线性规划单纯形法
单纯形法与线性规划问题
单纯形法与线性规划问题线性规划是一种优化问题,其基本形式是在给定的约束条件下,使目标函数最大或最小。
这种问题在工业、商业、农业和社会等领域有着广泛的应用。
在解决线性规划问题时,单纯形法是一种经典和常用的算法。
本文将介绍单纯形法和其在线性规划问题中的应用。
一、单纯形法概述单纯形法是一种基于向量空间的方法,其基本思想是沿着可行解空间中的边缘逐步搜索找到最优解。
单纯形法的运算是建立在基向量的概念上,基向量是指满足线性不可约条件的可行解基组成的向量。
单纯形法的步骤如下:1. 构造首行,确定初始基向量。
2. 选择离目标函数最远并且为正的变量,称为入基变量。
3. 选择离约束最近的基变量,称为出基变量。
4. 通过 Gauss-Jordan 消元法计算新的基向量组,确定更新后的基向量。
5. 重复步骤 2-4 直至无法选择入基变量为止。
6. 找到目标函数的最优解。
二、线性规划问题线性规划问题的一般形式如下:$$\max_{x_1,x_2,\dots,x_n\ge0}f(x_1,x_2,\dots,x_n)$$$$\text{s.t.}\begin{cases}\sum_{j=1}^na_{1j}x_j\le b_1\\\sum_{j=1}^na_{2j}x_j\le b_2\\\dots\dots\\\end{cases}$$其中,$f(x_1,x_2,\dots,x_n)$ 为线性目标函数,$a_{ij}$ 和$b_i$ 均为常数。
三、单纯形法解决线性规划问题1. 转化为标准型单纯形法只能用于标准型的线性规划问题,因此需要将原始问题转化为标准型。
标准型的形式如下:$$\max_{x_1,x_2,\dots,x_n\ge0}\sum_{j=1}^nc_jx_j$$$$\text{s.t.}\begin{cases}\sum_{j=1}^na_{1j}x_j\le b_1\\\sum_{j=1}^na_{2j}x_j\le b_2\\\dots\dots\\\end{cases}$$2. 添加松弛变量将约束条件转化为等式形式时需要添加松弛变量,松弛变量是一种关于决策变量的人工变量,其值可以取负数。
单纯形法求解过程
单纯形法求解过程单纯形法是一种经典的线性规划求解方法,它是由乔治·达竞士等人在1947年提出的。
该方法的基本思想是,通过在单纯形空间内不断移动顶点的位置来寻找最优解。
单纯形法是目前广泛应用的线性规划求解方法之一,它求解线性规划问题可大大地简化计算过程。
单纯形法的求解过程包括以下几个步骤:1. 将线性规划问题转化为标准形式线性规划问题的标准形式为:$ \max_{x} \ \ c^T x $$s.t. \ Ax=b$$x\geq 0$其中,$x$是要求解的向量;$b$是一个常数向量;$A$是一个$m\times n$的矩阵;$c$是一个常数向量。
2. 初始化单纯形表因为单纯形法是通过移动顶点来寻找最优解的方法,因此需要初始化单纯形表。
单纯形表是将原始的约束条件表示为不等式形式时形成的。
例如,对于一个带有3个变量的线性规划问题,其单纯形表的形式如下:CB | X1 | X2 | X3 | X4 | RHS----|-----|-----|-----|-----|----0 | a11| a12| a13| 0 | b10 | a21| a22| a23| 0 | b20 | a31| a32| a33| 0 | b31 | z1 | z2 | z3 | 0 | 0其中,CB代表成本系数,X1、X2、X3、X4分别代表变量。
a11、a12、a13等代表矩阵A中的元素,b1、b2、b3代表矩阵b中的元素。
3. 选择进入变量和离开变量在单纯形表中,规定最后一列为等式右边的常数(RHS),即b。
在单纯形法的求解过程中,首先需要选择一个“进入变量”,即在单纯形表的第一行中,寻找一个系数为正的变量,使得将其加入目标函数后,目标函数值可以上升。
这里以X1为例,X1为进入变量。
接着,需要选择一个“离开变量”,即在单纯形表中,寻找一个使得添加X1变量后,约束条件不改变且取得约束条件中系数最小的一个变量离开。
单纯形法
max z = − 3 x1 + x3 + 0x4 + 0x5
化标准型
x1 + x 2 + x 3 + x4 − x5 −2 x1 + x2 − x3 s .t . 3 x2 + x3 x1 , x 2 , x 3 , x4 , x5
=4 =1 =9 ≥0
max z = − 3 x1 + x3 + 0x4 + 0x5 − Mx6 − Mx7
13
单纯形法引例 Max Z=40X1 +50X2 X1 +2X2 +X3 3X1 +2X2 2X2 X1 … X5 ≥0 +X4 =30 =60
+X5 =24
14
解:(1)、确定初始基本可行解 、 B=(P3 P4 P5)=I
Z =0 +40X1+50X2 X3 =30-( X1+ 2X2 ) X4=60-( 3X1+ 2X2) X5 =24 令X1 = X2 =0 X(1) =(0, 0, 30, 60, 24)T Z(1) =0
线性规划的单纯形法
The Simplex Method
1
§4.1 线性规划模型的几种表示
1.标准形式 1.标准形式 max z = c1 x1 + c2 x2 + … + cn xn s.t. a11 x1 + … a1j xj+ … + a1n xn a21 x1 + … a2j xj+ … + a2n xn …… am1 x1 + … amj xj + … + amn xn = bm x1 , … , xj ,… ,xn ≥ 0 = b1 = b2
单纯形法的计算步骤
变量作为换出变量。
L
min
bi
aik
a ik
0
单纯形法旳计算环节
Page 4
③ 用换入变量xk替代基变量中旳换出变量,得到一种新旳基。 相应新旳基能够找出一种新旳基可行解,并相应地能够画出 一种新旳单纯形表。
④ 5)反复3)、4)步直到计算结束为止。
单纯形法旳计算环节
将3化为1
换入列
j
乘
,
x2
,
x3
,
x4
0
Page 1
单纯形法旳计算环节
Page 2
2)求出线性规划旳初始基可行解,列出初始单纯形表。
j
检验数
1 c1 (c3a11 c4a21 ) 3 (0 2 0 1) 3
单纯形法旳计算环节
Page 3
3)进行最优性检验
假如表中全部检验数 止。不然继续下一步。
,j 则表0中旳基可行解就是问题旳最优解,计算停
单纯形法旳计算环节
例1.8 用单纯形法求下列线性规划旳最优解
max Z 3 x1 4 x2
2 x1 x2 40
x1
3x2
30
x1
,
x2
0
解:1)将问题化为原则型,加入松驰变量x3、x4则原则型为:
max Z 3 x1 4 x2
2 x1 x2 x3 40
x1
3x2
x4
30
x1
以
1/3 后
j
得
到
j
30 5/3 0 10 1/3 1
5/3 0
18 1
0
40
1
0
0
Page 5
bi /ai2,ai2>0
运筹学单纯形法
16
三、其他解旳情况 1、无穷多种解 例2 解LP问题:
min Z x1 2 x2 x3 0 x4 0 x5
xx51
1 2c 5 3c
其中c是满足非负性旳任意常数。
21
再由
x1,
x5
旳非负性,知:
x1 x2
1 2c c
0 0
x5 5 3c 0
解出 0 c 5 3
最优解为:
(2c 1, c,0,0,5 3c)T (其中0 c 5 )
3
最优值为:max S 1.
22
2、无最优解旳两种情况:
相应地,将 X 0代入目的函数得 Z ( X 0 ) 0
从数学角度看,若让非基变量 x1, x2 取值从零增长,
6
min Z 2x1 x2 0x3 0x4 0x5
相应旳目旳函数值Z也将随之降低。所以有可能找到一种 新旳基本可行解,使其目旳函数值有所改善。即进行基变
换,换一种与它相邻旳基。再注意到 x1 前旳系数-2比 x2
x3
6 x1 x1
2x2 x2
x4 x5
xi 0
i 1,,5
15 24 5
目前可行基{ x3, x4 , x5 }所相应旳基本可行解
X 0 (0,0,15,24,5)T
(相应可行域旳 o(0,0) )
显然不是最优。 因为从经济意义上讲, x1 0, x2 0
意味着该厂不安排生产,所以没有利润。
2
线性规划与单纯形法
线性规划与单纯形法线性规划(Linear Programming)是一种在资源有限的情况下,通过最优化目标函数来确定最佳解决方案的数学优化方法。
而单纯形法(Simplex Method)则是一种常用的求解线性规划问题的算法。
本文将介绍线性规划与单纯形法的基本概念和运算步骤,以及实际应用中的一些注意事项。
一、线性规划的基本概念线性规划的基本思想是在一组线性不等式约束条件下,通过线性目标函数的最小化(或最大化)来求解最优解。
其中,线性不等式约束条件可表示为:```a1x1 + a2x2 + ... + anxn ≤ b```其中,x1、x2、...、xn为决策变量,a1、a2、...、an为系数,b为常数。
目标函数的最小化(或最大化)可表示为:```min(c1x1 + c2x2 + ... + cnxn)```或```max(c1x1 + c2x2 + ... + cnxn)```其中,c1、c2、...、cn为系数。
二、单纯形法的基本思想单纯形法是由乔治·丹尼尔·丹齐格尔(George Dantzig)于1947年提出的求解线性规划问题的算法。
其基本思想是通过逐步迭代改进当前解,直至达到最优解。
三、单纯形法的运算步骤1. 初等列变换:将线性规划问题转化为标准型,即将所有约束条件转化为等式形式,并引入松弛变量或人工变量。
2. 初始化:确定初始可行解。
通常使用人工变量法来获得一个初始可行解。
3. 检验最优性:计算当前基础解的目标函数值,若目标函数值小于等于零,则该基础解即为最优解。
否则,进入下一步。
4. 基本可行解的变换:选择一个入基变量和一个出基变量,并进行基本变换,得到新的基础解。
5. 迭代求解:根据目标函数值是否小于等于零,判断是否达到最优解。
若达到最优解,则算法终止;若未达到最优解,则返回步骤3进行下一轮迭代。
四、单纯形法的实际应用注意事项1. 线性规划问题的约束条件必须是线性的,且可行解集合必须是有界的。
线性规划的解法
线性规划的解法线性规划是现代数学中的一种重要分支,它是研究如何在一定约束条件下优化某种目标函数的一种数学方法。
在现实生活中,许多问题都可以用线性规划求解。
如在生产中,如何安排产品的产量才能最大化利润;在运输中,如何安排不同的运输方式最大程度降低成本等等。
线性规划的解法有多种,下面我们就来对其进行详细的介绍。
1. 单纯形法单纯形法是线性规划中最重要的求解方法之一,它是由Dantzig于1947年提出的。
单纯形法的基本思路是从某一个初始解出发,通过挑选非基变量,使得目标函数值逐步减少,直到得到一个最优解。
单纯形法的求解过程需要确定初始解和逐步迭代优化的过程,所以其求解复杂度较高,但是在实际中仍有广泛应用。
2. 对偶线性规划法对偶线性规划法是一种将线性规划问题转化为另一个线性规划问题来求解的方法。
这种方法的主要优势是,它可以用于求解某些无法用单纯形法求解的问题,如某些非线性规划问题。
对偶线性规划法的基本思路是将原问题通过拉格朗日对偶性转化为对偶问题,然后求解对偶问题,最终得到原问题的最优解。
3. 内点法内点法是一种由Nesterov和Nemirovsky于1984年提出的方法,它是一种不需要寻找可行起点的高效的线性规划求解方法。
内点法的基本思路是通过不断向可行域的内部靠近的方式来求解线性规划问题。
内点法的求解过程需要实现某些特殊的算法技术,其求解效率高,可以解决一些规模较大、约束条件复杂的线性规划问题。
4. 分枝定界法分枝定界法是一种通过逐步将线性规划问题分解成子问题来求解的方法。
这种方法的基本思路是,在求解一个较大的线性规划问题时,将其分解成若干个较小的子问题,并在每个子问题中求解线性规划问题,在不断逐步求解的过程中不断缩小问题的规模,最终得到问题的最优解。
总之,不同的线性规划解法各有千秋,根据实际问题的需要来选择合适的求解方法是非常重要的。
希望本文能够对您有所帮助。
单纯形法
四、单纯形法的实现——单纯形表
例1:煤电油例 Max Z=7 x1 +12x2 9 x1 +4x2≤360 化为标准型 s.t. 4x1 +5x2 ≤200 3 x1 +10x2 ≤300 x1 , x2≥0 s.t. Max Z=7 x1 +12x2 9 x1 +4x2 +x3 4x1 +5x2 3 x1 +10x2 x1 ,…,x5≥0 +x4 =360 = 200
•
“≥”型约束,减松弛变量;
练习1.3 请将例1.1的约束化为标准型
Maxz = 7 x1 + 12 x 2 ⎧9 x1 + 4 x 2 ≤ 360 ⎪4 x1 + 5 x 2 ≤ 200 s.t.⎨ 3x1 + 10 x 2 ≤ 300 ⎪x , x ≥ 0 ⎩ 1 2
则约束化为
= 360 ⎧9 x1 + 4 x 2 + x3 ⎪4 x + 5 x 2 + x4 = 200 s.t.⎨ 1 3 x1 + 10 x 2 + x5 = 300 ⎪x , x , x , x , x ≥ 0 ⎩ 1 2 3 4 5
例4 下面为某线性规划的约束
=1 ⎧ x1 + 2 x2 + x3 ⎪ + x4 = 3 ⎨2 x1 − x2 ⎪ x1 , , x4 ≥ 0 ⎩ 请例举出其基矩阵和相应的基向量、基变量。
解:
本例中, A = ⎡1 2 1 0⎤,A中的2阶可逆子阵有 ⎢ 2 − 1 0 1⎥ ⎦ ⎣
问题:本例的A中一共有几个基?—— 6个。
易见,增加的松弛变量的系数恰构成一个单位阵I。
一般地,记松弛变量的向量为 X s,则
单纯形法原理
单纯形法原理
单纯形法是线性规划中常用的一种方法,用于求解极值问题。
它的基本思想是通过不断迭代的方式,逐渐接近最优解。
单纯形法的基本步骤如下:
1. 将线性规划问题转化为标准型。
标准型的约束条件为≤,目标函数为最大化,且所有变量的取值范围为非负数。
2. 利用人为变量引入的方法,将标准型问题转化为初始单纯形表。
3. 选择合适的初始基变量,并计算出对应的基变量解。
4. 计算单纯形表中的评价函数。
如果所有评价函数中的系数都为非负数,则当前基变量解为最优解,过程结束。
否则,继续进行下一步。
5. 选择进入变量和离开变量。
进入变量是指取值为负的评价函数系数对应的变量,离开变量是指进入变量在当前基变量解中最先达到0的变量。
6. 迭代计算,通过变换基变量,逐渐接近最优解。
具体的计算方式为将进入变量对应列调整为单位向量,同时更新初始单纯形表中其它列的数值。
7. 重复步骤4至步骤6,直至得到最优解为止。
值得注意的是,单纯形法的执行依赖于初始基变量的选择,不同的初始基变量可能会得到不同的最优解。
因此,在实际应用中,需要通过灵活选择初始基变量来提高求解效果。
线性规划中的单纯形法分析
线性规划中的单纯形法分析在数学和运筹学领域中,线性规划是一种优化问题的数学建模方法,通过最小化或最大化线性目标函数,同时满足一系列线性等式和不等式约束条件。
而单纯形法则是一种广泛应用于线性规划问题求解的算法,它通过迭代计算来找到最优解。
本文将对线性规划中的单纯形法进行详细分析。
一、线性规划基本概念在介绍单纯形法之前,我们需要先了解线性规划的基本概念。
线性规划包括目标函数、决策变量和约束条件三个主要部分。
目标函数是线性规划问题中待优化的目标,可以是最大化或最小化某个线性表达式。
决策变量是这个问题中需要确定的变量,它们的取值将影响到目标函数的结果。
约束条件则是对决策变量的限制条件,可以是等式或不等式。
二、单纯形法的基本原理单纯形法是由美国数学家Dantzig于1947年提出的一种求解线性规划问题的有效算法。
该算法基于以下基本原理:在每一次迭代中,通过选择合适的决策变量进行优化,使目标函数的值不断逼近最优解。
具体而言,单纯形法通过构造一个初始可行解,然后通过迭代计算找到一个更优的解。
三、单纯形法的步骤1. 构造初始可行解:根据约束条件,求解一组可行解,并将其用于下一步的迭代计算。
2. 检验最优性:计算当前解的目标函数值,判断是否满足最优性要求。
3. 选择进入变量:根据规则选择一个进入变量,即使得目标函数值增加最大的变量。
4. 选择离开变量:根据规则选择一个离开变量,即使目标函数值达到最大的变量离开。
5. 更新解的值:根据进入变量和离开变量,更新当前解的值。
6. 返回步骤2,直至达到最优解或无界。
四、单纯形法的优缺点1. 优点:a) 单纯形法适用于大多数线性规划问题,并且可以找到全局最优解。
b) 算法相对简单直观,易于理解和实现。
c) 在实践中,单纯形法已被证明是一种高效的求解方法。
2. 缺点:a) 即使是对于中等规模的问题,单纯形法的计算复杂度也很高,需要大量的迭代计算。
b) 在某些特殊情况下,单纯形法可能会陷入循环,并无法找到最优解。
线性规划-单纯形法
选x2为入基变量。
2. 出基变量的确定
要在原来的3个基变量s1,s2,s3中确定一个出基变量 如果把s3作为出基变量,则新的基变量为x2,s1,s2,
x2 +s1=300,
bj 350 125 350 125
s3
zj
0
2
-2M
1
-M
0
M
0
M
1
0
0
600
300
0 -M -M
σj=cj-zj
-2+2M -3+M -3+M -M 0
0
0
-475M
cB a1 1 x1 -M -2
x1
x2
s1
s2
s3
a1
a2
-2
0 1
-3
1 0
0
-1 0
0
1 -1
0
0 0
-M -M
1 0 -1 1
x1 10
3 5 5 10
x2 9
2 5 6 9
x3 4
4 1 3 4
x4 6
2 3 1 6
x5 0
1 0 0 0
x6 0
0 1 0 0
x7 0
0 0 1 0
bj
bj/aj1
70 70/3 60 60/5 25 25/5
0
σj=cj-zj
cB x5 x6 x1 0 0 10
x1 10
0 0 1 0
z1 z0 j x j
jJ
x j≥ 0 j ≤0
单纯形法、大M法、两阶段法
对于一些问题,大M法可能无法得到精确解,且需要人工选择足够大的M值,容易造成 误差。
04 两阶段法
两阶段法的原理
01
两阶段法是一种求解线性规划问题的迭代算法,它将问题分 解为两个阶段进行求解。
02
第一阶段是预处理阶段,通过引入松弛变量和剩余变量,将 原问题转化为标准形式。
03
第二阶段是求解标准形式的问题,通过迭代更新变量的值, 直到找到最优解或满足终止条件。
04
约束条件是决策变量必须满足的条件,通常表示为 $a_1x_1 + a_2x_2 + ldots + a_nx_n leq b$或 $a_1x_1 + a_2x_2 + ldots + a_nx_n = b$。
02 单纯形法
单纯形法的原理
线性规划问题是在一组线性不等式约束下,最大化或最小化一个线性目标 函数。单纯形法是一种求解线性规划问题的迭代算法。
03 大M法
大M法的原理
大M法是一种求解线性规划问题的近似算法,其基本思想是通过引入一个足够大的常数M,将原问题转化 为一个易于求解的近似问题。
在大M法中,将约束条件中的“≤”或“≥”替换为“=”,并引入一个新变量,使得近似问题在某种意义 下逼近原问题。
大M法的步骤
1. 确定原问题的约束 条件和目标函数。
线性规划的应用场景
生产计划
01
在制造业中,线性规划可以用于制定生产计划,优化资源配置,
提高生产效率。
物流优化
02
在物流领域,线性规划可以用于优化运输路线、仓储布局和配
送方案,降低成本。
金融投资
03
在金融领域,线性规划可以用于投资组合优化,帮助投资者在
第一章线性规划及单纯形法
第一章线性规划及单纯形法6.6单纯形法小结Drawingontheexampl,thetwoaxisinterceptsareplotted.2、求初始基可行解并进行最优性检验Cj比值CBXBb 检验数?jx1x2x3x4x53500081010012020103634001x3x4x5000035000令非基变量x1=0,x2=0,找到一个初始基可行解:x1=0,x2=0,x3=8,x4=12,x5=36,σj>0,此解不是最优(因为z=3x1+5x2+0x3+0x4+0x5)即X0=(0,0,8,12,36)T,此时利润Z=03、寻找另一基可行解Cj比值CBXBb检验数?jx1x2x3x4x53500081010012020103634001x3x4x5000035000-12/2=636/4=9主元首先确定入基变量再确定出基变量检验数?j81010060101/2012300-21x3x2x5050-30300-5/20Cj比值CBXBb检验数?jx1x2x3x4x53500081010012020103634001x3x4x5000035000-12/2=636/4=9令x1=0,x4=0,得x2=6,x3=8,x5=12,即得基可行解X1=(0,6,8,0,12)T此时Z=30σ1=3>0,此解不是最优迭代4、寻找下一基可行解Cj比值CBXBb检验数?jx1x2x3x4x53500081010060101/2012300-21x3x2x5050-30300-5/208-4检验数?j40012/3-1/360101/204100-2/31/3x3x2x1053-42000-1/2-1令x4=0,x5=0,得x1=4,x2=6,x3=4,即X0=(4,6,4,0,0)T?j<0最优解:X=(4,6,4,0,0)T最优值:Z=42小结:单纯形表格法的计算步骤①将线性规划问题化成标准型。
②找出或构造一个m阶单位矩阵作为初始可行基,建立初始单纯形表。
单纯形法的原理
单纯形法是一种线性规划的求解方法,其基本思想是在线性规划问题的可行域内,通过不断迭代,逐步找到最优解。
单纯形法的原理可以概括为以下几个步骤:1. 确定线性规划问题的可行域:对于一个线性规划问题,首先需要确定其可行域,即所有满足约束条件的解的集合。
可行域通常是一个凸多边形,也可以表示为一个凸锥。
2. 确定初始基:在单纯形法中,我们需要选取一个初始基,即一个初始的可行解,来开始迭代过程。
初始基可以是一个非基变量为零的点,也可以是通过某种启发式算法得到的一个初始可行解。
3. 判断最优解:在得到初始基之后,我们需要判断该基是否是最优解。
如果该基对应的目标函数值已经满足要求,则该基是最优解。
否则,我们需要找到一个非基变量,其对应的系数在约束条件下最小,来继续迭代。
4. 确定换入变量:在找到一个非基变量后,我们需要确定一个换入变量,即需要被替换掉的那个基变量。
通常情况下,我们选择当前基中对应的系数最小的非基变量作为换入变量。
5. 进行迭代:在确定了换入变量之后,我们需要进行迭代,将当前基中的某个基变量替换为非基变量,得到一个新的基。
具体来说,我们可以使用高斯消元法来计算新的基变量的系数,并更新当前基的矩阵表示。
6. 判断收敛:在完成一次迭代后,我们需要判断当前基是否已经收敛到最优解。
如果当前基已经满足精度要求,或者达到了一定的迭代次数上限,我们可以认为已经找到了最优解,停止迭代。
否则,我们需要回到步骤3,继续迭代过程。
单纯形法的原理比较简单,其核心思想是通过不断迭代,逐步逼近最优解。
该方法具有良好的数值稳定性和广泛的应用范围,是求解线性规划问题的一种常用方法之一。
需要注意的是,在实际应用中,单纯形法可能会面临一些问题,例如初始基的选择、系数矩阵的奇异性等问题,需要进行一定的处理和优化。
除了单纯形法外,还有许多其他的线性规划求解方法,例如内点法、外点法、椭球算法等。
这些方法各有优缺点和适用范围,可以根据具体问题的特点进行选择和组合使用。
单纯形法标准型
单纯形法标准型单纯形法是一种用于求解线性规划问题的有效方法,它通过不断地移动解向可行域的极端点来寻找最优解。
在实际应用中,线性规划问题往往需要转化为标准型,然后再利用单纯形法进行求解。
本文将对单纯形法标准型进行详细介绍,以便读者能够更好地理解和运用这一方法。
首先,我们来看一下线性规划问题的标准型是如何定义的。
线性规划问题的标准型可以表示为:Max z = c₁x₁ + c₂x₂ + ... + cₙxₙ。
Subject to:a₁₁x₁ + a₁₂x₂ + ... + a₁ₙxₙ≤ b₁。
a₂₁x₁ + a₂₂x₂ + ... + a₂ₙxₙ≤ b₂。
...aₙ₁x₁ + aₙ₂x₂ + ... + aₙₙxₙ≤ bₙ。
x₁, x₂, ..., xₙ≥ 0。
其中,c₁, c₂, ..., cₙ为目标函数的系数,aᵢⱼ为约束条件的系数,b₁, b₂, ..., bₙ为约束条件的右端常数,x₁, x₂, ..., xₙ为决策变量。
接下来,我们将线性规划问题转化为标准型。
对于不等式约束,如果右端常数为负数,则可以通过乘以-1的方式将其转化为非负数。
对于大于等于的约束条件,可以引入松弛变量将其转化为小于等于的形式。
这样,原始的线性规划问题就可以转化为标准型,方便后续的求解。
然后,我们将介绍单纯形法的基本思想和步骤。
单纯形法的基本思想是从一个基本可行解出发,通过不断地移动到更优的基本可行解,直到找到最优解为止。
单纯形法的步骤包括,选择初始基本可行解、确定入基变量和出基变量、计算新的基本可行解、更新目标函数值等。
通过这些步骤,我们可以逐步逼近最优解,并最终找到最优解。
最后,我们需要注意单纯形法的一些特殊情况。
在实际应用中,可能会出现无界解、无可行解或者多个最优解的情况。
针对这些特殊情况,我们需要进行相应的处理,以确保线性规划问题能够得到正确的解。
总之,单纯形法标准型是线性规划问题的一种重要形式,通过将线性规划问题转化为标准型,并利用单纯形法进行求解,我们可以有效地找到最优解。
单纯形法大M法求解线性规划问题
则线性规划问题有无穷多最优解。
11
基本可行解的改进
如果现行的基本可行解X不是最优解,即在检验向量
N=CN-CBB-中1N存在正的检验数,则需在原基本可行解X的基础上
寻找一个新的基本可行解,并使目标函数值有所改善。具体做法
是:
➢ 先从检验数为正的非基变量中确定一个换入变量,使它从非基
变量变成基变量(将它的值从零增至正值),
➢ 若在化标准形式前,m个约束方程都是≤的形式, 那么在化标准形时只需在一个约束不等式左端都加上一个松弛变 量xn+i (i=12…m)。
➢ 若在化标准形式前,约束方程中有≥不等式, 那么在化标准形时除了在方程式左端减去剩余变量使不等式变 成等式以外,还必须在左端再加上一个非负新变量,称为 人工变量.
X B = B - 1 b - B - 1 N X N X B = B - 1 b - B - 1 P m + k x m + k
其中 P m + k 为A中与 x m + k 对应的系数列向量。
现在需在 X B=(x1,x2, xm )T 中确定一个基变量为换出变量。
当 x m + k由零慢慢增加到某个值时,X 的B 非负性可能被打破。
数注列 意向保量持基变P 3 量=变x换125的成系换数出列变向量量x4P所5 =对为应10 单的位单向位量向不量变。
,P 4
1 0
1 3
2 4
2 1
1 0
0 1
78 第一行除以 2 123
11
1 2
410
0 1
4 7
第二 行 减 去 第一行 1522
11 30
1 2
0
4
-1 2
线性规划单纯形法
线性规划单纯形法线性规划是一种优化问题求解方法,它通过建立数学模型,来寻找使目标函数达到最优的决策变量取值。
线性规划的主要特点是目标函数和约束条件都是线性的。
单纯形法是线性规划中最常用的求解方法之一,它是由美国数学家Dantzig在1947年提出的。
单纯形法通过迭代计算的方式,逐步优化目标函数的值,直到找到最优解为止。
单纯形法的步骤如下:1. 建立线性规划模型:确定决策变量、目标函数和约束条件,并确定它们的线性关系。
2. 初始可行解:选择一个初始可行解,使得所有的约束条件都得到满足。
一般来说,可以通过将约束条件全部转化为等式约束,从而求解出一个初始可行解。
3. 判断最优解:计算当前可行解对应的目标函数值,判断是否是最优解。
如果是最优解,则终止算法;如果不是最优解,则进入下一步。
4. 寻找进入变量:选择一个进入变量,即目标函数可以通过增加该变量的值而增大。
5. 寻找离开变量:选择一个离开变量,即通过增加进入变量来保持其他约束条件满足的同时,尽可能减小目标函数的值。
6. 更新可行解:根据进入变量和离开变量的取值更新可行解,并转化为下一个迭代的初始可行解。
7. 重复以上步骤,直到找到最优解为止。
单纯形法的优势在于它可以在有限的迭代次数内找到最优解。
然而,单纯形法的缺点也是显著的,它在处理大规模问题时计算复杂度很高,可能需要大量的计算时间。
总结来说,线性规划单纯形法是一种求解线性规划问题的有效方法。
通过迭代计算,单纯形法不断改进可行解,最终找到使目标函数达到最优的决策变量取值。
虽然单纯形法在处理大规模问题时存在一定的局限性,但在许多实际问题中仍然得到广泛应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
bi ≥0
bi < 0
≤ =≥
maxZ
minZ
约 束
xs xa
求 解
图 解 法、 单 纯 形 法
单 纯 形 法
不
令xj = xj′令 x j″ 处 xj’ = -xj
不 处 理
理
xj′ ≥0 xj″ ≥0
xj’ ≥0
约 束 条 件 两 端 同 乘 以-1
加 松 弛 变 量 xs
加 入 人 工 变 量 x a
max Z x1 2 x 2 x 3 2 x1 3 x 2 2 x 3 x 4 15 1 s .t x1 x 2 5 x 3 x 5 20 3 x j 0, j 1,2, ,5
不难看出x4、x5可作为初始基变量,列单纯形表计算。
bm 0 1 am,m1 amn m
0
0
3 1
-2
j
x2
1 0
0
17/3 1/3 1 28/9 -1/9 2/3
-98/9 -1/9 -7/3
单纯形法的计算步骤
Page 12
表1-6中所有的 j 都小于或者等于0,表明已经达到了最 优解,因此,现行的基本可行解X=(25,35 /3,0,0,0) T是最优解,Z=95/3是该线性规划的最优值。
减 去 x s, 加 入 xa
不 处 理
令 z′=- Z minZ =- max z′
0 -M
找出基变量 列出初始单纯形表
求 : j c j ci a j
i 1
m
循环
基变 有某个 否 否 唯一 量中是否 非基变量的 最优解 含有xa j 0
是 是
所有
是
j 0
否
找出 ( j )max即 k
将2化为1,本列的其他值化为0
(表1-5)Cj
cB 0 0 0 基变量 x1 x4 b 2 8 3 2 x1 1 0 0 0 3 x2 0 0 1 0
Paபைடு நூலகம்e 8
换入列
0 x3 1 -4 0 -2 0 x4 0 1 0 0 0 x5 -1/2 2 1/4 1/4 Z=13 θi
换 出 行
4
j
x2
第二步:将第一行加上第二行乘以1/2
② 确定换出变量。根据下式计算并选择θ ,选最小的θ对应基
单纯形法的计算步骤
③
Page 5
用换入变量xk替换基变量中的换出变量,得到一个新的基。 对应新的基可以找出一个新的基可行解,并相应地可以画出 一个新的单纯形表。
5)重复3)、4)步直到计算结束为止。
单纯形法的计算步骤
将4化为1,本列 的其他值化为0
单纯形法的计算步骤
单纯形表
Page 1
cj
cB
XB
c1 cm
x1 xm
c1 cm cm 1 cn i b x1 xm xm1 xn b1 1 0 a1,m1 a1n 1
bm 0 1 am,m1 amn m
单纯形法的进一步讨论-人工变量法
例1.10 用大M法解下列线性规划 max Z 3 x1 x 2 x 3
Page 15
x1 2 x 2 x3 11 4 x x 2 x 3 1 2 3 2 x1 x 3 1 x1、x2、x3 0 解:首先将数学模型化为标准形式
j
00 j c j ci aij
bi 其中: i a kj 0 a kj
单纯形法的计算步骤
例1.8 用单纯形法求下列线性规划的最优解 max Z 2 x1 3 x 2
Page 2
x1 2 x 2 8 4 x1 16 4 x 2 12 x1 , x 2 0 解:1)将问题化为标准型,加入松驰变量x3、x4、 x5则标准 型为: max Z 3 x1 4 x 2 0 x 3 0 x4 0 x5
单纯形法的计算步骤
cj
cB 0 0 基变量 x4 b 15 20
Page 11
1
x1 2 1/3
2
x2 -3 1
1
x3 2 5
0
x4 1 0
0
x5 0 1
θi
j
x5
- 20 25 60
2
0
j
1
2
x2
x1
x4
75 3 20 1/3 1/3
25 35/3
1
0 1 0 0 1
0
2
17 5
-9
1
1 0 0
1 4 0 2
表1-4
0 0 1 0
1 0 0 0
0 1 0 0
-1/2 0 1/4 -3/4
x2
j
第二步:将第一行减去第三行乘以2 第一步:将第三行除以4
单纯形法的计算步骤
将4化为0
(表1-4)Cj
cB 0 0 0 基变量 x3 x4 b 2 16 3
Page 7
换入列
2 x1 1 4 0 2 3 x2 0 0 1 0 0 x3 1 0 0 0
2 0 3 x1 x5
4 4 2
1 0 0 0
表1-6
0 0 1 0
0 -2 1/2 -3/2
1/4 1/2 -1/8 -1/8
0 1 0
x2
j
0
第一步:将第二行除以2 第三步:将第三行减去第二行乘以1/4
单纯形法的计算步骤
Page 9
表1-6中所有的 j 都小于或者等于0,表明已经达到了最 优解,因此,现行的基本可行解X=(4,2,0,0,4)T是 最优解,Z=14是该线性规划的最优值。
Page 3
0 1 c1 (0 c3a11 c4a21 c5a31 ) 2 (0 1 0 0 4 0 0) 2 x3 1 x4 0 x5 0
θi
4
0
0
x4
x5
16
12
4
0 2
0
4 3
0
0 0
1
0 0
0
1 0
-3 Z=0
j
检验数
1 c1 (c3a11 c4a21 c5a31 ) 2 (0 1 0 4 0 0) 2
(表1-3)cj
cB 0 0 0 基变量 x3 x4 b 8 16 12
Page 6
换入列
2 x1 1 4 0 2 3 x2 2 0 4 3 0 x3 1 0 0 0
bi /ai2,ai2>0
0 x4 0 1 0 0 0 x5 0 0 1 0 θi
j
x5
4 3
Z=0
换 出 行
0 0 3
x3 x4
2 16 3
x1 2 x 2 x 3 8 4 x1 x4 16 4 x 2 x5 12 x1 , x 2 , x 3 , x4 , x5 0
单纯形法的计算步骤
2)求出线性规划的初始基可行解, 列出初始单纯形表。 cj CB 0 XB x3 b 8 2 x1 1 3 x2 2
1
-M-1 -5/3 -2 -7/3 M+2/3
——
j
单纯形法的总结
解的判别:
Page 18
1)唯一最优解判别:最优表中所有非基变量的检验数非 零,则线 规划具有唯一最优解。 2)多重最优解判别:最优表中存在非基变量的检验数为 零,则线则性规划具有多重最优解(或无穷多最优解)。
j >0且aij≤0(i=1,2,…,m)则线 3)无界解判别:某个 性规 划具有无界解。
max Z 3 x1 x 2 x 3 0 x4 0 x5 x1 2 x 2 x 3 x4 11 4 x x 2 x x 3 1 2 3 5 2 x1 x 3 1 x j 0, j 1,2, ,5
Page 17
θi 11 3/2 1
j
→ →
—— 1 —— 4
j
1-3M -5 -2
→
——
-1
3 -1 -1
j
x1 x2 x3 4 1 9
x3
-2
1↑ 1 0 0 0
0
0 0 1 0 0
1
0 0 0 1 0
0
0 1/3 0 2/3 -1/3
0
-1 -2/3 -1 -4/3 -1/3
0
-M+1 2/3 1 4/3 M+1/3
2 c2 (c3a12 c4a22 c5a32 ) 3 (0 2 0 0 0 4) 3
单纯形法的计算步骤
Page 4
3)进行最优性检验 如果表中所有检验数 0 ,则表中的基可行解就是问题 j 的最优解,计算停止。否则继续下一步。 4)从一个基可行解转换到另一个目标值更大的基可行解, 列出新的单纯形表
单纯形法的计算步骤
例1.9 用单纯形法求解
max Z x1 2 x 2 x 3 2 x1 3 x 2 2 x 3 15 1 s .t x1 x 2 5 x 3 20 3 x1、x 2、x 3 0
Page 10
解:将数学模型化为标准形式:
单纯形法的进一步讨论-人工变量法
cj CB 0 -M -M 0 -M -1 0 -1 XB x4 x6 x7 x4 x6 x3 x4 x2 b 11 3 1 10 1 1 12 1 3 x1 1 -4 -2 3-6M 3 0 -2 1 3 0 -1 x2 -2 1 0 -1+M -2 1 0 -1+M↑ 0 1 -1 x3 1 2 1 -1+3M↑ 0 0 1 0 0 0 0 x4 1 0 0 0 1 0 0 0 1 0 0 x5 0 -1 0 -M 0 -1 0 -M -2 -1 -M x6 0 1 0 0 1 1 0 0 2 1 -M x7 0 0 1 0 -1 -2 1