面 结构和形状特征,有助于空间想象和思维发展。
新浙教版九年级数学下册第三章《3.4简单几何体的表面展开图》优课件(共12张PPT)
一起探究
—— 40 —— —— 40 —— —— 40 —— —20—
—20—
—20—
主 视 图
俯 视 图
—20—
—20—
左 视 图
主 视 图
—20—
俯 视 图
—20—
左 视 图
—— 40 ——
(1) (3)
(2) (4)
练习
下列各图是几何体的平面展开图,猜想下列展开图可折成 什么立体图形,并指出围成的几何体的形状.
一起探究
图3-4和图3-5分别是某几何体的三视图.(单位: mm)
(1)请分别说出他们所对应的几何体的名称. (2)分别计算这两个几何体的表面积. (3)小明认为,图3-5所示三视图所对应的几何体
一起探究
一个外形为长方体的纸箱的大小如图3-6所示(单位: cm),一只昆虫要从纸箱的顶点A沿表面爬到另一个顶点B, 它沿那条路线爬行的距离最短?请说明理由,并求出这个 最短距离.
G E
A
B D
F C
观察与思考
观察下面小亮的回答问题的过程,想一想它的解法是否
确.为什么? 小亮是这样解答的:
将纸箱看成长方体,它的平面展开图3-7所示.连结AB, 根据两点之间线段最短,可知线段AB就是昆虫爬行距离 最短的路线. 在RT△ACB中,根据勾股定理,有AB≈42.42(cm)
浙教版九年级下
3.4 简单几何体的表面展开图
几何体的展开图在生产时间中有着广泛的应用.通过 几何体的展开图可以确定和制作立体模型,也可以计算 相关集合体的侧面积和表面积.
观察与思考
长方体和正方体表面的展开图
单击此处添加副标题
单击此处添加正文,文字是您思想的提炼,为了演示发布的良好效果,请言简意赅地阐述您的观点。
单击页面即可演示
一个正方体纸盒,像下面的样子沿着画有红线的棱剪开,就可以得到它的展开图。
一个正方体纸盒,像下面的样子沿着画有红线的棱剪开,就可以得到它的展开图。
一个正方体纸盒,像下面的样子沿着画有红线的棱剪开,就可以得到它的展开图。
2. 下面哪些图形沿虚线折叠后能围成正方体? 先想一想,再照样子剪一剪、折一折。 √ √ × ×
练习题
(A)
(B)
(D)
(C)
(E)
相对的面完全相同,相对的面完全隔开。
(A)
(B)
(A)
(D)
(C)
(E)
(D)
(C)
(E)
(A)
长方体展开图相对的面有怎样的规律?
(D)
(C)
(E)
(B)
(A)
(D)
一个正方体纸盒,像下面的样子沿着画有红线的棱剪开,就可以得到它的展开图。
一个正方体纸盒,像下面的样子沿着画有红线的棱剪开,就可以得到它的展开图。
拿一个长方体纸盒,沿着一些棱剪开,看看它的展开图。 你能从展开图中找到长方体3组相对的面吗?
1.把长方体纸盒剪开, 得到它的展开图。 上面 前面 右面 前面 上面 右面 你能标出长方体的下面、后面和左面吗?
(C)
(E)
观察正方体展开图,说一说哪两个面是相对的,并说说有什么规律?正方体的展开图有多少种形式?
练习题
“一四一”型
单击此处添加正文,文字是您思想的提炼, 请尽量言简意赅的阐述观点。
Part 01.“二三一”型源自“三三”型“二二二”型
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
常见几何体的表面展开图
将一个几何体的外表面展开,就像打开一件礼物的包装纸.礼物外形不同,包装纸的形状也各不相同.那么我们熟悉的一些几何体,如圆柱、圆锥、棱柱的表面展开图是什么形状呢?
(1)圆柱的表面展开图是两个圆(作底面)和一个长方形(作侧面).
(2)圆锥的表面展开图是一个圆(作底面)和一个扇形(作侧面).
(3)棱柱的表面展开图是两个完全相同的多边形(作底面)和几个长方形(作侧面)
(4)正方体的平面展开图
在课本中、习题中会经常遇到让大家辨认正方体表面展开图的题目.下面列出正方体的十一种展开图,供大家参考.
例1 下列四张图中,经过折叠可以围成一个棱柱的是( )
分析:由平面图围成一个棱柱,我们可以动手实践操作,也可以展开丰富的想像,但我们最关键的是要抓住棱柱的特征,棱柱的平面图是由两个完全一样的多边形(且在平面图的两侧)和几个长方形组成的.
解:正确答案选C.
点评:特别要注意的是两个完全一样的多边形是棱柱的上下两个底面图形(棱柱展开后,这两个图形是位于展开图的两侧),故不选D,另外定几个长方形,到底是几个呢,它的个数就是上下底多边形的边数,故选C.
例2如图所示的平面图形是由哪几种几何体的表面展开的?
(1)(2)(3)
分析:找几何体的表面展开图,关键是看侧面和底面的形状.
底面是圆的几何体有圆柱、圆锥、圆台.
侧面是扇形的几何体是圆锥.
侧面是长方形的几何体是棱柱、圆柱.
解答:(1)圆锥;(2)圆柱;(3)圆台.
例3如图所示,在正方体的两个相距最远的顶点处逗留
着一只苍蝇和一只蜘蛛,蜘蛛可以从哪条最短的路径爬到苍蝇
处?说明你的理由.
分析:在解这道题时,正方体的展开图对解题有很大的
帮助,由于作展开图有各种不同的方法,因而从蜘蛛到苍蝇可
以用6种不同方法选择最短路径,而其中每一条路径都通过连
结正方体2个顶点的棱的中点.
解:由于蜘蛛只能在正方体的表面爬行,所以只需作出这个正方体的展开图并用点标出苍蝇和蜘蛛的位置,根据“两点之间线段最短”这一常识可知,连结这两个点的线段就是最短的路径.
点评:这类求最短路程是多少及求与棱的夹角是多少等问题,同学们容易犯的错误是:用棱柱来计算路程,可求出的却不是最短的.
通过对该节内容的学习,我们一定要养成善于观察,随时寻找规律的良好习惯,只有这样,才能把所学知识融会贯通.。