八年级一次函数教案

八年级一次函数教案
八年级一次函数教案

变量与函数(1)

知识技能目标

1.掌握常量和变量、自变量和因变量(函数)基本概念;

2.了解表示函数关系的三种方法:解析法、列表法、图象法,并会用解析法表示数量关系.

过程性目标

1.通过实际问题,引导学生直观感知,领悟函数基本概念的意义;

2.引导学生联系代数式和方程的相关知识,继续探索数量关系,增强数学建模意识,列出函数关系式.

教学过程

一、创设情境

在学习与生活中,经常要研究一些数量关系,先看下面的问题.

问题1如图是某地一天内的气温变化图.

看图回答:

(1)这天的6时、10时和14时的气温分别为多少?任意给出这天中的某一时刻,说出这一时刻的气温.

(2)这一天中,最高气温是多少?最低气温是多少?

(3)这一天中,什么时段的气温在逐渐升高?什么时段的气温在逐渐降低?解(1)这天的6时、10时和14时的气温分别为-1℃、2℃、5℃;

(2)这一天中,最高气温是5℃.最低气温是-4℃;

(3)这一天中,3时~14时的气温在逐渐升高.0时~3时和14时~24时的气温在逐渐降低.

从图中我们可以看到,随着时间t(时)的变化,相应地气温T(℃)也随之变化.那么在生活中是否还有其它类似的数量关系呢?

二、探究归纳

问题2银行对各种不同的存款方式都规定了相应的利率,下表是2002年7月中国工商银行为“整存整取”的存款方式规定的年利率:

观察上表,说说随着存期x的增长,相应的年利率y是如何变化的.

解随着存期x的增长,相应的年利率y也随着增长.

问题3 收音机刻度盘的波长和频率分别是用米(m)和千赫兹()为单位标刻的.下面是一些对应的数值:

观察上表回答:

(1)波长l 和频率f 数值之间有什么关系?

(2)波长l 越大,频率f 就.

解 (1) l 与 f 的乘积是一个定值,即

=300 000,

或者说 l 300000=f . (2)波长l 越大,频率f 就 越小 .

问题4 圆的面积随着半径的增大而增大.如果用r 表示圆的半径,S 表示圆的面积则S 与r 之间满足下列关系:S =.

利用这个关系式,试求出半径为1 、1.5 、2 、2.6 、3.2 时圆的面积,并将结果填入下表:

由此可以看出,圆的半径越大,它的面积就.

解 S =πr 2.

圆的半径越大,它的面积就越大.

在上面的问题中,我们研究了一些数量关系,它们都刻画了某些变化规律.这里出现了各种各样的量,特别值得注意的是出现了一些数值会发生变化的量.例如问题1中,刻画气温变化规律的量是时间t 和气温T ,气温T 随着时间t 的变化而变化,它们都会取不同的数值.像这样在某一变化过程中,可以取不同数值的量,叫做变量().

上面各个问题中,都出现了两个变量,它们互相依赖,密切相关.一般地,如果在一个变化过程中,有两个变量,例如x 和y ,对于x 的每一个值,y 都有惟一的值与之对应,我们就说x 是自变量( ),y 是因变量( ),此时也称y 是x 的函数().表示函数关系的方法通常有三种:

(1)解析法,如问题3中的l

300000=f ,问题4中的S =π r 2,这些表达式称为函数的关系式. (2)列表法,如问题2中的利率表,问题3中的波长与频率关系表.

(3)图象法,如问题1中的气温曲线.

问题的研究过程中,还有一种量,它的取值始终保持不变,我们称之为常量(),如问题3中的300 000,问题4中的π等.

三、实践应用

例1 下表是某市2000年统计的该市男学生各年龄组的平均身高.

(1)从表中你能看出该市14岁的男学生的平均身高是多少吗?

(2)该市男学生的平均身高从哪一岁开始迅速增加?

(3)上表反映了哪些变量之间的关系?其中哪个是自变量?哪个是因变量?

解 (1)平均身高是146.1;

(2)约从14岁开始身高增加特别迅速;

(3)反映了该市男学生的平均身高和年龄这两个变量之间的关系,其中年龄是自变量,平均身高是因变量.

例2 写出下列各问题中的关系式,并指出其中的常量与变量:

(1)圆的周长C 与半径r 的关系式;

(2)火车以60千米/时的速度行驶,它驶过的路程s (千米)和所用时间t (时)的关系式;

(3)n 边形的内角和S 与边数n 的关系式.

解 (1)C =2π r ,2π是常量,r 、C 是变量;

(2)s =60t ,60是常量,t 、s 是变量;

(3)S =(n -2)×180,2、180是常量,n 、S 是变量.

四、交流反思

1.函数概念包含:

(1)两个变量;

(2)两个变量之间的对应关系.

2.在某个变化过程中,可以取不同数值的量,叫做变量;数值始终保持不变的量,叫做常量.例如x 和y ,对于x 的每一个值,y 都有惟一的值与之对应,我们就说x 是自变量,y 是因变量.

3.函数关系三种表示方法:

(1)解析法;

(2)列表法;

(3)图象法.

五、检测反馈

1.举3个日常生活中遇到的函数关系的例子.

2.分别指出下列各关系式中的变量与常量:

(1)三角形的一边长5,它的面积S (2)与这边上的高h ()的关系式是h S 2

5

; (2)若直角三角形中的一个锐角的度数为α,则另一个锐角β(度)与α间的关系式是β=90-α ;

(3)若某种报纸的单价为a 元,x 表示购买这种报纸的份数,则购买报纸的总价y (元)与x 间的关系是:y =.

3.写出下列函数关系式,并指出式中的自变量与因变量:

(1)每个同学购一本代数教科书,书的单价是2元,求总金额Y (元)与学生数n (个)的关系;

(2)计划购买50元的乒乓球,求所能购买的总数n (个)与单价a (元)的关系.

4.填写如图所示的乘法表,然后把所有填有24的格子涂黑.若用x 表示涂黑的格子横向的乘数,y 表示纵向的乘数,试写出y 关于x 的函数关系式.

变量与函数(2)

知识技能目标

1.掌握根据函数关系式直观得到自变量取值范围,以及实际背景对自变量取值的限制;

2.掌握根据函数自变量的值求对应的函数值.

过程性目标

1.使学生在探索、归纳求函数自变量取值范围的过程中,增强数学建模意识;

2.联系求代数式的值的知识,探索求函数值的方法.

教学过程

一、创设情境

问题1填写如图所示的加法表,然后把所有填有10的格子涂黑,看看你能发现什么?如果把这些涂黑的格子横向的加数用x表示,纵向的加数用y表示,试写出y与x的函数关系式.

解如图能发现涂黑的格子成一条直线.

函数关系式:y=10-x.

问题2 试写出等腰三角形中顶角的度数y与底角的度数x之间的函数关系式.

解y与x的函数关系式:y=180-2x.

问题3 如图,等腰直角△的直角边长与正方形的边长均为10 ,与在同一直线上,开始时A 点与M点重合,让△向右运动,最后A点与N点重合.试写出重叠部分面积2与长度x之间的函数关系式.

解 y 与x 的函数关系式:22

1x y =.

二、探究归纳

思考 (1)在上面问题中所出现的各个函数中,自变量的取值有限制吗?如果有,写出它的取值范围.

(2)在上面问题1中,当涂黑的格子横向的加数为3时,纵向的加数是多少?当纵向的加数为6时,横向的加数是多少?

分析 问题1,观察加法表中涂黑的格子的横向的加数的数值范围.

问题2,因为三角形内角和是180°,所以等腰三角形的底角的度数x 不可能大于或等于90°. 问题3,开始时A 点与M 点重合,长度为0,随着△不断向右运动过程中,长度逐渐增长,最后A 点与N 点重合时,长度达到10.

解 (1)问题1,自变量x 的取值范围是:1≤x ≤9;

问题2,自变量x 的取值范围是:0<x <90;

问题3,自变量x 的取值范围是:0≤x ≤10.

(2)当涂黑的格子横向的加数为3时,纵向的加数是7;当纵向的加数为6时,横向的加数是

4. 上面例子中的函数,都是利用解析法表示的,又例如:

s =60t , S =πR 2.

在用解析式表示函数时,要考虑自变量的取值必须使解析式有意义.在确定函数中自变量的取值范围时,如果遇到实际问题,不必须使实际问题有意义.例如,函数解析式S =πR 2中自变量R 的取值范围是全体实数,如果式子表示圆面积S 与圆半径R 的关系,那么自变量R 的取值范围就应该是R >0.

对于函数 y =x (30-x ),当自变量x =5时,对应的函数y 的值是

y =5×(30-5)=5×25=125.

125叫做这个函数当x =5时的函数值.

三、实践应用

例1 求下列函数中自变量x 的取值范围:(1) y =3x -1; (2) y =2x 2+7;(3)2

1+=x y ; (4)2-=x y .

分析 用数学式子表示的函数,一般来说,自变量只能取使式子有意义的值.例如,在(1),

(2)中,x 取任意实数,3x -1与2x 2+7都有意义;而在(3)中,x =-2时,2

1+x 没有意义;在(4)中,x <2时,2-x 没有意义.

解 (1)x 取值范围是任意实数;

(2)x 取值范围是任意实数;

(3)x 的取值范围是x ≠-2;

(4)x 的取值范围是x ≥2.

归纳 四个小题代表三类题型.(1),(2)题给出的是只含有一个自变量的整式;(3)题给出的是分母中只含有一个自变量的式子;(4)题给出的是只含有一个自变量的二次根式.

例2 分别写出下列各问题中的函数关系式及自变量的取值范围:

(1)某市民用电费标准为每度0.50元,求电费y (元)关于用电度数x 的函数关系式;

(2)已知等腰三角形的面积为202,设它的底边长为x (),求底边上的高y ()关于x 的函数关系式;

(3)在一个半径为10 的圆形纸片中剪去一个半径为r ()的同心圆,得到一个圆环.设圆环的面积为S (2),求S 关于r 的函数关系式.

解 (1) y =0.50x ,x 可取任意正数; (2)x y 40=,x 可取任意正数; (3)S =100π-πr 2,r 的取值范围是0<r <10.

例3 在上面的问题(3)中,当=1 时,重叠部分的面积是多少?

解 设重叠部分面积为y 2,长为x , y 与x 之间的函数关系式为

22

1x y = 当x =1时,2

11212=?=y 所以当=1 时,重叠部分的面积是2

12.

例4 求下列函数当x = 2时的函数值: (1)y = 25 ; (2)y =-3x 2 ;

(3)1

2-=x y ; (4)x y -=2. 分析 函数值就是y 的值,因此求函数值就是求代数式的值.

解 (1)当x = 2时,y = 2×2-5 =-1;

(2)当x = 2时,y =-3×22 =-12;

(3)当x = 2时,y 1

22- 2; (4)当x = 2时,y

22- 0.

四、交流反思

1.求函数自变量取值范围的两个依据:

(1)要使函数的解析式有意义.

①函数的解析式是整式时,自变量可取全体实数;

②函数的解析式分母中含有字母时,自变量的取值应使分母≠0;

③函数的解析式是二次根式时,自变量的取值应使被开方数≥0.

(2)对于反映实际问题的函数关系,应使实际问题有意义.

2.求函数值的方法:把所给出的自变量的值代入函数解析式中,即可求出相应的函数值.

五、检测反馈

1.分别写出下列各问题中的函数关系式,并指出式中的自变量与函数以及自变量的取值范围:

(1)一个正方形的边长为3 ,它的各边长减少x 后,得到的新正方形周长为y .求y 和x 间的关系式;

(2)寄一封重量在20克以内的市内平信,需邮资0.60元,求寄n 封这样的信所需邮资y (元)与n 间的函数关系式;

(3)矩形的周长为12 ,求它的面积S (2)与它的一边长x ()间的关系式,并求出当一边长为2 时这个矩形的面积.

2.求下列函数中自变量x 的取值范围:

(1)y =-2x -5x 2; (3) y =x (x +3); (3)36+=x x y ; (4)12-=x y . 3.一架雪橇沿一斜坡滑下,它在时间t (秒)滑下的距离s (米)由下式给出:s =10t +2t 2.假如滑到坡底的时间为8秒,试问坡长为多少?

4.当x =2及x =-3时,分别求出下列函数的函数值:

(1) y =(1)(x -2);(2)y =2x 2-3x +2; (3)1

2-+=x x y . 函数的图象(1)

知识技能目标

1.掌握平面直角坐标系的有关概念;

2.能正确画出直角坐标系,以及根据点的坐标找出它的位置、由点的位置确定它的坐标;

3.初步理解直角坐标系上的点和有序实数对是一一对应的含义.

过程性目标

1.联系数轴知识、统计图知识,经历探索平面直角坐标系的概念的过程;

2.通过学生积极动手画图,达到熟练的程度,并充分感受直角坐标系上的点和有序实数对是一一对应的含义.

教学过程

一、创设情境

如图是一条数轴,数轴上的点与实数是一一对应的.数轴上每个点都对应一个实数,这个实数叫做这个点在数轴上的坐标.例如,点A 在数轴上的坐标是4,点B 在数轴上的坐标是-2.5.知道一个点的坐标,这个点的位置就确定了.

我们学过利用数轴研究一些数量关系的问题,在实际生活中.还会遇到利用平面图形研究数量关系的问题.

二、探究归纳

问题1例如你去过电影院吗?还记得在电影院是怎么找座位的吗?

解因为电影票上都标有“×排×座”的字样,所以找座位时,先找到第几排,再找到这一排的第几座就可以了.也就是说,电影院里的座位完全可以由两个数确定下来.

问题2在教室里,怎样确定一个同学的座位?

解例如,××同学在第3行第4排.这样教室里座位也可以用一对实数表示.

问题3要在一块矩形(=40,=25)的铁板上钻一个直径为10的圆孔,要求:

(1)孔的圆周上的点与边的最短距离为5,

(2)孔的圆周上的点与边的最短距离为15.

试问:钻孔时,钻头的中心放在铁板的什么位置?

分析圆O的中心应是钻头中心的位置.因为⊙O直径为10,所以半径为5 ,所以圆心O到边距离为20,圆心O到边距离为10.由此可见,确定一个点(圆心O)的位置要有两个数(20和10).

在数学中,我们可以用一对有序实数来确定平面上点的位置.为此,在平面上画两条原点重合、互相垂直且具有相同单位长度的数轴(如图),这就建立了平面直角坐标系().通常把其中水平的一条数轴叫做x轴或横轴,取向右为正方

向;铅直的数轴叫做y轴或纵轴,取向上为正方向;两数

轴的交点O叫做坐标原点.

在平面直角坐标系中,任意一点都可以用一对有序实

数来表示.例如,图中的点P,从点P分别向x轴和y轴

作垂线,垂足分别为M和N.这时,点M在x轴上对应

的数为3,称为点P的横坐标();点N在y轴上对应的数

为2,称为点P的纵坐标().依次写出点P的横坐标和纵

坐标,得到一对有序实数(3,2),称为点P的坐标().这时

点P可记作P(3,2).在直角坐标系中,两条坐标轴把

平面分成如图所示的Ⅰ、Ⅱ、Ⅲ、Ⅳ四个区域,分别称为

第一、二、三、四象限.坐标轴上的点不属于任何一个

象限.

三、实践应用

例1在上图中分别描出坐标是(2,3)、(-2,3)、(3,-2)

的点Q、S、R,Q(2,3)与P(3,2)是同一点吗?S(-2,3)

与R(3,-2)是同一点吗?

Q(2,3)与P(3,2)不是同一点;

S(-2,3)与R(3,-2)不是同一点.

例2写出图中的点A、B、C、D、E、F的坐标.观察你所写出的这些点的坐标,回答:(1)在四个象限内的点的坐标各有什么特征?

(2)两条坐标轴上的点的坐标各有什么特征?

解A(-1,2)、B (2,1)、C (2,-1)、D (-1,-1)、E (0,3)、F (-2,0).

(1)在第一象限内的点,横坐标是正数,纵坐标是正数;

在第二象限内的点,横坐标是负数,纵坐标是正数;

在第三象限内的点,横坐标是负数,纵坐标是负数;

在第四象限内的点,横坐标是正数,纵坐标是负数;

(2)x轴上点的纵坐标等于零;

y轴上点的横坐标等于零.

说明从上面的例1、例2可以发现直角坐标系上每一个点的位置都能用一对有序实数表示,反之,任何一对有序实数在直角坐标系上都有唯一的一个点和它对应.也就是说直角坐标系上的点和有序实数对是一一对应的.

例3在直角坐标系中描出点A(2,-3),分别找出它关于x轴、y轴及原点的对称点,并写出这些点的坐标.观察上述写出的各点的坐标,回答:

(1)关于x轴对称的两点的坐标之间有什么关系?

(2)关于y轴对称的两点的坐标之间有什么关系?

(3)关于原点对称的两点的坐标之间又有什么关系?

(1)关于x轴对称的两点:横坐标相同,纵坐标绝对值相等,符号相反;

(2)关于y轴对称的两点:横坐标绝对值相等,符号相反,纵坐标相同;

(3)关于原点对称的两点:横坐标绝对值相等,符号相反,纵坐标也绝对值相等,符号相反.

例4在直角坐标平面内,(1)第一、三象限角平分线上点的坐标有什么特点?(2)第二、四象限角平分线上点的坐标有什么特点?

分析如图,P为第一、三象限角平分线上位于第一象限内任一点,作⊥x轴于M,在△中,∠1=∠2=45°,所以||=||,则P点的横坐标,纵坐标绝对值相等,又因为P点位于第一象限内,为正值,也为正值,所以P点横坐标与纵坐标相同.同样若P点位于第三象限内,则为负值,也为负值,所以P点横坐标与纵坐标也相同.若

P点为第二、四象限角平分线上任一点,则与一正一负,所以

P点横坐标与纵坐标互为相反数.

解 (1)第一、三象限角平分线上点:横坐标与纵坐标相同;

(2)第二、四象限角平分线上点:横坐标与纵坐标互为相反

数.

四、交流反思

1.平面直角坐标系的有关概念及画法;

2.在直角坐标系中,根据坐标找出点;由点求出坐标的方法;

3.在四个象限内的点的坐标特征;两条坐标轴上的点的坐标特征;第一、三象限角平分线上点的坐标特征;第二、四象限角平分线上点的坐标特征;

4.分别关于x轴、y轴及原点的对称的两点坐标之间的关系.

五、检测反馈

1.判断下列说法是否正确:

(1)(2,3)和(3,2)表示同一点;

(2)点(-4,1)与点(4,-1)关于原点对称;

(3)坐标轴上的点的横坐标和纵坐标至少有一个为0;

(4)第一象限内的点的横坐标与纵坐标均为正数.

2.在直角坐标系中描出下列各点,顺次用线段将这些点连起来,并将最后一点与第一点连起来,看看得到的是一个什么图形?

),),(,),(

,),(,(),,),(,),(,),(,),(,),(,(),,),(,),(),(, (0 2

11 211 2133 2113 2

126 216 18 06 16 213 2

123 2111 ,2131 21),0 ,21(------- 3.指出下列各点所在的象限或坐标轴:

A (-3,-5),

B (6,-7),

C (0,-6),

D (-3,5),

E (4,0).

4.填空:

(1)点P (5,-3)关于x 轴对称点的坐标是 ;

(2)点P (3,-5)关于y 轴对称点的坐标是 ;

(3)点P (-2,-4)关于原点对称点的坐标是 .

5.如图是一个围棋棋盘,我们可以用类似于直角坐标系的方法表示各个棋子的位置.例如,图中右下角的一个棋子可以表示为(12,十三).请至少说出图中四个棋子的“位置”.

函数的图象(2)

知识技能目标

1.掌握用描点法画出一些简单函数的图象;

2.理解解析法和图象法表示函数关系的相互转换.

过程性目标

1.结合实际问题,经历探索用图象表示函数的过程;

2.通过学生自己动手,体会用描点法画函数的图象的步骤.

教学过程

一、创设情境

问题1 在前面,我们曾经从如图所示的气温曲线上获得许多信息,回答了一些问题.现在让我们来回顾一下.

二、探究归纳

先考虑一个简单的问题:你是如何从图上找到各个时刻的气温的?

分析图中,有一个直角坐标系,它的横轴是t轴,表示时间;它的纵轴是T轴,表示气温.这一气温曲线实质上给出了某日的气温T (℃)与时间t(时)的函数关系.例如,上午10时的气温是2℃,表现在气温曲线上,就是可以找到这样的对应点,它的坐标是(10,2).实质上也就是说,当t=10时,对应的函数值T=2.气温曲线上每一个点的坐标(),表示时间为t时的气温是T.

问题2 如图,这是2004年3月23日上证指数走势图,你是如何从图上找到各个时刻的上证指数的?

分析图中,有一个直角坐标系,它的横轴表示时间;它的纵轴表示上证指数.这一指数曲线实质上给出了3月23日的指数与时间的函数关系.例如,下午14:30时的指数是1746.26,表现在指数曲线上,就是可以找到这样的对应点,它的坐标是(14:30, 1746.26).实质上也就是说,当时间是14:30时,对应的函数值是1746.26.

上面气温曲线和指数走势图是用图象表示函数的两个实际例子.

一般来说,函数的图象是由直角坐标系中的一系列点组成的图形.图象上每一点的坐标(x,y)代表了函数的一对对应值,它的横坐标x表示自变量的某一个值,纵坐标y表示与它对应的函数值.

三、实践应用

例1画出函数y=x+1的图象.

分析要画出一个函数的图象,关键是要画出图象上的一些点,为此,首先要取一些自变量的值,并求出对应的函数值.解取自变量x的一些值,例如x=-3,-2,-1,0,1,2,3 …,计算出对应的函数值.为表达方便,可列表如下:

由这一系列的对应值,可以得到一系列的有序实数对:

…,(-3,-2),(-2,-1),(-1,0),(0,1),(1,2),(2,3),(3,4),…在直角坐标系中,描出

相关主题
相关文档
最新文档