关于几起输电线路风偏跳闸的原因分析
110kV输电线路风偏摇摆角不足引起跳闸故障分析
— —
1 故 障 经 过
2 0 0 9  ̄ 8月 8 日 l 1时 4 6分 , 在第八 号 台风“ 莫 拉 克” 登陆前 , 天 气 为 中雨 转暴 雨 , 气温 2 6 o C, 风 速 5到 6级 . 阵 风 7 到 8级 , 福 建 省 南 安 市 电 力 公 司 1 1 0 k V 贵 溪 线 接 地 距 离 I段 动 作 跳 闸 , 重 合 闸不成 功 , 故 障 录
E l 罾 昌 日 DI 室 全 竺 主 师 1 3 NO NGC UN ANG ONG 。 ~ 持: 。 。 ’ 。 帅2 ’ 。 0 。 0 2
.
1 1 0 k V 输 电线路
风 偏 摇 摆 角 不 足 圈 口 厘 啵 向 趣 匾 国 旆
( 3 6 2 3 0 0 )  ̄建 省 南安 市电力公 司 王 晓峰 许 海莲
根 据 G3 1号 塔 的 实 际 使 用 条 件 . 参 照 本工 程 的设
表 1 1 1 O k V 贵溪 线 设 计 工 况
对 比 以 上 数 值 , 虽 然 G3 1号 塔 在 上 述 三 种 工 况
下 , 导 线对杆 塔 构件 的安全 距离 符合设 计 规 范要求 , 但
从 1 S Z G1 2 2直 线 杆 的 摇 摆 角 临 界 曲 线 可 看 出 , G3 1号 塔 的摇 摆 角 处 于 临 界 状 态 .在 不 均 匀 阵 风 的 作 用 下 有 可 能 造 成 导 线 对 横 担 的 距 离 小 于 最 小 空 气 间 隙 的 要
电痕迹 ( 同时当地 两位 村 民反映 l 1点 多 听 到 山 上 有 两
G — — 绝 缘 子 串所 受 风 压 及 其 自重 , N; 杆塔 的水平 档距 , I n 。
沿海架空输电线路风偏跳闸分析及防治对策
Dianqi Gongcheng yu Zidonghua♦电气工程与自动化沿海架空输电线路风偏跳闸分析及防治对策谢锡汉(广东电网有限责任公司湛江供电局,广东湛江524000)摘要:风偏跳闸是影响架空输电线路安全运行的主要问题之一,特别是在沿海地区,风偏闪络跳闸事件时有发生。
由于风偏跳闸重合闸成功率低,极易造成线路强迫停运,严重影响电网的安全可靠性。
据此分析了架空输电线路风偏跳闸的原因,介绍了耐张塔跳线串及直线塔悬垂串的风偏角原,风偏行了。
关键词:架空输电线路;风偏跳闸0引言国沿海地区受西太平洋深的大影响,风多发,沿海架空输电线路极易受风[风国沿海地区的时风 65m/s,强风时线路风偏跳闸,广东沿海地区发生风倒塔线事,严重电网的安全运行。
因此,沿海架空输电线路风偏跳闸分析,有效的广,于输电线路的供电可靠性的有重要°1输电线路风偏跳闸原因国的4输电线路风偏跳闸主要由外因因造成。
因是由于大的风,风,造成输电线路的线发生风偏,塔的电4电运行电电要求时就会发生闪络放电。
内因主要包括两个:(1)线路设计缺陷,在设阶段因象条件的评估,线路防风设强度偏,导致输电线路强风的强叫(2)施工程中按图纸工或者工工艺不佳、质量不合格,例如在耐张塔跳线安装程中,跳线弧垂预留大,使跳线更容易发生风偏跳闸。
由于国东南部沿海地区风发,且强台风击更加频繁、强度更大,大数在运线路的风已目前风技术规范要,是沿海架空输电线路风偏跳闸的主要原因。
2输电线路防风偏校验防风偏校验分为耐张塔跳线串风偏计算和直线塔悬垂串风偏类,耐张塔跳线串及直线塔悬垂串的风偏角!原图1所示。
图1风偏角!计算原理计算公式:伽!=绝缘子串水平风荷载+水平风荷载—”绝缘子串重+重锥重量+线重1"+r+r2m+c+v 式中,G m为绝缘子串自重(N);G c为重锤自重(N);G v为导线自重(N);P h为跳线风荷载(N);R为绝缘子串风压(N)。
关于风偏引起线路跳闸的故障分析及对策措施
关于风偏引起线路跳闸的故障分析及对策措施摘要:输电线路的风偏闪络一直是影响线路安全运行的因素之一,与雷击等其他原因引起的跳闸相比,风偏跳闸的重合成功率较低,一旦发生风偏跳闸,造成线路停运的几率较大。
本文对110kV线路一起风偏造成的跳闸事故进行了原因分析,并提出了相应的对策措施,对于降低输电线路风偏闪络故障率,提高输电线路的安全运行水平有所帮助。
关键字:风偏;闪络;跳闸;对策措施0 引言对输电线路风偏闪络引起的故障及事故分析原因,进行调查统计,研究并制订相关防治措施,对降低输电线路风偏闪络故障及事故率,提高输电线路的安全运行水平很有意义。
经统计,输电线路风偏跳闸按放电形式分,对杆塔放电的比例最大;按塔型分,耐张的比例最大。
本文将对此类故障试作分析。
1 故障情况2006年7月1日11:45分盘钢#1线751保护Z01、I01动作,重合不成(B 相,测距4.8kM),南钢一总降110kV备自投成功。
随即组织线路班进行带电查线,查到盘城变附近时,当地居民告知暴风雷雨时前方铁塔有冒火声响。
15:54分发现盘钢#1线751 #4塔B相搭头引流线遭雷击弧闪痕迹,并发现盘钢#1线#4塔有放电痕迹,暂不影响运行,向调度汇报要求试送一次。
16:20送电线路运行正常。
2 现场情况检查经现场调查,该塔为耐张塔,杆塔周边为平地,#4塔B相搭头引流线对塔身放电,塔身主材和引流线上均有放电痕迹,未安装跳线绝缘子串,两侧耐张串等高。
附近居民反映放电故障发生时段有大风、暴雨活动,持续时间较长。
图一引流线有明显放电痕迹图二塔身亦有明显放电痕迹3 原因分析3.1 气候条件发生风偏闪络的本质原因是由于在外界各种不利条件下造成输电线路的空气间隙距离减小,当此间隙距离的电气强度不能耐受系统运行电压时便会发生击穿放电。
输电线路风偏闪络多发生于恶劣气候条件下,发生区域均有强风出现,且大多数情况下还伴随有大暴雨或冰雹。
此次跳闸故障的气象环境就是强风和大暴雨。
输电线路风偏故障分析与防范
输电线路风偏故障分析与防范由于近年来石嘴山地区大风天气较多,该地区110-220kV线路发生多次大风跳闸故障。
针对故障原因,笔者对大风天气与地区线路运行条件进行深入分析,提出了地区电网防风偏治理的方案。
标签:线路;风偏故障;防范1风偏故障类型及特点1.1 风偏故障类型及故障统计风偏故障是输电线路在大风天气下导线(带电体)与杆塔、拉线、树、竹、建筑物等(地电位体)之间或其他相导线的空气间隙小于大气击穿电压而造成的跳闸故障。
风偏故障不能消除或发生相间短路时,会扩大事故范围。
风偏故障主要类型有直线杆塔绝缘子对塔身或拉线放电,耐张杆塔跳线引流对塔身放电,导线对通道两侧建(构)筑物或边坡、树竹木等放电现象。
以石嘴山地区输电线路运行记录为例,2009-2011年输电线路间共发生风偏故障17次,发生风偏故障的线路主要为110-220kV线路,其中220kV线路风偏故障11次,占风偏跳闸故障的64.7%,110kV线路风偏故障6次,占风偏跳闸故障的35.3%。
由于近年来大风天气持续增多、微气候气象条件的不断变化,输电线路风偏故障不断发生,对电网的安全运行也带来了严峻考验,因此对输电线路风偏故障的防治必须引起高度重视。
1.2 输电线路风偏故障特点1.2.1 气象条件发生明显变化。
根据石嘴山地区电网2001年-2011年间110-220kV线路风偏跳闸数据,可以知道2001年-2009年间110-220kV输电线路风偏故障较少,而2010-2011年间该地区风偏故障次数显著增加,调查气象资料,2001年-2009年地区最大风速为21m/s,而2010-2011年间地区瞬时最大风速为30m/s,地区瞬时最大风速有所增强。
1.2.2 风偏跳闸时间具有规律性。
石嘴山地区发生风偏跳闸故障主要集中在每年12月至次年4月,该时间段为西北地区大风季节。
此外,该地区电网110kV 及以上架空输电线路并非每年都会发生。
某些年份的线路风偏故障往往非常严重。
大风天气线路跳闸情况汇报
大风天气线路跳闸情况汇报
近期,我公司在大风天气下线路跳闸情况出现了一些问题,特此汇报情况如下:
一、影响范围。
根据初步统计,本次大风天气造成的线路跳闸情况主要集中在城区及郊区,共
涉及10条主要供电线路,影响了近2000户居民和多家企业的用电。
二、具体情况。
1. 线路受损情况,大风天气导致部分电力线路受到树木倒塌、杆塔受损等影响,导致线路短路、跳闸等现象。
2. 供电设备故障,部分变压器、配电设备在大风天气中出现故障,导致相应线
路跳闸。
三、应对措施。
1. 抢修措施,在第一时间,公司抽调抢修人员前往现场,对受损线路进行紧急
抢修,确保受影响用户尽快恢复供电。
2. 加强巡检,加大对供电线路的巡视力度,及时发现并处理潜在安全隐患,减
少大风天气对线路的影响。
3. 安全防护,加强对供电设备的安全防护,采取措施防止大风天气对设备造成
影响,降低跳闸风险。
四、改进措施。
1. 完善预警机制,加强对天气预警信息的收集和分析,提前做好应对准备,减
少大风天气对供电线路的影响。
2. 设备升级,对老化设备进行更新和升级,提高设备的抗风能力,降低因大风
天气导致的跳闸情况。
五、总结。
大风天气对供电线路的影响是不可避免的,但我们可以通过加强预防和应对措施,最大程度地减少其对供电系统的影响。
公司将进一步加强对大风天气下供电线路的管理和维护,确保用户用电安全稳定。
以上是本次大风天气下线路跳闸情况的汇报,希望能够得到领导的重视和支持,共同努力,确保供电系统的安全稳定运行。
架空输电线路风偏故障原因分析及预防措施
架空输电线路发生风偏故障范围广、次数多、影响大,防止风偏故障的发生是设备运行管理单位的“六防”工作之一。对风偏故障特点的分析总结有助于采取针对性措施减少风偏故障的次数,在发生故障时能准确判断是否为风偏故障,并及时查找故障点。
架空输电线路风偏故障有以下特点:一是发生风偏闪络的区域均有强风且大多数情况下伴有大暴雨或冰雹;二是直线杆塔发生风偏跳闸居多,耐张杆塔相对较少;三是风偏故障的放电部位多在塔头及跨越物上,杆塔上放电点均有明显电弧烧痕,放电路径清晰,故障点查找较为容易;四是绝大多数风偏闪络均发生于线路工作电压下,由于强风的持续作用,重合闸不成功,从而导致线路停运。
2)加装重锤片。在悬垂绝缘子串的下方加装重锤,在抑制跳线风偏上起到了很好的作用,然而此方法效果并不十分理想,仅依靠加装重锤片仍无法从根本上解决问题。
3)优化绝缘子型式,采用防风偏绝缘子。新一代防风偏绝缘子的优点是绝缘子风偏摆动幅度小,防止导线与杆塔的电气间隙不满足要求;此外防风偏绝缘子安装可靠,充分考虑了与杆塔连接的金具,有利于后续技改工程。在费用方面,防风偏绝缘子优于瓷质绝缘子和玻璃绝缘子;在防风性能方面,不加重锤、防风拉线等防风措施的情况下,中相及外角侧的普通合成绝缘子串不能满足安全空气间隙的要求,而采用防风偏绝缘子后,即使在40m/s风速情况下,安全空气间隙也能满足要求。
架空输电线路风偏故障原因分析及预防措施
摘要:架空输电线路运行在复杂多变的自然环境中,在强风特别伴有降雨的作用下容易发生风偏故障,造成线路故障跳闸。本文针对架空输电线路风偏故障产生的原因、风偏故障的特点及影响因素进行分析,并提出预防风偏故障的措施。
电网输电线路风偏跳闸机理分析及治理策略分析
电网输电线路风偏跳闸机理分析及治理策略分析摘要:输电线路在运行过程中容易受到自然灾害的侵袭,台风就是其中一个重要的影响因素,这种现象的存在严重的影响了我国电力运输的稳定性,为此本文通过对我国大部分地区的输电线路风偏跳闸机理进行分析,并提出相应的治理策略。
关键词:输电线路;风偏跳闸;跳闸机理;治理措施引言在电力系统中,输电线路能够将发电站、变电站以及负荷点连接在一起,是电力输送过程中的关键环节。
由于输电线路大部分处于野外环境中,经常会受到恶劣气候条件的影响,包括雷击、覆冰以及台风等,受到这些自然灾害的影响,输电线路容易出现故障,影响电力系统的正常运行。
因此,我们必须对输电线路灾害机理进行深入的研究,并根据这些灾害机理采取有效的防治措施,降低自然灾害对输电线路的影响,提高电力系统的安全性与可靠性。
1风偏案例分析某地区110kV线路在一次强风暴雨天气中出现事故,其光纤纵联保护动作跳闸,重合闸的动作失败,而且与其并列的线路收到了双高频保护动作,重合闸动作失败。
光纤和高频零序保护动作先后出现了三相跳闸的问题,重合闸没有任何反应。
运行人员对两条线路进行了检查,发现塔身出现了放电,引起跳闸的原因为杆塔的导线受到了强风破坏,导致塔身拉线出现发电。
故障发生地点距离档距500m,杆塔导线的挂点高为50m。
对输电线路所在区域的气温、湿度、风速等问题进行分析。
按照当时的气象数据分析,属于最大风时,大风方向与导线垂直。
此时,导线的位移是19.34m。
在对风偏情况进行分析时,导线与周围物体的距离应该在5m以上,但是,其安全距离达不到要求。
所以输电线路事故原因是导线与杆塔的距离过近,导致强风天气时导线和杆塔接触。
2输电线路风偏跳闸的特点从风偏跳闸的名字就可以看出其主要的影响因素就是强风,我国现阶段的电力运输技术已经能够抵抗一定的风力作用,所以出现风偏跳闸的地区大部分都是气候复杂多变且存在强风天气的地区。
风偏跳闸发生的原理就是因为风力过于强劲使得输电线路杆发生错位从而导致输电设施的间距变小。
输电线路风偏故障的原因与解决对策
输电线路风偏故障的原因与解决对策摘要:风偏故障是高压输电线路面临的故障问题,在高风速的影响下,输电线路导线容易发生风偏跳闸现象,影响线路的持续运转,中断电力的持续供应,甚至会引发供电系统的安全故障问题。
文章结合具体实例分析了输电线路风偏故障的原因以及解决对策。
1 输电线路概况与故障四周环境输电线路的风力影响风力、风速的大小将直接影响导线的风偏,而且风偏会随着风速的加大而严重,风速达到5~25米/秒时,输电线路会出现跳跃,阵风会使导线随风摇摆,甚至对周围物体、杆塔等进行放电,遇到微气象、微地区时,如果垂直的导线和风向之间成角在45度以上,则可能形成摆动,造成风偏故障。
根据该220kV输电线路的实际情况,因为其处于山地地形、地势较高,一边山岭遍布,气象容易发生变化,输电线路走向同风向之间夹角近90度,此区域的风速会越发变大。
同时,根据相关部门的监测,以及后期的风速值计算,能够得出故障点的风速势必超出30米/秒,线轴同风向之间的夹角也大于45度。
在强风力作用下,输电线路承受过大的载荷,导致塔头空气间隙逐渐变小,形成对塔身的放电闪络问题,导致故障的出现。
风速、风向与风偏跳闸的关系输电线路实际工作时,风速与风向会在很大程度上影响风偏放电,特别是当风向和线路方向相垂直时,会加剧导线风偏放电问题。
其中线路风压可以通过以下公式来计算:Wx=1/2αρV2μzμscdLpsin2θ式中:V代表风速,通过观察公式能够得出:导线风压同风速平方之间呈现正相关,这就意味着随着风速的上升与增大,线路更易于出现风偏故障,从而造成巨大的故障问题。
一般来说,线路的风偏故障的发生是由于风向与导线方向垂直时的瞬时风力所导致的,风速急剧上升,对应的风向会不断变化,也不易引发风偏故障。
一旦风向与导线方向垂直,风速已经远远超越杆塔自身的承受力,则会造成杆塔倒塌,引发风偏跳闸。
图220kV纺织尔线269号塔塔头的图示要想计算出风偏需要参照杆塔结构、线路参数、风速等一系列数据,对应得出摇摆角θ、校核间隙距离d,该塔为自立直线塔,塔型号为2D-ZMC3-30。
关于风偏引起线路跳闸的故障分析及对策措施
关于风偏引起线路跳闸的故障分析及对策措施第一篇:关于风偏引起线路跳闸的故障分析及对策措施关于风偏引起线路跳闸的故障分析及对策措施摘要:输电线路的风偏闪络一直是影响线路安全运行的因素之一,与雷击等其他原因引起的跳闸相比,风偏跳闸的重合成功率较低,一旦发生风偏跳闸,造成线路停运的几率较大。
本文对110kV线路一起风偏造成的跳闸事故进行了原因分析,并提出了相应的对策措施,对于降低输电线路风偏闪络故障率,提高输电线路的安全运行水平有所帮助。
关键字:风偏;闪络;跳闸;对策措施0 引言对输电线路风偏闪络引起的故障及事故分析原因,进行调查统计,研究并制订相关防治措施,对降低输电线路风偏闪络故障及事故率,提高输电线路的安全运行水平很有意义。
经统计,输电线路风偏跳闸按放电形式分,对杆塔放电的比例最大;按塔型分,耐张的比例最大。
本文将对此类故障试作分析。
故障情况2006年7月1日11:45分盘钢#1线751保护Z01、I01动作,重合不成(B相,测距4.8kM),南钢一总降110kV备自投成功。
随即组织线路班进行带电查线,查到盘城变附近时,当地居民告知暴风雷雨时前方铁塔有冒火声响。
15:54分发现盘钢#1线751 #4塔B相搭头引流线遭雷击弧闪痕迹,并发现盘钢#1线#4塔有放电痕迹,暂不影响运行,向调度汇报要求试送一次。
16:20送电线路运行正常。
现场情况检查经现场调查,该塔为耐张塔,杆塔周边为平地,#4塔B相搭头引流线对塔身放电,塔身主材和引流线上均有放电痕迹,未安装跳线绝缘子串,两侧耐张串等高。
附近居民反映放电故障发生时段有大风、暴雨活动,持续时间较长。
图一引流线有明显放电痕迹图二塔身亦有明显放电痕迹原因分析 3.1 气候条件发生风偏闪络的本质原因是由于在外界各种不利条件下造成输电线路的空气间隙距离减小,当此间隙距离的电气强度不能耐受系统运行电压时便会发生击穿放电。
输电线路风偏闪络多发生于恶劣气候条件下,发生区域均有强风出现,且大多数情况下还伴随有大暴雨或冰雹。
电网输电线路风偏跳闸机理分析及治理策略分析
DOI:10.19392/ki.1671-7341.201820183电网输电线路风偏跳闸机理分析及治理策略分析唐大为国网吉林省电力有限公司白城供电公司㊀吉林白城㊀137000摘㊀要:我国现在的发展已经离不开电力的支持,通过将发电站生产的电力利用由国家电网运输到我国的各个角落是实现我国全面发展的重要方式㊂为此我国除了要革新发电技术以外,还需要对我国的电网运输方式进行相关的探索㊂我国现阶段的国家电力运输网络建设已经逐渐健全,但在恶劣的气候条件中时常出现大量的跳闸现象,严重的影响了我国电力运输的稳定性,为此本文通过对我国大部分地区的电力运输网络进行调查,并结合对封片跳闸发生机理的研究结果,对我国的电网供电安全和供电稳定提出了一些浅显的观点㊂关键词:电网输电线路;风偏跳闸机理;治理策略㊀㊀我国地域广大,气候条件和地理环境复杂多变,在进行电力运输网络体系建立时需要考虑的外界因素非常的繁复㊂在进行大量的总结后发现,影响完成架设的电网中最为重要的外界因素就是风偏作用,在各类的自然环境中因为狂风会直接在电线中产生大量的作用力,使得电网跳闸现象极其严重㊂为此,探索出输电线路在狂风中可以稳定输送电力的能力,可以对我国的电力运输起到划时代的作用㊂一㊁输电线路风偏跳闸的特点从风偏跳闸的名字就可以看出其主要的影响因素就是强风,我国现阶段的电力运输技术已经能够抵抗一定的风力作用,所以出现风偏跳闸的地区大部分都是气候复杂多变且存在强风天气的地区㊂风偏跳闸发生的原理就是因为风力过于强劲使得输电线路杆发生错位从而导致输电设施的间距变小㊂另外在强风天气中往往伴随着降水,此时的空气电阻将会偏低,极大的容易造成电路间发生短路现象,从而出现风偏跳闸现象㊂从中可以看出风偏跳闸的影响因素中有着地形的影响,如果地形平坦,那么输电线间的距离就可以设置成相对安全的距离,使得在强风天也难以发生跳闸现象㊂二㊁风偏跳闸发生的原因(一)线路质量问题严峻我国现阶段的市场政策决定了各行各业中都存在着民营资本,在电线制造业中也没有意外㊂在这种条件下,线路生产的厂家为了增加产品的竞争力会通过减少质量降低成本的方式进行降价处理,所以线路的质量会是电网运输网络中重要的问题,另一方面我国现阶段对电网能够输送电量和电网建设时的情况完全不同,在当今的社会环境中不可能对所有的电网线路进行同意改造,为此在线路老化和历史遗留的设计问题中,只能通过局部改造的方式循环渐进的完成电网线路的改造工作,是一项极其复杂繁琐的任务㊂(二)气候多变我国气候环境多变是一项基本国情,我国的很多电路设计人员因为缺少工作经验和相关的文献资料,在进行电路设计的条件预设时往往将当地设计当天的天气做为设计指标,在进行电路设计时极其缺少对当地基本气候状况的考虑,从而使得设计好的电路运输网络在多变的气候环境中逐渐出现问题,而其中最为活跃的就是风偏跳闸㊂(三)地形原因在地形相对比较复杂的丘陵和山地地区因为难以出现强风天气所以风偏跳闸的现象手又发生,而在我国的平原地区,尤其实在平坦且没有建筑物的稻田中,因为缺少障碍物以及我国电力运输线路的走势和主要风向总是存在一定的夹角,同时在平原中因为气流在经过小起伏的丘陵阻挡后很容易形成强风天,所以地形能够通过影响气候来使得风偏跳闸现象出现的极其频繁㊂三㊁输电线路风偏跳闸治理对策因为风偏跳闸的主要原因是输电线路难以应对复杂的强风天气而引发的跳闸现象,其中的主要原因就是在风力的作用下使得输电导线和杆塔以及导线间的距离被缩减,同时在恶劣的强风天会因为各种诸如降水的原因造成空气的电阻减少,从而使得输电设备间被电压击穿,引起短路,从而引发保护设备而激发其跳闸㊂总结该原因可以发现在保证输电安全的情况下,可以从输电设备进行革新和相关的施工设计和施工方式入手,增加输电网络的抗风能力,增加输电设备间的抗电压能力,总结来说可以从如下的三个方面进行改进㊂(一)线路加装重锤在输电线路上增加重锤能够有效增加线路的在风中受力表现,对减少线路在风中的运动能够起到抑制效果,但是对于输电线路间距离和电阻并没有有效的改善,所以加装重锤并不能一劳永逸的解决问题㊂(二)安装防风固定线对于气候多变的区域可以利用防风固定线对输电线路进行固定,减少线路在强风天气中的位移现象,能够有效的控制输电设备间的电阻,减少电压击穿的现象㊂在进行防风固定安装时最为重要的就是利用直线杆塔防风拉线在悬垂线和地面的夹角处安装的旋转挂板,以增加线路的重,并能够起到很好的复制效果㊂所以在工程建设过程中或者日常的维护中都需要对该设施进行相关的检查,对于因为在强风中被拉坏的线路进行相关检修和替换,保障输电网络的正常运行㊂(三)加强防风偏绝缘子现阶段我国防风偏跳闸的重要手段就是安装绝缘子,该装置在安装过程中需要冲分开旅杆塔的材料和增加的重锤,能够全面促进输电线路工程的全面进行,该装置的使用能够有效减少线路的风偏角度,增加导线和杆塔间的电气间隙㊂在某些恶劣的气候地区还需要配合家中设备和防风拉线,多方面促进输电安全㊂四㊁结语综上所述,我国各个地区的线路建设环境都不相同,全面促进我国的风偏防治工作能够有效的增加我国输电网络的输电安全和输电效率,本文通过对各地风偏现象的终结性研究,希望能够为我国社会经济的发展贡献力量㊂我国电网输电线路在各个地区的建设不同,主要是由于各个地区气象和地理环境不同,而风偏是导致输电线路跳闸的主要原因㊂因此对输电线路风偏跳闸的机理进行研究,同时对其治理对策不断完善,促进供电正常,保证社会经济和人们生活用电㊂参考文献:[1]许勇,姚孟平,秦保国.电网输电线路风偏跳闸机理与治理对策[J ].通信电源技术,2017,3404:210-211.[2]陆佳政,周特军,吴传平,李波,谭艳军,朱远.某省级电网220kV 及以上输电线路故障统计与分析[J ].高电压技术,2016,4201:200-207.602水利电力科技风2018年7月. All Rights Reserved.。
输电线路风偏故障分析及对策
输电线路风偏故障分析及对策发布时间:2023-02-28T02:20:27.541Z 来源:《中国电业与能源》2022年10月19期作者:李玉俊[导读] 在电力工作中,220kV输电线路的稳定运行对整个电力系统的平稳运行起着至关重要的作用。
李玉俊云南电网有限责任公司文山供电局云南省文山市 663000摘要:在电力工作中,220kV输电线路的稳定运行对整个电力系统的平稳运行起着至关重要的作用。
电力系统的安全稳定运行,可以为人们生产生活的正常发展提供强有力的支撑和保障,也可以有效促进电力行业的稳定发展。
架空输电线路在复杂多变的自然环境中运行。
在强风特别是伴雨的作用下,容易发生风偏故障,导致线路故障跳闸。
本文从220kV输电线路入手,对220kV输电线路的风偏故障及防治对策进行研究和分析,希望能够减少220kV输电线路风偏故障的发生,保证人民用电的质量和安全,保证社会生产活动的顺利开展,提高电力企业的经济效益。
关键词:220kV输电线路; 风偏故障; 防控对策风是影响架空输电线路设计、施工、运行和维护的重要因素之一。
在架空输电线路运行过程中,设备运维管理单位为防止风向偏差故障的发生,保证架空输电线路的安全运行做出了很大努力。
风偏故障发生后,会导致跳线、烧弧、断线等故障,风偏故障发生后,大部分线路的自动重合闸不能重合成功,导致线路停机。
近年来,220kv交直流线路在强风作用下发生风闪络的频率仍然非常频繁。
发生风偏故障的输电线路主要位于山区,多风日。
一方面,在设计过程中,没有预估当地的气候条件。
在极端天气和微气象条件下,瞬时风速超过设计值,导致发生风向偏差故障。
一、输电线路风偏故障及形式如果输电线路设置在大风天气,输电线路的带电体与塔架、电缆、号与建筑物或其他电线之间的气隙会小于大气击穿电压,造成输电线路的风偏故障。
输电线路风偏移故障主要有三种形式:(一)输电线路导线对周围物体放电传输线导线对周围物体的放电主要发生在远距离塔内。
输电线路跳闸的原因分析及其防控措施
输电线路跳闸的原因分析及其防控措施电力在地区之间的传输和运送都要依靠输电线路来进行,输电线路对电力企业的重要性不言而喻。
鉴于此,作者将在下文中对输电线路跳闸状况出现的原因进行分析,并根据这些原因提出防范输电出现跳闸状况的具体措施,希望对输电线路日后的完善和发展有所帮助。
标签:输电线路;跳闸;措施1 现阶段预防输电线路跳闸存在的主要问题1.1 外力破坏(1)电力系统内部的输电线路防外力破坏组织系统不健全,基本上处于无主管领导、无组织系统、无规章、无分工的“四无”状态。
(2)输电线路的外力隐患主要是输电线路走廊及防护区周围的树木、房屋、各类施工以及人为的蓄意破坏。
(3)输电线路巡视通道被侵占,违章建房、建院、堆物、取土等现场屡禁不止。
(4)新建和在建的输电线路大量跨房、跨树木,给运行巡视和检修工作带来了极大的困难。
由于基建前期协调工作不到位,与当地老百姓的矛盾未得到解决,一些违章建筑和线下树木在线路投入运行前得不到拆除和处理。
1.2 雷击在对记录在案的输电线路雷击跳闸事件进行总结和分析后,可知导致输电线路发生雷击跳闸问题的原因有以下几点:首先,现在使用的输电线路一般是早期投资建设的,那时的输电线路建设因为经费因素往往对雷击问题考虑不周,导致线路在避雷问题上出现问题。
其次,输电线路的安装环境越来越糟糕,许多输电线路塔因为社会环境因素而被迫建在山坡地区,极大的增加了雷击事件的发生率。
其次,因为社会环境的改变,当前输电线路的平均高度高于过去的输电线路,增加了雷击事件的发生概率。
最后,复合绝缘子在输电线路上使用越来越普遍,由于其雷电冲击耐受电压通常比同电压等级的普通盘形绝缘子串要低一些,致使复合绝缘子的输电线路绝缘水平较低,雷击跳闸率较高。
2 输电线路跳闸防范措施2.1 防范线路跳闸的管理措施第一,要重视对输电线路跳闸状况的分析,积极寻找状况出现的原因并进行记录和总结,为下次输电线路维护工作的完成打下坚实的基础。
输电线路风偏跳闸分析及防范措施
输电线路风偏跳闸分析及防范措施摘要:近年来,由于气候变暖的影响,导致强对流天气频发,引起电网输电线路发生风偏跳闸,对电网安全供电造成一定的影响。
本文针对这一问题进行了探讨,分析了故障原因和放电机理,并介绍了风偏校核方法,提出了针对性的对策和措施,以降低线路风偏闪络故障。
关键词:风偏;跳闸;原因;防范措施近年来,110~500 kV输电线路风偏闪络事故频繁发生。
据统计,2010年国家电网公司所辖线路共发生风偏跳闸151次,其中220kV电压等级以上(含330kV)线路39次,220 kV线路112次,范围涉及江苏、浙江、安徽、湖北、河南、山东、山西、广东、北京、河北、内蒙古、黑龙江、辽宁等地。
广东电网线路跳闸率在全国一直较高,主要原因有广东面临南部沿海,海洋气候特征明显,每年强对流天气频繁发生,经常发生台风、暴风,220kV架空输电线路上的引流跳线在大风影响下极易发生风偏闪络,造成线路跳闸,给电力系统安全运行带来极大危害。
因此,亟需提出能有效解决跳线风偏闪络问题的技术方案。
本文对电网输电线路风偏跳闸进行分析,并提出相应的防治措施。
风偏跳闸原理1.1风速、风向与风偏跳闸的关系在输电线路运行过程中,对风偏放电起决定作用的是风速和风向,与线路走向垂直或垂直分量大的风易引起导线风偏放电。
导、地线风压计算公式为:W=;其中V为风速,从式中可以看出,风压与风速平方成正比,这也就是风速越大,输电线路越容易发生风偏故障的主要原因。
根据《110~750kV架空输电线路设计规范》(GB50545—2010)规定,110~330kV输电线路的设计风速为23.5m/s。
2011年7~8月份风偏放电故障中,局部风力均达到9级(24.4m/s)以上,高于23.5m/s。
由于输电线路风偏放电是由短时稳定垂直于导线方向的大风引起的。
风速太大,风向往往是紊乱的,不会发生风偏放电。
风速垂直于导线方向分量虽未超过导线设计风速,但风速值超过杆塔承受风荷载的极限,将直接导致倒塔故障。
一起典型的线路风偏跳闸故障分析及防治措施
一起典型的线路风偏跳闸故障分析及防治措施摘要:风偏跳闸是输电线路最常见的风害类型,只要是指导线在风的作用下发生偏摆后由于电气间隙距离不足导致放电跳闸。
风偏跳闸一般是在工作电压下发生的,重合成功率较低,严重影响供电可靠性。
若同一输电通道内多条线路同时发生风偏跳闸,则会破坏系统稳定性,严重时造成电网大面积停电事故。
除跳闸和停运外,导线风偏还会对金具和导线产生损伤,影响线路的安全运行。
文章对一起典型的110千伏线路风偏故障进行分析,通过计算说明故障发生原理,同时提出科学的应对措施,对于降低风偏跳闸率有积极意义。
关键词:风偏、跳闸、电气间隙、供电可靠性0引言从放电路径来看,风偏跳闸的主要类型有:导线对杆塔构件放电、导地线间放电和导线对周围物体放电三中类型。
其共同特点是导线或导线金具烧伤痕迹明显,绝缘子不被烧伤或仅导线侧1-2片绝缘子轻微烧伤;杆塔放电点多有明显电弧烧痕,放电路径清晰。
本文将就第一种类型的风偏跳闸故障进行典型的故障实例分析。
1故障简况2017年03月18日23时19分,国网哈密供电公司110千伏银泽线故障跳闸,选相B相,重合成功。
220千伏银河路变侧:110千伏银泽线1323断路器距离I段、零序I段保护动作跳闸,选相B相,银河路变侧测距10.3千米。
110千伏银泽线线路全长51.308公里,杆塔248基,投运日期为2011年05月24日,导线型号:LGJ-185/30;绝缘子型号:FXBW-110/100。
设计风速30m/s,故障时段天气:大风沙尘暴,风速30.8m/s(通过气象局监测站测算到导线挂点22.8米),能见度不足10米,故障区段位于哈密市伊州区南湖乡。
故障杆塔号54#,塔型7722-21,53#-54#号档距为335米,54#-55#档距为243米。
2原因分析(1)巡视情况及初步分析3月18日23时19分,接到调度通知110千伏银泽线跳闸信息后,国网哈密供电公司立即组织输电运维人员部署故障巡视工作,结合线路跳闸保护信息分析,初步判断故障区段为51-55#。
新疆电网输电线路风偏故障分析报告
新疆电网输电线路风偏故障分析报告
1.新疆自然地理概况
新疆国土面积166万平方公里,北倚阿尔泰山脉,南临昆仑山脉,中部横隔天山山脉。塔里木盆地和准噶尔盆地分别位于天山南北,三大山脉和二大盆地是形成风区的要紧因素。此外,新疆处于中纬度地区,冷峰和低压槽过境较多,加大了南北向或东西向的气压差,因而在一些气流畅通的峡谷、山谷和山口等地使得气流线加密,风速增强。在冷空气入侵,专门秋冬、冬春交际或气温突变时容易显现较大风速,甚至灾难种〕,N/m-mm2,l为杆塔档距,m;σ为导线应力,N/mm2。当线路档距越大、应力越低,其弧垂越大。
在不考虑覆冰和绝缘子串风压以及自重情形下,绝缘子串风偏角,其中,g1为自重比载,g4为风压比载〔要紧与最大风速、风速不平均系数有关〕,lsh为水平档距〔相邻两档距平均值〕,lch为垂直档距〔相邻两档导线弧垂最低点之间距离〕。当线路气象条件不变时,阻碍风偏角的要紧因素那么是水平档距和垂直档距,假如在线路设计中,杆塔垂直档距过小,那么风偏角将有可能超出临界值。
但上述风速取值关于质量较小的导线专门引流线明显不合理。如美国以3s阵风风速为设计取值,与我国标准相比,大约是1.4倍,但在导线及铁塔荷载运算时安全系数的取值大于我国规范取值,杆塔结构荷载运算结果相当。
值得注意的是,在1968年往常我国多数气象站采纳的是每天定时3~24次〔其中4次最多〕定时观测时距为2min的平均风速,如此相关于连续自计方式,可能遗漏较多的大风速。经了解,新疆80年代往常大多气象台站按照每天4次定时观测。
2.4站点位置
一样情形,气象台站多设置在平原城镇邻近,观测的大风资料专门难概括地区局部专门地段的最大风速。如:山顶气流受山脉的动力抬升作用,风速较山麓风速一样要大10%;峡谷、山口气流被压缩,存在〝狭管效应〞,其风速较平地风速增大1.1~1.23倍;河岸、湖边、沙漠等地面〔或水面〕平坦开阔、粗糙度较小,风速也相应增大。
电网输电线路风偏跳闸机理分析及治理措施
电网输电线路风偏跳闸机理分析及治理措施摘要:电网输电线路是电力系统工程的关键组成部分,输电线路的运行质量直接关系电力系统的供电稳定性。
在经济建设速度加快的同时,也为电网工程带来了更大的电力运输压力,在此基础上,加大了对电网工程的建设投入,电网的覆盖面积逐步扩大。
应供电服务需求,部分电网被建设在环境较为复杂的区域内,因生态恶化产生的强对流天气严重威胁电网输电线路的运行质量,常见表现为出现风偏跳闸现象。
为能改善电网输电线路的运行可靠性,下文重点分析输电线路风偏跳闸的机理,此后提出几点治理措施。
关键词:电网输电线路;风偏跳闸机理;强对流天气电网输电线路长期暴露在外,不可避免的会受到外部环境的影响,其中导线风偏现象较为常见,致使对电力系统的运行稳定性构成直接影响。
在现代社会生产与人们生活中,对电力能源的依赖程度较大,如果经常发生跳闸问题,则会为相关生产企业带来一定的经济损失,且降低人们的用电体验。
因此,有必要对输电线路的风偏跳闸成因加以明确,并探索出合理的防治措施,争取从源头上降低风偏跳闸问题的发生率,保障电网运行质量。
1.电网输电线路风偏跳闸机理结合以往的输电线路风偏问题来看,集中发生在强风多发的地区内,部分输电线路会在强风的影响下产生输电线路路杆移位的问题,且设施之间的间隙不断缩小。
此外,也有部分表现为输电线路设施之间的空间场增大,引发导线顶端的放电现象。
在对风偏跳闸的现象表现进行观察可以发现,因输电线路的间隙距离缩小,严重影响空气绝缘的强度,致使产生风偏跳闸问题。
因此,可以认为风偏跳闸与所处地区的地形以及天气状况存在密切的联系。
综合分析风偏跳闸问题,其跳闸机理如下:1.1受气候条件影响在现阶段的电网输电线路工程设计中,已经关注到了气候因素对输电线路运行质量的重要影响,且会基于当地气象台提供的气象资料对当其气候特点进行统计分析,根据分析结果进行输电线路设计,使其具备较好的抗风能力。
但进行输电线路设计时,只考虑了区域整体气候状况,并未对局部微气象数据进行监测,导致局部强对流天气会对输电线路的运行质量产生直接影响。
关于几起输电线路风偏跳闸的原因分析
新疆 电力技术
21年第2 总第15 00 期 0期
关 于 几 起 输 电线 路 风 偏 跳 闸 的 原 因 分 析
候 鹏
新疆 电力公司 ( 乌鲁木齐 8 00 ) 302
张建华
伊犁电力有 限责任公 司 ( 伊宁 8 50 ) 300
摘 要 :简述 了2 O o 9年4 3 6 日新 疆电力公司4次风偏 月1 ~1
2 故障特Hale Waihona Puke 点及 原 因分析 2 i故障 特点 .
跳 闸故障情况 , 分析 了故 障原 因和 放 电机 理,就 引起 输 电线
路风偏 的 多方 面原 因进行 了分析和探 讨 ,依 据 分析 的结 果、
发 生 风偏 跳 闸的线 路 电压等 级 有 iOV 2k ,塔 型 lk 和2 0V 有 耐张 塔 、直 线 塔 。耐 张塔 是跳 线对 杆 塔 构架 放 电,直 线
象 部 门反 映 ,这 种 气候 每 年 都有 , 主要 表 现 为空 气对 流 能
量大 ,风 力强劲 ,具 有 以下特 点:
() 1具有 局部 微气 候特 征 ,范 围均 不大 , 常发 生在 局部
地 区;
() 力 强劲 ,瞬时 风速可 达5 m S 2风 0 / 以上 ; () 多发 生在4 月间 ; 3大 ~5 () 伴有 沙尘暴 ; 4常
电网输电线路风偏跳闸机理和治理措施
电网输电线路风偏跳闸机理和治理措施摘要:电网输电线路是保障我国电力流通的必要条件。
随着时代的进步,科学技术和经济实力的不断发展,逐渐加大了电力运输中的压力,加大了我国输电线路中的工作量。
现阶段下,由于生态环境不断被破坏,加大了强对流天气出现概率,进而致使输电线路中跳闸现象频发,为电网供电安全埋下隐患。
本文对电网输电线路风偏跳闸机理和治理措施做了简单分析,希望对当前现状进行改变,进而保障电网的正常运行。
关键词:电网输电电路;风偏跳闸机理;治理措施一般情况下,我国的输电线路都处于较为复杂的周边环境中,导致影响输电线路作用的外界因素不断增多,其中,导线风偏是直接威胁输电线路是否安全的主要因素之一[1]。
在大风、暴雨等天气情况下,输电线路极易发生风偏跳闸的现象,进而阻碍了输电线路的安全运行。
所以,要想保证输电线路安全运行,就必须对输电线路风偏跳闸机理进行探究分析,并针对不同情况实施不同的治理措施。
1.导致风偏跳闸的因素1.1线路建设不过关在线路建设过程中,由于线路建设过程极为繁杂,如果不加以注意,极易导致出现线路建设不合格现象。
一般情况下,我国大部分电路都是依照国家初期建设时的标准来设计的。
但随着时代、经济的迅速发展传统线路已不能满足当前社会的发展需求。
在发展过程中,我国也逐渐对相关电路进行了改造,但由于改造过于局部化,对当前整体输电线路的质量水平起不到任何积极作用。
且在线路基础设施中,依然按照以往的风速及建设条件进行施工,进而导致现阶段下大多数输电线路对诸多因素的防御程度较低[2]。
由于输电线路过于老旧是导致大部分地区线路出现问题的主要原因。
1.2自然环境在线路建设过程中,自然环境是影响整体设计质量的重要因素。
由于不同地域的自然环境及天气情况有所不同,且部分地区天气变化频率较快,导致有关部门提出的气象有极大可能与实际情况不符。
所以,在输电线路的建设过程中,气象数据已不能作为预测该地区天气的主要标准,导致输电线路的安全运行得不到实际保障。
对几起多发输电线路风偏故障跳闸故障的思考
对几起多发输电线路风偏故障跳闸故障的思考发表时间:2020-07-27T03:36:49.424Z 来源:《河南电力》2020年3期作者:胡志珍王志坤[导读] 高温天气导致导线弧垂下降,与10KV杆塔导线净空过近,又遇上雷雨大风天气,导线风偏对10KV放电。
(国网安徽省电力有限公司宣城供电公司安徽宣城 242000)前言风是空气流动引起的一种自然现象,是由太阳辐射热引起的。
风的类型很多,其中台风、飚线风、龙卷风极大风速可以高达30m/s,超过设计条件,对输电线路安全运行危害大。
1架空输电线路风偏跳闸的特点风偏跳闸是输电线路常见跳闸的形式之一,风偏跳闸发生部位集中在耐张杆塔跳线和靠近弧垂点处,发生时时间集中在夏季强对流天气前,一般会范围内多条各电压等级线路同时故障,因发生时间段一般为强风、雷暴天气,输电线路风偏跳闸查找还很容易被雷击、异物等故障类型所掩盖。
2 风偏跳闸故障案例2.1 110kV旌雄×××线路故障情况5月4日6时2分,110kV旌雄×××线路距离I段保护动作,C相接地跳闸,重合不成功,雄路变测距为43.6km线路全长为29.474km);5月5日对#1-#33进行了故障巡视,发现#28-#29通道内C相导线外侧5米处一棵新发毛竹通体焦黑,有明显放电痕迹,判定此处为故障点。
结合现场情况观察该处故障点存在多次放电的现象。
2.2 110kV胜利×××线故障情况2012年4月2日20时05分,枣园站110kV胜利×××线B、C相相间距离I段动作跳闸,重合闸成功,测距2km,天气情况:雷雨大风。
故障点为#32-#33,杆塔型号分别为DSN-15(分支塔)、JG3-18型杆塔。
故障杆塔相序分别为#32杆ABC(上下中)和#33杆ABC(右中左)。
110kV胜利×××线#32杆塔为分支塔,B、C相导线由#32杆塔的下、中相,换为中、左相,致使该两相导线在弧垂点出现了交叉,交叉点空间距离不足,由于雷雨大风,导致B、C相导线受力摆动不均匀,致使B、C相导线相碰。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
新疆电力技术
2 0 1 0年 第2期 总第1 0 5期
关于几起输电线路风偏跳闸的原因分析
候 鹏 张建华
新疆电力公司(乌鲁木齐 830002) 伊犁电力有限责任公司(伊宁 835000)
摘要:简述了2009年4月13~16 日新疆电力公司4次风偏 跳闸故 障 情况,分析了故障原因和放电机理,就引起输电线 路风偏的多方面原因进行了分析和探讨,依据分析的结果、 建议,提出了输电线路预防和抑制风偏的一些措施和策略。
关键词:输电线路;风偏;跳闸;放电间隙
2009年 4月 13~ 16日 , 大 风 和 沙 尘 暴 天 气 造 成 新 疆 电 力公司系统4条110~220千伏线路风偏跳闸11次,对系统的 安全稳定运行造成严重影响,为调查分析跳闸原因并采取 防治措施,决定对所有重要电网联络线路风偏角进行校 核。
组织召开了“输电线路风偏跳闸专题分析会”,分析 讨论了故障原因和整改工作要求。
为了准确分析跳闸原 因,查阅大量设计图纸及施工记录,对放电位置、烧伤点 等进行了测量比对,并结合保护动作和故障录波等资料进 行了认真分析研究。
从调查分析的情况看,引起跳闸的原 因是明确的,均属于强风引起的导线风偏放电。
同时对线 路杆塔进行全面校核风偏角工作,找出风偏距离相对吃紧 点并采取相应防范改造措施。
鉴于此次风偏放电造成跳闸 线路多且时段集中、影响面广。
因此,为增强110kV及以上 输电线路抵御大风的能力。
需要从气象、设计、运行等多 方面进行分析研究,以便采取相应的预防及整改措施。
1 风偏故障简介 1.1 4月 13日 23时 20分 , 吐 鲁 番 地 区 110kV托 大 线 C相 故 障 跳闸,重合成功。
保护测距为距托克逊变82.57km。
经巡视 发 现 110kV托 大 线 小 草 湖 白 杨 河 支 线 ( T接 于 托 大 线 ) 26号 直线塔C相大号侧导线防振锤与对应塔身上有明显放电痕 迹,确认该处为故障点。
根据走访、调查的资料情况看, 跳闸时当地的气象资料显示为大风、沙尘暴天气,而风向 正好就是横线路方向的西北风。
1.2 4月 16日 14时 38分 和 16时 06分 , 220kV苏 鹿 线 C相 故 障 连 续 两 次 跳 闸 , 重 合 成 功 , 保 护 测 距 分 别 为 35.9km和 173.8km。
经巡视发现分别为139号杆C相导线(中相)对电 杆永久拉线风偏放电、100号杆耐张塔中相引流对地线横担 风偏放电。
1.3 4月 16日 21时 53分 和 22时 07分 , 220kV库 台 一 线 A相 故 障连续两次跳闸 ,重合成功,保护测距分别为213.8km和 54.3km。
经巡视发现均为419号耐张塔中相引流对耐张串接 地端金具放电。
1.4 4月 16日 22时 19分 到 22时 38分 期 间 , 220kV察 帆 线 B相 故障连续六次跳闸,重合成功,经巡视发现均为3号耐张塔 中相引流对塔身主材风偏放电。
2 故障特点及原因分析 2.1 故障特点 发生风偏跳闸的线路电压等级有110kV和220kV, 塔型 有耐张塔、直线塔。
耐张塔是跳线对杆塔构架放电,直线 塔是导线或线夹金具对塔身或拉线放电,并且几次故障具 有以下特点: (1)根据气象证明可知故障发生区域及时段内均有强风 出现,并伴有沙尘暴; (2)导线或线夹金具上均有明显的放电点; (3)故障时重合闸均能成功,故障为瞬间故障。
2.2 强风是导致风偏放电的主要原因 根据当地气象部门证明,上述4起风偏故障发生的区域 均出现了少有的强风,在现场查询中也发现附近有大树被 吹 倒 或 连 根 拔 起 的 现 象 。
例 如 : 4月 13日 吐 鲁 番 地 区 110kV托大线故障跳闸,跳闸当时,小草湖风电场实测50米 高空风速53米/秒,换算到20 米高度为46.5米/秒。
据气 象部门反映,这种气候每年都有,主要表现为空气对流能 量大,风力强劲,具有以下特点: (1)具有局部微气候特征,范围均不大,常发生在局部 地区; (2)风力强劲,瞬时风速可达50m/ s以上; (3)大多发生在4~5月间; (4)常伴有沙尘暴; 在强风作用下,导线沿风向会出现一定位移和偏转。
在 间隙减小,空间场强增大时,导线金具的尖端和塔身的尖 端上会出现局部高场强,放电更容易在这些位置发生,从 现场放电痕迹可观察到,一部分放电出现在脚钉、导线金 具和角钢边缘尖端上。
2.3 沙尘暴使空气间隙的绝缘强度降低 由于风偏放电发生时伴有沙尘暴等天气,根据研究表明 沙尘对空气间隙击穿电压、绝缘子闪络电压与空气间隙在雷 电冲击电压和操作冲击电压作用下放电分散性及伏秒特性均 有影响,沙尘所引起间隙放电特性的变化主要是由于阴极表 面沉积沙尘引起。
沙尘导致绝缘子的闪络电压明显减小,且 其闪络电压随沙粒所带电量的增加而减小,随风速的增加而 增大。
因此认为线路发生风偏放电时一是导线风偏角很大, 超过设计值,二是沙尘降低了放电间隙的放电电压。
2.4 设计上存在不足 此次发生风偏跳闸的线路中,设计最大风速为30m/ s, 对局部微气候区、强风区等特殊区域考虑不全,设计风偏 计算值不满足局部微气候条件;同时为了节约线路成本投
20
新疆电力技术
2 0 1 0年 第2期 总第1 0 5期
资,在杆塔设计中塔头尺寸偏小,使得杆塔的风偏裕度偏 紧。
并且线路运行后绝缘子串调爬、更换合成绝缘子等改 造工作后,杆塔原来的绝缘长度发生改变,造成因原设计风 偏距离裕度不够导致强风等恶劣气候条件下线路发生风偏跳 闸,耐张塔设计中引流线设计不合理,引流线过长或跳线绝 缘子串为不稳定结构,也是造成风偏跳闸的原因之一。
3 风偏计算 下面以220kV苏鹿线139号电杆风偏计算为例: (1)防振锤位置弧垂计算 任意点弧垂计算公式如下:
已知条件:g6(0,30)=123.364×10-3MPa
=345.29N/mm2
防振锤高度 l =0.034+0.075=0.11m
弧垂加防振锤高 H =0.08+0.11≈0.2m (2)导线防振锤与拉线放电所需要最小风速计算 在考虑0.05m裕度情况下,Z1杆防振锤对拉线允许风偏 角Φ=52°5′1″
tg52°5′1″=1.2838 由公式
、 -绝缘子串重量和其风荷载 、 -导线自重和风荷比载 、 -水平和垂直档距 n -分裂导线根数
将 Pj与 P4都 与 风 速 的 平 方 成 正 比 的 条 件 以 及 υ =30m/s时Pj=309.015与P4=10.813的值带入公式:中可得:
导线与砼杆放电所需要最小风速: υ′=29.95m/s 即当风速υ′>29.95m/s的情况下,导线防振锤与拉 线间的电气间隙小于规范要求值,将有可能发生闪络。
(3)Z1杆允许kV值计算(投影) 当风速30m/s时,考虑导线防振锤与拉线放电所需要的 电气间隙,即满足摇摆角Φ≤52°5′1″(考虑0.05m裕度), 的情况下,设置杆塔水平档距350m, 计算对应的垂直档距。
计算得: =281.7 由此求得:kV≥281.7/350≥0.8
4 整改措施及建议 4.1 采取的措施 (1)强化输电线路防风偏设计 。
针对中相引流安装重 锤不能有效防止风偏跳闸的情况,今后新建线路,中相 引流跳线绝缘子要优先采用防风型复合支柱绝缘子,不 能采用时要安装防风拉线。
穿越强风区的线路,优先选 用V型串结构杆塔;不能采用时,按照多年最大瞬时风速 校核杆塔头部间隙,不满足正常运行电压空气间隙时要安装 防风拉线。
(2)认真校核在建线路的外绝缘间隙。
鉴于存在沙尘暴 降低空气间隙闪络电压的问题,要求对在建及今后规划的 穿越达坂城、小草湖和百里风区的杆塔外绝缘间隙进一步 校核。
(3)加快完善运行线路防风措施。
对220千伏库台一 线、苏鹿线、察帆线、110千伏托大线白杨河支线重点区段 的同类杆塔类型加装防风拉线。
(4)做好电网防风偏运行监测工作。
加强大风天气巡视 和气象观测等基础性工作,推广应用气象观测和导线风偏 在线监测系统,为计算绝缘子串及导线风偏、选取电气间 隙设计风速及风压不均匀系数提供依据。
4.2 今后的工作重点 2009年大风导致的110kV及以上电压等级线路风偏跳闸 明显增多,对系统的安全运行带来了严重影响。
一方面是 属于恶劣气候条件导致的自然灾害,较难预防和完全抵 御。
另一方面也反映出部分线路自身抵御强风的能力不 足,在今后需重点开展以下几方面的工作: (1)继续进行杆塔风偏角校核工作,对存在风偏问题的 杆塔采用加装重锤、倒V串等措施,及时整改,确保线路安 全稳定运行。
(2)加强对微气候区的观测和记录,积累运行资料,同 时加强线路沿线所经区域的气象资料收集,特别是强风(龙 卷风)的数据收集,并加强导线风偏的观测。
(3)设计部门要优化杆塔设计,适当增大塔头尺寸,并 对线路运行后的调爬、更换合成绝缘子等改造留有一定的 裕度。
参考文献 [1] 东北电力设计院.电力工程高压送电线路设备手册 . 水利电力出版社.1991 [2] GBJ 233 90.110~ 500kV架空电力线路施工及验收规范 [3] DL/ T5092- 1999. 110kV~ 500kV架空送电线路设计技 术规程
21
。