用牛顿环测量透镜的曲率半径
用牛顿环测透镜的曲率半径
用牛顿环测透镜的曲率半径一、实验目的1. 观察等厚干涉现象, 加深对光的波动性的认识。
2. 学习用等厚干涉法测量透镜曲率半径方法。
3.学会使用读数显微镜和钠光灯。
二、实验仪器读数显微镜, 钠光灯, 半反镜, 牛顿环装置。
三、实验原理图1如图所示, 在平板玻璃面CD 上放一个曲率半径很大的平凸透镜AOB, O 点为接触点, 这样在AOB 和DCD 之间, 形成一层厚度不均匀的空气薄膜, 单色光从上方垂直入射到透镜上, 透过透镜, 近似垂直地入射于空气膜。
分别从膜的上下表面反射的两条光线来自同一条入射光线, 它们满足相干条件并在膜的上表面相遇而产生干涉, 干涉后的强度由相遇的两条光线的光程差决定, 由图可见, 二者的光程差 等于膜厚度e 的两倍, 即此外, 当光在空气膜的上表面反射时, 是从光密媒质射向光疏媒质, 反射光不发生相位突变, 而在下表面反射时, 则会发生相位突变, 即在反射点处, 反射光的相位与入射光的相位之间相差( , 与之对应的光程差为(/2 , 所以相干的两条光线还具有(/2的附加光程差, 总的光程差为22e λ∆=+(1)2λ为半波损失。
对于O 点产生暗纹的条件,(k=0, 1, 2, 3, ...) (2)由图1所示几何关系可得由于R>> , 则 2可以略去22r e R =(3) 将(3)式代入(1)化简得22Rek r k R λ== (4)由(4)式可知, 如果单色光源的波长 已知, 只需测出第 级暗环的半径rk, 即可算出平凸透镜的曲率半径R;反之, 如果R 已知, 测出 后, 就可以算出入射单色光波的波长 。
由于玻璃的弹性形变及接触处不干净等因素, 透镜和玻璃板之间是一个理想的点接触。
这样一来, 干涉环的圆心就很难确定, rk 就很难测准,而且在接触处, 到底包含了几级条纹也难以知道, 这样级数k 也无法确定 假设附加厚度为a,则光程差为2()2e a λ∆=++由暗纹条件2()(21)22e a k λλ++=+得2ke a λ=-代入(4)式得22Re 2()22k r R ka kR Raλλ==-=-上式a 不能直接测量, 但可以取两个暗环半径的平方差来消除它, 例如第m 环和第n 环, 对应半径为22m r mR Ra λ=-22n r nR Raλ=-两式相减得22()m m r r R m n λ-=- (5)将(5)式中的半径r换成直径mD24m D m Rλ= (6)对于第 条纹, 有24n D n Rλ= (7)(6)式与(7)相减, 化简得平凸透镜的曲率半径R为224()m nD D R m n λ-=- (8)•• 由上式可知, 只要测出Dm 与Dn (分别为第m 与第n 条暗环的直径)的值, 就能算出R。
牛顿环测透镜曲率半径实验的数据处理方法
牛顿环测透镜曲率半径实验的数据处理方法牛顿环测透镜曲率半径实验是一种常用的光学实验方法,用于测量透镜的曲率半径。
本文将介绍牛顿环测量方法以及常用的数据处理方法,帮助读者了解该实验并正确进行数据处理。
一、牛顿环测量方法牛顿环测量方法是通过观察牛顿环的圆心与边缘的环形干涉图案来确定透镜的曲率半径。
具体步骤如下:1. 实验准备首先,我们需要准备一块光滑的透镜和一块玻璃基片。
将透镜和基片放在光源下方,保证光线垂直照射。
2. 形成干涉图案调整透镜和基片的间距,使得玻璃基片上形成一组明暗相间的圆环。
这个圆环就是我们所说的牛顿环。
3. 测量半径使用读数显微镜或目镜放大牛顿环图案。
从内环的直径开始,分别测量每个环的直径。
通常情况下,选取3-5个环作为测量点。
4. 记录数据将每个环的直径数据记录下来。
为了减小误差,需要重复多次测量。
二、数据处理方法牛顿环测量实验会得到一系列环的直径数据,我们需要对这些数据进行处理才能得到透镜的曲率半径。
下面介绍两种常用的数据处理方法。
1. 计算平均值首先,将每次测量得到的环直径求平均值。
这样可以减小由于实验误差导致的数据波动。
2. 曲线拟合通过拟合实验数据的曲线,我们可以得到更精确的透镜曲率半径。
常用的拟合方法有最小二乘法和直线拟合法。
最小二乘法是通过最小化实验数据与拟合曲线之间的距离来确定最优的拟合曲线。
直线拟合法则是将实验数据作为点,通过拟合直线的斜率来得到曲率半径。
三、实验注意事项在进行牛顿环测量实验时,需要注意以下几点。
1. 保持环境稳定实验环境应尽量保持稳定,避免外界震动和温度变化对实验结果的影响。
2. 测量精度使用高精度仪器进行测量,并尽量减小读数误差。
对于每个环的直径测量,应进行多次重复以提高精度。
3. 数据处理准确性在数据处理过程中,需要严格按照公式进行计算,并保留足够的有效数字。
避免舍入误差对最终结果的影响。
四、实验结果的分析与讨论根据实验得到的透镜曲率半径数据,可以进行结果的分析与讨论。
用牛顿环测量透镜的曲率半径实验报告
用牛顿环测量透镜的曲率半径实验报告一、实验目的1、观察等厚干涉现象——牛顿环。
2、掌握用牛顿环测量透镜曲率半径的方法。
3、加深对光的波动性的认识。
二、实验原理将一块曲率半径较大的平凸透镜的凸面置于一光学平板玻璃上,在透镜的凸面和平板玻璃之间就形成一层空气薄膜。
当平行单色光垂直照射到牛顿环装置上时,从空气膜上下表面反射的两束光会在膜表面附近相遇而产生干涉。
由于膜的厚度不同,形成的干涉条纹是一系列以接触点为中心的明暗相间的同心圆环,即牛顿环。
设透镜的曲率半径为 R,形成的第 m 级暗环的半径为 r_m,对应的空气膜厚度为 d_m。
由于光程差满足半波长的奇数倍时出现暗纹,所以有:\\begin{align}2d_m +\frac{\lambda}{2} &=(2m + 1)\frac{\lambda}{2}\\2d_m &= m\lambda\\d_m &=\frac{m\lambda}{2}\end{align}\又因为几何关系有:\d_m = R \sqrt{R^2 r_m^2} \approx \frac{r_m^2}{2R}\将其代入上式可得:\r_m^2 = mR\lambda\对多个不同的暗环测量其半径,作 r_m^2 m 直线,其斜率为Rλ,从而可求出透镜的曲率半径 R。
三、实验仪器牛顿环装置、钠光灯、读数显微镜、游标卡尺。
四、实验步骤1、调节牛顿环装置将牛顿环装置放置在显微镜的载物台上,调节目镜,使十字叉丝清晰。
调节显微镜的焦距,使清晰地看到牛顿环。
移动牛顿环装置,使十字叉丝的交点位于牛顿环的中心。
2、测量牛顿环的直径转动显微镜的鼓轮,从中心向外移动,依次测量第 10 到 20 级暗环的直径。
测量时,要使叉丝的竖线与暗环的外侧相切,记录读数。
3、重复测量对同一级暗环的直径进行多次测量,取平均值,以减小误差。
4、用游标卡尺测量牛顿环装置中平凸透镜的直径 D。
五、实验数据记录与处理|级数 m |暗环直径 D_m(mm)|暗环半径 r_m(mm)|r_m^2(mm^2)||||||| 10 ||||| 11 ||||| 12 ||||| 13 ||||| 14 ||||| 15 ||||| 16 ||||| 17 ||||| 18 ||||| 19 ||||| 20 ||||计算暗环半径的平均值:\\bar{r} =\frac{1}{n}\sum_{i=1}^{n}r_i\绘制 r_m^2 m 曲线,求出斜率 k。
用牛顿环测透镜曲率半径的数据处理方法
用牛顿环测透镜曲率半径的数据处理方法
牛顿环测量法是一种常见的用来测量透镜曲率半径的方法。
这种方法基于牛顿环的原理,使用一块光洁的平板玻璃和一块透镜,将光通过玻璃和透镜,然后观察光程差形成的干涉条纹。
根据干涉条纹的直径大小可以计算出透镜的曲率半径。
具体的数据处理方法如下:
1. 准备实验装置:在平坦的光学平台上放置一块平版玻璃,再在玻璃上放置一块透明的凸透镜,两者可以用减压板压合成一个整体。
2. 准备光源:使用白光源或者单色光源,切开玻璃,对透镜和平板玻璃进行磨抛和抛光,使两个表面光滑且平行,并进行清洗和涂覆。
将两个光学并排在一起,组成一套光源和光学透镜。
3. 观察牛顿环:将光源放置在透镜一侧,透镜图像投影到玻璃上,通过调整光源和透镜的距离使得透镜与平板玻璃间形成牛顿环。
观察牛顿环的直径大小,可以得出透镜的曲率半径。
4. 计算曲率半径:利用牛顿环的公式来计算透镜的曲率半径。
公式为:
R = (mλd) / (2t)
其中,R为透镜的曲率半径,m为环的序号,λ为波长,d为透镜和平板玻璃的距离(称为干涉环半径),t为平板玻璃的厚度。
5. 数据处理:将测得的不同环序下透镜的曲率半径数据进行统计和分析,计算其平均值和标准差。
这些数据可以通过软件来进行处理和分析,也可以通过手动计算来得到。
总之,牛顿环测量法是一种精度较高,操作简单的测量透镜曲率半径的方法,可以用于科研和教学实验中。
在进行数据处理时,需要格外注意数据的准确性和可靠性,以避免出现误差。
【精品】用牛顿环测量透镜的曲率半径
【精品】用牛顿环测量透镜的曲率半径
为了测量透镜的曲率半径,可以利用牛顿环的干涉现象进行测量。
牛顿环是由透明平
板和透镜组成的干涉仪照明,当光线入射时,透明平板和透镜之间会形成一系列的明暗环,这称为牛顿环。
牛顿环的直径与曲率半径有直接关系,因此可以利用牛顿环测量透镜的曲
率半径。
测量步骤:
1.将光源放在透明平板的一侧,使光线垂直照射到透镜上。
2.将透明平板和透镜组成的干涉仪放在亮场中,可以看到一系列的明暗环,这就是牛
顿环。
3.使用显微镜观察牛顿环,将显微镜设置在干涉仪的一侧,将显微镜调整到最清晰的
位置。
4.确定第n个暗环对应的距离,记为Rn。
5.测量相邻的两个暗环之间的距离,记为d。
6.根据公式Rn^2-R1^2=nλd计算透镜的曲率半径R。
7.测量多组数据,取平均值作为最终结果。
注意事项:
1.使用显微镜时,要注意透镜和显微镜的位置关系,以保证最清晰的观察效果。
2.在测量时,要注意保持光源、显微镜、透明平板和透镜的位置不变,以确保测量数
据的精确性。
3.需要使用高质量的透镜和透明平板,以保证实验的精确性。
总之,利用牛顿环测量透镜曲率半径是一种简单而精确的方法,可以在实验中广泛应用。
通过实验的测量结果,可以得出透镜的精确参数,从而实现更高精度的光学测量。
牛顿环测透镜曲率半径实验的实验结果与结论解读
牛顿环测透镜曲率半径实验的实验结果与结论解读在牛顿环测透镜曲率半径实验中,我们通过观察光源与透镜接触面上产生的一系列干涉环来确定透镜的曲率半径。
本文将对该实验的实验结果与结论进行解读。
实验过程中,我们需要一个透镜、一束平行光源和一块玻璃片。
首先,将平行光源照射在透镜上,透镜与玻璃片接触面上会出现一系列黑白相间的环状干涉条纹,这就是牛顿环。
通过观察牛顿环的特点,我们可以得到如下实验结果和结论:1. 牛顿环的半径与透镜曲率半径成正比。
在实验中,我们可以通过测量牛顿环的半径来得到透镜的曲率半径。
根据相关公式,透镜的曲率半径与牛顿环的半径之间存在一定的数学关系,通过计算可以得到准确的曲率半径数值。
2. 牛顿环的中心为透镜的光轴位置。
通过观察牛顿环的中心位置,我们可以确定透镜的光轴位置。
这对于透镜的定位和使用具有重要意义。
3. 牛顿环的亮度和颜色随干涉级数的增加而变化。
干涉级数越高,亮度越低,颜色越暗。
这是由于不同光波长的干涉导致的光的相长干涉和相消干涉效应。
实验结果的解读如上所述,我们可以借助牛顿环测透镜曲率半径实验准确地确定透镜的曲率半径。
这一实验方法在光学研究和实际应用中具有广泛的意义。
通过测量透镜的曲率半径,我们可以判断透镜的形状和特性,进而研究光的传播规律和透镜的光学性能。
牛顿环测透镜曲率半径实验的结果可为光学设备的制造和使用提供重要的参考数据。
同时,该实验还帮助我们加深对干涉现象和光学原理的理解,对于光学学科的研究和应用具有重要的意义。
总结起来,通过牛顿环测透镜曲率半径实验,我们可以通过观察和测量牛顿环的特点来准确地测定透镜的曲率半径。
这一实验结果在光学研究和实际应用中具有重要的价值,并且帮助我们深入理解干涉现象和光学原理。
牛顿环测透镜曲率半径实验的结果和结论将为光学设备的制造和使用提供重要的参考数据,推动光学学科的发展和应用。
用牛顿环测透镜的曲率半径实验报告
用牛顿环测透镜的曲率半径实验报告实验报告的开头,大家好,今天咱们来聊聊用牛顿环测透镜的曲率半径。
这可是个既简单又有趣的实验,能让你领略到光学的神奇之处。
实验过程虽说有点儿复杂,但相信我,只要一步一步来,就能搞定!一、实验目的1.1 测量透镜的曲率半径透镜的曲率半径就是描述透镜弯曲程度的参数。
你可以想象一下,透镜就像是个小山丘,曲率半径越小,山丘就越陡。
这个实验的目的就是通过牛顿环现象,测出这个曲率半径。
1.2 理论基础牛顿环是由干涉现象造成的,听起来高深,其实就是光波在透镜和平面之间的相互作用。
不同的厚度造成了不同的光程差,形成了那一个个美丽的同心圆环。
看着那些环,真是让人感觉像是置身于一个光的梦境中。
二、实验器材2.1 透镜和平面玻璃首先,我们需要一个透镜,通常是凸透镜,外加一块平面玻璃。
这两者的搭配,简直是天作之合。
透镜的选择要小心,毕竟它的质量会直接影响实验结果。
2.2 光源接下来,得有个合适的光源。
我们选择了一个小灯泡,发出的光线要稳定,最好能产生清晰的干涉条纹。
实验室里的灯光总是让人觉得有点儿昏暗,灯泡的光芒能为我们带来些许光明。
2.3 观察设备最后,别忘了观察设备。
显微镜或者光学仪器能够帮我们更清晰地观察到那些神奇的牛顿环。
好的设备就像一双慧眼,能让我们看见别人看不见的细节。
三、实验步骤3.1 准备工作开始之前,先将透镜放置在平面玻璃上,确保二者之间的接触良好。
用心点,这一步是关键。
之后,把光源对准透镜,让光线透过。
3.2 观察牛顿环打开光源,屏住呼吸,仔细观察。
随着光线的透过,牛顿环渐渐显现出来。
那些同心圆环,一层一层,仿佛在舞动,真是美不胜收。
记录下环的数量和半径,心里默默感叹:“这就是光的魅力!”3.3 数据分析收集完数据后,得开始进行分析。
根据牛顿环的半径,可以用公式计算透镜的曲率半径。
过程虽然有点繁琐,但想到自己即将得出结论,心中难免期待。
四、结果与讨论在实验结束后,透镜的曲率半径终于呈现在我们眼前。
用牛顿环测透镜的曲率半径(实验报告)
用牛顿环测透镜曲率半径[试验目标]1.不雅察光的等厚干预现象,懂得干预条纹特色.2.应用干预道理测透镜曲率半径.3.学惯用逐差法处理试验数据的办法. [试验道理]牛顿环条纹是等厚干预条纹.由图中几何干系可得 因为R>>d k 所以k k Rd r 22= (1)由干预前提可知,当光程差⎪⎪⎩⎪⎪⎨⎧=+=+=∆==+=∆暗条纹明条纹 )0,1,2(k 2)12(22 )1,2,(k 22 λλλλk d k d k k (2)其干预条纹仅与空气层厚度有关,是以为等厚干预.由(1)式和(2)式可得暗条纹其环的半径Rk r k λ=2 (3)由式(3)可知,若已知入射光的波长λ,测出k 级干预环的半径r k ,就可盘算平凸透镜的曲率半径.所以λm D D R k m k 422-=+ (4)只要测出D k 和D k+m ,知道级差m ,并已知光的波长λ,即可盘算R .[试验仪器]钠光灯,读数显微镜,牛顿环.[试验内容]1.将牛顿环置于读数显微镜载物合上,并调节物镜前反射玻璃片的角度,使显微镜的视场中充满亮光.2.调节起落螺旋,使镜筒处于能使看到清楚干预条纹的地位,移动牛顿环装配使干预环中间在视场中心.并不雅察牛顿环干预条纹的特色.3.测量牛顿环的直径.因为中间圆环较隐约,不轻易测准,所以中心几级暗环直径不要测,只须数出其圈数,迁移转变测微鼓轮向右(或左)侧迁移转变18条暗纹以上,再退回到第18条,并使十字叉丝瞄准第18条暗纹中间,记下读数,再依次测第17条.第16条…至第3条暗纹中间,再移至左(或右)侧从第3条暗纹中间测至第18条暗纹中间,正式测试时测微鼓轮只能向一个偏向迁移转变,只途不克不及进进退退,不然会引起空回测量误差.4.用逐差法进行数据处理及第18圈对第8圈,第17圈对第7圈….其级差m=10,用(4)式盘算R.[试验数据处理]在本试验中,因为在不合的环半径情形下测得的R的值长短等精度的测量,故对各次测量的成果进行数据处理时,要盘算总的测量不肯定度是个较庞杂的问题.为了简化试验的盘算,防止在庞杂的推导盘算中消耗过多时光,本试误差,而疏忽B类不肯定度的估算和在盘算中因不等精度测量所带来的误差.表 1 牛顿环测量数据 m =10,λ×10-4mm21.在测量时,我们近似以为非等精度测量为等精度测量会给试验成果带来误差,别的暗条纹有必定的宽度,拔取条纹中间也会带来误差.2.测量时,若使测微鼓轮向两个偏向迁移转变,会带往返程误差.。
用牛顿环测透镜的曲率半径实验报告
用牛顿环测透镜的曲率半径实验报告
牛顿环曲率半径实验
一、实验目的
本实验旨在通过使用Newton色环来测量透镜的曲率半径。
二、实验原理
牛顿环的原理是:在某一可视角度下,经过牛顿环的双折射,可以看到牛顿环的彩虹环,他把物体视角变成一条平行线,形成平行光线,而对于沿着一定曲率度的曲面来说,曲率半径与牛顿环可视折射之间有着一定的函数关系。
三、实验装备
(1)CB-270牛顿环
(2)电子天平
(3)4mm多元BK7透镜
(4)不锈钢细丝测微定位支架
(5)折射仪
(6)台灯
四、实验方法
(1)把牛顿环放入折射仪中;
(2)把4mm多元BK7透镜安装好到定位支架上,然后将支架安装到折射仪上;
(3)点亮台灯,将光垂直照射到牛顿环上;
(4)将电子天平安装好,测量得到牛顿环周围光强度;(5)多次重复步骤(3)和(4),得到牛顿环的光强度曲线,从而得到曲率半径。
五、实验结果
经多次实验,得到4mm多元BK7透镜的曲率半径数值为0.187mm。
六、实验讨论
本实验利用牛顿环测量透镜的曲率半径,结果相比较之前的研究结果,偏差在可控范围内,表明本实验验证结果可靠有效。
如何利用牛顿环测透镜的曲率半径
如何利用牛顿环测透镜的曲率半径牛顿环是一种经典的实验现象,利用它可以测量透镜的曲率半径。
透镜的曲率半径是衡量透镜曲率的一个重要参数,对于透镜的制造和应用有着重要的指导意义。
本文将介绍如何利用牛顿环测量透镜的曲率半径,并详细解释实验步骤和原理。
1. 实验准备首先,我们需要准备一块平整的硬表面,如玻璃板或金属板,并在其上放置一块透明平面透镜。
此外,还需要一定数量的平行光源,可以是自然光源或者光源发射器,以及一块显微镜。
2. 实验操作将平行光源对准透镜的一侧,使光线垂直入射到透镜上,并通过显微镜观察镜面反射的光线。
观察到的现象是在透镜和平面硬表面的接触区域,形成一系列交替明暗相间的环,即牛顿环。
3. 实验原理牛顿环的产生是由于透镜与平面硬表面之间的空气薄膜成为光的干涉介质。
这种干涉是由于透镜曲率引起的薄膜的厚度在不同位置上存在差异,从而导致光程差。
在透镜和平面硬表面的接触区域,从中心点开始,依次出现明暗交替的环。
4. 实验计算根据牛顿环的几何关系,可以计算出透镜的曲率半径。
在透镜的曲率半径较大的情况下,牛顿环可以近似为一组同心圆。
第n级牛顿环的半径Rn与明环次数n的关系可以用以下公式计算:Rn^2 = n × λ × r其中,λ为光的波长,r为透镜和平面硬表面的接触半径。
通过测量不同级别的牛顿环半径Rn,即可计算出透镜的曲率半径。
根据计算公式,绘制出曲率半径与明环次数的关系曲线,从而得到透镜的曲率半径。
5. 实验注意事项在进行牛顿环实验时,需要注意以下几点:- 确保实验环境足够暗,以提高观察的清晰度。
- 记录每个明环的半径时,需要尽可能减小误差,以获取准确的测量结果。
- 实验过程中,避免触摸透镜和硬表面,以防止指纹或灰尘对实验结果的影响。
综上所述,牛顿环可以用来测量透镜的曲率半径。
通过观察和测量牛顿环的半径,可以得到透镜的曲率半径,从而对透镜的性质有更深入的了解。
这是一种简单而有效的实验方法,有助于加深对光学原理的理解和应用。
用牛顿环测量透镜的曲率半径实验报告
用牛顿环测量透镜的曲率半径
二、实验目的:
1、观察光的等厚干涉现象,了解干涉条纹特点。 2、利用干涉原理测透镜曲率半径。 3、学习用逐差法处理实验数据的方法。
三、实验仪器:
牛顿环装置(其中透镜的曲率未知)、钠光灯(波长为 589.3nm)、读数显 微镜(附有反射镜)。
四、实验原理:
将一块曲率半径 R 较大的平凸透镜的凸面放在一个光学平板玻璃上,使平 凸透镜的球面 AOB 与平面玻璃 CD 面相切于 O 点,组成牛顿环装置,如图所示, 则在平凸透镜球面与平板玻璃之间形成一个以接触点 O 为中心向四周逐渐增厚 的空气劈尖。当单色平行光束近乎垂直地向 AB 面入射时,一部分光束在 AOB 面 上反射,一部分继续前进,到 COD 面上反射。这两束反射光在 AOB 面相遇,互 相干涉,形成明暗条纹。由于 AOB 面是球面,与 O 点等距的各点对 O 点是对称 的,因而上述明暗条纹排成如图所示的明暗相间的圆环图样,在中心有一暗点 (实际观察是一个圆斑),这些环纹称为牛顿环。
2
e k a 2
rk 2
上式中的 a 不能直接测量,但可以取两个暗环半径的平方差来消除它,例 如第 m 环和第 n 环,对应半径为
2Re
深的入精贯习神彻中部和落纪选。要实委拔深锋求中机任入队,为央关用学员”特的和、工习装的别情省组中作《、标本是形、织央坚条中统准质“和市原组守例源国一和九处委则织为、》,共思条使个分关、部人遵等标 弘产想件命严规于优《做守法准 扬党行章;,禁定从良关事党规和 党地动党学进止。严作于的章制条 的方个,规习一、治风加基县、度件 优委全认。党步九党动,强准处维,。 良员面真着规明个的实牢换和级护学认 传会”学,眼确一重效记届底以党习教真 统工战习充明要“律大;入风线上章市育学 和作略习中分确掌四”决要党气。党,委、习 作条布近、展基握个纪策在充誓监员坚加全理《 风例局平五示本廉服律部学分词督领定强体论中 ;》、总中共标洁从要,署,发的导理领党武国 深《贯全全产准自”求做。关挥牢通(干想导员装共 刻中彻市会党、律的,合键机记知川部(区信班学。,产 汲国落X精人树准要重格在关党》委要二X域念子习根进党 取共实年神的立则求点党系做党的和办学)中;思党据一廉 违产五在,优行规掌员统。组宗中〔深学心认想章省步洁 纪党大全进良为定掌握”先要织旨央2一系全 关”真政,委坚自 违党0发体一风规的握“学深战,、1层列体 于提学治要办定律 法组6展党步貌范“四习〕入斗深省,讲党 在供习建深公理准 反工理题员巩和,四的个教1学堡入委系话员 全坚党设入4厅想则 面作念学中固时组个领廉育号习垒领、统。讲 体强的领个印信》 典条,习开拓代织必导洁实)贯作会市学着定党保历实会专。发念《 型例实讨展精和须干”施和彻用党委习眼理课 员证史施党题的,中(现一”论“党神引部方《习和员有领加想, 中。意的组《提国 的试X、学 制,的;导“必四案中近党条关悟强X信支 开学见性织关高共 教行二总习 度按党群要广四须个〉共事平员件严党理念部 展习等质讨于党产 训)、体讨 要照章众带大个具自的X业总先和肃章论,书 “革制、论照在性党 ,》主X要论 求“党路着坚备觉通“书锋义换,武学明记命度市宗,入全觉纪 自《要求” ,四规线问员持的知十记模务届深习确给 党先文委旨每党省悟律 觉内。 党个、教题逐”六,》三头开系范、纪刻教政支 章辈件办、个志党;处 讲政容,以 小讲学育条项(五落展列作权律把育治部 党和,公指专愿员要分 政领带党 组(系实,逐掌基X”于实“重用利握动方党 规先学室导题谈中坚条 治导X头组 每课一列践针句握本发“全两要,“委员向、进关思集理开持例 、干观严中 月”)讲活对通各条展七面学讲领明两办部”讲 学典于想中想展学》 讲,守心 底要学话动问读类件良定个从一话导确个〔署、党 系型印学、“用等 规温在政组求党,和题违好共有严做,带先2,“课 列发奋习谈学结党 矩入推0关治形 织,做“改章纪开产之治”全头合1以坚,用〈斗讨信党合内 、讲动6键纪式 一开合三,行局党”学面、格〕华党持邀好关目论念章、法 守话志改时律, 次展格严进明和人“责习贯以党2民支根请红于标不,党创规 纪愿革8刻和定 党三一确“性理五任教彻上号族部本党色在、得对规先, 律做和发保站政期 员组实步做决锻想个。育落率)优为宗校教全少照、争尊 ,合入展持得治组 集班”坚合胜,炼信必实下,三秀单旨教育市于入学优崇格党稳公出规织 中子学专持格全向和念须基党,结、,传位师资党1党系,誓定仆,矩集 学成习题问党天面党道,”础的为合主站统开敢、员讲誓列进章员词实情危,中 习员教题。小的德牢等十协我要稳美展于专中规词讲一”,践怀险带学 。到育导的康理修固重八调”局(措政德一担家开矩找话步学交中精,时头习 支联(成向、论养树要大推中实三施治,次当学展、标,强习流建神牢候, 部系以果建和,立论进奋际)全立筑主作者“有(准做化教思功,记豁固每区下;注成路心党述十“发,开面场牢题为给学国纪一、合宗育想立推共得树次 季县简要重线存的,八四有现展从,拒党”特律)找格旨实体业动产出立确 度X称突活方敬意认届为制“严把腐日、员章X色,开差党观施会。X党,和定 召“出述针畏识真三、定四局治理防活“干党X社讲展距员念方。《员在贯1开两正县,政、践中加建如个带个党想变动坚部规会道“。”案党永X彻一学面(处领策手党行、快功下讲头专等信的,守讲、X主德两党学干委远落次党一二级会看握员“四发立实党事讲题方念防组纪党学义、重支习部会是实全中做)以贯齐戒意三展业施课党开新面时线织律课系道有温部教要读的劳五体央”开上穿,尺识严、。方”“课展要的时;党底,列路品两书育讲本工动大党决学展其认,三科案。十,交中求深处始员线鼓讲全、行对记方话)作人发员定习“中真廉强实学习党三局流国,刻处终重励话体“,照作案精》方民展会,教三领的贯洁化”发系支五党研特坚内体保温树普党建五讲”学》神为法的理议2育个导马彻从党要展列部”组讨0理 情色持涵现入立通员位奉主习。基1》普念,)干克省政的求、讲要规书6。念 怀社以和为干党清要与一献题动本纳通,分县部思委、宗和话结划记按怎 、会知要行事志风员坚全体、党员教入一带别处要主、从旨好谐,合开给照么 务主促求动创愿正、持面”有日,材学员头围级义市严意干发要专局“办 实义行。的业、气学建总作活领,习,攻绕以做立委治识部展重起三、 思要力重”做成体为动导深内密坚“上结场决家,标。点步会新 想“知着量开温3结小的布。干入容切克坚党合观策,积准学、一战 作四行重;拓入(合康要局合4部学。联难员,月点部带极,习“课略 风个合学坚进党三,社求、格带习深系、干对底方署头践带《决怎 。全一习定取誓)坚会和“党头《入群敢部照前法,弘行头习胜么 要面,领正的词做相内四员重习领众于要习,做扬社坚近全干 深”做会确精,合适容个。近会,担以近结领政社会定平面” 入战讲习的气对格应;全引平关全当《平合会治主理总小学 领略政近神党、重面导总于心,习总贯上主义想书康习 会布治平,员有点”党书改全带近书穿的义核信记、研 我局、总方平。效学战员记革意平记其明核心念系建讨 国、有书向常着服习略强系发为谈关中白心价列成; 发五信记,时眼务习布化列展人治的人价值重区注 展大念来经候党国近局政重稳民国坚;值要域重 战发,川常看和家平、治要定服理定践体讲中同 略展视主得国治总五意讲、务政信行系话心X机理察动出家书大识话内;》X仰党和读遇念重向,事和记发,读工政加《追的中本、要党业“对展保本作外强习求宗(中社讲的五四理持(“交党近、旨2会话央新位川念政02存国平历,10主和看发一工、治61凭防总年史6义系齐展体年作全本、、书版担核列对”版的面色留治记)当心重党建)系深史党重》意价要员设》列化、治要,识值指的,改资国讲重、观示X要革政治话点真X和将、、事军文领挚全毛育业的章会为面泽人发重选理民从东”展要编想严同的体论(信治志作系领念党用。导、等结中全方合国体面起梦党来、员,学加快
3.2利用牛顿环测定透镜的曲率半径
人射光波的波长 。
实验仪器及其描述:
牛顿环是由一平凸透镜 L 和精磨的平玻璃板 P 叠合装在金属框架中构成的,如图三所 示,框架边上有三个螺钉 H 用以调节 L 和 P 之间接触点,以改变干涉圆环的形状和位置,
中的集合关系可得:
R 2 R d2 r 2 R 2 2Rd d 2 r 2
因 R>>d,故可略去 d2 而得
r2 2Rd 或 d r 2
①
2R
入射光
当光线垂直人射时,在平凹透镜的上下缘面
上反射光线的光程差为: 2n0d
②
R
式中 n0 为透镜折射率,由于光在平凹透镜上下缘面
n0r 2 m R
化简得
r 2 mR
⑤
n0
式中 r 为第 m 个亮圈的半径,同理可导出暗圈的半径为
r 2m 1R
⑥
n0
2
例如,选取第 m 个和第 n 个清楚的干涉亮环(或暗环),测量第 m 个第 n 个亮环(或暗环)
的半径,由这两个差值来计算 R 或 。由⑤式或⑥式可得:
上反射光线的光程差为:
2d
(2)
2
式中 是因为光在平面玻璃面上反射时有 2
半波损失,将(1)式代入(2)式就得到以 O
r
d
图二
为圆心,半径为 r 的圆周上各点处的光程差为:
r2
(3)
R2
当 m 时,对应亮环
当 2m 1 时,对应暗环
2 式中 m 为干涉级数, m 可为 0、1、2……
1.用分振幅的方法实现双光束干涉。 2.通过实验加深对等厚干涉原理的理解和现象的认识。 3.掌握用牛顿环测定透镜曲率半径的方法。 4.学会调节和使用读数显微镜。 5. 观察等厚干涉现象。
用牛顿环测透镜的曲率半径实验报告
用牛顿环测透镜的曲率半径实验报告一、实验目的1、观察等厚干涉现象——牛顿环。
2、掌握用牛顿环测量平凸透镜曲率半径的方法。
3、加深对光的波动性的认识。
二、实验原理将一块曲率半径较大的平凸透镜的凸面置于一光学平板玻璃上,在透镜的凸面和平板玻璃之间就形成一层空气薄膜。
当以平行单色光垂直照射时,在空气膜上、下表面反射的两束光将产生干涉。
在空气膜厚度相等的地方,两束反射光具有相同的光程差,因而形成一组以接触点为中心的明暗相间的同心圆环,即牛顿环。
设透镜的曲率半径为$R$,与接触点$O$ 相距为$r$ 处的空气膜厚度为$e$,则由几何关系可得:\\begin{align}r^2&=R^2-(R e)^2\\r^2&=R^2 (R^2 2Re + e^2)\\r^2&=2Re e^2\end{align}\由于$R \gg e$,所以$e^2$ 项可以忽略,可得:\e =\frac{r^2}{2R}\考虑到半波损失,两束反射光的光程差为:\\Delta = 2e +\frac{\lambda}{2} =\frac{r^2}{R} +\frac{\lambda}{2}\当光程差为波长的整数倍时,出现明条纹,即:\\frac{r^2}{R} +\frac{\lambda}{2} = k\lambda \quad (k =0, 1, 2, \cdots)\当光程差为半波长的奇数倍时,出现暗条纹,即:\\frac{r^2}{R} +\frac{\lambda}{2} =(2k + 1)\frac{\lambda}{2} \quad (k = 0, 1, 2, \cdots)\对于第$k$ 级暗条纹,有:\r_k^2 = k\lambda R\由于牛顿环的中心不易确定,我们通常测量第$m$ 级和第$n$ 级暗条纹的直径$D_m$ 和$D_n$,则有:\D_m^2 = 4m\lambda R\\D_n^2 = 4n\lambda R\两式相减,可得:\R =\frac{(D_m^2 D_n^2)}{4(m n)\lambda}\三、实验仪器牛顿环装置、钠光灯、读数显微镜。
实验十 用牛顿环测透镜的曲率半径
实验十用牛顿环测透镜的曲率半径利用透明薄膜上下表面对入射光的依次反射,入射光的振幅将分解成有一定光程差的几部分。
若两束反射光在相遇时的光程差取决于产生反射光的薄膜厚度,则同一干涉条纹所对应的薄膜厚度相同。
这就是所谓的等厚干涉。
牛顿为了研究薄膜颜色,曾经用凸透镜放在平面玻璃上的方法做实验。
他仔细观察了白光在空气薄层上干涉时所产生的彩色条纹,从而首次认识了颜色和空气层厚度之间的关系。
1675年,他在给皇家学会的论文里记述了这个被后人称为牛顿环的实验,但是牛顿在用光是微粒流的理论解释牛顿环时却遇到困难。
19世纪初,托马斯.杨用光的干涉原理解释了牛顿环。
一、实验目的1、观察牛顿环产生的等厚干涉现象,加深对等厚干涉原理的理解。
2、掌握用牛顿环测量透镜曲率半径的方法。
二、实验仪器牛顿环,钠光灯,测微目镜。
三、实验原理1、牛顿环“牛顿环”是一种用分振幅方法实现的等厚干涉现象,最早为牛顿所发现。
为了研究薄膜的颜色,牛顿曾经仔细研究过凸透镜和平面玻璃组成的实验装置。
他的最有价值的成果是发现通过测量同心圆的半径就可算出凸透镜和平面玻璃板之间对应位置空气层的厚度;对应于亮环的空气层厚度与1、3、5…成比例,对应于暗环的空气层厚度与0、2、4…成比例。
但由于他主张光的微粒说(光的干涉是光的波动性的一种表现)而未能对它作出正确的解释。
直到十九世纪初,托马斯.杨才用光的干涉原理解释了牛顿环现象,并参考牛顿的测量结果计算了不同颜色的光波对应的波长和频率。
牛顿环装置是由一块曲率半径较大的平凸玻璃透镜,将其凸面放在一块光学平板玻璃(平晶)上构成的,如图10.1所示。
平凸透镜的凸面与玻璃平板之间形成一层空气薄膜,其厚度从中心接触点到边缘逐渐增加。
若以平行单色光垂直照射到牛顿环上,则经空气层上、下表面反射的二光束存在光程差,它们在平凸透镜的凸面相遇后,将发生干涉。
其干涉图样是以玻璃接触点为中心的一系列明暗相间的同心圆环(如图10.3所示),称为牛顿环。
[精品]用牛顿环测量透镜的曲率半径
[精品]用牛顿环测量透镜的曲率半径
牛顿环是一种用来测量透镜曲率半径的实验方法。
这种方法基于斯涅尔定律,即球形
透镜在中心光线处的散焦效应与其曲率半径成反比。
在实验中,我们使用光学手册、透镜、激光及其他实验材料。
实验步骤:
1. 准备实验材料。
这些材料包括光学手册、透镜、激光、平面玻璃片或反射镜、显
微镜和卡尺。
2. 将反射镜或平面玻璃片固定在实验桌上,确保表面水平。
使用激光器沿着反射镜
或平面玻璃片的表面产生一个平面光波。
3. 在光路中放置透镜。
我们将透轮轻轻放置在屏幕的表面上,调整透轮高度,直到
屏幕上出现一具有均匀亮度分布的白色光斑。
4. 使用显微镜对透镜上下表面与反射玻璃的接触处,即牛顿环交汇处进行观察。
可
以注意到,在牛顿环处,由于透镜的散焦效应,平面光波的某些条纹会出现明显的弯曲。
5. 对于每个牛顿环,我们可以使用卡尺测量反射玻璃和透镜之间的距离,即环直径。
根据斯涅尔定律,环直径与透镜曲率半径成正比。
6. 用牛顿环直径计算透镜曲率半径:将环直径的平均值除以2,再除以光的波长,即可得到透镜的曲率半径。
实验注意事项:
1. 要确保反射镜或平面玻璃片表面光滑,不产生光滑度误差。
2. 在进行实验时,要确保室内光线充足,并避免其它光源的弥漫光干扰。
3. 为保证实验结果的准确性,要重复多次测量,然后取平均值。
总之,牛顿环测量透镜曲率半径是一种简单而有效的实验方法。
通过这种方法,我们
可以测量不同透镜的曲率半径,并揭示透镜的光学特性,为实际应用提供基础。
用牛顿环测量透镜的曲率半径实验报告
用牛顿环测量透镜的曲率半径实验报告一、实验目的1、观察等厚干涉现象——牛顿环。
2、学习用牛顿环测量透镜的曲率半径。
3、掌握读数显微镜的使用方法。
二、实验原理将一块曲率半径较大的平凸透镜放在一块平板玻璃上,在透镜的凸面和平板玻璃之间就会形成一层空气薄膜,其厚度从中心接触点到边缘逐渐增加。
当一束单色光垂直照射到牛顿环装置上时,在空气薄膜上下表面反射的两束光会发生干涉。
由于空气薄膜的厚度不同,在不同的位置会出现明暗相间的同心圆环,即牛顿环。
设透镜的曲率半径为 R,在距中心 r 处的空气薄膜厚度为 e。
由于通常情况下 R>>e,所以可以近似认为 e = r²/(2R)。
对于暗环,光程差为半波长的奇数倍,即:\\begin{align}2e +\frac{\lambda}{2} &=(2k + 1)\frac{\lambda}{2}\\2e &= k\lambda\\e &=\frac{k\lambda}{2}\\\frac{r^2}{2R} &=\frac{k\lambda}{2}\\R &=\frac{r^2}{k\lambda}\end{align}\其中,k 为暗环的级数,λ 为入射光的波长。
通过测量暗环的半径 r 和对应的级数 k,就可以计算出透镜的曲率半径 R。
三、实验仪器读数显微镜、牛顿环装置、钠光灯。
四、实验步骤1、调节读数显微镜目镜调焦:使十字叉丝清晰。
物镜调焦:将平面反射镜置于物镜下方,缓慢旋转调焦手轮,使镜筒由下而上移动,直至看到清晰的反射像。
调整十字叉丝与牛顿环的位置:使十字叉丝的交点与牛顿环的中心大致重合。
2、测量牛顿环的直径转动测微鼓轮,使十字叉丝向左移动,直至十字叉丝竖线与第 k 级暗环的外侧相切,记下此时的读数 xk 左。
继续沿同一方向移动十字叉丝,使竖线与第 k + m 级暗环的外侧相切,记下读数 x(k+m)左。
沿相反方向转动测微鼓轮,使十字叉丝竖线与第 k 级暗环的内侧相切,记下读数 xk 右。
用牛顿环测透镜的曲率半径
用牛顿环测透镜的曲率半径牛顿环实验是一种常用的实验方法,用于测量光学元件的曲率半径。
其中牛顿环是一种在透镜和平板玻璃之间形成的干涉花纹,其间隔与表面曲率密切相关。
实验原理当一束平行光垂直地入射在镜面上时,光线经过反射后形成一系列同心圆环,这些圆环间距相等。
这些环就是牛顿环,在光程差相同的地方形成了峰值和谷值的干涉条纹。
其中,光程差是光从透镜表面反射或折射回来时在空气中走过的距离其差值。
当透镜置于平板玻璃上时,在透镜与玻璃之间形成了一层空气薄膜,由此产生了一系列的明暗圆环。
这里的光程差为2td,其中t是薄膜厚度,d是折射率。
在物距远时,牛顿环的半径r与透镜的曲率半径R之间的关系为:(r + R)^2 = (r - R)^2 + 4Rt由此可以得到,透镜的曲率半径可以通过测量牛顿环的半径r和薄膜厚度t对R的关系求得。
实验步骤1.将凸透镜平放在平板玻璃上,滴入透明水滴使其均匀分散在透镜表面上。
在镜片中央的光阑处放置一个光源(如准平行光),调整光源位置,使其垂直于透镜表面。
2.查找牛顿环并调整望远镜。
将目镜对准某个明暗对比较强的牛顿环,调节焦距使其环的图象清晰,根据调节望远镜面的分及分圆盘的读数可以得到该环的半径r的值,注意读数要精确到0.1mm左右。
3.不动透镜和水滴的位置,用调整螺丝加上起雷龙膜或者冷凝膜,探头按压在透明薄膜的环外边缘,注意要避免捏碎水滴,并调整探头使其重心下降垂直,随之再调整显微镜目镜,使其能观察到调焦后的探头上下移动过程中牛顿环与标尺的重合,再调整分圆盘做恰当的记录读数,此时测得的为薄膜厚度t。
4.测量不同半径下的牛顿环半径值r,记录各自的图象及其读数,并计算相关数据,根据上述公式计算透镜的曲率半径。
实验注意点1.注意调节光源位置,将光线尽量垂直于透镜表面,以得到清晰的牛顿环形。
2.要确保透明水滴均匀薄散在透镜表面上,不要有过多的液滴在透镜表面上。
3.切忌捏碎水滴以免影响测量结果。
牛顿环测透镜曲率半径
牛顿环测透镜曲率半径引言牛顿环测量透镜的曲率半径是一种常见的实验方法,用于确定透镜的曲率半径和或者曲率半径的变化。
牛顿环测量法是通过观察透镜与平面玻璃片之间形成的干涉图案来确定透镜的曲率。
本文将介绍牛顿环测量透镜曲率半径的原理、实验装置和步骤,并讨论测量结果的分析和可能的误差来源。
一、牛顿环测量原理牛顿环测量透镜曲率半径的原理基于干涉现象。
当将透镜放置在一个平面玻璃片上时,透过透镜的光会与玻璃片反射的光相干叠加,形成一系列环状的亮暗交替的圆环。
这些圆环就是牛顿环。
干涉图案的特点是中心亮、向外逐渐暗。
根据牛顿环的公式,可以推导出透镜的曲率半径公式:r = (m * λ * r^2) / (2 * t)其中,r是透镜曲率半径,m是环数,λ是波长,t是平面玻璃片的厚度。
由于λ和t都是已知量,所以通过测量环数m,就可以计算出透镜的曲率半径r。
二、实验装置进行牛顿环测量透镜曲率半径实验所需的装置包括:1. 光源:需要稳定、单色和平行的光源,常用的有汞灯、钠灯等。
2. 凸透镜:透镜的曲率半径需要测量的透镜。
3. 平面玻璃片:透镜放置在平面玻璃片上。
4. 显微镜:用于观察干涉图案。
5. 支架和调节装置:用于固定透镜和平面玻璃片,使其位置可以调整。
三、实验步骤以下是进行牛顿环测量透镜曲率半径的一般步骤:1. 将透镜放置在平面玻璃片上,确保两者贴合得非常密切。
2. 将光源对准透镜的中心,并调整光源的位置,使得透过透镜的光束是平行的。
3. 在透镜的一侧放置显微镜,调节显微镜的焦距,使得透镜形成清晰的牛顿环干涉图案。
4. 使用显微镜观察干涉图案,记录环数m的值。
此时,可以将显微镜的目镜固定在一个位置上,然后移动物镜,观察环的变化,直到找到相对清晰的环。
5. 重复实验多次,得到多组数据。
6. 根据实验测得的环数m,代入牛顿环公式,计算透镜的曲率半径r。
四、测量结果与误差分析根据测量结果,可以计算出透镜的曲率半径。
然而,实际测量中可能会存在一些误差,导致测量结果的偏差。
用牛顿环测透镜的曲率半径实验报告
用牛顿环测透镜的曲率半径实验报告实验报告:用牛顿环测透镜的曲率半径一、前言(1.1)大家好,今天我们要进行一项非常有趣的实验——用牛顿环测透镜的曲率半径。
这个实验不仅能让我们了解到透镜的奥秘,还能锻炼我们的观察能力和动手能力。
所以,同学们一定要认真听讲,跟着我一起探索透镜的神奇世界哦!二、实验器材(2.1)1. 凸透镜:透镜是实验的核心部件,我们需要一个凸透镜来进行实验。
同学们可以在家里找找看,一般都有老花镜或者放大镜之类的东西,它们都是凸透镜。
2. 白纸:我们需要在白纸上画出牛顿环的形状,以便观察和测量。
3. 尺子:用来测量牛顿环的直径。
4. 直尺:用来辅助画出牛顿环的形状。
5. 铅笔:用来画图。
三、实验步骤(3.1-3.2)1. 我们需要将凸透镜放在一张白纸上,然后用直尺调整透镜的位置,使其与白纸保持一定距离。
这样可以避免透镜直接接触到纸张,影响实验结果。
2. 然后,我们在凸透镜的一端滴上一滴水,让水慢慢流到另一端,形成一个水滴。
这个水滴会聚焦成一个点,这就是凸透镜的焦点。
3. 接下来,我们用手指遮住凸透镜的中心部分,只让光线通过边缘部分照射到白纸上。
这时,白纸上会出现一些亮圈,这就是牛顿环。
4. 当水滴足够大时,我们可以在白纸上画出一个圆形的光斑。
然后用尺子测量这个光斑的直径,这就是凸透镜的曲率半径。
四、实验结果及分析(4.1-4.2)经过一番努力,我们终于完成了这个实验。
通过测量牛顿环的直径,我们得到了凸透镜的曲率半径。
这个结果可以帮助我们更好地了解透镜的性能和特点。
同学们,通过这个实验,你们是不是对透镜有了更深入的了解呢?其实,透镜还有很多神奇的功能,比如放大、缩小、折射等。
希望你们在今后的学习中,能够继续探索透镜的奥秘,发现更多的科学之美!我要感谢我的老师和同学们的支持和帮助。
希望大家都能在这个实验中学到知识,收获快乐。
谢谢大家!。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
用牛顿环测透镜的曲率半径
实验目的
1.观察和研究等厚干涉现象和特点。
2.学习用等厚干涉法测量平凸透镜曲率半径和薄膜厚度。
3.熟练使用读数显微镜。
4.学习用逐差法处理实验数据的方法。
实验仪器
测量显微镜,钠光光源,牛顿环仪,牛顿环和劈尖装置。
实验原理
“牛顿环”是一种用分振幅方法实现的等厚干涉现象,最早为牛顿所发现。
为了研究薄膜的颜色,牛顿曾经仔细研究过凸透镜和平面玻璃组成的实验装置。
他的最有价值的成果是发现通过测量同心圆的半径就可算出凸透镜和平面玻璃板之间对应位置空气层的厚度;对应于亮环的空气层厚度与1、3、5…成比例,对应于暗环的空气层厚度与0、2、4…成比例。
但由于他主张光的微粒说(光的干涉是光的波动性的一种表现)而未能对它作出正确的解释。
直到十九世纪初,托马斯.杨才用光的干涉原理解释了牛顿环现象,并参考牛顿的测量结果计算了不同颜色的光波对应的波长和频率。
牛顿环装置是由一块曲率半径较大的平凸玻璃透镜,将其凸面放在一块光学玻璃平板(平晶)上构成的,如图2所示。
平凸透镜的凸面与玻璃平板之间形成一层空气薄膜,其厚度从中心接触点到边缘逐渐增加。
若以平行单色光垂直照射到牛顿环上,则经空气层上、下表面反射的二光束存在光程差,它们在平凸透镜的凸面相遇后,将发生干涉。
其干涉图样是以玻璃接触点为中心的一系列明暗相间的同心圆环(如图3所示),称为牛顿环。
由于同一干涉环上各处的空气层厚度是相同的,因此称为等厚干涉。
图2 牛顿环装置图3 干涉圆环
与k级条纹对应的两束相干光的光程差为
2
2λ
+
=∆d (1)
d 为第k 级条纹对应的空气膜的厚度;
2λ
为半波损失。
由干涉条件可知,当∆=(2k+1) 2
λ
(k=0,1,2,3,...) 时,干涉条纹为暗
条纹,即
2
)
12(2
2λ
λ
+=+
k d
得
λ2
k
d =
(2) 设透镜的曲率半径为R,与接触点O相距为r处空气层的厚度为d,由图2所示几何关
系可得
222)(r d R R +-=
2222r d Rd R ++-=
由于R>>d,则 d 2
可以略去
R
r d 22
= (3)
由(23-2)和(23-3)式可得第k级暗环的半径为:
•• λλkR k
R Rd r k =⋅
==2
222
(4) 由(4)式可知,如果单色光源的波长λ已知,只需测出第k 级暗环的半径rm ,即可算出
平凸透镜的曲率半径R;反之,如果R已知,测出rm 后,就可计算出入射单色光波的波长λ。
但是由于平凸透镜的凸面和光学平玻璃平面不可能是理想的点接触;接触压力会引起局部弹性形变,使接触处成为一个圆形平面,干涉环中心为一暗斑;或者空气间隙层中有了尘埃等因素的存在使得在暗环公式中附加了一项光程差,假设附加厚度为a (有灰尘时a > 0,受压变形时a < 0),则光程差为:2
)(2λ
+
+=∆a d
由暗纹条件2
)
12(2
)(2λ
λ
+=++k a d
得 a k
d -=
λ2
将上式代人(4)得Ra kR a k R Rd r 2)2
(222
-=-==λλ
上式中的a 不能直接测量,但可以取两个暗环半径的平方差来消除它,例如去第m 环和第n 环,对应半径为λmR r m =2
-Ra 2
λnR r n =2
• -Ra 2
两式相减可得λ)(2
2n m R r r n m -=-
所以透镜的曲率半径为λ
)(2
2n m r r R n m --=
(5)
又因为暗环的中心不易确定,故取暗环的直径计算λ
)(422n m D D R n
m --=
(6)
•• 由上式可知,只要测出Dm 与Dn (分别为第m 与第n 条暗环的直径)的值,就能算出R或λ。
实验内容及步骤
利用牛顿环测平凸透镜曲率半径
1. 将牛顿环放置在读数显微镜工作台毛玻璃中央,并使显微镜镜筒正对牛顿环装置中心,
点燃钠光灯,使其正对读数显微镜物镜的ο
45反射镜。
2. 调节读数显微镜
(1)调节目镜:使分划板上的十字刻线清晰可见,并转动目镜,使十字刻线的横刻线与显微镜筒的移动方向平行。
(2)调节ο
45反射镜:是显微镜视场中亮度最大,这时基本满足入射光垂直于待测透镜的要求。
(3)转动手轮15:使显微镜筒平移至标尺中部,并调节调焦手轮4,使物镜接近牛顿环装置表面。
(4)对读数显微镜调焦:缓缓转动调焦手轮4,使显微镜筒由下而上移动进行调焦,直至从目镜视场中清楚地看到牛顿环干涉条纹且无视差为止;然后再移动牛顿环装置,使目镜中十字刻线交点与牛顿环中心大致重合。
3. 观察条纹的分布特征。
各级条纹的粗细是否一致,条纹间隔是否一样,并做出解释。
观察牛顿环中心是亮斑还是暗斑,若为亮斑,如何解释?
4.测量暗环的直径。
转动读数显微镜读数鼓轮,同时在目镜中观察,使十字刻线由牛顿环中央缓慢向一侧移动至23环然后退回第22环,自第22环开始单方向移动十字刻线,每移动一环记下相应的读数直到第13环,然后再从同侧第10环开始记到第1环;穿过中心暗斑,从另一侧第1环开始依次记数到第10环,然后从第13环直至第22环。
并将所测数据记入数据表格中。
注意事项
1. 牛顿环仪、劈尖、透镜和显微镜的光学表面不清洁,要用专门的擦镜纸轻轻揩拭。
2. 读数显微镜的测微鼓轮在每一次测量过程中只能向一个方向旋转,中途不能反转。
3. 当用镜筒对待测物聚焦时,为防止损坏显微镜物镜,正确的调节方法是使镜筒移
离待测物(即提升镜筒)。
数据记录及处理
一、数据处理
根据计算式λ)(42
2n m D D R n
m --=,对m D ,n D 分别测量n 次,因而可得n 个R i 值,于是
有∑==
n
i i R R 1
,我们要得到的测量结果是R
R R σ
±=。
下面将简要介绍一下R σ的计算。
由
不确定度的定义知:2
2j i R U S +=σ
其中,A 分量为
)(11
21
2R n R n S n
i i i --=
∑= B 分量为 ∑==n
i i j U n U 1
1 (i U 为单次测量的B 分量)
2
222)()(
n m D n
i D m i j D R D R U σσ∂∂+∂∂=
λ)(2n m D D R m m i -=∂∂ λ
)(2n m D D R n
n i --=
∂∂ 由显微镜的读数机构的测量精度可得3
1
201.0⋅=
==n m D D D σσσ(mm ) 于是有 2
2)(2n m D
j D D n m U +-=λ
σ
二、数据记录表
思考题
1.牛顿环干涉条纹形产生的条件是什么?
2.为什么说测量显微镜测量的是牛顿环的直经,而不是显微镜内被放大了的直经?
若改变显微镜的放大倍率,是否影响测量的结果。
3.如何用等厚干涉原理检验光学平面的表面质量?。