离散数学 第二章 命题逻辑等值演算

合集下载

离散数学-命题逻辑等值演算

离散数学-命题逻辑等值演算

消解规则
总结词
消解规则允许我们通过消除两个等价的 命题来得出新的结论。
VS
详细描述
消解规则允许我们通过消除两个等价的命 题来得出新的结论。例如,如果我们有两 个等价的命题A和B,并且知道A能推出C, 同时B能推出D,那么我们可以通过消解规 则得出C ∧ D。
03
推理规则
假言推理
总结词
假言推理是一种基于前件和后件的推理方法,前件是推理的前提,后件是推出的结论。
详细描述
假言推理的逻辑形式是“如果P,则Q”,表示当P为真时,Q也为真。例如,“如果天 下雨,则地面会湿”,当天下雨时,可以推断出地面会湿。
应用场景
假言推理在日常生活和科学研究中广泛应用,如自然语言处理、人工智能、法律推理等 领域。
拒取式与析取三段论
总结词
拒取式是一种通过否定结论 来推导前提的推理方法,而 析取三段论则是通过前提的 析取来推导结论的推理方法
人工智能中的逻辑推理是离散数学中命题逻辑等值演算的另 一个重要应用。在自然语言处理、知识表示和推理、智能决 策等领域,逻辑推理都发挥着关键作用。
通过使用命题逻辑等值演算,人工智能系统可以更好地理解 和处理复杂的逻辑关系,提高推理的准确性和效率。例如, 在专家系统中,逻辑推理可以帮助我们构建知识库和推理机 ,实现智能化的决策支持。
05
习题与思考
命题逻辑的习题练习
练习题1
理解命题逻辑的基本概念,如命题、联结词、量词等,并能够准确 判断一个语句是否为命题。
练习题2
掌握命题逻辑中的推理规则,如析取三段论、合取三段论、假言推 理等,并能够运用这些规则进行简单的逻辑推理。
练习题3
利用真值表法判断复合命题的真假值,理解复合命题的逻辑关系。

离散数学-2.2-3命题逻辑等值演算.ppt

离散数学-2.2-3命题逻辑等值演算.ppt
14
2.3 范式
• 2.3.1 析取范式与合取范式
– 简单析取式与简单合取式 – 析取范式与合取范式
• 2.3.2 主析取范式与主合取范式
– 极小项与极大项 – 主析取范式与主合取范式 – 主范式的用途
15
简单析取式与简单合取式
文字:命题变项及其否定的统称 简单析取式:有限个文字构成的析取式 如 p, q, pq, pqr, … 简单合取式:有限个文字构成的合取式 如 p, q, pq, pqr, …
29
主析取范式的用途
(1) 求公式的成真赋值和成假赋值 设公式A含n个命题变项, A的主析取范式有s个极小项, 则A 有s个成真赋值, 它们是极小项下标的二进制表示, 其余2n-s 个赋值都是成假赋值
例如 (pq)r m0 m2 m4 m5 m6 成真赋值: 000,010,100,101,110; 成假赋值: 001,011,111
范式:析取范式与合取范式的统称
定理2.4 (1) 一个析取范式是矛盾式当且仅当它的每一个 简单合取式都是矛盾式 (2) 一个合取范式是重言式当且仅当它的每一个简单析取 式都是重言式
17
范式存在定理
定理2.5 任何命题公式都存在着与之等值的析取范式与合 取范式. 证 求公式A的范式的步骤: (1) 消去A中的,
30
主析取范式的用途(续)
(2) 判断公式的类型 设A含n个命题变项,则 A为重言式当且仅当A的主析取范式含2n个极小项 A为矛盾式当且仅当 A的主析取范式不含任何极小项,记作0 A为可满足式当且仅当A的主析取范式中至少含一个极小项
31
实例
例3 用主析取范式判断公式的类型:
(1) A (pq)q (2) B p(pq) (3) C (pq)r

离散数学-第一部分 数理逻辑-第二章 命题逻辑等值演算

离散数学-第一部分 数理逻辑-第二章 命题逻辑等值演算

名称
M0 M1 M2 M3
20
实例
由三个命题变项 p, q, r 形成的极小项与极大项.
极小项
公式
成真赋值 名称
p q r 0 0 0 m0
p q r 0 0 1 m1
p q r 0 1 0 m2
p q r 0 1 1 m3
p q r 1 0 0 m4
p q r 1 0 1 m5
p q r 1 1 0 m6
p(qr) (pq) r p(qr) 不与 (pq) r 等值
2
等值式例题
例1 判断下列各组公式是否等值: (1) p(qr) 与 (pq) r
p q r qr p(qr) pq (pq)r
000 1
1
001 1
1
010 0
1
011 1
1
100 1
1
101 1
1Hale Waihona Puke 110 00111 1
1
0
1
0
1
0
1
0
1
0
1
0
1
1
0
1
1
结论: p(qr) (pq) r
3
等值式例题
(2) p(qr) 与 (pq) r
p q r qr p(qr)
000 1
1
001 1
1
010 0
1
011 1
1
100 1
1
101 1
1
110 0
0
111 1
1
pq (pq)r
1
0
1
1
1
0
1
1
0
1
0

离散数学-命题逻辑等值演算名师公开课获奖课件百校联赛一等奖课件

离散数学-命题逻辑等值演算名师公开课获奖课件百校联赛一等奖课件

(分配律) (矛盾律) (同一律) (德摩根律) (结合律) (排中律) (零律)
等值演算旳例子
解:⑵ (p∨¬p)→((q∧¬q)∧r)
1→((q∧¬q)∧r)
(排中律)
1→(0∧r)
(矛盾律)
1→0
(零律)
0
(条件联结词旳定义)
由此可知,⑵为矛盾式。
⑶ (p→q)∧¬p
(¬p∨q)∧¬p
(蕴涵等值式)
范式存在定理
定理2.3
• 任一命题公式都存在着与之等值旳 析取范式
求•范任式旳一环命节题如公下式:都存在着与之等值旳合 ⑴取消范去式联结词“→”和“↔”
⑵ 利用双重否定律消去否定联结词“¬”或 利用德摩根律将否定联结词“¬”移到各命题 变元前(¬内移)。
⑶ 利用分配律,结合律将公式归约为合取 范式和析取范式。
极大项:简朴析取式中满足如上条件。
极小(大)项旳关键性质
• 定理:n个命题变元共有2n个极小项(极大项)。
p
q p∧q p∧¬q
¬p∧q
¬p∧¬q
0
0
0
0
0
1
0
1
0
0
1
0
1
0
0
1
0
0
1
1
1
0
0
0
• 每个极小(大)项只有一种成真(假)赋值,且 各极小项旳成真赋值互不相同。
• 极小项和它旳成真赋值构成了一一相应旳关系。
¬p
(吸收律)
由此可知,⑶是可满足式。
练习
1.用等值演算验证等值式 (1) (p∨q)→r (p→r)∧ (q→r) (2) ((p∨q)∧ ¬(p∧q))

《离散数学》02命题逻辑等值演算

《离散数学》02命题逻辑等值演算
类似的讨论可知,若Ai是含n个命题变项的简单合取式,且 Ai为矛盾式,则Ai中必同时含某个命题变项及它的否定式, 反之亦然。
2.2 析取范式和合取范式
定理2.1 (1)一个简单析取式是重言式当且仅当它同时含有某个命题
变项及它的否定式。 (2)一个简单合取式是矛盾式当且仅当它同时含有某个命题
变项及它的否定式。 定义2.3 (1)由有限个简单合取式构成的析取式称为析取范式
A∨1 1,A∧0 0 A∨0 A,A∧1 A A∨┐A 1 A∧┐A 0 A→B ┐A∨B AB (A→B)∧(B→A) A→B ┐B→┐A AB ┐A┐B (A→B)∧(A→┐B) ┐A
对偶原理
一个逻辑等值式,如果只含有┐、∨、∧、0、1 那么同时
把∨和∧互换 把0和1互换 得到的还是等值式。
(A∨B)∨C A∨(B∨C) (A∧B)∧C A∧(B∧C)
A∨(B∧C) (A∨B)∧(A∨C) (∨对∧的分配律)
A∧(B∨C) (A∧B)∨(A∧C) (∧对∨的分配律)
┐(A∨B) ┐A∧┐B ┐(A∧B) ┐A∨┐B
A∨(A∧B) A,A∧(A∨B) A
基本等值式
8.零律 9.同一律 10.排中律 11.矛盾律 12.蕴涵等值式 13.等价等值式 14.假言易位 15.等价否定等值式 16.归谬论
例2.5 解答
(1) (p→q)∧p→q
(┐p∨q)∧p→q
(蕴涵等值式)
┐((┐p∨q)∧p)∨q
(蕴涵等值式)
(┐(┐p∨q)∨┐p)∨q
(德摩根律)
((p∧┐q)∨┐p)∨q
(德摩根律)
((p∨┐p)∧(┐q∨┐p))∨q (分配律)
(1∧(┐q∨┐p))∨q

离散数学-第二章命题逻辑等值演算习题及答案

离散数学-第二章命题逻辑等值演算习题及答案

第二章作业 评分要求:1. 每小题6分: 结果正确1分; 方法格式正确3分; 计算过程2分. 合计48分2. 给出每小题得分(注意: 写出扣分理由)3. 总得分在采分点1处正确设置.一. 证明下面等值式(真值表法, 解逻辑方程法, 等值演算法, 三种方法每种方法至少使用一次):说明证1. p ⇔(p ∧q)∨(p ∧¬q)解逻辑方程法设 p ↔((p ∧q)∨(p ∧¬q)) =0, 分两种情况讨论:⎩⎨⎧=⌝∧∨∧=0)()(1)1(q p q p p 或者 ⎩⎨⎧=⌝∧∨∧=1)()(0)2(q p q p p (1)(2)两种情况均无解, 从而, p ↔(p ∧q)∨(p ∧¬q)无成假赋值, 为永真式.等值演算法(p ∧q)∨(p ∧¬q)⇔ p ∧(q ∨¬q)∧对∨的分配率⇔ p ∧1 排中律⇔ p 同一律真值表法用真值表法和解逻辑方程法证明相当于证明为永真式1. (¬p→q)→(¬q∨p)解(¬p→q)→(¬q∨p)⇔(p∨q)→(¬q∨p)蕴含等值式⇔(¬p∧¬q)∨(¬q∨p)蕴含等值式, 德摩根律⇔(¬p∧¬q)∨¬q ∨p结合律⇔p∨¬q吸收律, 交换律⇔M1因此, 该式的主析取范式为m0∨m2∨m32. (¬p→q)∧(q∧r)解逻辑方程法设(¬p→q)∧(q∧r) =1, 则¬p→q=1且q∧r=1,解得q=1, r=1, p=0 或者q=1, r=1, p=1, 从而所求主析取范式为m3∨m7, 主合取范式为M0∧M1∧M2∧M4∧M5∧M6等值演算法(¬p→q)∧(q∧r)⇔ (p∨q)∧(q∧r) 蕴含等值式⇔ (p∧q∧r)∨(q∧r) ∧对∨分配律, 幂等律⇔ (p∧q∧r) ∨ (p∧q∧r)∨(⌝p∧q∧r) 同一律, 矛盾律, ∧对∨分配律⇔m7∨ m3主合取范式为M0∧M1∧M2∧M4∧M5∧M63. (p↔q)→r解逻辑方程法设(p↔q)→r =0, 解得p=q=1, r=0 或者p=q=0, r=0, 从而所求主合取范式为M0∧M6, 主析取范式为m1∨m2∨m3∨m4∨m5∨m7等值演算法(p↔q)→r⇔ ((p→q)∧(q→p))→r 等价等值式⇔⌝((p→q)∧(q→p))∨r 蕴含等值式⇔ (p∧⌝q)∨(q∧⌝p)∨r 德摩根律, 蕴含等值式的否定(参见PPT)⇔ (p∨q∨r)∧(⌝q∨⌝p∨r) ∨对∧分配律, 矛盾律, 同一律⇔M0∧ M6主析取范式为m1∨m2∨m3∨m4∨m5∨m74. (p→q)∧(q→r)解等值演算法(p→q)∧(q→r)⇔ (⌝p∨q)∧(⌝q∨r) 蕴含等值式⇔ (⌝p∧⌝q)∨(⌝p∧r)∨(q∧r) ∧对∨分配律, 矛盾律, 同一律⇔ (⌝p∧⌝q∧r)∨(⌝p∧⌝q∧⌝r) ∨ (⌝p∧q∧r)∨(⌝p∧⌝q∧r) ∨ (p∧q∧r)∨(⌝p∧q∧r)⇔m1∨ m0∨ m3∨ m7主合取范式为M2∧ M4∧ M5∧ M6.解逻辑方程法设(p → q) ∧ (q → r) = 1, 则p → q =1 且q → r =1.前者解得: p=0, q=0; 或者p=0, q=1; 或者p=1, q=1.后者解得: q=0, r=0; 或者q=0, r=1; 或者q=1, r=1.综上可得成真赋值为000, 001, 011, 111, 从而主析取范式为m0∨ m1∨ m3∨ m7, 主合取范式为M2∧ M4∧ M5∧ M6.真值表法公式(p → q) ∧ (q从而主析取范式为m0∨ m1∨ m3∨ m7, 主合取范式为M2∧ M4∧ M5∧ M6.。

离散数学第2章 命题逻辑等值演算

离散数学第2章 命题逻辑等值演算
6/2/2013 9:02 PM Discrete Math. , Chen Chen 15
例2.6
CHAPTER TWO
例2.6 在某次研讨会的休息时间,3名与会者根据王教授的口音 对他是哪个省市的人进行了判断: 甲说王教授不是苏州人,是上海人。
乙说王教授不是上海人,是苏州人。 丙说王教授不是上海人,也不是杭州人。 听完3人的判断,王教授笑着说,他们3人中有一人说得全对, 有一人说对了一半,有一人说得全不对。试用逻辑演算法分析 王教授到底是哪里的人? 解: 设命题 p, q, r分别表示 : 王教授是苏州、上海、杭州人。 则p, q, r中必有一个真命题,两个假命题。要通过逻辑演算将 真命题找出来。 设: 甲的判断为: A1= ┐p∧q; 乙的判断为:A2= p∧┐q; 丙的 判断为:A3= ┐q∧r。
等值式模式
CHAPTER TWO
当命题公式中变项较多时,用上述方法判断两个公式是否 等值计算量很大。为此,人们将一组经检验为正确的等值式作 为等值式模式,通过公式间的等值演算来判断两公式是否等值。 常用的等值式模式如下:
1.双重否定律:A⇔ ┐(┐A) 2.幂等律:A⇔A∨A, A⇔A∧A
3.交换律: A∨B⇔B∨A, A∧B⇔B∧A 4.结合律: (A∨B)∨C⇔A∨(B∨C), (A∧B)∧C⇔A∧(B∧C) 5.分配律:A∨(B∧C)⇔(A∨B)∧(A∨C) (∨对∧的分配律)
⇔ ┐(┐p∨q)∨r (蕴含等值式,置换规则) ⇔ (p∧┐q)∨r (德摩根律,置换规则)
⇔(p∨r)∧(┐q∨r)(分配律,置换规则) 为简便起见, 以后凡用到置换规则时, 均不必标出。
6/2/2013 9:02 PM Discrete Math. , Chen Chen 10

离散数学讲义 第二章命题逻辑PPT课件

离散数学讲义 第二章命题逻辑PPT课件

解 令P:我得到这本小说;Q:我今夜就读完它。
于是上述命题可表示为P→Q。
7
5.等值“”
定义2.2.5 设P和Q是两个命题,则它们的等值命
题是一个复合命题,称为等值式复合命题,记作“P Q” (读作“P当且仅当Q”)。
当P和Q的真值相同时,PQ取真,否则取假。
例10
P
Q
P Q
0
0
1
0
1
0
1
0
0
德.摩根定律
E11
PQP∨Q
E12
P Q (P∧Q)∨(P∧Q)
E13
P (QR) (P∧Q) R
E14
P Q (PQ)∧(QP)
E15
PQQP
23
三、等价式的判别
有两种方法:真值表方法,命题演算方法
1、真值表方法
例1 用真值表方法证明 E10: (PQ) PQ
解 令:A= (PQ),B= PQ,构造A,B
一个复合命题,记作“P→Q”(读作“如果P,则Q”)。
当P为真,Q为假时,P→Q为假,否则 P→Q为真。
P
Q
P→Q
0
0
1
0
1
1
1
0
0
1
1
1
例8 若P:雪是黑色的;Q:太阳从西边升起;
R:太阳从东边升起。则P→Q和P→R所表示的命题都是真的.
例9 将命题“如果我得到这本小说,那么我今夜
就读完它。”符号化。
对于上述五种联结词,应注意到: 复合命题的真值只取决于构成它的各原子命题的真 值,而与这些原子命题的内容含义无关。
9
命题符号化
利用联结词可以把许多日常语句符号化。基本步骤如下:

离散数学第二章 命题逻辑等值演算

离散数学第二章 命题逻辑等值演算

范式存在定理
定理2.3 任何命题公式都存在着与之等值的析取范式与合 定理 取范式. 取范式. 求公式 的范式的步骤 的范式的步骤: 证 求公式A的范式的步骤: (1) 消去 中的→, ↔ 消去A中的 中的→ A→B⇔¬ ∨B ⇔¬A∨ → ⇔¬ A↔B⇔(¬A∨B)∧(A∨¬ ∨¬B) ↔ ⇔ ¬ ∨ ∧ ∨¬ (2) 否定联结词¬的内移或消去 否定联结词¬ ¬ ¬A⇔ A ⇔ ⇔¬A∧¬ ¬(A∨B)⇔¬ ∧¬ ∨ ⇔¬ ∧¬B ⇔¬A∨¬ ¬(A∧B)⇔¬ ∨¬ ∧ ⇔¬ ∨¬B
真值表法
例1 判断 ¬(p∨q) 与 ¬p∧¬q 是否等值 ∨ ∧ 解 p q 0 0 0 1 1 0 1 1 ¬p ¬q 1 1 0 0 1 0 1 0 p∨q ¬(p∨q) ¬p∧¬q ¬(p∨q)↔(¬p∧¬q) ∨ ∨ ∧ ∨ ↔¬ ∧ 0 1 1 1 1 0 0 0 1 0 0 0 1 1 1 1
实例(续)
(2) (p→q)↔(¬q→¬ → ↔ ¬ →¬ →¬p) 解 (p→q)↔(¬q→¬ → ↔ ¬ →¬ →¬p) ∨¬p) ⇔ (¬p∨q)↔(q∨¬ ¬ ∨ ↔ ∨¬ ⇔ (¬p∨q)↔(¬p∨q) ¬ ∨ ↔¬ ∨ ⇔1 该式为重言式. 该式为重言式 (蕴涵等值式) 蕴涵等值式) (交换律) 交换律)
实例(续)
(3) ((p∧q)∨(p∧¬ ∧r) ∧¬q))∧ ∧ ∨ ∧¬ 解 ((p∧q)∨(p∧¬ ∧r) ∧ ∨ ∧¬ ∧¬q))∧ (分配律) 分配律) (排中律) 排中律) (同一律) 同一律) ∨¬q))∧ ⇔ (p∧(q∨¬ ∧r ∧ ∨¬ ⇔ p∧1∧r ∧ ∧ ⇔ p∧r ∧ 成假赋值. 成假赋值 总结:A为矛盾式当且仅当 ⇔ 为重言式当且仅当A⇔ 总结 为矛盾式当且仅当A⇔0; A为重言式当且仅当 ⇔1 为矛盾式当且仅当 为重言式当且仅当 说明:演算步骤不惟一, 说明 演算步骤不惟一,应尽量使演算短些 演算步骤不惟一

离散数学第二章知识点

离散数学第二章知识点

命题逻辑等值演算等值式定理:设A,B两个命题公式(即前面的合式公式),若A,B构成的等价式A↔B为重言式,则A与B是等值的,记作A⇔B(可以说该式子为等值式模式)常用的16组等值式模式:双重否定律:A⇔﹁﹁A幂定律:A⇔A∧A,A⇔A∨A交换律:A∨B⇔B∨A,A∧B⇔B∧A结合律:(A∨B)∨C⇔A(B∨C)(A∧B)∧C⇔A(B∧C)分配律:A∨(B∧C)⇔(A∨B)∧(A∨C)A∧(B∨C)⇔(A∧B)∨(A∧C)德摩根律:﹁(A∨B)⇔﹁A∧﹁B﹁(A∧B)⇔﹁A∨﹁B吸收律:A∨(A∧B)⇔A,A∧(A∨B)⇔A零律:A∨1⇔1,A∧0⇔0同一律:A∨0⇔A,A∧1⇔1排中律:A∨﹁A⇔1矛盾律:A∧﹁A⇔0蕴涵等值式: A→B⇔﹁A∨B等价等值式: A↔B⇔(A→B)∧(B→A)假言易位:A→B⇔﹁B→﹁A(这里可以用逆否命题的概念证明)等价否定等值式:A↔B⇔﹁A↔﹁B(或写成﹁B↔﹁A,这里可以用逆否命题的概念证明)归谬(miu)论:(A→B)∧(A→﹁B)⇔﹁A(此处可以通过蕴涵等值式,交换律以及结合律进行结合证明)上述等值式模式可以通过真值表证明等值式的验证1.等值演算法(即通过等值式模式对原式进行变形)举例:(p∨q)→r⇔(p→r)∧(q→r)证明时可以从左边开始演算也可以从右边开始演算,无硬性要求,这里我们从右边开始演算。

(p→r)∧(q→r)⇔(﹁p∨r)∧(﹁q∨r) //蕴涵等值式⇔(﹁p∧﹁q)∨r //分配律⇔﹁(p∨q)∨r //德摩根律⇔(p∨q)→r //蕴涵等值式2.真值表法(我在第一章的最后有叙述,这里不再重述)3.观察法(也可称为带入法,此处适合用以证明两式不等值的情况)关于等值演算法的补充:等值演算法可以用以证明公式的类型。

1.当最后结果为1时为重言式(永真式)2.当最后结果为0时为矛盾式(永假式)3.当最后结果只能化成某个命题变项或公式时为可满足式析取范式与合取范式简单析取式:p,﹁p,p∨q,﹁p∨q,p∨﹁q,,﹁p∨﹁q,﹁p∨﹁q∨r等(这里可以发现的是里面都只含有析取联结词,简单析取式结构就是由析取联结词和命题变项组成的一个公式)简单合取式:p,﹁p,p∧q,﹁p∧q,p∧﹁q,,﹁p∧﹁q,﹁p∧﹁q∧r等(这里可以发现的是里面都只含有合取联结词,简单合取式结构就是由合取联结词和命题变项组成的一个公式)课本中的定理:命题变项及其否定统称为文字。

第2章命题逻辑等值演算离散数学介绍

第2章命题逻辑等值演算离散数学介绍

解答 方法一、真值表法。
方法二、观察法。易知,010是(p→q)→r的成假赋值,而010是 p→(q→r)的成真赋值,所以原不等值式成立。
方法三、通过等值演算化成容易观察真值的情况,再进行判断。
A=(p→q)→r (┐p∨q)→r
(蕴涵等值式)
┐(┐p∨q)∨r
(蕴涵等值式)
(p∧┐q)∨r
(德摩根律)
(┐p∨q)∨q)∧p)∨q
(蕴涵等值式)
(┐(┐p∨q)∨┐p)∨q
(德摩根律)
((p∧┐q)∨┐p)∨q
(德摩根律)
((p∨┐p)∧(┐q∨┐p))∨q (分配律)
(1∧(┐q∨┐p))∨q
(排中律)
(┐q∨q)∨┐p
(同一律)
1∨┐p
(排中律)
1
B=p→(q→r) ┐p∨(┐q∨r)
(蕴涵等值式)
┐p∨┐q∨r
(结合律)
000,010是A的成假赋值,而它们是B的成真赋值。
例题2.5 用等值演算判断下列公式的类型: (1)(p→q)∧p→q (2)(p→(p∨q))∧r (3)p∧(((p∨q)∧┐p)→q)
(1) (p→q)∧p→q
离 散 数 学介绍
本章的主要内容
– 等值式与基本的等值式 – 等值演算与置换规则 – 析取范式与合取范式、主析取范式与主合取范式 – 联结词完备集(不讲) – 可满足性问题与消解法(不讲)
本章与后续各章的关系
– 是第一章的抽象与延伸 – 是后续各章的现行准备
两公式什么时候代表了同一个命题呢? 抽象地看,它们的真假取值完全相同时即
一个逻辑等值式,如果只含有┐、∨、∧、0、1
那么同时 把∨和∧互换 把0和1互换

离散数学 第2章 命题逻辑

离散数学 第2章  命题逻辑

6
程序解法:
#include "stdio.h" #include "conio.h" main() { int p,q,r,A1,A2,A3,B1,B2,B3,C1,C2,C3,E; for(p=0;p<=1;p++) for (q=0;q<=1;q++) for(r=0;r<=1;r++) { A1=!p&&q;A2=(!p&&!q)||(p&&q);A3=p&&!q; B1=p&&!q;B2=(p&&q)||(!p&&!q);B3=!p&&q; C1=!q&&r;C2=(q&&!r)||(!q&&r);C3=q&&r; E=(A1&&B2&&C3)||(A1&&B3&&C2)||(A2&&B1&&C3)||(A2&&B3&&C1)||(A3&&B1&&C2)||(A3 &&B2&&C1); if (E==1) printf("p=%d\tq=%d\tr=%d\n",p,q,r); } getch(); }
复合命题: E=(A1 ∧B2 ∧C3) ∨ (A1 ∧B3 ∧C2) ∨ (A2 ∧B1 ∧C3) ∨ (A2 ∧B3∧C1) ∨ (A3 ∧B1 ∧C2) ∨ (A3 ∧B2 ∧C1)
A1 ∧B2 ∧C3 = (p ∧q ) ∧ ((p ∧ q) ∨(p ∧ q) ) ∧(q ∧ r) 0 A1 ∧B3 ∧C2 = (p ∧q ) ∧ ( p ∧ q) ∧( (q ∧ r) ∨(q ∧ r ) ) p ∧q ∧ r A2 ∧B1 ∧C3 =A2 ∧B3∧C1 = A3 ∧B2 ∧C1 = 0 A3 ∧B1 ∧C2 p ∧ q ∧ r E (p ∧q ∧ r) ∨ (p ∧ q ∧ r) 所以王教授是上海人。

离散数学第二章命题逻辑等值演算

离散数学第二章命题逻辑等值演算

再如 ┑p ∨ q 既是p →q的析取范式又是它的的合取范式
如果公式的范式不唯一则对于将公式按等值进行分类的利用价值就不高
p q (p → q)∧(q→p) (p∧q)∨(┓p∧┓q)
00
1
1
01
0
0
10
0
0
11
1
1
(0,0)与(1,1)为公式的成真赋值。 (0,1)与(1,0)为公式的成假赋值
命题公式的分类(根据公式在赋值下的真值情况进行分类) 1)若命题公式在它的各种赋值下取值均为真,则称命题公式是重言
式或永真式。 2)若命题公式在它的各种赋值下取值均为假,则称命题公式是矛盾
2
如:┐Q∧(P→Q) → ┐P
4
分析1:若要得出:当设 A为真,B为
假的情况不会出现,
5
那么A →B 为永真式。
6
可证明:设前件为真
7
分析2: 还可以从设 B为假,推出A
为真的情况不会出现(A为假),
9
证明: 设后件为假
8
那么A →B 为永真式。
1 0
((P→Q)∧( Q→R)) →(P→R)
不同真值表的公式 1)当命题变元确定后,通过五个连接词及其命题变元可以构成 无数个不 同表现形式的命题公式。 问题:这些不同形式的命题公式的真值表是否都不相同? 先看变元仅有两个p,q 那么关于这两个变元的公式的赋值仅有4组
(┐p ∨ q)∧(┐q∨┐p∨r)∧┐q
是含三个简单析取式的合取范式.
2、性质:
1)一个析取范式是矛盾式当且仅当它的每个简单合取式都是矛盾式
2)一个合取范式是重言式当且仅当它的每个简单析取式都是重言式
┐p ∧ P ∨ ┐ q∧ q ⇔ 0 ∨ 0 ⇔ 0

离散数学 第2章 命题逻辑等值演算

离散数学 第2章 命题逻辑等值演算

A00
A0A. A1A
ABAB AB(AB)(BA) ABBA ABAB (AB)(AB) A
等价否定等值式
注意:要牢记各个等值式,这是继续学习的基础
以上 16 组等值式包含了 24 个重要等值式。 由于 A,B,C 可以 代表任意的命题公式,因而以上各等值式都是用元语言符号 书写的,称这样的等值式为等值式模式,每个等值式模式都 给出了无穷多个同类型的具体的等值式。 例如,在蕴涵等值式(2.12)中, 取 A=p,B=q 时,得等值式: p→q ┐p∨q 当取 A=p∨q∨r,B=p∧q 时,得等值式: (p∨q∨r)→(p∧q) ┐(p∨q∨r)∨(p∧q) 这些具体的等值式都被称为原来的等值式 模式的代入实例。
mi 与 Mi 的关系由书上定理 2.4 给出,即 mi Mi, Mi mi
2. 主析取范式与主合取范式 定义 2.5 (1)主析取范式——由极小项构成的析取范式 (2) 主合取范式——由极大项构成的合取范式 例如,n=3, 命题变项为 p, q, r 时, (p q r) (p q r) m1m3 ——主析取范式 (p q r) (p q r) M7M1——主合取范式 3. 命题公式 A 的主析取范式与主合取范式 (1) 与 A 等值的主析取范式称为 A 的主析取范式;与 A 等值的主合 取范式称为 A 的主合取范式. (2) 主析取范式的存在惟一定理 定理 2.5 任何命题公式都存在着与之等值的主析取范式和主合取 范式,并且是惟一的
由最后一步可知, (1)为矛盾式.
(2)(pq)(qp) (pq)(qp) (pq)(pq) 1 由最后一步可知, (2)为重言式. 问:最后一步为什么等值于 1? 说明: (2)的演算步骤可长可短,以上演算最省. (蕴涵等值式) (交换律)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

四、利用等值演算可确定公式的类型
判断 (p→q) ∧ p → q 的类型 若能得到 (p→q) ∧ p → q ⇔1 则可得到公式为重言式 若A ⇔0 则可得到公式为矛盾式 因为 (p→q) ∧ p → q ⇔
公式 ┑( p→(p∨q) )∧ r 的类型 公式 p∧(( (p∨q) ∧┑p)→q) 的类型 利用等值演算还可以化简一个命题公式 命题公式的等值演算是数理逻辑中的最基本运算
返回
对于形似于条件命题的构成形式 即 A→ B 而且要说明是重言式 如:┐Q∧(P→Q) → ┐P 可利用条件联结词的性质来给予证明 分析1:若要得出:当设 A为真,B为假的情况不会出现, 那么A →B 为永真式。 可证明:设前件为真
分析2: 还可以从设 B为假,推出A为真的情况不会出现(A为假), 那么A →B 为永真式。 证明: 设后件为假 ((P→Q)∧( Q→R)) →(P→R)
p∨ ┑q ∨ r
┐p ∧ q ∨ ┐ q∧ ┐p∧r ∨ ┐q
取范式 是含三个简单合取式的析
Bi(i=1,2…n)为简单析取式,B=B1 ∧ B2 ∧.. ∧ Bn为合取范式
p∨ ┑q ∨ r
(┐p∨q) ∧ ┐q ∧ p
是含三个简单析取式的合取范式.
(┐p ∨ q)∧(┐q∨┐p∨r)∧┐q
2、性质:
例:证明下列等值式 ┐(P∧Q)→(┐P∨(┐P∨Q)) ⇔ (┐P∨Q) 解: ┐(P∧Q)→(┐P∨(┐P∨Q)) ⇔ (P∧Q)∨(┐P∨(┐P∨Q)) 蕴涵等值 ⇔(P∧Q)∨(┐P∨Q) 等幂律 ⇔(P∧Q)∨┐P∨Q ⇔(P∨┐P)∧(Q∨┐P))∨Q 分配律 ⇔ T ∧ (Q∨┐P)∨Q 同一律 ⇔ Q∨┐P 等幂律 ⇔ ┐P∨Q 交换律 2)证明等值式 (p∨q) →r ⇔ (P → r) ∧ (q →r) (┑(q → p )∧p )∨(p∧q∧r) ⇔ p∧q∧r
3、判断两个公式是否等值的方法

真值表方法:列出两个公式的真值表,看其真值是否相同 (最基础的方法) 验证 公式 p→q 与公式┑p∨q等值 ┐(A ∧B ) ⇔ ┐A ∨┐B 代数式的演算无法采用此种方法

演算法:以经过验算的等值式为基础(乘法公式-等值定律) 利用置换规则(等值代换)及其等值的性质 得到其他的等值式 (与代数式的演算类似) 下面引入经过验算得出的等值定律 为使定律使用的更广泛,定律中使用元语言的表示方法
例:判断公式的类型 (现在只能用真值表方法) ┓(p → q )∧ q p →(p ∨ q ∨r) (┓p →q) →(q → ┓p) ┓ ( ( p ∧ q ) → q)
后一页
p 0 0 1 1 p 0 0 0 0 1 1 1 1
q 0 1 0 1 q 0 0 1 1 0 0 1 1
┓(p→q)∧q (┓p→q)→(q→┓p) ┓((p∧q )→q) 0 1 0 0 1 0 0 1 0 0 0 0 r 0 1 0 1 0 1 0 1 p→(p∨q∨r) 1 1 1 1 1 1 1 1
第二章
命题逻辑等值演算
公式的赋值定义: 将给定公式A中所含命题变元指定具体的一组真值,称这组真值 为给公式 A的赋值(或解释)。 公式A在此组赋值(解释)下就具有确定的真值。 1)公式 A的所有赋值组数与公式所含变元有关 (共有 2n 组) 2)若公式A在此组解释下的真值为真(1,T),则称此组赋值为成 真赋值。 3)若公式A 在此组解释下的真值为假(0,F),则称此组赋值为 成假赋值。 p 0 0 1 1 q 0 1 0 1 (p → q)∧(q→p) 1 0 0 1 (p∧q)∨(┓p∧┓q) 1 0 0 1
P q 0 0 1 1 P
0 0 1 1
(p∧┑ p)∨ (q∧┑ q)
0 0 0 0 ┑(P ∨ q) 1
P∧q
P ∧┑q 0 0 1 0PBiblioteka ┑P ∧ q 0 1 0 0
q
┑(P↔ q) 0 1 1 0 ┑(P∧ q) 1
P∨q
0 1 0 1 q
0 1 0 1
0 0 0 1
0 0 1 1
0 1 0 1
不同真值表的公式 1)当命题变元确定后,通过五个连接词及其命题变元可以 构成无数个不 同表现形式的命题公式。 问题:这些不同形式的命题公式的真值表是否都不相同? 先看变元仅有两个p,q 那么关于这两个变元的公式的赋值仅有4组 任何关于这两个变元的公式的所有真值表只能是一组4位
二进制数
4位二进制数的不同状态共有16=24 关于2个变元的不同真值表的公式仅有16种。以此推断: 2)当命题变元确定后,由于其公式的赋值组数是确定的(共 2n组) 公式在一组赋值下是一个真值(一位二进制) 在2n组赋值下对应为2n位二进制 n个变元的不同真值表的公式仅有(2)(2n)种 例:2个变元的16种不同真值表
p q p ↔ q (p → q)∧(q→p) (p∧q)∨(┓p∧┓q) 0 0 1 1 1 0 1 0 0 0 1 0 0 0 0 1 1 1 1 1 公式的表现形式不同但具有相同的真值表 也可以说:对所含变元的所有赋值下,其公式的真值均相同 我们把这类公式定义为“是逻辑等值的” 返回
第二章 命题逻辑等值演算
⇔ (p ∨ p) ∧ ( p ∨┑q) ⇔ p ∧ ( p ∨┑q) 合取范式 ⇔ ( p ∨(q ∧┑q) )∧ ( p ∨┑q) ⇔ ( p∨q ) ∧ (p ∨┑q) 合取范式 ⇔ p 合取范式 公式等值的析取范式和合取范式是不唯一的 一个公式的合取范式与析取范式可能是同一的 如上例中的 公式 p 既是公式 ┑p→ ┑(p →q)的析取范式又是它的的合取范式
0 1 1 1 (P∨┑ p)∧ (q∨┑ q) 1
P↔ q
┑ q
q →P
┑P
P→q
1
1
1
1
1
0
0 0
0
0 1
0
1 0
0
1 1
1
0 0
1
0 1
1
1 0
1
1 1
例:看几个公式的真值表: p 0 0 1 1 q 0 1 0 1 p→q 1 1 0 1 ┓p ∨ q 1 1 0 1
为了更方便地对命题公式进行讨论 (确定其真值、公式的分类及其推 理),象代数式那样进行演算(化 简),有必要引入一些化简原则。 代数式的化简原则是等值(不论变 量的取值如何,代数式的值是相等 的),对于命题公式来说化简的原 则是逻辑等值。
三、置换规则: 设 Ф(A)是含公式A的命题公式,Ф(B)是用公式B置换了 Ф(A)中所有出现的A所得到的命题公式,则 若A ⇔ B有 Ф(A)⇔ Ф(B) 注:置换规则类似于代数中的变量替换 如:公式 (p→q) → r 因为 p→q 与 ┑p∨q等值 故可用┑p∨q 置换p→q所得到的公式与原式是等值的 即: (p→q) → r ⇔ (┑p∨q)→ r ┑(┑p∨q) ∨ r 与(┑p∨q)→ r 等值 故有(┑p∨q)→ r ⇔ ┑(┑p∨q) ∨ r ⇔ ( p∧ ┑ q) ∨ r
二.析取范式和合取范式 1、定义 (1)由有限个简单合取式构成的析取式称为析取范式(代数式) p ∨ ┐q ∨ ┐r ┐q ∧p ∨ ┐p∨q p (2)由有限个简单析取式构成的合取式称为合取范式. (┐p∨q) ∧ ┐q ∧p ┐p ∧ ┐q∧ r ┐q (3)析取范式与合取范式统称为范式.
Ai(i=1,2…n)为简单合取式,A=A1 ∨A2 ∨..An为析取范式
2.2 析取范式与合取范式 (公式的标准型式)
一.简单析取式和简单合取式 1)“文字”定义 命题变项及其否定统称作文字. 2)仅由有限个文字构成的析取式称作简单析取式. ┐p∨q 、 p ∨ ┐q ∨ ┐r ┐q 3)仅由有限个文字构成的合取式称作简单合取式.(项) ┐q ∧p ┐p ∧┐q∧ r p 4) 简单析取式和简单合取式的性质: 一个简单析取式是重言式当且仅当它同时含某个命题变项 及它的否定式. 一个简单合取式是矛盾式当且仅当它同时含某个命题变项 及它的否定式.
((p ∨ q) → r) → p ( r) ⇔ (┐(p ∨ q) ∨ r) → p ⇔ ┐(┐(p ∨ q) ∨ r)) ∨ p ⇔(p ∨ q) ∧ ┐r)∨ p ⇔ (p ∧ ┐r )∨ ( q ∧ ┐r)∨ p ⇔ p ∨(p ∧ ┐r )∨ ( q ∧ ┐r) ⇔ p ∨ (q ∧ ┐r)
1)一个析取范式是矛盾式当且仅当它的每个简单合取式都是矛盾式 2)一个合取范式是重言式当且仅当它的每个简单析取式都是重言式 ┐p ∧ P ∨ ┐ q∧ q ⇔ 0 ∨ 0 ⇔ 0 (┐p ∨ p)∧(┐q∨q) ⇔ 1 ∧1 ⇔1
3、范式存在定理 任一命题公式都存在着与之等值的析取范式与合取范式. 利用等值定律可将任何公式化成与之等值的析取范式和合取范式 确定析取范式和合取范式 (┐p→q)∧(p → r) (p→q) ∨(p ∧ r) 总可以通过以下方法步骤: 1.消去联结词 ↔ → (若存在). 2.否定号的消去(利用双重否定律)或内移(利用德摩根律). 3.利用分配律:利用∧对∨的分配律求析取范式, ∨对∧的分配律求合取范式 是否唯一?
二、等值定律 1.双重否定律 A ⇔ ┐┐A 2. 幂等律 A ∨A ⇔ A A ∧A ⇔ A 3. 结合律 (A ∨B )∨C ⇔ A ∨(B ∨C) (A ∧B )∧C ⇔ A ∧(B ∧C) 4. 交换律 A ∨B ⇔ B ∨A A ∧B ⇔ B ∧A 5. 分配律 A ∨(B ∧R) ⇔(A ∨B )∧(A ∨R) A ∧(B ∨R) ⇔(A ∨B )∨(A ∧R) 6. 吸收律 A ∨(A ∧B ) ⇔ A A ∧(A ∨B ) ⇔ A 7. 德〃摩根律 ┐(A ∨B ) ⇔ ┐A ∧┐B ┐(A ∧B ) ⇔ ┐A ∨┐B 8. 同一律 A ⇔ A ∨F A ⇔ A ∧T 9. 零律 A ∨T ⇔ T A ∧F ⇔ F 10. 排中律 T ⇔ A ∨┐A 11.矛盾律 F ⇔ A ∧┐A 12.蕴涵等值式 A → B ⇔ ┑A ∨ B 13.等价等值式 A ↔ B ⇔ (A →B)∧( B →A) A ↔ B ⇔(┐A ∨B)∧( ┐B ∨A) A ↔ B ⇔ (A ∧B)∨( ┐A ∧┐B) 同真同假 14.假言易位(逆否命题) A → B ⇔ ┑B → ┑A 15.等价否定等值式 A ↔ B ⇔ ┑A ↔ ┑B 16.归谬论 ( A → B) ∧(A → ┑B ) ⇔ ┑A
相关文档
最新文档