1.3.2 函数的极值与导数(教案)
高中数学教学课例《1.3.2函数的极值与导数》课程思政核心素养教学设计及总结反思
识与方法的基础,起着承上启下的作用。
知识与技能:
①了解函数极值的定义,会从几何图形直观理解函
数的极值与其导数的关系,增强学生的数形结合意识,
提升思维水平;
②掌握利用导数求不超过三次的多项式函数极值
教学目标 的一般方法;
③了解函数在某点取得极值的必要条件和充分条
件。
过程与方法:
培养学生观察、分析、探究、归纳得出数学概念和
规律的学习能力。
情感态度与价值观:
①体会导数方法在研究函数性质中的一般性和有
效性;
②培养学生大胆创新、勇于探索、互相合作的精神。
学生已经初步学习了运用导数研究函数,但还不够
深入,因此在学习上还有一定困难。本节课能够进一步
提高学生运用导数研究函数的能力,体会导数的工具作 学生学习能
用。 力分析
通过用导数研究函数的极值,提高了学生的导数应
学生展示:类比极大值,归纳出极小值,极小值点 的定义。
教师点拨:通过教师的点拨,帮助学生完善、深化 知识
典型例题:先让学生做,教师引导学生总结思路方 法技巧。
自主完成:分层设计练习题,让各层面学生都能学 有所获。
求,解方程=0,当=0 时:
(1)如果在 x0 附近的左边>0,右边<0,那么
f(x0)是极大值。 (2)如果在 x0 附近的左边<0,右边>0,那么
f(x0)是极小值。 通过典型例题巩固学生对新知识的理解。 通过对典型例题的板演,让学生明确求极值的方
法,突出本节课的重点。培养学生规范的表达能力,形 成严谨的科学态度。
学生展示:极小值与极小值点
教学过程
典型例题: 例 1:右图是函数 y=f(x)的函数,试找出函数
y=f(x)的极值点,并指出哪些是极大值点,哪些是极小
1.3.2函数的极值与导数(上课)
3 (a (2) f ( x)= ax + 2bx + c ≠ 0)
/ 2
f (1) = a + b + c = 5
{
.
f / (1) = 3a + 2b + c = 0 f / (2) = 12a + 4b + c=0
a = 2, b = −9, c = 12
注意: 注意:数形结合以及函数与方程思想的应用
1 3 x -4x+4 3
+
-
28 3
o -2
4 − 3
2 + x
求可导函数f(x)极值的 步骤: 极值的 步骤: 求可导函数
(1) 确定函数的定义域; 确定函数的定义域 (2)求导数 ’(x); 求导数f 求导数 ; (3)求方程 ’(x)=0的根; 求方程f 的根; 求方程 ) 的根 (4)把定义域划分为部分区间,并列成表格 把定义域划分为部分区间 把定义域划分为部分区间, 检查f 在方程根左右的符号—— 检查 ’(x)在方程根左右的符号 在方程根左右的符号 •如果左正右负(+ ~ -), 如果左正右负 如果左正右负( ), 那么f(x)在这个根处取得极大值; 在这个根处取得极大 那么 在这个根处取得极 •如果左负右正(- ~ +), 如果左负右正 如果左负右正( ), 那么f(x)在这个根处取得极小值; 在这个根处取得极小 那么 在这个根处取得极
28 3
(-2,2) ↘
2 0
极小值 − 4
3
(2,+∞) ∞ + ↗
28 因此,当 时有极大值,并且 因此 当x=-2时有极大值 并且 极大值= 3 ; 时有极大值 并且,y 4 时有极小值,并且 而,当x=2时有极小值 并且 极小值= − 3 . 当 时有极小值 并且,y
1.3.2函数的极值与导数课件人教新课标
课堂小结
(1)可导函数极值点的导数一定为0, 但导数为0的点不一定都是极值点.
(2)对于一般函数,函数的不可导 点也可能是极值点.
(3)极大值与极小值的概念.
(4) 一般地,函数y=f(x)在一点的 导数值为0是函数y=f(x)在这点取极 值的必要条件,而非充分条件.
(5)如果函数f(x)在点x0处连续,总 结判别f(x0)是极大或极小值的方法:
0
fx 单调递增 28 单调递减
3
2 2,
0 4 单调递增
3
因此,当x=-2时有极大值,y极大值=28/3;
当x=2时有极小值,并且,y极小值=- 4/3.
函数f x = 1 x3 - 4x + 4的图象如图1.3 - 12
3
所示.
y
fx 1 x3 4x 4
3
o2
2
x
图1.3 12
极大值一定大于极小值吗?
h' a 0
单调递增
h't 0
单调递减
h't 0
图1.3 9
探究 下图中函数y=f(x)在a—j点的函 数值与这些点附近的函数值有什么函数 关系?y=f(x)在这些点得到数值是多少? 在这些点附近,该函数的导数符号有什 么规律?
y y fx
y
y fx
a ob
x c de
f og h
i
jx
2如果在x0附近的左侧f ' x 0,右侧 f ' x 0, 那么f x0 是极小值.
口诀:左负右正为极小,左正右 负为极大.
求函数y=(x2-1)3+1的极值.
解:定义域为R,y=6x(x2-1)2.由y=0可 得x1=-1,x2=0,x3=1 当x变化时,y,y的变化情况如下表:
1.3.2函数的极值与导数
龙江一中“问题导学、探究发现”高二数学学科导学案班级姓名月日制作人:刘丽丽审核人:刘灿君1.3.2函数的极值与导数【学习目标】:1.理解函数的极大值、极小值、极值点的意义;2.掌握函数极值的判别方法.进一步体验导数的作用.【学习重点】求函数的极值【学习难点】严格套用求极值的步骤【学习过程】一.【知识链接】用导数求函数单调区间的步骤:①;②③;④二.预习教材完成下列问题:探究一.极值的概念1、观察下图中的曲线在a、b处的函数值f(a)、f(b)与它附近的函数值比较有什么特点?a点的函数值f(a)比它临近点的函数值都________.b点的函数值f(b)比它临近点的函数值都______.2、极值的概念:一般地,设函数f(x)在点x0附近有定义,如果对x0附近的所有的点,都有f(x)<f(x0),我们就说x0是函数f(x)的一个____________,f(x0)是函数f(x)的一个________,记作y极大值=f(x0);如果对x0附近的所有的点,都有f(x)>f(x0),我们就说x0是函数f(x)的一个____________,f(x0)是函数f(x)的一个_____________,记作y极小值=f(x0).极大值点与极小值点统称为极值点,极值极大值与极小值统称为极值.注意:在定义中,取得极值的点称为极值点,极值点是自变量的值,极值指的是函数值请注意以下几点:(ⅰ)极值是一个局部概念它只是某个点的函数值与它附近点的函数值比较是最大或最小并不意味着它在函数的整个的定义域内最大或最小(ⅱ)函数的极值不是唯一的即一个函数在某区间上或定义域内极大值或极小值可以不止一个(ⅲ)极大值与极小值之间无确定的大小关系即一个函数的极大值未必大于极小值,(ⅳ)函数的极值点一定出现在区间的内部,区间的端点不能成为极值点探究二、极值的求法3、观察下图中的曲线,曲线在极值点处附近切线的斜率情况.上图中,曲线在极值点处切线的斜率为_______,极大值点左侧导数为_____,右侧为_____;极小值点左侧导数为______,右侧为______.(填正、负)4、利用导数判别函数的极大(小)值:一般地,当函数f(x)在点x0处连续时,判别f(x0)是极大(小)值的方法是:⑴如果在x0附近的左侧f '(x)>0,右侧f '(x)<0,那么,f(x0)是______值;⑵如果在x0附近的左侧f '(x)<0,右侧f '(x)>0,那么,f(x0)是______值;思考: 导数值为0的点一定为极值点吗?极值点一定导数值为0吗?例1求函数并利用性质画出简图:[总结]:求可导函数f (x)的极值的步骤:(1).(2).(3).(4)巩固练习1、求下列函数的极值(1)f(x)=6x2-x-2 ;(2)f(x)=x3-27x;(3) f(x)=6+12x-x3;(4) f(x)=3x-x3例2.、右图是导函数y=f '(x)的图像,试找出函数y=f(x)的极值点,并指出哪些是极大值点,哪些是极小值点。
人教A版选修2-2 1.3.2 函数的极值与导数 学案
1.3.2函数的极值与导数预习课本P26~29,思考并完成下列问题(1)函数极值点、极值的定义是什么?(2)函数取得极值的必要条件是什么?(3)求可导函数极值的步骤有哪些?[新知初探]1.函数极值的概念(1)函数的极大值一般地,设函数y=f(x)在点x0及附近有定义,如果对x0附近的所有的点,都有f(x)<f(x0),就说f(x0)是函数y=f(x)的一个极大值,记作y极大值=f(x0),x0是极大值点.(2)函数的极小值一般地,设函数y=f(x)在点x0及附近有定义,如果对x0附近的所有的点,都有f(x)>f(x0),就说f(x0)是函数y=f(x)的一个极小值,记作y极小值=f(x0),x0是极小值点.极大值与极小值统称为极值.[点睛]如何理解函数极值的概念(1)极值是一个局部概念,极值只是某个点的函数值,与它附近点的函数值比较它是最大值或最小值,但并不意味着它在函数的整个定义域内是最大值或最小值.(2)一个函数在某区间上或定义域内的极大值或极小值可以不止一个.(3)函数的极大值与极小值之间无确定的大小关系.(4)函数的极值点一定出现在区间的内部,区间的端点不能成为极值点.(5)单调函数一定没有极值.2.求函数y =f (x )极值的方法一般地,求函数y =f (x )的极值的方法是: 解方程f ′(x )=0. 当f ′(x 0)=0时:(1)如果在x 0附近的左侧f ′(x )>0,右侧f ′(x )<0,那么f (x 0)是极大值; (2)如果在x 0附近的左侧f ′(x )<0,右侧f ′(x )>0,那么f (x 0)是极小值.[点睛] 一般来说,“f ′(x 0)=0”是“函数y =f (x )在点x 0处取得极值”的必要不充分条件.若可导函数y =f (x )在点x 0处可导,且在点x 0处取得极值,那么f ′(x 0)=0;反之,若f ′(x 0)=0,则点x 0不一定是函数y =f (x )的极值点.[小试身手]1.判断(正确的打“√”,错误的打“×”) (1)函数f (x )=x 3+ax 2-x +1必有2个极值.( ) (2)在可导函数的极值点处,切线与x 轴平行或重合.( ) (3)函数f (x )=1x 有极值.( )答案:(1)√ (2)√ (3)×2.下列四个函数:①y =x 3;②y =x 2+1;③y =|x |;④y =2x ,其中在x =0处取得极小值的是( )A .①②B .②③C .③④D .①③ 答案:B3.函数y =x 3-6x 的极大值为( ) A .42 B .3 2 C .-3 2 D .-4 2答案:A4. 函数f (x )=x +2cos x 在⎣⎡⎦⎤0, π2上的极大值点为( ) A .0 B.π6C.π3D.π2 答案:B[典例] [解] 函数的定义域为R ,f′(x)=2x e-x+x2·e-x·(-x)′=2x e-x-x2·e-x=x(2-x)e-x.令f′(x)=0,得x(2-x)·e-x=0,解得x=0或x=2.当x变化时,f′(x),f(x)的变化情况如下表:因此当x=0时,f(x)有极小值,并且极小值为f(0)=0;当x=2时,f(x)有极大值,并且极大值为f(2)=4e-2=4 e2.求函数极值的步骤(1)确定函数的定义域;(2)求方程f′(x)=0的根;(3)用方程f′(x)=0的根顺次将函数的定义域分成若干个小开区间,并列成表格;(4)由f′(x)在方程f′(x)=0的根左右的符号,来判断f(x)在这个根处取极值的情况.[活学活用]求下列函数的极值点和极值.(1)f(x)=13x3-x2-3x+3;(2)f(x)=3x+3ln x.解:(1)f′(x)=x2-2x-3.令f′(x)=0,得x=3或x=-1.当x变化时,f′(x),f(x)的变化情况如表所示:所以x=-1是函数的极大值点,且f(x)极大值=143,x=3是函数的极小值点,且f(x)极小值=-6.(2)函数f(x)=3x+3ln x的定义域为(0,+∞),f ′(x )=-3x 2+3x =3x -3x 2,令f ′(x )=0,得x =1.当x 变化时,f ′(x ),f (x )的变化情况如表所示:所以x =1极小值.[典例] 已知f (x )=ax 3+bx 2+cx (a ≠0)在x =±1处取得极值,且f (1)=-1. (1)试求常数a ,b ,c 的值;(2)试判断x =±1是函数的极大值点还是极小值点,并说明理由. [解] (1)f ′(x )=3ax 2+2bx +c (a ≠0), ∵x =±1是函数的极值点.∴x =±1是方程3ax 2+2bx +c =0的两根.由根与系数的关系,得⎩⎨⎧-2b3a=0,①c3a =-1.②又∵f (1)=-1,∴a +b +c =-1.③由①②③解得a =12,b =0,c =-32.(2)由(1)得f (x )=12x 3-32x ,∴f ′(x )=32x 2-32=32(x -1)(x +1).令f ′(x )>0,得x <-1或x >1; 令f ′(x )<0,得-1<x <1.∴函数f (x )在区间(-∞,-1)和(1,+∞)上是增函数,在区间(-1,1)上是减函数. 因此,x =-1是函数的极大值点;x =1是函数的极小值点.已知函数极值点或极值求参数的两个要领(1)列式:根据极值点处导数为0和极值这两个条件列方程组,利用待定系数法求解. (2)验证:因为某点处的导数值等于0不是此点为极值点的充要条件,所以利用待定系数法求解后必须验证根的合理性.[活学活用]已知函数f (x )=13x 3-x 2+ax -1.(1)若函数的极大值点是-1,求a 的值;(2)若函数f (x )有一正一负两个极值点,求a 的取值范围. 解:(1)f ′(x )=x 2-2x +a , 由题意f ′(-1)=1+2+a =0,解得a =-3,则f ′(x )=x 2-2x -3,经验证可知,f (x )在x =-1处取得极大值,故a =-3.(2)由题意,方程x 2-2x +a =0有一正一负两个根, 设为x 1,x 2,则x 1x 2=a <0, 故a 的取值范围是(-∞,0).[y =m 与y =f (x )的图象有三个不同的交点,求m 的取值范围.[解] 因为f (x )在x =-1处取得极值且f ′(x )=3x 2-3a , 所以f ′(-1)=3×(-1)2-3a =0,所以a =1. 所以f (x )=x 3-3x -1,f ′(x )=3x 2-3, 由f ′(x )=0,解得x =-1或x =1. 当x <-1时,f ′(x )>0; 当-1<x <1时,f ′(x )<0; 当x >1时,f ′(x )>0.所以由f (x )的单调性可知,f (x )在x =-1处取得极大值f (-1)=1,在x =1处取得极小值f (1)=-3.作出f (x )的大致图象及直线y =m 如图所示:因为直线y =m 与函数y =f (x )的图象有三个不同的交点,结合图象可知,m 的取值范围是(-3,1).[一题多变]1.[变条件]若本例中条件改为“已知函数f (x )=-x 3+ax 2-4”在x =43处取得极值,其他条件不变,求m 的取值范围.解:由题意可得f ′(x )=-3x 2+2ax , 由f ′⎝⎛⎭⎫43=0,可得a =2,所以f (x )=-x 3+2x 2-4, 则f ′(x )=-3x 2+4x .令f ′(x )=0,得x =0或x =43,当x 变化时,f ′(x ),f (x )的变化情况如下表: x (-∞,0)0 ⎝⎛⎭⎫0,43 43 ⎝⎛⎭⎫43,+∞ f ′(x ) -0 +0 - f (x )-4-7627因为直线y =m 与函数y =f (x )的图象有三个不同的交点,所以m 的取值范围是⎝⎛⎭⎫-4,-7627.2.[变条件]若本例“三个不同的交点”改为“两个不同的交点”结果如何?改为“一个交点”呢?解:由例题解析可知:当m =-3或m =1时, 直线y =m 与y =f (x )的图象有两个不同的交点; 当m <-3或m >1时,直线y =m 与y =f (x )的图象只有一个交点.(1)研究方程根的问题可以转化为研究相应函数的图象问题,一般地,方程f (x )=0的根就是函数f (x )的图象与x 轴交点的横坐标,方程f (x )=g (x )的根就是函数f (x )与g (x )的图象的交点的横坐标.(2)事实上利用导数可以判断函数的单调性,研究函数的极值情况,并能在此基础上画出函数的大致图象,从直观上判断函数图象与x 轴的交点或两个函数图象的交点的个数,从而为研究方程根的个数问题提供了方便.层级一 学业水平达标1.已知函数y=x-ln(1+x2),则函数y=x-ln(1+x2)的极值情况是() A.有极小值B.有极大值C.既有极大值又有极小值D.无极值解析:选D∵y′=1-11+x2·(1+x2)′=1-2x1+x2=(x-1)21+x2≥0,∴函数y=x-ln(1+x2)无极值.2.函数f(x)=32x2-ln x的极值点为()A.0,1,-1 B.3 3C.-33 D.33,-33解析:选B由已知,得f(x)的定义域为(0,+∞),f′(x)=3x-1x=3x2-1x,令f′(x)=0,得x=33⎝⎛⎭⎫x=-33舍去.当x>33时,f′(x)>0;当0<x<33时,f′(x)<0.所以当x=33时,f(x)取得极小值.从而f(x)的极小值点为x=33,无极大值点,选B.3.已知函数y=f(x),其导函数y=f′(x)的图象如图所示,则y=f(x)()A.在(-∞,0)上为减函数B.在x=0处取极小值C.在(4,+∞)上为减函数D.在x=2处取极大值解析:选C由导函数的图象可知:x∈(-∞,0)∪(2,4)时,f′(x)>0,即x∈(0,2)∪(4,+∞)时,f′(x)<0,因此f(x)在(-∞,0),(2,4)上为增函数,在(0,2),(4,+∞)上为减函数,所以x=0取得极大值,x=2取得极小值,x=4取得极大值,因此选C.4.若函数f(x)=2x3-3x2+a的极大值为6,则a的值是()A.0 B.1C.5 D.6解析:选D∵f(x)=2x3-3x2+a,∴f′(x)=6x2-6x=6x(x-1),令f′(x)=0,得x=0或x=1,经判断易知极大值为f(0)=a=6,5.已知函数f(x)=x3-px2-qx的图象与x轴切于(1,0)点,则f(x)的极大值、极小值分别为()A.427,0 B .0,427C .-427,0 D .0,-427解析:选A f ′(x )=3x 2-2px -q , 由f ′(1)=0,f (1)=0,得⎩⎪⎨⎪⎧ 3-2p -q =0,1-p -q =0,解得⎩⎪⎨⎪⎧p =2,q =-1,∴f (x )=x 3-2x 2+x . 由f ′(x )=3x 2-4x +1=0得x =13或x =1,易得当x =13时f (x )取极大值427,当x =1时f (x )取极小值0.6.函数f (x )=x 3-3x 2+1在x =________处取得极小值. 解析:f ′(x )=3x 2-6x ,解方程f ′(x )=3x 2-6x =0,得x =0或x =2. 当x 变化时,f ′(x ),f (x )的变化情况如下表:由上表知,函数f (x )=x 3-3x 2+1在x =2处取得极小值. 答案:27.函数f (x )=ax 2+bx 在x =1a 处有极值,则b 的值为________.解析:f ′(x )=2ax +b ,∵函数f (x )在x =1a 处有极值, ∴f ′⎝⎛⎭⎫1a =2a ·1a +b =0,即b =-2. 答案:-28.已知函数f (x )=ax 3+bx 2+cx ,其导函数y =f ′(x )的图象经过点(1,0),(2,0).如图,则下列说法中不正确的是________.(填序号)①当x =32时,函数f (x )取得最小值;②f (x )有两个极值点;③当x =2时函数值取得极小值; ④当x =1时函数取得极大值.解析:由图象可知,x =1,x =2是函数的两极值点, ∴②正确;又x ∈(-∞,1)∪(2,+∞)时,f ′(x )>0;x ∈(1,2)时,f ′(x )<0,∴x =1是极大值点,x =2是极小值点,故③④正确. 答案:① 9.求函数f (x )=2xx 2+1-2的极值. 解:函数f (x )的定义域为R.f ′(x )=2(x 2+1)-4x 2(x 2+1)2=-2(x -1)(x +1)(x 2+1)2. 令f ′(x )=0,得x =-1或x =1.当x 变化时,f ′(x ),f (x )的变化情况如下表:极小值当x =1时,函数有极大值,且f (x )极大值=-1.10.设函数f (x )=x 2e x -1+ax 3+bx 2,已知x =-2和x =1为f (x )的极值点.(1)求a 和b 的值; (2)讨论f (x )的单调性.解:(1)f ′(x )=e x -1(2x +x 2)+3ax 2+2bx=x e x -1(x +2)+x (3ax +2b ),因为x =-2和x =1是f (x )的极值点, 所以f ′(-2)=f ′(1)=0,即⎩⎪⎨⎪⎧-6a +2b =0,3+3a +2b =0,解方程组得⎩⎪⎨⎪⎧a =-13,b =-1.(2)因为a =-13,b =-1,所以f ′(x )=x (x +2)(e x -1-1).令f ′(x )=0,解得x 1=-2,x 2=0,x 3=1. 因为当x ∈(-∞,-2)∪(0,1)时,f ′(x )<0; 当x ∈(-2,0)∪(1,+∞)时,f ′(x )>0, 所以f (x )在(-2,0),(1,+∞)上单调递增; 在(-∞,-2),(0,1)上单调递减.层级二 应试能力达标1.函数f (x )=ax 3+bx 在x =1处有极值-2,则a ,b 的值分别为( )A .1,-3B .1,3C .-1,3D .-1,-3解析:选A ∵f ′(x )=3ax 2+b ,由题意知f ′(1)=0,f (1)=-2,∴⎩⎪⎨⎪⎧3a +b =0,a +b =-2,∴a =1,b =-3.2.设函数f (x )=e x sin x ,x ∈[0,π],则( ) A .x =π2为f (x )的极小值点B .x =π2为f (x )的极大值点C .x =3π4为f (x )的极小值点D .x =3π4为f (x )的极大值点解析:选D ∵f (x )=e x sin x , ∴f ′(x )=e x (sin x +cos x ) =2e x sin ⎝⎛⎭⎫x +π4, 由f ′(x )≤0,得sin ⎝⎛⎭⎫x +π4≤0, ∴2k π+π≤x +π4≤2k π+2π(k ∈Z),即2k π+3π4≤x ≤2k π+7π4(k ∈Z),∵x ∈[0,π],∴f (x )在⎣⎡⎦⎤0,3π4上单调递增, f (x )在⎣⎡⎦⎤3π4,π上单调递减, ∴x =3π4为f (x )的极大值点.3.已知f (x )=x 3+ax 2+(a +6)x +1有极大值和极小值,则a 的取值范围是( ) A .(-1,2) B .(-3,6)C .(-∞,-3)∪(6,+∞)D .(-∞,-1)∪(2,+∞)解析:选C f ′(x )=3x 2+2ax +a +6,∵f (x )有极大值与极小值,∴f ′(x )=0有两不等实根,∴Δ=4a 2-12(a +6)>0,∴a <-3或a >6.4.设a ∈R ,若函数y =e x +ax (x ∈R)有大于零的极值点,则a 的取值范围为( ) A .(-∞,-1) B .(-1,+∞) C .⎝⎛⎭⎫-∞,-1e D .⎝⎛⎭⎫-1e ,+∞ 解析:选A ∵y =e x +ax ,∴y ′=e x +a .令y ′=e x +a =0,则e x =-a ,∴x =ln(-a ).又∵x >0,∴-a >1,即a <-1.5.若函数f (x )=-x 3+6x 2+m 的极大值为13,则实数m 等于______.解析:f ′(x )=-3x 2+12x =-3x (x -4).由f ′(x )=0,得x =0或x =4.当x ∈(-∞,0)∪(4,+∞)时,f ′(x )<0;x ∈(0,4)时,f ′(x )>0,∴x =4时f (x )取到极大值.故-64+96+m =13,解得m =-19.答案:-196.若函数f (x )=x 3+x 2-ax -4在区间(-1,1)上恰有一个极值点,则实数a 的取值范围为______.解析:由题意,f ′(x )=3x 2+2x -a ,则f ′(-1)f ′(1)<0,即(1-a )(5-a )<0,解得1<a <5,另外,当a =1时,函数f (x )=x 3+x 2-x -4在区间(-1,1)上恰有一个极值点,当a =5时,函数f (x )=x 3+x 2-5x -4在区间(-1,1)没有极值点.故实数a 的范围为[1,5).答案:[1,5)7.已知函数f (x )=e x (ax +b )-x 2-4x ,曲线y =f (x )在点(0,f (0))处的切线方程为y =4x +4.(1)求a ,b 的值;(2)讨论f (x )的单调性,并求f (x )的极大值. 解:(1)f ′(x )=e x (ax +a +b )-2x -4.由已知得f (0)=4,f ′(0)=4,故b =4,a +b =8. 从而a =4,b =4.(2)由(1)知,f (x )=4e x (x +1)-x 2-4x , f ′(x )=4e x (x +2)-2x -4=4(x +2)⎝⎛⎭⎫e x -12. 令f ′(x )=0,得x =-ln 2或x =-2.从而当x ∈(-∞,-2)∪(-ln 2,+∞)时,f ′(x )>0;当x ∈(-2,-ln 2)时,f ′(x )<0. 故f (x )在(-∞,-2),(-ln 2,+∞)上单调递增,在(-2,-ln 2)上单调递减. 当x =-2时,函数f (x )取得极大值,极大值为f (-2)=4(1-e -2).8.已知函数f (x )=ax -ae x(a ∈R ,a ≠0).(1)当a=-1时,求函数f(x)的极值;(2)若函数F(x)=f(x)+1没有零点,求实数a的取值范围.解:(1)当a=-1时,f(x)=-x+1e x,f′(x)=x-2e x.由f′(x)=0,得x=2.当x变化时,f′(x),f(x)的变化情况如下表:所以函数f(x)的极小值为f(2)=-1e2,函数f(x)无极大值.(2)F′(x)=f′(x)=a e x-(ax-a)e xe2x=-a(x-2)e x.①当a<0时,F(x),F′(x)的变化情况如下表:若使函数F(x)没有零点,当且仅当F(2)=ae2+1>0,解得a>-e2,所以此时-e2<a<0;②当a>0时,F(x),F′(x)的变化情况如下表:当x>2时,F(x)=a(x-1)e x+1>1,当x<2时,令F(x)=a(x-1)e x+1<0,即a(x-1)+e x<0,由于a(x-1)+e x<a(x-1)+e2,令a(x-1)+e2≤0,得x≤1-e2 a,即x≤1-e2a时,F(x)<0,所以F(x)总存在零点,综上所述,所求实数a的取值范围是(-e2,0).。
湘教版高中同步学案数学选择性必修第二册精品课件 第1章 导数及其应用 1.3.2 函数的极值与导数
1.理解函数的极值、极值点的概念.
2.理解函数在某点取得极值的条件.
3.会用导数求函数的极大值和极小值.
目录索引
基础落实·必备知识一遍过
重难探究·能力素养速提升
学以致用·随堂检测促达标
基础落实·必备知识一遍过
知识点1
函数的极值与极值点
1.函数的极大(小)值与极大(小)值点:
极值
极大值
D.x=3是函数f(x)在区间[1,5]上的极小值点
解析 根据导函数图象知,当x∈(1,2)时,f'(x)>0;当x∈(2,4)时,f'(x)<0,当
x∈(4,5)时,f'(x)>0.∴f(x)在区间(1,2),(4,5)上单调递增,在区间(2,4)上单调递
减,x=2是f(x)在区间[1,5]内的极大值点,x=4是极小值点.
=
1-2ln
,令
3
f'(x)=0,得
x=√e,且当 0<x<√e时,f'(x)>0,当 x>√e时,f'(x)<0,∴f(x)在 x=√e处取得极大值
1
f(√e)=2e ,无极小值.
(3)f(x)=
3 -2
2(-1)2
.
解 ∵函数的定义域为(-∞,1)∪(1,+∞),f'(x)=
(-2)2 ( + 1)
该问题的本质是函数的导数存在变号零点,解决此类问题可转化为y=f'(x)
在定义域或所给区间内的零点的个数问题.
变式训练3(1)若函数
1 3 2
f(x)= x + x +x-2
3
2
1.3.2函数的极值与导数
y
O
1
2 x
例题讲解
3 2
例3. 若f ( x ) x 3ax 3(a 2) x 1既 有 极 大 值 , 又 有 极 小 值 a的 取 值 范 围 .求 .
例题讲解
3 2
例3. 若f ( x ) x 3ax 3(a 2) x 1既 有 极 大 值 , 又 有 极 小 值 a的 取 值 范 围 .求 .
2可导函数y=f(x)在x0处有极值的特点:
(1) f / (x0)=0 (2)在x0两侧异号
3.求极值的步骤:
1).求导数 2).解方程f/(x)=0. 3).列表 4).结论:
函数பைடு நூலகம்极值与导数
一、复习:
1.函数的单调性与导数的关系: 2、用导数法确定函数的单调区间的步骤: (1) 求函数的定义域 (2)求出函数的导函数,即求 f (x ) (3)求解不等式 f ( x) 0,求得其解集, 再根据解集与定义域写出单调递增区间 求解不等式 f ( x) 0 ,求得其解集, 再根据解集与定义域写出单调递减区间
练习
1. 已 知f ( x ) x ax bx c当x 1时 , 取 得 极 大 值 , 当x 3时 , 取 得 极 小 值 , 求 个 7 这 极 小 值 及 、b、c的 值. a
3 2
例题讲解
已 知f ( x ) ax3 bx2 cx(a 0)在x 1 例1. 时 取 得 极 值 , 且 (1) 1. f (1) 求 常 数 、b、c的 值 ; a (2) 判 断 1分 别 是 极 大 值 点 还 是 小 值 点 ? x 极
课前练习
求函数y=2x3-6x2+7的单调区间,画 出其草图 y
高中数学1.3.2函数的极值与导数优秀教案
1.3.2 函数的极值与导数学习目标:1、理解函数极值的概念,掌握利用导数求函数极值的方法。
2、培养学生观察、归纳的能力;学会运用数形结合的方法解决问题。
教学重难点:学会用导数求函数极值的方法,并能灵活运用。
教学过程一、复习回忆:1.函数的单调性与导数的关系:一般地,设函数y =f (x )在某个区间(a ,b )内有导数,如果在这个区间内f '(x )>0,那么函数y =f (x )为这个区间内的增函数;如果在这个区间内f '(x )<0,那么函数y =f (x )为这个区间内的减函数.如果在某个区间内恒有f '(x )=0,则y =f (x )为常数。
2.函数f (x )=2x 3-6x 2+7,求f (x )的单调区间,并画出其图象; 二、讲授新课:a b y=f (x ) x o y y=f (x ) xo y a b观察画出函数f (x )=2x 3-6x 2+7的图象,答复下面问题:问题1:在点x =0附近的图象有什么特点?问题2:函数在x =0处的函数值和附近函数值之间有什么关系?问题3:在点x =0附近的导数符号有何变化规律?问题4:函数在x =0处的导数是多少?思考1 分析讨论函数在x =0附近的变化规律:你能尝试给出极大值的定义吗? 函数极大值的定义设函数y =f (x )在x =x 0及其附近有定义假设x 0满足1. f (x 0)>f (x );f '(x 0)=0.x 0的两侧的导数异号,满足“左正右负〞,我们就说f (x 0)是函数y =f (x )的一个极大值,点x 0叫做函数y =f (x )的极大值点。
思考2 你能尝试给出函数在x=2处的结论吗?函数极小值的定义设函数y =f (x )在x =x 0及其附近有定义,假设x 0满足:1. f (x 0)<f (x );f '(x 0)=0.x 0的两侧的导数异号,满足“左负右正〞,我们就说f (x 0)是函数y =f (x )的一个极小值,点x 0叫做函数y =f (x )的极小值点。
《函数的极值与导数》教案新人教A版选修
数学:1.3.2《函数的极值与导数(2)》教案(新人教A版选修2-2)
1.3.2 函数的极值与导数(2)
一、教学目标:理解函数的极大值、极小值、极值点的意义.掌握函数极值的判别方法.进一步体验导数的作用.
二、教学重点:求函数的极值.教学难点:严格套用求极值
的步骤.
三、教学过程:
(一)复习引入
(1)函数的极值点xi是区间[a, b]内部的点,区间的端点
不能成为极值点.
(2)、函数的极大(小)值可能不止一个,并且函数的极大值
不一定大于极小值,极小值不一定小于极大值.
(3)函数在[a, b]上有极值,其极值点的分布是有规律的,
像相邻两个极大值间必有一个极小值点.
练习:(1)见课件
(2)见课件
(二)讲授新课
练习:(1)已知函数f (x)=x3+ax2+bx+c,且知当x=
-1时取得极大值7,当x=3时取得极小值,试求函数f (x)
的极小值,并求a、b、c的值
(三)小结
(四)作业:见资料。
教学设计10:1.3.2 函数的极值与导数
1.3.2函数的极值与导数教学目标1.了解函数极值的概念,会从几何方面直观理解函数的极值与导数的关系,并会灵活应用.2.掌握函数极值的判定及求法.3.掌握函数在某一点取得极值的条件.知识链接在必修1中,我们研究了函数在定义域内的最大值与最小值问题.但函数在定义域内某一点附近,也存在着哪一点的函数值大,哪一点的函数值小的问题,如何利用导数的知识来判断函数在某点附近函数值的大小问题,如图观察,函数y=f(x)在d、e、f、g、h、i等点处的函数值与这些点附近的函数值有什么关系?y=f(x)在这些点处的导数值是多少?在这些点附近,y=f(x)的导数的符号有什么规律?答以d、e两点为例,函数y=f(x)在点x=d处的函数值f(d)比它在点x=d附近其他点的函数值都小,f′(d)=0;在点x=d的附近的左侧f′(x)<0,右侧f′(x)>0.类似地,函数y =f(x)在点x=e处的函数值f(e)比它在点x=e附近其他点的函数值都大,f′(e)=0;在点x =e附近的左侧f′(x)>0,右侧f′(x)<0.教学导引1.极值点与极值的概念(1)极小值点与极小值如图,函数y=f(x)在点x=a的函数值f(a)比它在点x=a附近其他点的函数值都小,f′(a)=0;而且在点x=a附近的左侧f′(x)<0,右侧f′(x)>0,则把点a叫做函数y=f(x)的极小值点,f(a)叫做函数y=f(x)的极小值.(2)极大值点与极大值如图,函数y=f(x)在点x=b的函数值f(b)比它在点x=b附近其他点的函数值都大,f′(b)=0;而且在点x=b的左侧f′(x)>0,右侧f′(x)<0,则把点b叫做函数y=f(x)的极大值点,f(b)叫做函数y=f(x)的极大值.极大值点、极小值点统称为极值点,极大值和极小值统称为极值.2.求函数y=f(x)的极值的方法解方程f′(x)=0,当f′(x0)=0时:(1)如果在x0附近的左侧f′(x)>0,右侧f′(x)<0,那么f(x0)是极大值;(2)如果在x 0附近的左侧f ′(x )<0,右侧f ′(x )>0,那么f (x 0)是极小值. 课堂讲义要点一 求函数的极值例1 求函数f (x )=13x 3-4x +4的极值.解 由题意可知f ′(x )=x 2-4. 解方程x 2-4=0,得x 1=-2,x 2=2. 由f ′(x )>0得x <-2或x >2; 由f ′(x )<0得-2<x <2.当x 变化时,f ′(x ),f (x )的变化情况如下表:由表可知:当x =-2时,f (x )有极大值f (-2)=283.当x =2时,f (x )有极小值f (2)=-43.规律方法 求可导函数f (x )的极值的步骤: (1)确定函数的定义区间,求导数f ′(x ); (2)求方程f ′(x )=0的根;(3)用函数的导数为0的点,顺次将函数的定义区间分成若干个小开区间,并列成表格.检测f ′(x )在方程根左右两侧的值的符号,如果左正右负,那么f (x )在这个根处取得极大值;如果左负右正,那么f (x )在这个根处取得极小值;如果左右不改变符号,那么f (x )在这个根处无极值.跟踪演练1 判断下列函数是否有极值,如果有极值,请求出其极值;若无极值,请说明理由.(1)y =8x 3-12x 2+6x +1; (2)y =x |x |; (3)y =1-(x -2)23.解 (1)∵y ′=24x 2-24x +6, 令y ′=0,即24x 2-24x +6=0, 解得x =12,当x >12时,y ′>0;当x <12时,y ′>0.∴此函数无极值.(2)令y =x |x |=0,则x =0,且y =⎩⎪⎨⎪⎧x2x ≥0,-x 2x <0,当x >0时,y =x 2是单调增函数; 当x <0时,y =-x 2也是单调增函数. 故函数y =x |x |在x =0处无极值.另外,∵当x >0时,y ′=2x ,y ′=0无解; 当x <0时,y ′=-2x ,y ′=0也无解, ∴函数y =x |x |没有极值.(3)当x ≠2时,有y ′=-23(x -2)31-.当x =2时,y ′不存在,因此,y ′在x =2处不可导. 但在点x =2处的左右附近y ′均存在, 当x <2时,f ′(x )>0;当x >2时,f ′(x )<0.故y =f (x )在点x =2处取极大值,且极大值为f (2)=1. 要点二 利用函数极值确定参数的值例2 已知函数f (x )=ax 3+bx 2+cx (a ≠0)在x =±1处取得极值,且f (1)=-1. (1)求常数a ,b ,c 的值;(2)判断x =±1是函数的极大值点还是极小值点,试说明理由,并求出极值. 解 (1)f ′(x )=3ax 2+2bx +c . ∵x =±1是函数f (x )的极值点, ∴x =±1是方程f ′(x )=0的两根, 即x =±1是3ax 2+2bx +c =0的两根, 由根与系数的关系,得⎩⎨⎧-2b3a =0,①c3a =-1 ②又f (1)=-1, ∴a +b +c =-1. ③由①②③解得a =12,b =0,c =-32.(2)由(1)知f (x )=12x 3-32x ,∴f ′(x )=32x 2-32=32(x -1)(x +1),当x <-1或x >1时,f ′(x )>0, 当-1<x <1时,f ′(x )<0,∴函数f (x )在(-∞,-1)和(1,+∞)上是增函数, 在(-1,1)上是减函数,∴当x =-1时,函数取得极大值f (-1)=1, 当x =1时,函数取得极小值f (1)=-1.规律方法 (1)利用函数的极值确定参数的值,常根据极值点处导数为0和极值两个条件列方程组,利用待定系数法求解.(2)因为“导数值等于零”不是“此点为极值点”的充要条件,所以利用待定系数法求解后,必须验证根的合理性.跟踪演练2 已知f (x )=x 3+3ax 2+bx +a 2在x =-1时有极值0,求常数a ,b 的值. 解 因为f (x )在x =-1时有极值0, 且f ′(x )=3x 2+6ax +b ,所以⎩⎪⎨⎪⎧ f ′(-1)=0,f (-1)=0,即⎩⎪⎨⎪⎧3-6a +b =0,-1+3a -b +a 2=0. 解得⎩⎪⎨⎪⎧ a =1,b =3或⎩⎪⎨⎪⎧a =2,b =9.当a =1,b =3时,f ′(x )=3x 2+6x +3=3(x +1)2≥0, 所以f (x )在R 上为增函数,无极值,故舍去. 当a =2,b =9时,f ′(x )=3x 2+12x +9=3(x +1)(x +3). 当x ∈(-3,-1)时,f (x )为减函数; 当x ∈(-1,+∞)时,f (x )为增函数, 所以f (x )在x =-1时取得极小值, 因此a =2,b =9.要点三 函数极值的综合应用例3 已知函数f (x )=-x 3+ax 2+b (a ,b ∈R ). (1)求函数f (x )的单调递增区间;(2)若对任意a ∈[3,4],函数f (x )在R 上都有三个零点,求实数b 的取值范围. 解 (1)因为f (x )=-x 3+ax 2+b ,所以f ′(x )=-3x 2+2ax =-3x (x -2a3).当a =0时,f ′(x )=-3x 2≤0,函数f (x )没有单调递增区间;当a >0时,令f ′(x )>0,即-3x (x -2a 3)>0,解得0<x <2a 3,故函数f (x )的单调递增区间为(0,2a3);当a <0时,令f ′(x )>0,即-3x (x -2a 3)>0,解得2a 3<x <0,故函数f (x )的单调递增区间为(2a3,0).(2)由(1)知,a ∈[3,4]时,函数f (x )的单调递增区间为(0,2a 3),单调递减区间为(-∞,0)和(2a3,+∞).所以f (x )极大值=f (2a 3)=4a 327+b ,f (x )极小值=f (0)=b . 由于对任意a ∈[3,4],函数f (x )在R 上都有三个零点, 所以⎩⎪⎨⎪⎧f x 极大值>0,f x 极小值<0,即⎩⎪⎨⎪⎧4a 327+b >0,b <0,解得-4a 327<b <0.因为对任意a ∈[3,4],b >-4a 327恒成立,所以b >(-4a 327)max =-4×3327=-4.所以实数b 的取值范围为(-4,0).规律方法 用求导的方法确定方程根的个数,是一种很有效的方法.它通过函数的变化情况,运用数形结合思想来确定函数图象与x 轴的交点个数,从而判断方程根的个数. 跟踪演练3 设函数f (x )=x 3-6x +5,x ∈R . (1)求函数f (x )的单调区间和极值;(2)若关于x 的方程f (x )=a 有三个不同的实根,求实数a 的取值范围. 解 (1)f ′(x )=3x 2-6,令f ′(x )=0, 解得x 1=-2,x 2= 2.因为当x >2或x <-2时,f ′(x )>0; 当-2<x <2时,f ′(x )<0.所以f (x )的单调递增区间为(-∞,-2)和(2,+∞); 单调递减区间为(-2,2).当x =-2时,f (x )有极大值5+42;当x =2时,f (x )有极小值5-4 2.(2)由(1)的分析知y =f (x )的图象的大致形状及走向如图所示. 所以,当5-42<a <5+42时,直线y =a 与y =f (x )的图象有三个不同的交点,即方程f (x )=a 有三个不同的实根. 所以,实数a 的取值范围是(5-42,5+42). 当堂检测1.下列关于函数的极值的说法正确的是( ) A.导数值为0的点一定是函数的极值点 B.函数的极小值一定小于它的极大值 C.函数在定义域内有一个极大值和一个极小值D.若f (x )在(a ,b )内有极值,那么f (x )在(a ,b )内不是单调函数 【答案】D【解析】由极值的概念可知只有D 正确.2.已知f (x )=x 3+ax 2+(a +6)x +1有极大值和极小值,则a 的取值范围为( ) A.-1<a <2 B.-3<a <6 C.a <-1或a >2 D.a <-3或a >6【答案】D【解析】f ′(x )=3x 2+2ax +(a +6), 因为f (x )既有极大值又有极小值, 那么Δ=(2a )2-4×3×(a +6)>0, 解得a >6或a <-3.3.设函数f (x )=6x 3+3(a +2)x 2+2ax .若f (x )的两个极值点为x 1,x 2,且x 1x 2=1,则实数a 的值为________. 【答案】9【解析】f ′(x )=18x 2+6(a +2)x +2a .由已知f ′(x 1)=f ′(x 2)=0,从而x 1x 2=2a18=1,所以a =9.。
函数的极值(教案)
1.3.2函数极值点教学目标:(1)知识技能目标:①了解函数极值的定义,会从几何图形直观理解函数的极值与其导数的关系,增强学生的数形结合意识,提升思维水平; ②掌握利用导数求可导函数的极值的一般方法; ③了解可导函数极值点0x 与)(0x f '=0的逻辑关系;④培养学生运用导数的基本思想去分析和解决实际问题的能力. (2)过程与方法目标:培养学生观察→分析→探究→归纳得出数学概念和规律的学习能力。
(3)情感与态度目标:培养学生层层深入、一丝不苟研究事物的科学精神; 体会数学中的局部与整体的辨证关系. 教学重点、难点:(1) 重点:掌握求可导函数的极值的一般方法.(2)难点:0x 为函数极值点与)(0x f '=0的逻辑关系. 教学过程: 一、问题情境利用学生们熟悉的海边体育运动—冲浪,直观形象地引入函数极值的定义.观察下图中P 点附近图像从左到右的变化趋势、P 点的函数值以及点P 位置的特点函数图像在P 点附近从左侧到右侧由“上升”变为“下降”(函数由单调递增变为单调递减),在P 点附近,P 点的位置最高,函数值最大 二、学生活动学生感性认识运动员的运动过程,体会函数极值的定义. 三、数学建构极值点的定义:观察右图可以看出,函数在x =0的函数值比它附近所有 各点的函数值都大,我们说f (0)是函数的一个极大值;函数在x点的函数值都小,我们说f (2)是函数的一个极小值。
一般地,设函数)(x f y =在0x x =及其附近有定义,如果)(0x f 的值比0x 附近所有各x点的函数值都大,我们说f (0x )是函数)(x f y =的一个极大值;如果)(0x f 的值比0x 附近所有各点的函数值都小,我们说f (0x )是函数)(x f y =的一个极小值。
极大值与极小值统称极值。
取得极值的点称为极值点,极值点是自变量的值,极值指的是函数值。
请注意以下几点:(让同学讨论)(ⅰ)极值是一个局部概念。
《§1.3.2 函数的极值与导数》教学设计 王婵
《§1.3.2 函数的极值与导数》教学设计王婵发表时间:2019-07-19T09:03:25.980Z 来源:《创新人才教育》2019年第5期作者:王婵[导读] 本节课是人教A版数学选修2-2第一章第三节导数应用的第二课时,通过第一节利用导数判断函数单调性的学习,学生已经了解了导数在函数中的初步应用,为了培养学生用导数解决实际问题的能力,本节课将继续学习函数极值与导数的关系,让学生了解极值点、极值的概念后探索取得极值的条件,重点学会如何求函数的极值。
延安市新区高级中学王婵【教材依据】本节课是人教A版数学选修2-2第一章第三节导数应用的第二课时,通过第一节利用导数判断函数单调性的学习,学生已经了解了导数在函数中的初步应用,为了培养学生用导数解决实际问题的能力,本节课将继续学习函数极值与导数的关系,让学生了解极值点、极值的概念后探索取得极值的条件,重点学会如何求函数的极值。
本节是上节内容的延续和深化,也为下节利用导数知识求函数的最值做了铺垫,起着承上启下的作用。
制定本节课的教学目标为:【教学目标】1.理解极值、极值点的概念,体会极值是函数的局部性质;2.掌握利用导数求极值的方法以及求可导函数的极值的步骤;3.经历导数的零点与原函数的极值点并不等价的探究过程,总结用导数研究函数极值的方法;4.会借助导数分析问题,培养导数的应用意识;5.培养学生的探索精神.【学情分析】高二学生学习积极性较强,具备一定的理科思维,求知欲和表现欲也极强,能较好完成课前预习、课堂上积极思考,但学生之间差异性较大,教师在备课时要兼顾各层次学生,故铺设问题需层层递进,做到环环相扣。
学生最容易出错的地方是将导函数的零点和原函数的极值点混为一谈,基于此,确立本节课的重难点为:【教学重难点】重点:函数极值点的判断方法和求解步骤难点:导函数的零点是函数极值点的必要不充分条件的理解【教具教法】多媒体课件、问题导向、探究发现式教学【教学模式】“自精合练”模式【教学过程】1.观看视频《题西林壁》,庐山的连绵起伏形成很多的“峰点”与“谷点”,类比函数的极值,引出课题。
1.3.2函数的极值与导数课件人教新课标
重难聚焦
(6)若f(x)在区间(a,b)内有极值,则f(x)在(a,b)内一定不是单调函数, 即在某区间内单调的函数没有极值.
(7)如果函数f(x)在[a,b]上有极值,那么它的极值点的散布是有规 律的.相邻两个极大值点之间必有一个极小值点,同样,相邻两个极 小值点之间必有一个极大值点.一般地,当函数f(x)在[a,b]上连续且 有有限个极值点时,函数f(x)在[a,b]上的极大值点、极小值点是交 替出现的.
错因分析:函数在一点处的导数值为0是函数在这点取得极值的 必要条件,而非充分条件.错解中忽略了对得出的两组解进行检验 而出错.一般地,根据极值条件求参数值的问题时,在得到参数的两 组解后,应按照函数在这一点处取得极值所对应的条件进行检验, 考察每一组解所对应的函数在该点处是否能取得极值,从而进行取 舍.
知识梳理
【做一做 2-2】 函数 y=2-x2-x3 的极值情况是( )
A.有极大值,没有极小值
B.有极小值,没有极大值
C.既无极大值也无极小值
D.既有极大值也有极小值
解析:y'=-2x-3x2,令 y'=0,
得
x1=−
2 3
,
x2
=
0.
当x<−
2 3
时,y'<0;
当
−
2 3
<
x
<
0
时,y'>0;当
重难聚焦
(3)极大值与极小值之间无确定的大小关系.在某一点的极小值 也可能大于另一点的极大值,即极大值不一定比极小值大,极小值也 不一定比极大值小.如图所示.
(4)函数的极值点一定出现在区间的内部,区间的端点不能成为极 值点.
高中数学 1.3.2 函数的极值与导数课件 新人教A版选修2
因此对于可导函数,导数为0是点为极值点的必 要而不充分条件.
(2)函数的导数不存在的点也可能是极值点. 如函数f(x)=|x|,在x=0处,左侧(x<0时)f′(x)= -1<0,右侧(x>0时)f′(x)=1>0,当x=0时f(x) =0是f(x)的极小值点,但f′(0)不存在.
.
• 极小值点、极大值点统称为极值点,> 极大值和极小值统
称为极值.极值反映了函数在某一点附近的大小情况,
刻画的是函数的局部性质.
<
减
• 2.求可导函数y=f(x)的极值的方法是:
• 解方程f′(x)=0.当f′(x0)=0时: • (1)如果在x0附近的左侧
,那么f(x0)是极大值; • (2)f′如(x)果<在0 x0附近的左侧
,那么f(x0)是极小值.
,右侧 f′(x)>0
,右侧 f′(x)<0
f′(x)>0
• [例1] 判断函数y=x3在x=0处能否取得极值. • [分析] 可由极值的定义来判断,也可由导数来判断. • [解析] 解法1:当x=0时,f(x)=0,在x=0的附近区域
内,f(x)有正有负,不存在f(0)>f(x)(或f(0)<f(x)),因此y= x3在x=0处取不到极值. • 解法2:y′=3x2,当x≠0时,y′>0, • 当y=0时,f(x)=0,因此y=x3在(-∞,+∞)上是增函数, 因为单调函数没有极值,所以y=x3在x=0处取不到极 值.
• 设函数y=f(x)在点x0及其附近可导,且f′(x0)=0. • (1)如果f′(x)的符号在点x0的左右由正变负,则f(x0)
为函数f(x)的极大值.
• (2)如果f′(x)的符号在点x0的左右由负变正,则f(x0) 为函数f(x)的极小值.
1.3.2函数的极值与导数-人教A版高中数学选修2-2课件
C、a 4, b 11
D、以上 都不 对
解:由题设条件得:
f f
(1) 10 '(1) 0
1 a b a2 10
3 2a b 0
解之得
a3 b 3
或, ab
4 11
注意代
f'(x) +
0
-
f(x) ↗ 极大值-2a ↘
-
0
+
↘ 极小值2a ↗
故当x=-a时,f(x)有极大值f(-a)=-2a;当x=a时,f(x) 有极小值f(a)=2a.
练习2、求函数y 6x 的极值 1 x2
解:
y
1
6x x2
,
y
6(1 x2 ) (1 x 2 )2
.
令y 0,解得x1 1,x2 1
因此,当x=-1时函数取得极大值,且极大值为f(-1)=10;当 x=3时函数取得极小值,且极小值为f(3)=-22
(2)函数f ( x) ln x 的定义域为(0, ),且f '( x) 1 ln x
x
x2
令f '( x) 0,得x e
当x变化时,f '( x)与f ( x)的变化情况如下表:
故f(x)在(-∞,1)和(2,+∞)上递增,在(1,2)上递 减,因此f(x)在x=1处取得极大值,所以x0=1
O
1
(2)∵ f '( x)=3ax2 2bx c
2x
由f '(1) 0,f '(2) 0,f (1) 5得
3a 2b c 0
12a 4b c 0,解得a 2,b 9,c 12
《函数的极值与导数》教案完美版
《函数的极值与导数》教案§1.3.2函数的极值与导数(1)【教学目标】1.理解极大值、极小值的概念.2.能够运用判别极大值、极小值的方法来求函数的极值. 3.掌握求可导函数的极值的步骤.【教学重点】极大、极小值的概念和判别方法,以及求可导函数的极值的步骤. 【教学难点】对极大、极小值概念的理解及求可导函数的极值的步骤. 【内容分析】对极大、极小值概念的理解,可以结合图象进行说明.并且要说明函数的极值是就函数在某一点附近的小区间而言的. 从图象观察得出,判别极大、极小值的方法.判断极值点的关键是这点两侧的导数异号. 【教学过程】一、复习引入:1. 函数的导数与函数的单调性的关系:设函数y=f(x) 在某个区间内有导数,如果在这个区间内/y >0,那么函数y=f(x) 在为这个区间内的增函数;如果在这个区间内/y <0,那么函数y=f(x) 在为这个区间内的减函数.2.用导数求函数单调区间的步骤:①求函数f (x )的导数f ′(x ). ②令f ′(x )>0解不等式,得x 的范围就是递增区间.③令f ′(x )<0解不等式,得x 的范围,就是递减区间. 二、讲解新课:1.极大值: 一般地,设函数f(x)在点x 0附近有定义,如果对x 0附近的所有的点,都有f(x)<f(x 0),就说f(x 0)是函数f(x)的一个极大值,记作y 极大值=f(x 0),x 0是极大值点. 2.极小值:一般地,设函数f(x)在x 0附近有定义,如果对x 0附近的所有的点,都有f(x)>f(x 0).就说f(x 0)是函数f(x)的一个极小值,记作y 极小值=f(x 0),x 0是极小值点. 3.极大值与极小值统称为极值.在定义中,取得极值的点称为极值点,极值点是自变量的值,极值指的是函数值.请注意以下几点:(ⅰ)极值是一个局部概念极值只是某个点的函数值与它附近点的函数值比较是最大或最小.并不意味着它在函数的整个的定义域内最大或最小.(ⅱ)函数的极值不是唯一的.即一个函数在某区间上或定义域内极大值或极小值可以不止一个.(ⅲ)极大值与极小值之间无确定的大小关系图所示,1x 是极大值点,4x 是极小值点,而)(4x f >)(1x f .(ⅳ)函数的极值点一定出现在区间的内部,区间的端点不能成为极值点.而使函数取得最大值、最小值的点可能在区间的内部,也可能在区间的端点.4. 判别f (x 0)是极大、极小值的方法:若0x 满足0)(0='x f ,且在0x 的两侧)(x f 的导数异号,则0x 是)(x f 的极值点,)(0x f 是极值,并且如果)(x f '在0x 两侧满足“左正右负”,则0x 是)(x f 的极大值点,)(0x f 是极大值;如果)(x f '在0x 两侧满足“左负右正”,则0x 是)(x f 的极小值点,)(0x f 是极小值. 5. 求可导函数f (x )的极值的步骤:(1)确定函数的定义区间,求导数f ′(x ) . (2)求方程f ′(x )=0的根.(3)用函数的导数为0的点,顺次将函数的定义区间分成若干小开区间,并列成表格.检查f ′(x )在方程根左右的值的符号,如果左正右负,那么f (x )在这个根处取得极大值;如果左负右正,那么f (x )在这个根处取得极小值;如果左右不改变符号,那么f (x )在这个根处无极值三、讲解范例:例1求y =31x 3-4x +4的极值. 解:y ′=(31x 3-4x +4)′=x 2-4=(x +2)(x -2) .令y ′=0,解得x 1=-2,x 2=2. 当x 变化时,y ′,y 的变化情况如下表.∴当x =-2时,y 有极大值且y 极大值=328.当x =2时,y 有极小值且y 极小值=3例2求y =(x 2-1)3+1的极值.解:y ′=6x (x 2-1)2=6x (x +1)2(x -1)2令y ′=0解得x 1=-1,x 2=0,x 3=1.当x 变化时,y ′,y 的变化情况如下表.∴当x =0时,有极小值且极小值=0求极值的具体步骤:第一,求导数f ′(x ).第二,令f ′(x )=0求方程的根,第三,列表,检查f ′(x )在方程根左右的值的符号,如果左正右负,那么f (x )在这个根处取得极大值;如果左负右正,那么f (x )在这个根处取得极小值,如果左右都是正,或者左右都是负,那么f (x )在这根处无极值.如果函数在某些点处连续但不可导,也需要考虑这些点是否是极值点. 四、课堂练习:1.求下列函数的极值.(1)y =x 2-7x +6 (2)y =x 3-27x(1)解:y ′=(x 2-7x +6)′=2x -7令y ′=0,解得x =27.当x 变化时,y ′,y 的变化情况如下表.∴当x =27时,y 有极小值,且y 极小值=-425. (2)解:y ′=(x 3-27x )′=3x 2-27=3(x +3)(x -3)令y ′=0,解得x 1=-3,x 2=3.当x∴当x =-3时,y 有极大值,且y 极大值=54. 当x =3时,y 有极小值,且y 极小值=-54. 五、小结 :函数的极大、极小值的定义以及判别方法.求可导函数f (x )的极值的三个步骤.还有要弄清函数的极值是就函数在某一点附近的小区间而言的,在整个定义区间可能有多个极值,且要在这点处连续.可导函数极值点的导数为0,但导数为零的点不一定是极值点,要看这点两侧的导数是否异号.函数的不可导点可能是极值点. 六、课后作业:§1.3.2函数的极值与导数(2)【课 题】函数的极值(2)【教学目标】熟练掌握求可导函数的极值的步骤,灵活应用.【教学重点】极大、极小值的判别方法,求可导函数的极值的步骤的灵活掌握. 【教学难点】求可导函数的极值. 【教学过程】1.用导数求函数单调区间的步骤:①求函数f (x )的导数f ′(x ). ②令f ′(x )>0解不等式,得x 的范围就是递增区间.③令f ′(x )<0解不等式,得x 的范围,就是递减区间.2.极大值: 一般地,设函数f (x )在点x 0附近有定义,如果对x 0附近的所有的点,都有f (x )<f (x 0),就说f (x 0)是函数f (x )的一个极大值,记作y 极大值=f (x 0),x 0是极大值点.3.极小值:一般地,设函数f (x )在x 0附近有定义,如果对x 0附近的所有的点,都有f (x )>f (x 0).就说f (x 0)是函数f (x )的一个极小值,记作y 极小值=f (x 0),x 0是极小值点.4.极大值与极小值统称为极值,注意以下几点:(ⅰ)极值是一个局部概念.由定义,极值只是某个点的函数值与它附近点的函数值比较是最大或最小.并不意味着它在函数的整个的定义域内最大或最小.(ⅱ)函数的极值不是唯一的.即一个函数在某区间上或定义域内极大值或极小值可以不止一个.(ⅲ)极大值与极小值之间无确定的大小关系.即一个函数的极大值未必大于极小值,如下图所示,1x 是极大值点,4x 是极小值点,而)(4x f >)(1x f .(ⅳ)函数的极值点一定出现在区间的内部,区间的端点不能成为极值点. 而使函数取得最大值、最小值的点可能在区间的内部,也可能在区间的端点.5. 判别f (x 0)是极大、极小值的方法:若0x 满足0)(0='x f ,且在0x 的两侧)(x f 的导数异号,则0x 是)(x f 的极值点,)(0x f 是极值,并且如果)(x f '在0x 两侧满足“左正右负”,则0x 是)(x f 的极大值点,)(0x f 是极大值;如果)(x f '在0x 两侧满足“左负右正”,则0x 是)(x f 的极小值点,)(0x f 是极小值. 6. 求可导函数f (x )的极值的步骤:(1)确定函数的定义区间,求导数f ′(x ) ; (2)求方程f ′(x )=0的根;(3)用函数的导数为0的点,顺次将函数的定义区间分成若干小开区间,并列成表格.检查f ′(x )在方程根左右的值的符号,如果左正右负,那么f (x )在这个根处取得极大值;如果左负右正,那么f (x )在这个根处取得极小值;如果左右不改变符号即都为正或都为负,那么f (x )在这个根处无极值. 二、讲解范例:例1 对可导函数,在一点两侧的导数异号是这点为极值点的( ) A .充分条件 B .必要条件 C .充要条件 D .既不充分也不必要条件 答案:C . 充要条件.由极大、极小值的判别方法可以知道是充分条件. 由极大值点的定义,任意x <x 0,f (x )<f (x 0).所以左侧是增函数,所以f ′(x )>0,任意x >x 0,f (x )<f (x 0). 所以右侧是减函数,所以f ′(x )<0,所以x 0两侧的导数异号. 当x 0是极小值时,同样可以证明.例2下列函数中,x =0是极值点的函数是(B)A .y =-x 3B .y =cos 2xC .y =tanx -xD .y =x1 分析:做这题需要按求极值的三个步骤,一个一个求出来吗?不需要,因为它只要判断x =0是否是极值点,只要看x =0点两侧的导数是否异号就可以了.解:A . y =-x 3,∵y ′=(-x 3)′=-3x 2,当x <0或x >0时,y ′<0,∴x =0不是极值点.B . y =cos 2x . ∵y ′=(cos 2x )′=2cosx (-sinx )=-sin 2x . 当x <0时,-sin 2x >0,y ′>0. 当x >0时,-sin 2x <0,y ′<0.∴x =0是y =cos 2x 的极大值点.C .y =tanx -x ,y ′=(tanx -x )′=x2cos 1-1,当x <0或x >0时,0<cos 2x <1,y ′>0.∴x =0不是极值点.D . y =x 1. y ′=(x 1)′=-21x, 当x <0或x >0时y ′<0,∴x =0不是极值点,故选B .例3 下列说法正确的是(C)A .函数在闭区间上的极大值一定比极小值大.B .函数在闭区间上的最大值一定是极大值.C .对于f (x )=x 3+px 2+2x +1,若|p |<6,则f (x )无极值.D .函数f (x )在区间(a ,b )上一定存在最值.答案:C .∵f (x )=x 3+px 2+2x +1.∴f ′(x )=3x 2+2px +2.∵Δ=4p 2-4×3×2=4(p 2-6). 若|p |<6.则Δ<0,∴f ′(x )=0无实根,即f ′(x )>0, ∴f (x )无极值.选项A 、B 、D 可以通过举出反例说明是假命题. 例4 函数f (x )=asinx +31sin 3x 在x =3π处具有极值,求a 的值. 分析:f (x )在x =3π处有极值,根据一点是极值点的必要条件可知,f ′(3π)=0可求出a的值.解:f ′(x )=(asinx +31sin 3x )′=acosx +cos 3x ∵f ′(3π)=0,∴a ·cos3π+cos 3×3π=0,21a -1=0,∴a =2. 例5 y =alnx +bx 2+x 在x =1和x =2处有极值,求a 、b 的值. 解:y ′=(alnx +bx 2+x )′=xa+2bx +1.∵y ′|x =1=0,y ′|x =2=0. ∴⎪⎪⎩⎪⎪⎨⎧-=-=⇒⎪⎩⎪⎨⎧=++=++61320142012b a b a b a . 例6 确定函数y =12+x x的单调区间,并求函数的极大、极小值. 解:y ′=222222222)1()1)(1()1(1)1(21)1(+-+=+-=+⋅-+='+x x x x x x x x x x x 令22)1()1)(1(+-+x x x >0,解得-1<x <1.∴y =12+x x的单调增区间为(-1,1).令22)1()1)(1(+-+x x x <0,得x <-1或x >1,∴y =12+x x减区间为(-∞,-1)与(1,+∞).令y ′=22)1()1)(1(+-+x x x =0,解得x 1=-1,x 2=1. 当x 变化时,′,的变化情况如下表:∴当x =-1时,y 有极小值,且y 极小值=-21,当x =1时,y 有极大值,且y 极大值=21. 例7 求函数y =25431xx ++的极值与极值点.解:y ′=(25431xx ++)′232222)54(5125454210)31(543x x x x xx x +-=+++-+=,令y ′=0,解得x =512. x 变化时,y′,y 的变化情况如下表:∴当x =512时,y 有极大值,且y 极大值=10.例8 求函数y =x 2lnx 的极值.解:定义域为(0,+∞),y ′=(x 2lnx )′=2xlnx +x 2·x1=2xlnx +x =x (2lnx +1). 令y ′=0,得x =21-e.当x∴当x =21-e时,y 有极小值,且y 极小值=-e21. 三、课堂练习:求下列函数的极值.1.y =2x 2+5x .解:y ′=(2x 2+5x )′=4x +5. 令y ′=0,解得x =-45. 当x 变化时,当x =-45时,y 有极小值,且y 极小值=-825.2.y =3x -x 3.解:y ′=(3x -x 3)′=3-3x 2=3(1+x )·(1-x ).令y ′=0,解得x 1=-1,x 2=1. 当x当x =极小值极大值四、小结 :这节课主要复习巩固了求可导函数的极值的方法,以及有关极值问题的题目,注意极大、极小值与最大、最小值的区别 极值点的充分条件、必要条件. 五、课后作业:风,没有衣裳;时间,没有居所;它们是拥有全世界的两个穷人生活不只眼前的苟且,还有诗和远方的田野。
高中数学选修2精品课件1.3.2函数的极值和导数
4,极小值为0.试确定a,b,c的值.
x
f ( x )
的一个极大值。
2. 如 果 x0 是 f′(x)=0 的 一 个 根 , 并 且 在 x0 的 左 侧 附 近 的一个极小值。
f′(x)<0,在x0右侧附近f′(x)>0,那么是 f(x0)函数f(x)
导数值为0的点一定是函数的极值点吗?
导数值为0为函数是极值点的必要条件。
课堂练习
练习1:下列函数中,x=0是极值点的函数是( A.y=-x3 B.y=x2 C.y=x2-x
(6)极值只能在函数不可导的点或导数为零的点取到. 4.确定函数的极值应从几何直观入手,理解可导函数在 其定义域上的单调性与函数极值的相互关系,掌握利 用导数判断函数极值的基本方法.
例1:已知函数 f(x)满足条件:①当x>2时, f ( x ) 0 ;②当 x<2时, f ( x ) 0 ;③ f (2) 0. 求证:函数y=f(x2)在 x 2 处有极小值. 证:设g(x)=f(x2),则 g( x) f ( x 2 ) 2 x. 2 故当 x 2 时,x2>2,由条件①可知 f ( x ) 0 ,即 :
f (b) 0
极大值点
y
f ( x ) >0
f ( x )<0
f ( x ) <0 a
f (a) 0
f ( x) >0
o 极小值点 b
x
1.3.2函数的极值与导数教学设计
教学课题选修2-2第一章1.3.2函数的极值与导数课标要求一、知识与技能:1.结合函数图象,了解可导函数在某点取得极值的必要条件和充分条件 2.理解函数极值的概念,会用导数求函数的极大值与极小值3.掌握求可导函数的极值的步骤; 二、过程与方法:1. 结合实例,借助函数图形直观感知,并探索函数的极值与导数的关系。
2. 培养学生观察、分析、探究、归纳得出数学概念和规律的学习能力。
三、情感态度与价值观:通过本节的学习,体会导数的方法在研究函数性质的一般性和有效性,通过函数的极值与单调性之间的联系,体会知识的发展的过程,逐步提高科学地分析、解决问题的能力。
识记理解应用综合知识点1可导函数在某点取极值的充分、必要条件 ∨知识点2 极值的概念 ∨ 知识点3求极值的步骤∨知识点4: 极值的综合应用∨目标设计1. 理解极大值、极小值的概念;2. 能够运用判别极大值、极小值的方法来求函数的极值;3. 掌握求可导函数的极值的步骤;4. 通过学习让学生体会极值是函数的局部性质,增强学生数形结合的思维意识。
情境一:1.通过上节课的学习,导数和函数单调性的关系是什么?(提问学生回答)2.观察下图表示高台跳水运动员的高度h 随时间t 变化的函数h(t)=-4.9t2+6.5t+10的图象,回答以下问题: 问题1:在点t=a 附近的图象有什么特点? 问题2:函数在t=a 处的函数值和附近函数值之间有什么关系? 问题3:在点t=a 附近的导数符号有何变化规律?问题4:函数在t=a 处的导数是多少?(函数h(t)在a 点处h /(a)=0,在t=a 的附近,当t <a 时,函数()h t 单调递增, ()'h t >0;当t >a 时,函数()h t 单调递减, ()'h t <0,即当t 在a 的附近从小到大经过a 时, ()'h t 先正后负,且()'h t 连续变化,于是h /(a)=0. )情境二:观察图所表示的y=f(x)的图象,回答下面的问题:问题1:函数y=f(x)在a.、b 两点的函数值与这些点附近的函数值有什么关系?问题2:函数y=f(x)在a 、b 两点的导数值是多少?问题3:在a 、b 两点附近, y=f(x)的导数的符号分别是什么,并且有什么关系呢?知识点 认知层次t o h a 0)(>'a h单调递增单调递减 0)(='a h0)(<'a h学生观察图像思考、小组讨论、归纳:①在点a 的左侧与右侧附近,函数y=f(x)的函数值都大于f(a);在点b 的左侧与右侧附近,函数y=f(x)的函数值都小于f(b).②函数y=f(x)在a 点的导数值是0)(='a f ; 函数y=f(x)在b 点的导数值是0)(='a f③在a 点左侧附近,函数 y=f(x)的导数0)(<'x f ;在点a 右侧附近,函数 y=f(x)的导数0)(>'x f , 左右两侧附近的导数值符号要相反。
函数的极值与导数(教案)
1.3.2 函数的极值与导数一、教学目标1 知识与技能〈1〉结合函数图象;了解可导函数在某点取得极值的必要条件和充分条件〈2〉理解函数极值的概念;会用导数求函数的极大值与极小值2过程与方法结合实例;借助函数图形直观感知;并探索函数的极值与导数的关系..3情感与价值感受导数在研究函数性质中一般性和有效性;通过学习让学生体会极值是函数的局部性质;增强学生数形结合的思维意识..二、重点:利用导数求函数的极值难点:函数在某点取得极值的必要条件与充分条件三、教学基本流程回忆函数的单调性与导数的关系;与已有知识的联系提出问题;激发求知欲组织学生自主探索;获得函数的极值定义通过例题和练习;深化提高对函数的极值定义的理解四、教学过程〈一〉、创设情景;导入新课1、通过上节课的学习;导数和函数单调性的关系是什么提高学生回答2.观察图1.3.8 表示高台跳水运动员的高度h 随时间t 变化的函数()h t =-4.9t 2+6.5t+10的图象;回答以下问题1当t=a 时;高台跳水运动员距水面的高度最大;那么函数()h t 在t=a 处的导数是多少呢2在点t=a 附近的图象有什么特点 3点t=a 附近的导数符号有什么变化规律共同归纳: 函数ht 在a 点处h /a=0;在t=a 的附近;当t <a 时;函数()h t 单调递增;()'h t >0;当t >a 时;函数()h t 单调递减; ()'h t <0;即当t 在a 的附近从小到大经过a时; ()'h t 先正后负;且()'h t 连续变化;于是h /a=0.3、对于这一事例是这样;对其他的连续函数是不是也有这种性质呢 <二>、探索研讨1、观察1.3.9图所表示的y=fx 的图象;回答以下问题:1函数y=fx 在a.b 点的函数值与这些点附近的函数值有什么关系 2 函数y=fx 在a.b.点的导数值是多少3在a.b 点附近; y=fx 的导数的符号分别是什么;并且有什么关系呢aoht2、极值的定义:我们把点a 叫做函数y=fx 的极小值点;fa 叫做函数y=fx 的极小值; 点b 叫做函数y=fx 的极大值点;fa 叫做函数y=fx 的极大值.. 极大值点与极小值点称为极值点; 极大值与极小值称为极值.3、通过以上探索;你能归纳出可导函数在某点x 0取得极值的充要条件吗 充要条件:fx 0=0且点x 0的左右附近的导数值符号要相反4、引导学生观察图1.3.11;回答以下问题:1找出图中的极点;并说明哪些点为极大值点;哪些点为极小值点 2极大值一定大于极小值吗 5、随堂练习:1 如图是函数y=fx 的函数;试找出函数y=fx 的极值点;并指出哪些是极大值点;哪些是极小值点.如果把函数图象改为导函数y=()'f x 的图象<三>、讲解例题例4 求函数()31443f x x x =-+的极值教师分析:①求f /x;解出f /x=0;找函数极点; ②由函数单调性确定在极点x 0附近f /x 的符号;从而确定哪一点是极大值点;哪一点为极小值点;从而求出函数的极值. 学生动手做;教师引导解:∵()31443f x x x =-+∴()'f x =x 2-4=x-2x+2 令()'f x =0;解得x=2;或x=-2.下面分两种情况讨论:(1)当()'f x >0;即x >2;或x <-2时; (2) 当()'f x <0;即-2<x <2时.当x 变化时; ()'f x ;fx 的变化情况如下表: x-∞;-2 -2 -2;22 2;+∞ ()'f x+ 0_+ fx单调递增283单调递减43- 单调递增因此;当x=-2时;fx 有极大值;且极大值为f-2= 283;当x=2时;fx 有极 小值;且极小值为f2= 43- 函数()31443f x x x =-+的图象如: 归纳:求函数y=fx 极值的方法是:1求()'f x ;解方程()'f x =0;当()'f x =0时:(1) 如果在x 0附近的左边()'f x >0;右边()'f x <0;那么fx 0是极大值. (2) 如果在x 0附近的左边()'f x <0;右边()'f x >0;那么fx 0是极小值 <四>、课堂练习1、求函数fx=3x-x 3的极值2、思考:已知函数fx=ax 3+bx 2-2x 在x=-2;x=1处取得极值; 求函数fx 的解析式及单调区间.. <五>、课后思考题:1、 若函数fx=x 3-3bx+3b 在0;1内有极小值;求实数b 的范围..2、 已知fx=x 3+ax 2+a+bx+1有极大值和极小值;求实数a 的范围.. <六>、课堂小结: 1、 函数极值的定义 2、 函数极值求解步骤3、 一个点为函数的极值点的充要条件..22-()31443f x x x =-+<七>、作业P32 5 ①④。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.3.2 函数的极值与导数(教案)
一、教学目标
1 知识与技能
〈1〉结合函数图象,了解可导函数在某点取得极值的必要条件和充分条件
〈2〉理解函数极值的概念,会用导数求函数的极大值与极小值
2过程与方法
结合实例,借助函数图形直观感知,并探索函数的极值与导数的关系。
3情感与价值
感受导数在研究函数性质中一般性和有效性,通过学习让学生体会极值是函数的局部性质,增强学生数形结合的思维意识。
二、重点:利用导数求函数的极值
难点:函数在某点取得极值的必要条件与充分条件
三、教学基本流程
回忆函数的单调性与导数的关系,与已有知识的联系
提出问题,激发求知欲
组织学生自主探索,获得函数的极值定义
通过例题和练习,深化提高对函数的极值定义的理解
四、教学过程
〈一〉、创设情景,导入新课
1、通过上节课的学习,导数和函数单调性的关系是什么?
(提高学生回答)
2.观察图1.3.8 表示高台跳水运动员的高度h 随时间t 变化的函数
()h t =-4.9t 2+6.5t+10的图象,回答以
下问题
(1)当t=a 时,高台跳水运动员距水面的高度最大,那么函数()h t 在t=a 处的导数是多少呢?
(2)在点t=a 附近的图象有什么特点? (3)点t=a 附近的导数符号有什么变化规律?
共同归纳: 函数h(t)在a 点处h /(a)=0,在t=a 的附近,当t <a 时,函数()h t 单调递增, ()'h t >0;当t >a 时,函数()h t 单调递减, ()'h t <0,即当t 在a 的附近从小到大经过a 时, ()'h t 先正后负,且()'h t 连续变化,于是h /(a)=0.
3、对于这一事例是这样,对其他的连续函数是不是也有这种性质呢? <二>、探索研讨
1、观察1.3.9图所表示的y=f(x)的图象,回答以下问题:
a
o
h
t
(1)函数y=f(x)在a.b点
的函数值与这些点附近的
函数值有什么关系?
(2)函数y=f(x)在a.b.
点的导数值是多少? (3)在a.b点附近, y=f(x)的导数的符号分别是什么,并且有什么关系呢?
2、极值的定义:
我们把点a叫做函数y=f(x)的极小值点,f(a)叫做函数y=f(x)的极小值;
点b叫做函数y=f(x)的极大值点,f(a)叫做函数y=f(x)的极大值。
极大值点与极小值点称为极值点, 极大值与极小值称为极值.
3、通过以上探索,你能归纳出可导函数在某点x0取得极值的充要条件吗?
充要条件:f(x0)=0且点x0的左右附近的导数值符号要相反
4、引导学生观察图1.3.11,回答以下问题:
(1)找出图中的极点,并说明哪些点为极大值点,哪些点为极小值点?
(2)极大值一定大于极小值吗?
5、随堂练习:
1 如图是函数y=f(x)的函数,试找出函数y=f(x)的极值点,并指出哪些是极大值点,哪些是极小值点.如果把函数图象改为导函数
y=()'f x 的图象? <三>、讲解例题
例4 求函数()31
443
f x x x =-+的极值
教师分析:①求f /(x),解出f /(x)=0,找函数极点; ②由函数单调性确定在极点x 0附近f /(x)的符号,从而确定哪一点是极大值点,哪一点为极小值点,从而求出函数的极值. 学生动手做,教师引导
解:∵()31443
f x x x =-+∴()'f x =x 2-4=(x-2)(x+2) 令()'f x =0,解得x=2,或x=-2. 下面分两种情况讨论:
(1)当()'f x >0,即x >2,或x <-2时; (2) 当()'f x <0,即-2<x <2时.
当x 变化时, ()'f x ,f(x)的变化情况如下表:
x
(-∞,-2)
-2 (-2,2) 2
(2,+
∞)
()
'f x
+ 0 _ 0 +
f(
单调递
283
单调递减
43
- 单调
x
x) 增 递增
因此,当x=-2时,f(x)有极大值,且极大值为f(-2)= 3
;当x=2时,f(x)有极 小值,且极小值为f(2)= 43
- 函数()31443
f x x x =-+的图象如: 归纳:求函数y=f(x)极值的方法是:
1求()'f x ,解方程()'f x =0,当()'f x =0时:
(1) 如果在x 0附近的左边()'f x >0,右边()'f x <0,那么f(x 0)是极大值. (2) 如果在x 0附近的左边()'f x <0,右边()'f x >0,那么f(x 0)是极小值 <四>、课堂练习
1、求函数f(x)=3x-x 3的极值
2、思考:已知函数f (x )=ax 3+bx 2-2x 在x=-2,x=1处取得极值, 求函数f (x )的解析式及单调区间。
<五>、课后思考题:
1、 若函数f(x)=x 3-3bx+3b 在(0,1)内有极小值,求实数b 的范
围。
2、 已知f(x)=x 3+ax 2+(a+b)x+1有极大值和极小值,求实数a 的范围。
<六>、课堂小结: 1、 函数极值的定义 2、 函数极值求解步骤
3、 一个点为函数的极值点的充要条件。
<七>、作业 P 32 5 ① ④
教学反思:
2
2
-()31
44
3
f x x x =-+
本节的教学内容是导数的极值,有了上节课导数的单调性作铺垫,借助函数图形的直观性探索归纳出导数的极值定义,利用定义求函数的极值.教学反馈中主要是书写格式存在着问题.为了统一要求主张用列表的方式表示,刚开始学生都不愿接受这种格式,但随着几道例题与练习题的展示,学生体会到列表方式的简便,同时为能够快速判断导数的正负,我要求学生尽量把导数因式分解.本节课的难点是函数在某点取得极值的必要条件与充分条件,为了说明这一点多举几个例题是很有必要的.在解答过程中学生还暴露出对复杂函数的求导的准确率比较底,以及求函数的极值的过程板书仍不规范,看样子这些方面还要不断加强训练.
研讨评议:
教学内容整体设计合理,重点突出,难点突破,充分体现教师为主导,学生为主体的双主体课堂地位,充分调动学生的积极性,教师合理清晰的引导思路,使学生的数学思维得到培养和提高,教学内容容量与难度适中,符合学情,并关注学生的个体差异,使不同程度的学生都得到不同效果的收获.。