人教版高中数学《数列》全部教案
高中数学教案详细数列教案设计
高中数学教案详细数列教案设计
教学目标:
1. 掌握数列的基本概念和常用性质。
2. 能够根据题目要求找出数列的规律并求解问题。
3. 提高学生数学运算能力和逻辑思维能力。
教学重点:
1. 数列的定义和常用性质。
2. 数列的求和公式和通项公式。
教学难点:
1. 通过数列的一般项来求和。
2. 利用数列的概念解决实际问题。
教学过程:
一、导入新课(5分钟)
教师引导学生回顾之前学过的等差数列和等比数列的性质,通过简单的例题引入本节课的教学内容。
二、讲解数列的基本概念和常用性质(15分钟)
1. 定义:数列是按照一定的顺序排列的一组数字的集合。
2. 常用性质:等差数列和等比数列的性质,以及其他常见数列的性质。
三、讲解数列的通项公式和求和公式(15分钟)
1. 通项公式:数列的一般项的公式。
2. 求和公式:数列的前n项和的公式。
四、练习与巩固(15分钟)
教师给学生出一些练习题,让学生独立解答,并检查学生的答案。
学生也可以互相讨论,共同解决问题。
五、拓展与应用(10分钟)
教师给学生出一些拓展题目,让学生灵活运用数列的概念解决实际问题。
六、课堂总结(5分钟)
教师对本节课的重点内容进行总结,并提醒学生需要重点复习的内容。
教学反思:
本节课主要是讲解数列的基本概念和常用性质,以及数列的通项公式和求和公式。
在教学过程中,要注重引导学生理解数列的概念和规律,培养学生的逻辑思维能力和解决问题的能力。
同时,要注意巩固学生基础知识,并引导学生通过实际问题运用数列的知识。
数列教案(公开课)
数列教案(公开课)一、教学内容本节课的教学内容选自人教版高中数学必修5第三章“数列”中的3.1“数列的概念”和3.2“数列的递推公式”。
具体内容包括:1. 数列的定义:数列是一种按照一定顺序排列的数的形式,每一个数称为项,数列中的任意一项都可以用它的项数来表示。
2. 数列的通项公式:数列的通项公式是用来表示数列中第n项与序号n之间关系的公式。
3. 数列的递推公式:数列的递推公式是用来表示数列中第n项与前一项之间关系的公式。
二、教学目标1. 理解数列的概念,掌握数列的表示方法。
2. 学会求解数列的通项公式和递推公式。
3. 能够运用数列的知识解决实际问题。
三、教学难点与重点1. 教学难点:数列的通项公式的求解和数列的递推公式的应用。
2. 教学重点:数列的概念、数列的表示方法、数列的通项公式和递推公式的求解。
四、教具与学具准备1. 教具:黑板、粉笔、多媒体教学设备。
2. 学具:教材、练习册、笔记本、文具。
五、教学过程1. 实践情景引入:通过生活中的排队问题,引导学生思考数列的概念。
2. 数列的定义:讲解数列的定义,引导学生理解数列的特点。
3. 数列的表示方法:讲解数列的表示方法,如项数、项的表示等。
4. 数列的通项公式:讲解数列的通项公式,引导学生掌握求解通项公式的方法。
5. 数列的递推公式:讲解数列的递推公式,引导学生学会求解递推公式。
6. 例题讲解:讲解数列的通项公式和递推公式的应用,引导学生学会解决问题。
7. 随堂练习:布置练习题,让学生巩固所学知识。
8. 作业布置:布置求解数列通项公式和递推公式的练习题。
六、板书设计1. 数列的概念定义:按照一定顺序排列的数的形式表示方法:项数、项的表示2. 数列的通项公式求解方法:观察、归纳、推理3. 数列的递推公式求解方法:观察、归纳、推理七、作业设计1. 求解数列的通项公式:已知数列的前三项为2, 5, 8,求数列的通项公式。
答案:an=3n12. 求解数列的递推公式:已知数列的前两项为1, 2,且数列满足递推关系an+1=2an1,求数列的递推公式。
人教版高中数学数列教案2023
人教版高中数学数列教案2023人教版高中数学数列教案(2023)教案一:等差数列1. 教学目标:通过本节课的学习,学生应能够:- 掌握等差数列的概念和基本性质;- 理解等差数列的通项公式以及求和公式;- 能够运用等差数列的性质解决相关问题。
2. 教学重点:等差数列的概念和基本性质。
3. 教学难点:等差数列的通项公式和求和公式。
4. 教学准备:- 讲稿、课件等教学辅助工具;- 相关的教学案例和练习题。
5. 教学过程:5.1 引入(10分钟)- 通过举例子的方式引入等差数列的概念,解释等差数列的特点:公差相等。
- 引导学生思考等差数列的应用场景。
5.2 讲解(30分钟)- 对等差数列的概念进行正式的定义和解释。
- 介绍等差数列的基本性质,包括前n项和、通项公式等。
- 提供不同难度的例题进行讲解,引导学生理解等差数列的运用方法。
5.3 练习(20分钟)- 分发练习题,让学生在课堂上进行练习。
- 注重引导学生独立思考和解决问题的能力。
5.4 总结(10分钟)- 讲解等差数列的求和公式和通项公式的推导过程。
- 总结本节课的重点和难点,强化学生对等差数列的理解。
教案二:等比数列1. 教学目标:通过本节课的学习,学生应能够:- 掌握等比数列的概念和基本性质;- 理解等比数列的通项公式以及求和公式;- 能够运用等比数列的性质解决相关问题。
2. 教学重点:等比数列的概念和基本性质。
3. 教学难点:等比数列的通项公式和求和公式。
4. 教学准备:- 讲稿、课件等教学辅助工具;- 相关的教学案例和练习题。
5. 教学过程:5.1 引入(10分钟)- 通过举例子的方式引入等比数列的概念,解释等比数列的特点:公比相等。
- 引导学生思考等比数列的应用场景。
5.2 讲解(30分钟)- 对等比数列的概念进行正式的定义和解释。
- 介绍等比数列的基本性质,包括前n项和、通项公式等。
- 提供不同难度的例题进行讲解,引导学生理解等比数列的运用方法。
高中数学数列优秀教案
高中数学数列优秀教案一、教学目标1. 知识与技能:掌握数列的概念及相关性质,能够求解数列的通项公式和前n项和。
2. 过程与方法:培养学生分析问题和解决问题的能力,培养学生的逻辑思维能力和抽象思维能力。
3. 情感态度价值观:培养学生对数列的兴趣,增强学生的数学学习动力,激发学生对数学的热爱。
二、教学重难点1. 重点:数列的概念、等差数列和等比数列的性质、求解数列的通项公式和前n项和。
2. 难点:分析问题并找出解决问题的方法,形成自己的解题思路。
三、教学过程1. 导入(激活学生对数列的认知,引发学生的学习兴趣)教师通过提出一个简单的问题让学生思考:1, 3, 5, 7, …… 这组数字有什么规律?这组数字又是什么?引导学生进入数列的概念。
2. 学习(理解数列的概念及性质)教师讲解数列的概念和等差数列、等比数列的性质,引导学生理解数列通项公式和前n项和的概念。
3. 练习(掌握数列的求解方法)教师让学生进行一些练习,巩固数列的求解方法,并引导学生分析问题,找出解决问题的方法。
4. 深化(拓展数列的应用)教师通过举一些实际问题引导学生拓展数列的应用,如数列在日常生活中的运用等。
5. 归纳总结(总结数列的相关知识点)教师对本节课的内容进行总结,强调数列的重要性及应用。
四、作业布置1. 完成相关练习题,巩固数列的相关知识点。
2. 思考数列在日常生活中的应用,并写出一些例子。
五、教学反思本节课通过引导学生分析问题、解决问题,培养学生的逻辑思维能力和抽象思维能力,激发学生对数学的兴趣,取得了良好的教学效果。
在后续的教学中,需要加强数列的应用,让学生更加深入地理解数列,并应用于实际生活中。
高中数学人教版《数列》教案2023版
高中数学人教版《数列》教案2023版高中数学人教版《数列》教案【教案概述】本教案是针对高中数学人教版《数列》这一教材内容所编写的教学计划。
通过系统的教学安排和课堂教学措施,旨在帮助学生全面理解数列的概念、特性和应用,提高他们的数学思维能力和解题能力。
【教学目标】1. 了解数列的基本概念和表示方法;2. 掌握等差数列与等比数列的定义和性质;3. 能够利用数列的特性解决数列相关问题;4. 培养学生的数学思维能力和解题能力。
【教学重点】1. 理解数列的概念和表示方法;2. 掌握等差数列与等比数列的性质;3. 运用数列的特性解决相关问题。
【教学难点】1. 累计求和与通项公式的应用;2. 实际问题转化为数列问题的解决思路。
【教学过程】一、引入数列是数学中重要的概念,它在许多实际问题中有着广泛的应用。
请同学们思考一下,在日常生活中你们遇到过哪些与数列相关的事物或现象?二、概念讲解1. 数列的定义:什么是数列?数列是按照一定顺序排列的一组数,这组数按照一定的规律依次排列。
2. 数列的表示方法:我们可以通过写出数列的前几项,或者用通项公式来表示一个数列。
三、等差数列1. 等差数列的定义:等差数列是指一个数列中,从第二项开始,每一项与它的前一项的差等于同一个常数,这个常数称为公差。
2. 等差数列的通项公式:An = A1 + (n-1)d,其中An表示第n项,A1表示首项,d表示公差。
3. 等差数列的性质:等差数列的前n项和Sn = n(A1+An)/2。
四、等比数列1. 等比数列的定义:等比数列是指一个数列中,从第二项开始,每一项与它的前一项的比等于同一个常数,这个常数称为公比。
2. 等比数列的通项公式:An = A1 * r^(n-1),其中An表示第n项,A1表示首项,r表示公比。
3. 等比数列的性质:等比数列的前n项和Sn = A1 * (1-r^n) / (1-r)。
五、数列应用1. 求和问题:利用等差数列或等比数列的求和公式,可以方便地计算数列的前n项和。
高中必修二数学教材数列教案
高中必修二数学教材数列教案
教学内容:数列
教学目标:1. 了解数列的概念及特点。
2. 掌握常见数列的表示方法及性质。
3. 能够解决与数列相关的问题。
教学重点:数列的概念、常见数列的特点、递推公式的求解。
教学难点:数列的性质应用题的解题技巧。
教学准备:黑板、彩色粉笔、教学PPT、习题集。
教学过程:
1. 概念引入:通过举例引入数列的概念,让学生了解什么是数列,并询问学生对数列的认识。
2. 数列的表示方法:介绍等差数列、等比数列等常见数列的表示方法及特点,并通过实例引导学生理解。
3. 数列的性质:讲解数列的性质,如首项、公差、通项公式等,让学生掌握数列的基本概念。
4. 数列的递推公式:通过实例引导学生如何求解数列的递推公式,让学生熟练掌握求解方法。
5. 综合练习:布置一些数列的练习题目,让学生独立解题,并及时纠正学生的错误。
6. 总结提问:对本节课所学的知识进行总结,并提出一些问题让学生思考,加深对数列的理解。
7. 课后作业:布置一些相关的练习题目,帮助学生巩固复习所学知识。
教学反思:在教学过程中要注重引导学生思考和探究,通过实例让学生理解数列的概念及性质,让学生在解题中得到实际应用。
同时要及时纠正学生的错误,并鼓励他们勇于探索和学习。
人教版高中数学必修5《数列》教案
m n a a d n a a d d n a a d m n a a d n a a d a a mnn n m n n n n --=--=--=-+=-+==-+1;)1()()1(1111变式:推广:通项公式:递推关系:必修5 数列二、等差数列 知识要点1.数列的通项n a 与前n 项和n S 的关系∑==++++=ni i n n a a a a a S 1321 ⎩⎨⎧≥-==-2111n S S n S a n n n 2.递推关系与通项公式()1(),(),,n n a dn a d a f n kn b k b =+-==+特征:即:为常数(),,n a kn b k b =+为常数⇔数列{}n a 成等差数列.3.等差中项:若c b a ,,成等差数列,则b 叫做c a 与的等差中项,且2ca b +=;c b a ,,是等差数列⇔c a b +=2. 4.前n 项和公式:2)(1n a a S n n +=; 2)1(1dn n na S n -+= 221(),()22n n d dS n a n S f n An Bn =+-==+特征:即2,(,)n S An Bn A B =+为常数⇔数列{}n a 成等差数列.5.等差数列{}n a 的基本性质),,,(*∈N q p n m 其中⑴q p n m a a a a q p n m +=++=+,则若,反之不成立; ⑵d m n a a m n )(-=-; ⑶m n m n n a a a +-+=2;⑷n n n n n S S S S S 232,,--仍成等差数列. 6.判断或证明一个数列是等差数列的方法: ①定义法:()()1n n a a d n N*+-=∈常数 ⇒{}na 是等差数列②中项法:()122n n n a a a n N *++=+∈⇒{}na 是等差数列③通项公式法:(),n a kn bk b =+为常数⇒{}na 是等差数列④前n 项和公式法:()2,n S An BnA B =+为常数⇒{}na 是等差数列【应用一】1.若a ≠ b ,数列a ,x 1,x 2,b 和数列a ,y 1,y 2,y 3,b 都是等差数列,则 =--1212y y x x ( )A .32B .43C .1D .342. 等差数列{a n }中,若a 3+a 4+a 5+a 6+a 7=450 ,则前9项和S 9= ( ) A.1620 B.810 C.900 D.6753. 在-1和8之间插入两个数a ,b ,使这四个数成等差数列,则 ( )A. a =2,b =5B. a =-2,b =5C. a =2,b =-5D. a =-2,b =-54. 首项为24-的等差数列,从第10项开始为正数,则公差d 的取值范围是 ( ) A.d >83 B.d >3 C.83≤d <3 D.83<d ≤3 5.等差数列}{n a 共有n 2项,其中奇数项的和为90,偶数项的和为72,且3312-=-a a n ,则该数列的公差为 ( )A .3B .-3C .-2D .-16. 等差数列{a n }中,a 1=-5,它的前11项的平均值是5,若从中抽取1项,余下的10项的平均值是4,则抽取的是 ( ) A.a 11B.a 10C.a 9D.a 87. 设函数f (x )满足f (n +1)=2)(2nn f +(n ∈N *)且f (1)=2,则f (20)为 ( ) A. 95B. 97C. 105D. 1928.已知无穷等差数列{a n },前n 项和S n 中,S 6 <S 7 ,且S 7 >S 8 ,则 ( ) A .在数列{a n }中a 7 最大B .在数列{a n }中,a 3 或a 4 最大C .前三项之和S 3 必与前11项之和S 11 相等D .当n ≥8时,a n <0 9. 集合{}*6,,且60M m m n n N m ==∈<中所有元素的和等于_________.10、在等差数列{}n a 中,37104118,14.a a a a a +-=-=- 记123n n S a a a a =++++,则13S =_____.11、已知等差数列{}n a 中,79416,1a a a +==,则16a 的值是 . 12. (1)在等差数列{}n a 中,71,83d a =-=,求n a 和n S ; (2)等差数列{}n a 中,4a =14,前10项和18510=S .求n a ;13. 一个首项为正数的等差数列{a n },如果它的前三项之和与前11项之和相等,那么该数列的前多少项和最大?14. 数列{a n }中,18a =,42a =,且满足2120n n n a a a ++-+=, (1)求数列的通项公式;(2)设12||||||n n S a a a =+++,求n S .15. 已知数列{a n }的前n 项和为S n ,且满足a n +2S n ·S n -1=0(n ≥2),a 1=21. (1)求证:{nS 1}是等差数列;(2)求a n 的表达式; (3)若b n =2(1-n )a n (n ≥2),求证:b 22+b 32+…+b n 2<1.【应用二】1.等差数列{}n a 中,()46810129111120,3a a a a a a a ++++=-则的值为A .14B .15C .16D .172.等差数列{}n a 中,12910S S a =>,,则前 项的和最大.3.已知等差数列{}n a 的前10项和为100,前100项和为10,则前110项和为 . 4.设等差数列{}n a 的前n 项和为n S ,已知001213123<>=S S a ,,.①求出公差d 的范围;②指出1221S S S ,,, 中哪一个值最大,并说明理由.5、已知等差数列{}n a 中,79412161a a a a +==,,则等于( )A .15B .30C .31D .646、设n S 为等差数列{}n a 的前n 项和,971043014S S S S ,则,=-== .7、已知等差数列{}n a 的前n 项和为n S ,若=+++=118521221a a a a S ,则 .8.甲、乙两物体分别从相距70m 的两处同时相向运动,甲第一分钟走2m ,以后每分钟比前一分钟多走1m ,乙每分钟走5m ,①甲、乙开始运动后几分钟相遇? ②如果甲、乙到对方起点后立即折返,甲继续每分钟比前一分钟多走1m ,乙继续每分钟走5m ,那么,开始运动几分钟后第二次相遇?9.已知数列{}n a 中,,31=a 前n 项和1)1)(1(21-++=n n a n S . ①求证:数列{}n a 是等差数列; ②求数列{}n a 的通项公式;③设数列⎭⎬⎫⎩⎨⎧+11n n a a 的前n 项和为n T ,是否存在实数M ,使得M T n ≤对一切正整数n 都成立?若存在,求M 的最小值,若不存在,试说明理由.三、等比数列 知识要点1. 定义:如果一个数列从第二项起,每一项与它的前一项的比等于同一个常数,那么这个数列叫做等比数列,这个常数叫做等比数列的公比,记为()0q q ≠,.2. 递推关系与通项公式mn m n n n n n q a a q a a qa a --+⋅=⋅==推广:通项公式:递推关系:111 3. 等比中项:若三个数c b a ,,成等比数列,则称b 为a 与c的等比中项,且b =2b ac =注:是c b a ,,成等比数列的必要不充分条件.4. 前n 项和公式)1(11)1()1(111≠⎪⎩⎪⎨⎧--=--==q q qa a q q a q na S n n n5. 等比数列的基本性质,),,,(*∈N q p n m 其中①q p n m a a a a q p n m ⋅=⋅+=+,则若,反之不成立! ②)(2*+--∈⋅==N n a a a a a qm n m n n mn mn , ③{}n a 为等比数列,则下标成等差数列的对应项成等比数列. ④若项数为()*2n n N ∈,则S q S =偶奇.⑤nn m n m S S q S +=+⋅.⑥ ,,,时,n n n n n S S S S S q 2321---≠仍成等比数列. 6. 等差数列与等比数列的转化 ①{}n a 是等差数列⇔{})10(≠>c c cna ,是等比数列;②{}n a 是正项等比数列⇔{})10(log ≠>c c a n c ,是等差数列;③{}n a 既是等差数列又是等比数列⇔{}n a 是各项不为零的常数列.7. 等比数列的判定法 ①定义法:()1n na q a +=⇒常数{}n a 为等比数列; ②中项法:()2120n n n n a a a a ++=⋅≠⇒{}n a 为等比数列;③通项公式法:(),nn a k q k q =⋅⇒为常数{}na 为等比数列;④前n 项和法:()()1,nn S k q k q =-⇒为常数{}na 为等比数列.【性质运用】1.4710310()22222n f n +=+++++设 ()()()n N f n *∈,则等于1342222(81)(81)(81)(81)7777n n n n A B C D +++----....2.已知数列{}n a 是等比数列,且===m m m S S S 323010,则, . 3.在等比数列{}n a 中,143613233+>==+n n a a a a a a ,,. ①求n a ,②若n n n T a a a T 求,lg lg lg 21+++= .4.{a n }是等比数列,下面四个命题中真命题的个数为 ( ) ①{a n 2}也是等比数列;②{ca n }(c ≠0)也是等比数列;③{na 1}也是等比数列;④{ln a n }也是等比数列. A .4B .3C .2D .15.等比数列{a n }中,已知a 9 =-2,则此数列前17项之积为 ( )A .216B .-216C .217D .-217 6.在等比数列{a n }中,如果a 6=6,a 9=9,那么a 3等于 ( )A .4B .23 C .916 D .27.若两数的等差中项为6,等比中项为5,则以这两数为两根的一元二次方程为 ( )A .x 2-6x +25=0B .x 2+12x +25=0C .x 2+6x -25=0D .x 2-12x +25=08.某工厂去年总产a ,计划今后5年内每一年比上一年增长10%,这5年的最后一年该厂的总产值是 ( )A .1.1 4 aB .1.1 5 aC .1.1 6 aD .(1+1.1 5)a9.已知各项为正的等比数列的前5项之和为3,前15项之和为39,则该数列的前10项之和为( )A .32B .313C .12D .1510.某厂2001年12月份产值计划为当年1月份产值的n 倍,则该厂2001年度产值的月平均增长率为 ( )A .11nB .11nC .112-nD .111-n11.等比数列的前n 项和S n =k ·3n +1,则k 的值为 ( )A .全体实数B .-1C .1D .312.在等比数列{a n }中,已知a 1=23,a 4=12,则q =_____ ____,a n =____ ____. 13.在等比数列{a n }中,a n >0,且a n +2=a n +a n +1,则该数列的公比q = ___. 14.已知数列满足a 1=1,a n +1=2a n +1 (n ∈N *).(1)求证数列{a n +1}是等比数列;(2)求{a n }的通项公式.15.在等比数列{a n }中,已知对n ∈N *,a 1+a 2+…+a n =2n -1,求a 12+a 22+…+a n 2.16.在等比数列{a n}中,已知S n=48,S2n=60,求S3n.17.求和:S n=1+3x+5x2+7x3+…+(2n-1)x n-1 (x≠0).18.在等比数列{a n}中,a1+a n=66,a2·a n-1=128,且前n项和S n=126,求n及公比q.P山有木兮木有枝,心悦君兮君不知。
高中数学第二章《数列》全章教案新人教版必修
2.1 数列的概念与简单表示法(第 1 课时)●教学目标知识与技能:理解数列及其有关概念,了解数列和函数之间的关系;了解数列的通项公式,并会用通项公式写出数列的任意一项;对于比较简单的数列,会根据其前几项写出它的个通项公式。
过程与方法:通过对一列数的观察、归纳,写出符合条件的一个通项公式,培养学生的观察能力和抽象概括能力.情感态度与价值观:通过本节课的学习,体会数学来源于生活,提高数学学习的兴趣。
●教学重点数列及其有关概念,通项公式及其应用●教学难点根据一些数列的前几项抽象、归纳数列的通项公式●教学过程Ⅰ . 课题导入三角形数: 1, 3, 6, 10,⋯正方形数: 1, 4, 9, 16, 25,⋯Ⅱ.讲授新课⒈数列的定义:按一定次序排列的一列数叫做数列.注意:⑴数列的数是按一定次序排列的,因此,如果组成两个数列的数相同而排列次序不同,那么它们就是不同的数列;⑵定义中并没有规定数列中的数必须不同,因此,同一个数在数列中可以重复出现.⒉数列的项:数列中的每一个数都叫做这个数列的项.各项依次叫做这个数列的第 1 项(或首项),第 2 项,⋯,第n 项,⋯ .例如,上述例子均是数列,其中①中,“ 4”是这个数列的第 1 项(或首项),“ 9”是这个数列中的第6项 .⒊数列的一般形式: a1 , a2 , a3 , , a n ,,或简记为 a n,其中 a n是数列的第n 项结合上述例子,帮助学生理解数列及项的定义. ②中,这是一个数列,它的首项是“1”,“1”是这个数列3的第“ 3”项,等等下面我们再来看这些数列的每一项与这一项的序号是否有一定的对应关系?这一关系可否用一个公式表示?(引导学生进一步理解数列与项的定义,从而发现数列的通项公式)对于上面的数列②,第一项与这一项的序号有这样的对应关系:项111112345↓↓↓↓↓序号 1 2 3 45这个数的第一项与这一项的序号可用一个公式:a n 1来表示其对应关系n即:只要依次用 1, 2, 3⋯代替公式中的 n,就可以求出该数列相应的各项结合上述其他例子,练习找其对应关系⒋数列的通项公式:如果数列a n的第n项 a n与n之间的关系可以用一个公式来表示,那么这个公式就叫做这个数列的通项公式 .注意 :⑴并不是所有数列都能写出其通项公式,如上述数列④; ⑵一个数列的通项公式有时是不唯一的,如数列:1, 0 , 1, 0, 1, 0,⋯它的通项公式可以是a n 1 ( 1)n 1,也可以是 a n| cosn 1| .22⑶数列通项公式的作用:①求数列中任意一项;②检验某数是否是该数列中的一项 .数列的通项公式具有双重身份,它表示了数列的第项,又是这个数列中所有各项的一般表示.通项公式反映了一个数列项与项数的函数关系,给了数列的通项公式,这个数列便确定了,代入项数就可求出数列的每一项. 5. 数列与函数的关系数列可以看成以正整数集N * (或它的有限子集 {1 , 2,3,⋯, n} )为定义域的函数a nf n( ) ,当自变量从小到大依次取值时对应的一列函数值。
数列教学设计精选5篇
数列教学设计精选5篇数列教案篇一关键词高中数学;案例式教学问题教学是数学学科知识内涵和要点的有效载体,是教学目标理念展现的重要途径,是能力素养培养的重要平台。
长期以来,问题教学活动方略的实施,一直以来成为广大高中数学教师进行探究和实践的重要课题。
但在传统问题教学活动中,部分教师片面的将问题教学看作是知识内容、解题方法传授的“工具”,在问题内容的设置和问题解答的传授中,不能精心准备,有的放矢,导致问题教学的效能达不到预期目标。
新实施的高中数学课程标准则指出:“要注重发挥数学问题承载知识内涵的重要载体以及学生能力培养的功能特性”,“设置‘少而精’的数学问题,实现学生知识内涵有效掌握和能力品质的有效提升。
”可见,传统“胡子眉毛一把抓”的“题海式”问题教学模式,已经不能适应新课改的要求。
“少而精”的“典型性”的案例式教学模式,以其在反映教学内涵要义上的精准性,培养学生学习能力上的功能性等特征,成为有效教学的重要组成部分。
近几年来,本人就如何做好案例式教学活动进行了尝试,现就如何选取典型案例,培养学生学习能力方面进行简要阐述。
一、问题案例应凸显“精”字,体现精辟性,使学生在感知问题内涵中领会设计意图案例1 已知A(-2,-3),B(4,1),延长AB至点P,使AP的绝对值等于PB绝对值的三倍,求点P的坐标。
上述问题是教师在教学“平面向量的坐标运算”知识内容,在讲解“向量定比分点的几何运用”考察点时所设置的一道问题案例。
教师在引导学生进行问题分析过程中,使学生了解到该问题是考查学生向量的定比分点坐标公式的应用。
然后,教师再次引导学生进行问题解答方法的探索,通过对问题条件关系的分析,发现该问题可以采用两种不同的解答方法,一种是利用向量定比分点坐标公式求,考虑P为分点,应用定比分点坐标公式求点P的坐标。
第二种是把向量的定比分点坐标公式看做是一个等量关系,通过解方程的思想处理问题。
学生在上述问题解答过程中,对向量定比分点坐标公式的运用有较为准确和深刻的掌握,并对如何运用该知识点内容做到“胸中有数”。
必修五数学高中数列教案
必修五数学高中数列教案【教学目标】1.了解数列的概念和性质;2.掌握数列的基本性质和方法;3.能够应用数列解决实际问题;4.培养学生的逻辑思维能力和解决问题的能力。
【教学重点】1.数列的定义和性质;2.常见数列的概念和特点;3.数列的求和公式及应用;4.数列的递推关系和通项公式。
【教学内容】1.数列的定义和性质2.等差数列、等比数列、斐波那契数列等常见数列的概念和特点3.数列的求和公式及应用4.数列的递推关系和通项公式【教学步骤】一、导入:通过一个生活中的例子引入数列的概念,让学生了解数列的定义和性质。
二、讲解:介绍等差数列、等比数列、斐波那契数列等常见数列的概念和特点,引导学生理解数列的基本性质。
三、练习:让学生通过练习掌握数列的求和公式及应用,培养学生解决数列问题的能力。
四、讨论:通过讨论数列的递推关系和通项公式,引导学生探讨数列的规律及应用。
五、总结:对数列的概念和性质进行总结,巩固学生对数列的理解和掌握。
【课堂作业】1.求下列等差数列的前n项和:1, 3, 5, 7, ...2.求下列等比数列的前n项和:2, 6, 18, 54, ...3.求斐波那契数列的通项公式及前n项和。
【教学反馈】1.检查学生上交的课堂作业;2.答疑解惑,巩固学生对数列的理解;3.鼓励学生思考数列问题的方法和策略。
【拓展延伸】1.让学生自主探究其他类型的数列及其性质;2.通过实际问题引导学生应用数列解决实际问题;3.组织数学活动,培养学生的数学兴趣和创新能力。
【教学反思】1.对本节课的教学效果进行评估;2.总结教学经验,优化教学方法;3.为下一节课的教学做好准备。
【板书设计】数列- 定义和性质- 等差数列、等比数列、斐波那契数列- 求和公式及应用- 递推关系和通项公式【教学参考】1.高中数学必修5 人教版2.《数列》教学教学实践教程3.高中数学学习指南【习题集】。
高中数学数列整章教案
高中数学数列整章教案一、教学目标:1. 知识与技能:掌握等差数列、等比数列的概念、性质和常用公式,能够求解数列的通项公式和前n项和。
2. 过程与方法:培养学生分析问题、解决问题的能力,培养学生良好的思维习惯和解题方法。
3. 情感态度价值观:培养学生对数列的兴趣和好奇心,激发学生的数学学习兴趣。
二、教学重点与难点:重点:掌握等差数列、等比数列的性质和常用公式。
难点:能够灵活运用等差数列、等比数列的性质和公式解决问题。
三、教学内容:1. 等差数列的概念与性质2. 等差数列的通项公式和前n项和公式3. 等比数列的概念与性质4. 等比数列的通项公式和前n项和公式四、教学过程:1. 引入:通过举例引出等差数列和等比数列的概念和性质。
2. 学习与探究:分别介绍等差数列和等比数列的概念、性质和常用公式,让学生通过实例理解数列的特点。
3. 拓展与应用:通过练习加深学生对等差数列和等比数列的理解,培养学生解决实际问题的能力。
4. 总结与反思:总结本节课的内容,强调等差数列和等比数列在数学中的重要性和应用价值。
五、课堂练习:1. 已知等差数列前3项分别为2,5,8,求通项公式及第n项。
2. 某等比数列的前4项分别为1,2,4,8,求通项公式及第n项。
六、教学反馈:通过课堂练习,检查学生对等差数列和等比数列的掌握程度,及时纠正和辅导学生的错误,引导学生加强巩固。
七、作业布置:1. 完成课堂练习题目。
2. 练习册中相关练习题目。
八、教学反思:通过教学过程的反思,总结本节课的教学亮点和不足之处,及时调整教学方法,提高教学质量。
人教版高中数学《数列》全部教案
人教版高中数学《数列》全部教案人教版高中数学《数列》全部教案一、教学目标1、理解数列的概念,掌握数列的通项公式及其求解方法。
2、掌握等差数列和等比数列的特点及其求解方法。
3、能够根据实际问题中的数据特点,建立相应的数列模型并解决实际问题。
二、教学内容1、数列的概念及通项公式2、等差数列的特点及求解方法3、等比数列的特点及求解方法4、数列在实际问题中的应用三、教学方法1、讲授数列的概念及通项公式,通过例题和练习题加深学生对数列的理解。
2、通过实例和练习题,让学生掌握等差数列和等比数列的特点及求解方法。
3、通过案例分析和实际问题,让学生了解如何根据实际问题中的数据特点,建立相应的数列模型并解决实际问题。
四、教学步骤1、导入新课:通过一些简单的练习题,让学生了解数列的概念及通项公式。
2、讲授新课:(1)数列的概念及通项公式(2)等差数列的特点及求解方法(3)等比数列的特点及求解方法(4)数列在实际问题中的应用3、课堂练习:通过一些例题和练习题,让学生进一步掌握数列的概念及通项公式、等差数列和等比数列的特点及求解方法。
4、课堂小结:对本节课的内容进行总结,强调数列在实际问题中的应用。
5、布置作业:让学生进一步巩固本节课所学内容,提高对数列的理解和应用能力。
五、教学重点难点1、数列的概念及通项公式的理解。
2、等差数列和等比数列的求解方法。
3、如何根据实际问题中的数据特点,建立相应的数列模型。
六、教学评价1、通过课堂练习和作业,检查学生对数列的理解和应用能力。
2、通过实际问题的解决,评价学生对数列的应用能力。
3、通过学生之间的交流和讨论,了解学生对数列的理解情况。
七、教学建议1、加强对数列概念的理解,注重数列的实际应用。
2、练习等差数列和等比数列的求解方法,掌握其特点。
3、注重数列在实际问题中的应用,提高学生的数学应用能力。
4、提倡学生之间的合作学习,通过交流和讨论,加深对数列的理解。
八、教学实例例1:已知某品牌汽车的价格为20万元,每年按发票金额的10%递增,求5年后该汽车的价格。
高中数学41数列教案
高中数学41数列教案
教学内容:数列
教学对象:高中生
教学目标:
1. 理解数列的概念,并能够区分等差数列和等比数列;
2. 能够利用递推公式求解数列的任意项;
3. 能够利用数列的性质解决实际问题。
教学重点和难点:
重点:数列的概念和性质,利用递推公式求解数列的任意项。
难点:利用数列的性质解决实际问题。
教学方法:讲解结合练习和实例分析。
教具准备:
1. PowerPoint课件;
2. 数列相关的习题和问题。
教学过程:
一、导入(5分钟)
1. 利用实例引入数列的概念,让学生了解数列的基本特点。
二、讲解数列的概念和性质(15分钟)
1. 介绍数列的定义和表示方法;
2. 讲解等差数列和等比数列的区别和特点;
3. 分析数列的常见性质。
三、练习与讨论(20分钟)
1. 带领学生做一些数列相关的习题,加深对数列的理解;
2. 解决一些实际问题,让学生应用数列的性质和递推公式进行计算。
四、总结与拓展(10分钟)
1. 总结数列的相关知识和应用技巧;
2. 提出拓展问题,激发学生的思考和探究能力。
五、作业布置(5分钟)
布置相关习题和问题,巩固学生对数列的理解和应用能力。
教学反思:
通过此次数列教学,学生对数列的基本概念和性质有了更深入的了解,能够灵活运用递推公式解决数列问题。
希望在今后的教学中,能够进一步激发学生对数学的兴趣,提高他们的学习积极性和自主探究能力。
高中数学数列教案全套
高中数学数列教案全套一、知识点概述数列是按照一定规律排列的一组数字的集合,常见的数列有等差数列和等比数列。
在高中数学中,数列在代数、函数和数学模型等方面都有着重要的应用。
本节课将介绍数列的概念、性质和常见的解题方法。
二、教学目标1. 了解数列的概念和基本性质;2. 掌握等差数列和等比数列的定义、性质和求和公式;3. 能够运用数列的概念和性质解决各种问题。
三、教学重点和难点1. 等差数列和等比数列的性质;2. 数列求和的公式;3. 数列问题的解决方法。
四、教学内容1. 数列的概念和定义;2. 等差数列的性质和求和公式;3. 等比数列的性质和求和公式;4. 数列问题解决方法。
五、教学过程1. 引入:通过举例引导学生认识数列的概念和规律;2. 讲解:分别介绍等差数列和等比数列的定义、性质和求和公式;3. 练习:进行一些练习题让学生熟练掌握数列的操作方法;4. 拓展:讲解数列在函数和数学建模中的应用;5. 总结:总结本节课的重点,强调数列的重要性和应用。
六、课堂练习1. 求等差数列$1, 3, 5, 7, 9$的第$n$项公式;2. 求等比数列$2, 6, 18, 54, 162$的第$n$项公式;3. 求等差数列$1, 3, 5, 7, 9$前$n$项和;4. 求等比数列$2, 6, 18, 54, 162$前$n$项和。
七、作业布置1. 完成课堂练习中的题目;2. 查阅教材,复习数列的相关知识;3. 思考数列在实际问题中的应用场景。
八、教学反馈1. 下节课前学生完成的作业;2. 学生对于数列概念和性质的理解和掌握情况;3. 学生对于数列应用问题的解决能力。
以上就是本节课的教学内容和重点,希望能够帮助学生全面了解数列的概念和性质,掌握数列的相关求解方法。
祝学生成绩进步,学习愉快!。
高中人教版数列教案模板
---一、教案基本信息课程名称:高中数学教材版本:人教版年级/班级:高一/(班级)授课教师:[教师姓名]授课时间:[具体日期]教学目标:1. 知识与技能:理解数列的概念,掌握等差数列和等比数列的定义,能运用公式进行数列求和。
2. 过程与方法:通过实例分析和公式推导,培养学生的逻辑推理能力和数学运算能力。
3. 情感态度与价值观:激发学生学习数学的兴趣,培养学生严谨的数学思维和科学态度。
教学重点:1. 数列的定义及性质。
2. 等差数列和等比数列的通项公式及前n项和公式。
教学难点:1. 等差数列和等比数列前n项和公式的推导。
2. 公式的灵活运用及解决实际问题。
---二、教学过程(一)导入新课1. 复习提问:回顾初中阶段学习的数列概念,如数列的定义、数列的通项公式等。
2. 创设情境:通过实际问题引入数列的概念,例如:计算一列连续自然数的和。
(二)新课讲授1. 数列的概念:- 介绍数列的定义,通过实例讲解数列的表示方法(数表法、图象法等)。
- 讨论数列的性质,如单调性、有界性等。
2. 等差数列:- 介绍等差数列的定义,通过实例讲解等差数列的通项公式。
- 推导等差数列前n项和公式,引导学生运用错位相减法进行推导。
- 讲解等差数列的性质,如通项公式、前n项和公式等。
3. 等比数列:- 介绍等比数列的定义,通过实例讲解等比数列的通项公式。
- 推导等比数列前n项和公式,引导学生运用错位相减法进行推导。
- 讲解等比数列的性质,如通项公式、前n项和公式等。
(三)课堂练习1. 基本概念练习:判断数列是否为等差数列或等比数列。
2. 公式应用练习:运用通项公式和前n项和公式求解数列的项或和。
3. 综合练习:结合实际问题,运用数列知识解决问题。
(四)课堂小结1. 回顾本节课所学内容,强调重点和难点。
2. 总结数列的概念、性质及公式,引导学生进行归纳总结。
---三、教学反思1. 教学过程中,关注学生的学习情况,及时调整教学策略。
关于高中数学数列的教案
关于高中数学数列的教案
一、教学目标:
1. 了解数列的定义和性质;
2. 掌握常见数列的计算方法;
3. 能够应用数列解决实际问题。
二、教学重点:
1. 掌握数列的概念和性质;
2. 了解常见数列的计算方法;
3. 能够灵活运用数列解决实际问题。
三、教学内容:
1. 数列的基本概念和性质;
2. 常见数列的分类及计算方法;
3. 数列在实际问题中的应用。
四、教学过程:
1. 导入:通过一个实际问题引入数列的概念,引发学生的思考和兴趣。
2. 提出问题:让学生探讨数列的定义和性质,引导他们发现规律。
3. 讲解数列的基本概念和性质,并介绍常见数列的计算方法。
4. 练习:让学生进行数列的计算练习,巩固所学知识。
5. 应用:通过一些实际问题,让学生运用数列解决问题,培养他们的应用能力。
6. 总结:总结本节课的重点知识,梳理数列的学习内容。
7. 作业:布置相关练习,巩固学生所学的知识。
五、教学手段:
1. 课堂讲授;
2. 举例说明;
3. 练习探讨;
4. 讨论交流。
六、教学评价:
1. 课堂表现;
2. 练习成绩;
3. 实际应用能力。
七、教学资源:
1. 教材;
2. 幻灯片;
3. 实例分析。
八、教学反思:
1. 教学内容是否符合学生的实际需求;
2. 学生的学习情况,是否需要调整教学计划;
3. 如何进一步提升学生的数列解决问题能力。
以上教案为高中数学数列的教学范本,希望能对您有所帮助。
数列教案优秀5篇
数列教案优秀5篇高三数学数列教案篇一数列§3.1.1数列、数列的通项公式目的:要求学生理解数列的概念及其几何表示,理解什么叫数列的通项公式,给出一些数列能够写出其通项公式,已知通项公式能够求数列的项。
重点:1数列的概念。
按一定次序排列的一列数叫做数列。
数列中的每一个数叫做数列的项,数列的第n项an叫做数列的通项(或一般项)。
由数列定义知:数列中的数是有序的,数列中的数可以重复出现,这与数集中的数的无序性、互异性是不同的。
2、数列的通项公式,如果数列{an}的通项an可以用一个关于n的公式来表示,这个公式就叫做数列的通项公式。
从映射、函数的观点看,数列可以看成是定义域为正整数集N-(或宽的有限子集)的函数。
当自变量顺次从小到大依次取值时对自学成才的一列函数值,而数列的通项公式则是相应的解析式。
由于数列的项是函数值,序号是自变量,所以以序号为横坐标,相应的项为纵坐标画出的图像是一些孤立的点。
难点:根据数列前几项的特点,以现规律后写出数列的通项公式。
给出数列的前若干项求数列的通项公式,一般比较困难,且有的数列不一定有通项公式,如果有通项公式也不一定唯一。
给出数列的前若干项要确定其一个通项公式,解决这个问题的关键是找出已知的每一项与其序号之间的对应关系,然后抽象成一般形式。
过程:一、从实例引入(P110)1. 堆放的钢管4,5,6,7,8,9,102. 正整数的倒数3、4. -1的正整数次幂:-1,1,-1,1,…5、无穷多个数排成一列数:1,1,1,1,…二、提出课题:数列1、数列的定义:按一定次序排列的一列数(数列的有序性)2、名称:项,序号,一般公式,表示法3、通项公式:与之间的函数关系式如数列1:数列2:数列4:4、分类:递增数列、递减数列;常数列;摆动数列;有穷数列、无穷数列。
5、实质:从映射、函数的观点看,数列可以看作是一个定义域为正整数集N-(或它的有限子集{1,2,…,n})的函数,当自变量从小到大依次取值时对应的一列函数值,通项公式即相应的函数解析式。
数列教案 高二数学数列全章教案 人教版 高二数学数列全章教案 人教版
数列教案数列的概念及简单表示(1)教学目标1.通过大量实例,理解数列概念,了解数列和函数之间的关系2.了解数列的通项公式,并会用通项公式写出数列的任意一项3.对于比较简单的数列,会根据其前几项写出它的个通项公式4.提高观察、抽象的能力.教学重点:1.理解数列概念;2.用通项公式写出数列的任意一项.教学难点:根据一些数列的前几项抽象、归纳数列的通项公式.教学方法:发现式教学法教学步骤:一.(引言)数产生于人类社会的生产、生活需要,它是描绘静态下物体的量,因此,在人类社会发展的历程中,离不开对数的研究,在这一背景下产生数列。
数列是刻画离散现象的函数,是一种重要的数学模型。
人们往往通过离散现象认识连续现象,因此就有必要研究数列(设置情景)看下列一组实例:(1)课本32页“三角形数问题”(2)见EXCEL(3)某种放射性物质最初的质量为1,每经过一年剩留这种物资的84%,则这种物资各年开始时的剩留量排成一列数:1,84.0,284.0,384.0,……(4)-1的1次幂,2次幂,,……排成一列数:-1,1,-1,1,……(5)无穷多个1排成一列数:1,1,1,1,1,……提出问题:上述各组数据有何共同特征?二.探求与研究.I.基础知识:1.数列:按一定的次序排列的一列数叫数列。
2.项:数列中的每一个数都叫做这个数列的项。
其中第1项也叫做首项3.项数:数列的各项所在的位置序号叫做项数。
4.数列的表示:(1)一般形式:1a,2a,3a,…na,…其中na是数列的第n项。
(2)简单表示:{}na5.通项公式:若数列{}n a的第n项na与它的项数n之间的关系可以用一个公式表示,则这个公式叫做数列的通项公式。
简记为)(nfan=。
说明:(1)通项公式的本质:反映了数列的项与项数之间的对应关系(函数关系)。
(2)依次用1,2,3,…代替公式中的n,就可以求出这个数列的各项。
6.用函数的观点认识数列:项数 1 2 3 4 (64)项 1 22232 (632)实质:数列是一个定义域为正整数集*N(或有限子集{}n,,3,2,1)的函数当自变量从小到大依次取值时对应的一列函数值。
高中数学人教版数列教案
高中数学人教版数列教案主题:等差数列与等比数列一、教学目标:1. 了解等差数列与等比数列的定义;2. 掌握等差数列的通项公式和前n项和公式;3. 掌握等比数列的通项公式和前n项和公式;4. 能够应用等差数列与等比数列解决实际问题。
二、教学重点与难点:1. 理解等差数列与等比数列的概念;2. 掌握等差数列和等比数列的通项公式;3. 解决实际问题时的应用能力。
三、教学内容与过程:1. 等差数列的定义与性质:a. 介绍等差数列的定义和通项公式;b. 示范如何求等差数列的前n项和;c. 练习等差数列实例题。
2. 等比数列的定义与性质:a. 介绍等比数列的定义和通项公式;b. 示范如何求等比数列的前n项和;c. 练习等比数列实例题。
3. 实际问题的应用:a. 综合应用等差数列和等比数列解决实际问题;b. 思考实际问题中数列的应用方法;c. 解答案例题。
四、课堂练习与作业:1. 课堂练习:完成课本中相关练习题;2. 作业:布置相关习题和思考题。
五、教学反馈与总结:1. 对学生练习情况进行回顾和反馈;2. 总结本节课的重点知识和难点;3. 对下节课内容进行预告。
六、板书设计:1. 等差数列:$a_1, a_2, a_3, …, a_n$通项公式:$a_n = a_1 + (n-1)d$前n项和:$S_n = \frac{n}{2}(a_1 + a_n)$2. 等比数列:$a_1, a_2, a_3, …, a_n$通项公式:$a_n = a_1 \cdot q^{n-1}$前n项和:$S_n = \frac{a_1(1-q^n)}{1-q}$七、扩展阅读:1. 进一步学习数列的图形表示方法;2. 深入了解数列在数学和实际生活中的应用。
以上是一份高中数学人教版数列教案范本,供参考。
在实际教学中,可根据教学内容和学生实际情况进行调整和拓展。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
又是1与7的等差中项 ∴
解二:设 ∴
∴所求的数列为-1,1,3,5,7
五、小结:等差数列的定义、通项公式、等差中项
六、作业: P118 习题3.2 1-9
第四教时
教材:等差数列(二)
目的:通过例题的讲解,要求学生进一步认清等差数列的有关性质意义,并且能够用定义与通项公式来判断一个数列是否成等差数列。
过程:
一、引导观察数列:4,5,6,7,8,9,10,……
3,0,3,6,……
, , , ,……
12,9,6,3,……
特点:从第二项起,每一项与它的前一项的差是常数 — “等差”
二、得出等差数列的定义: (见P115)
注意:从第二项起,后一项减去前一项的差等于同一个常数。
1.名称:AP首项 公差
2.若 则该数列为常数列
N*(或它的有限子集{1,2,…,n})的函数,当自变量从小到大依
次取值时对应的一列函数值,通项公式即相应的函数解析式。
6.用图象表示:— 是一群孤立的点
例一 (P111 例一 略)
三、关于数列的通项公式
1.不是每一个数列都能写出其通项公式 (如数列3)
2.数列的通项公式不唯一 如 数列4可写成 和
过程:
一、复习:等差数列的定义,通项公式
二、例一 在等差数列 中, 为公差,若 且
求证:1 2
证明:1设首项为 ,则
∵ ∴
2∵
∴
注意:由此可以证明一个定理:设成AP,则与首末两项距离相等的两项和等于首末两项的和 ,即:
同样:若 则
例二 在等差数列 中,
1若 求
解: 即 ∴
2若 求
解: =
3若 求
解: 即 ∴
第三章数列
第一教时
教材:数列、数列的通项公式
目的:要求学生理解数列的概念及其几何表示,理解什么叫数列的通项公式,给出一些数列能够写出其通项公式,已知通项公式能够求数列的项。
过程:
一、从实例引入(P110)
1.堆放的钢管4,5,6,7,8,9,10
2.正整数的倒数
3.
4.1的正整数次幂:1,1,1,1,…
二、例一:若记数列 的前n项之和为Sn试证明:
证:显然 时 ,
当 即 时
∴ ∴
注意:1此法可作为常用公式
2当 时 满足 时,则
例二:已知数列 的前n项和为① ②
求数列 的通项公式。
解:1.当 时,
当 时,
经检验 时 也适合
2.当 时,
当 时,
∴
三、递推公式 (见课本P112-113 略)
以上一教时钢管的例子
从另一个角度,可以:
“递推公式”定义:已知数列 的第一项,且任一项 与它的前
一项 (或前 项)间的关系可以用一个公式来表示,这个公式就叫
做这个数列的递推公式。
例三 (P113 例三)略
例四 已知 , 求 .
解一:可以写出: , , , ,……
观察可得:
解二:由题设:
∴
∴
例五 已知 , 求 .
解一:
观察可得:
解二:由 ∴ 即
∴
∴
四、小结: 由数列和求通项
递推公式 (简单阶差、阶商法)
五、作业:P114 习题3.1 3、4
《课课练》 P116-118 课时2中 例题推荐 1、2
课时练习 6、7、8
第三教时
教材:等差数列(一)
目的:要求学生掌握等差数列的意义,通项公式及等差中项的有关概念、计算公式,并能用来解决有关问题。
3.已知通项公式可写出数列的任一项,因此通项公式十分重要
例二 (P111 例二)略
四、补充例题:写出下面数列的一个通项公式,使它的前 项分别是下列
各数:
1.1,1,1,02.Fra bibliotek, , , ,
3.7,77,777,7777
4.1,7,13,19,25,31
5. , , ,
五、小结:
1.数列的有关概念
2.观察法求数列的通项公式
3.寻求等差数列的通项公式:
由此归纳为 当 时 (成立)
注意:1等差数列的通项公式是关于 的一次函数
2如果通项公式是关于 的一次函数,则该数列成AP
证明:若
它是以 为首项, 为公差的AP。
3公式中若 则数列递增, 则数列递减
4图象: 一条直线上的一群孤立点
三、例题: 注意在 中 , , , 四数中已知三个可以求
出另一个。
例一 (P115例一)
例二 (P116例二) 注意:该题用方程组求参数
例三 (P116例三) 此题可以看成应用题
四、关于等差中项: 如果 成AP 则
证明:设公差为 ,则
∴
例四 《教学与测试》P77 例一:在1与7之间顺次插入三个数 使这五个数成AP,求此数列。
解一:∵ ∴ 是-1与7 的等差中项
∵ ∴
∴ 数列 不成AP 但从第2项起成AP。
四、小结: 略
五、作业: 《教学与测试》 第37课 练习题
《课课练》 第3、4课中选
第五教时
教材:等差数列前 项和(一)
目的:要求学生掌握等差数列的求和公式,并且能够较熟练地运用解决问题。
过程:
一、引言:P119 著名的数学家 高斯(德国 1777-1855)十岁时计算
六、作业: 练习 P112 习题 3.1(P114)1、2
《课课练》中例题推荐2 练习 7、8
第二教时
教材:数列的递推关系
目的:要求学生进一步熟悉数列及其通项公式的概念;了解数列递推公式的意义,会根据给出的递推公式写出数列的前n项。
过程:
一、复习:数列的定义,数列的通项公式的意义(从函数观点出发去刻划)
从而
4若 求
解:∵ 6+6=11+1 7+7=12+2 ……
∴ ……
从而 + 2
∴ =2
=2×8030=130
三、判断一个数列是否成等差数列的常用方法
1.定义法:即证明
例三 《课课练》第3课 例三
已知数列 的前 项和 ,求证数列 成等差数列,并求其首项、公差、通项公式。
解:
当 时
时 亦满足 ∴
首项
∴ 成AP且公差为6
5.无穷多个数排成一列数:1,1,1,1,…
二、提出课题:数列
1.数列的定义:按一定次序排列的一列数(数列的有序性)
2.名称:项,序号,一般公式 ,表示法
3.通项公式: 与 之间的函数关系式
如 数列1: 数列2: 数列4:
4.分类:递增数列、递减数列;常数列;摆动数列;
有穷数列、无穷数列。
5.实质:从映射、函数的观点看,数列可以看作是一个定义域为正整数集
2.中项法:即利用中项公式,若 则 成AP。
例四 《课课练》第4 课 例一
已知 , , 成AP,求证 , , 也成AP。
证明:∵ , , 成AP ∴ 化简得:
=
∴ , , 也成AP
3.通项公式法:利用等差数列得通项公式是关于 的一次函数这一性质。
例五 设数列 其前 项和 ,问这个数列成AP吗?
解: 时 时