北大随机过程课件:第 2 章 第 5 讲 马尔可夫链应用分析举例
合集下载
5马尔可夫链(精品PPT)
所以{Xn,n≥0}是马尔可夫链,且
pij P( X n 1 j X n i ) P( f i, Yn 1 j ) P( f i, Y1 j )
二、切普曼-柯尔莫哥洛夫方程
1,随机矩阵 定义:称矩阵A=(aij)S×S为随机矩阵,若aij ≥0,且
i S , 有 aij 1
例5 Polya(波利亚)模型
罐中有b只黑球及r只红球,每次随机地取出一只后 把原球放回,并加入与抽出球同色的球c只,再第二次 随机地取球重复上面步骤进行下去,{Xn=i}表示第n回 摸球放回操作完成后,罐中有i只黑球这一事件,所以
i b r nc , i P X n 1 j X n i 1 , b r nc 0,
x
j i 1
( j i 1)!
dG x ,
j i 1, i 1 其它
Pij 0,
例3 G / M /1排队系统 来到时间间隔分布为G,服务时间分布为指数分布,参 数为 ,且与顾客到达过程独立。 Xn-----第n个顾客来到时见到系统中的顾客数(包括 该顾客),则{Xn,n≥1}是马尔可夫链。记
jS
显然马尔可夫链{Xn,n≥0}的一步转移概率矩阵P为 随机矩阵。 2,n步转移概率 定义:设{Xn,n≥0}是一马尔可夫链,称
n pij P X n m j X m i ,
n 0, i, j 0
为马尔可夫链{Xn,n≥0}的n步转移概率。记
i (n) P X n i ,
j ic j i else
这是一个非齐次的马尔可夫链,在传染病研究中有用。
下面的定理提供了一个非常有用的获得马尔可夫链的方 法,并可用于检验一随机过程是否为马尔可夫链。
pij P( X n 1 j X n i ) P( f i, Yn 1 j ) P( f i, Y1 j )
二、切普曼-柯尔莫哥洛夫方程
1,随机矩阵 定义:称矩阵A=(aij)S×S为随机矩阵,若aij ≥0,且
i S , 有 aij 1
例5 Polya(波利亚)模型
罐中有b只黑球及r只红球,每次随机地取出一只后 把原球放回,并加入与抽出球同色的球c只,再第二次 随机地取球重复上面步骤进行下去,{Xn=i}表示第n回 摸球放回操作完成后,罐中有i只黑球这一事件,所以
i b r nc , i P X n 1 j X n i 1 , b r nc 0,
x
j i 1
( j i 1)!
dG x ,
j i 1, i 1 其它
Pij 0,
例3 G / M /1排队系统 来到时间间隔分布为G,服务时间分布为指数分布,参 数为 ,且与顾客到达过程独立。 Xn-----第n个顾客来到时见到系统中的顾客数(包括 该顾客),则{Xn,n≥1}是马尔可夫链。记
jS
显然马尔可夫链{Xn,n≥0}的一步转移概率矩阵P为 随机矩阵。 2,n步转移概率 定义:设{Xn,n≥0}是一马尔可夫链,称
n pij P X n m j X m i ,
n 0, i, j 0
为马尔可夫链{Xn,n≥0}的n步转移概率。记
i (n) P X n i ,
j ic j i else
这是一个非齐次的马尔可夫链,在传染病研究中有用。
下面的定理提供了一个非常有用的获得马尔可夫链的方 法,并可用于检验一随机过程是否为马尔可夫链。
马尔可夫链课件
1的概率向左或向右移动一 3
格,或以
Q现在处于1(或5)这 1的概率留在原处;如果 3
一点上,则下一时刻就以概率1移动到2(或4)这点上,1 和5这两点称为反射壁,这种游动称为带有两个反射壁的
随机游动。以Xn表示时刻n时Q的位置,说明{Xn,n =
0,1,2 …}是一齐次马氏链,并写出它的一步转移概率矩 阵。
二、转移概率
定义3 设 { X n,n 0} 是齐次马尔可夫链,其一步 矩阵的每一行都 转移概率为 pij (i, j S ),记 是一条件分布律
p00 p10 P ( pij ) p 20 pi 0
.
p 01 p 02 p11 p12 p 21 p 22 pi1 pi 2
1 2 3 4 5
三、马氏链的例子
解:它的一步转移概率矩阵为: 0 1 0 0 0
1 3 P 0 0 0
1 3 1 3 1 3 1 3 1 3
0
1 3 1 3
0 0
0
1
0 0 1 3 0
如果把1这点改为吸收壁,即Q一旦到达1这一点,则永远 留在点1时,此时的转移概率矩阵为:
• 第一节 基本概念 • 第二节 状态的分类及性质 • 第三节 极限性态及平稳分布
• 第四节 Markov链的应用
第一节
基本概念
一、Markov链的定义 二、转移概率 三、Markov链的例子 四、n步转移概率,C-K方程
第一节
基本概念
一、Markov链的定义
马尔可夫性(无后效性 )过程(或系统)在时刻t 所处的状态为已知的条件下,过程在时
1 1 3 P 0 0 0 0
1 3 1 3
0
格,或以
Q现在处于1(或5)这 1的概率留在原处;如果 3
一点上,则下一时刻就以概率1移动到2(或4)这点上,1 和5这两点称为反射壁,这种游动称为带有两个反射壁的
随机游动。以Xn表示时刻n时Q的位置,说明{Xn,n =
0,1,2 …}是一齐次马氏链,并写出它的一步转移概率矩 阵。
二、转移概率
定义3 设 { X n,n 0} 是齐次马尔可夫链,其一步 矩阵的每一行都 转移概率为 pij (i, j S ),记 是一条件分布律
p00 p10 P ( pij ) p 20 pi 0
.
p 01 p 02 p11 p12 p 21 p 22 pi1 pi 2
1 2 3 4 5
三、马氏链的例子
解:它的一步转移概率矩阵为: 0 1 0 0 0
1 3 P 0 0 0
1 3 1 3 1 3 1 3 1 3
0
1 3 1 3
0 0
0
1
0 0 1 3 0
如果把1这点改为吸收壁,即Q一旦到达1这一点,则永远 留在点1时,此时的转移概率矩阵为:
• 第一节 基本概念 • 第二节 状态的分类及性质 • 第三节 极限性态及平稳分布
• 第四节 Markov链的应用
第一节
基本概念
一、Markov链的定义 二、转移概率 三、Markov链的例子 四、n步转移概率,C-K方程
第一节
基本概念
一、Markov链的定义
马尔可夫性(无后效性 )过程(或系统)在时刻t 所处的状态为已知的条件下,过程在时
1 1 3 P 0 0 0 0
1 3 1 3
0
第5章 马尔可夫链PPT课件
状态.
精选PPT课件
18
马尔可夫链
一般,一个特定的参保人年理赔要求的次数是参数为λ 的泊松随机变量,那么此参保人相继的状态将构成一个马 尔可夫链,并具有转移概率
但昨天没下雨,那么明天下雨的概率为0.5;如果昨天下雨
但今天没下雨,那么明天下雨的概率为0.4;如果昨、今两
天都没下雨,那么明天下雨的概率为0.2.
假设在时间n的状态只依赖于在时间n-1是否下雨,那么
上述模型就不是一个马尔可夫链.
但是,当假定在任意时间的状态是由这天与前一天两者
的天气条件所决定时,上面的模型就可以转变为一个马尔
令Xn为第n天结束时的存货量,则
XSX-nYn-nY++n1+1=,1,
若Xn≥s, 若Xn<s.
构成的{Xn,n≥1}是Markov链.
例5.11 以Sn表示保险公司在时刻n的盈余,这里的时间以
适当的单位来计算(如天,月等), 初始盈余S0=x显然为
已知,但未来的盈余S1,S2,…却必须视为随机变量,增量
参保人的状态随着参保人要求理赔的次数而一年一年
地变化.低的状态对应于低的年保险金. 如果参保人在上
一年没有理赔要求,他的状态就将降低; 如果参保人在上
一年至少有一次理赔要求,他的状态一般会增加(可见,无
理赔是好的,并且会导致低保险金;而要求理赔是坏的,一
般会导致更高的保险金).
对于给定的一个好-坏系统, 以si(k)记一个在上一年 处在状态i,且在该年有k次理赔要求的参保人在下一年的
矩阵为
p11 p12 p13 p14
P=
p21 p22 p23 p24 0010
0001
例5.5(赌徒的破产或称带吸收壁的随机游动)系统的状态
随机过程课件-马尔可夫链
定理二
对于不可约的马尔可夫链,其极限分 布是遍历的,即极限分布与初始状态 无关。
05
马尔可夫链的模拟与实现
随机数生成
伪随机数生成器
使用数学公式和种子值生成一系列近似 随机的数列。
VS
真随机数生成器
利用物理现象(如电路噪音)产生真正的 随机数。
马尔可夫链蒙特卡洛方法
采样分布
通过多次重复模拟马尔可夫链的路径来估计 某个事件的概率或某个参数的值。
收敛性
随着模拟次数的增加,估计值逐渐接近真实 值。
马尔可夫链在决策分析中的应用
要点一
决策树
要点二
强化学习
将马尔可夫链应用于决策分析中,帮助决策者评估不同策 略的风险和收益。
在强化学习中,马尔可夫链用于描述环境状态转移和奖励 函数。
06
马尔可夫链的扩展与改进
时齐马尔可夫链
定义
时齐马尔可夫链是指时间 参数为离散的马尔可夫链 ,其状态转移概率不随时 间而变化。
遍历性是马尔可夫链达到平稳分布的必要条件之一,也是判 断马尔可夫链是否具有唯一平稳分布的重要依据。
03
马尔可夫链的转移概率
转移概率的定义与性质
定义
马尔可夫链中,给定当前状态$i$,未来状态$j$在某个时间步长内发生的概率称为转移 概率,记作$P(i,j)$。
性质
转移概率具有非负性、归一性和时齐性。非负性指$P(i,j) geq 0$;归一性指对于每个 状态$i$,所有可能转移到该状态的转移概率之和为1,即$sum_{ j} P(i,j) = 1$;时齐性
周期性会影响马尔可夫链的平稳分来自的性质和计算。状态空间的分解
状态空间的分解是将状态空间划分为若干个子集,每个子集内的状态具有相似的 性质和转移概率。
对于不可约的马尔可夫链,其极限分 布是遍历的,即极限分布与初始状态 无关。
05
马尔可夫链的模拟与实现
随机数生成
伪随机数生成器
使用数学公式和种子值生成一系列近似 随机的数列。
VS
真随机数生成器
利用物理现象(如电路噪音)产生真正的 随机数。
马尔可夫链蒙特卡洛方法
采样分布
通过多次重复模拟马尔可夫链的路径来估计 某个事件的概率或某个参数的值。
收敛性
随着模拟次数的增加,估计值逐渐接近真实 值。
马尔可夫链在决策分析中的应用
要点一
决策树
要点二
强化学习
将马尔可夫链应用于决策分析中,帮助决策者评估不同策 略的风险和收益。
在强化学习中,马尔可夫链用于描述环境状态转移和奖励 函数。
06
马尔可夫链的扩展与改进
时齐马尔可夫链
定义
时齐马尔可夫链是指时间 参数为离散的马尔可夫链 ,其状态转移概率不随时 间而变化。
遍历性是马尔可夫链达到平稳分布的必要条件之一,也是判 断马尔可夫链是否具有唯一平稳分布的重要依据。
03
马尔可夫链的转移概率
转移概率的定义与性质
定义
马尔可夫链中,给定当前状态$i$,未来状态$j$在某个时间步长内发生的概率称为转移 概率,记作$P(i,j)$。
性质
转移概率具有非负性、归一性和时齐性。非负性指$P(i,j) geq 0$;归一性指对于每个 状态$i$,所有可能转移到该状态的转移概率之和为1,即$sum_{ j} P(i,j) = 1$;时齐性
周期性会影响马尔可夫链的平稳分来自的性质和计算。状态空间的分解
状态空间的分解是将状态空间划分为若干个子集,每个子集内的状态具有相似的 性质和转移概率。
随机过程课件-马尔可夫链
随机过程课件-马尔可夫 链
本课件将介绍随机过程中一种重要的模型——马尔可夫链。探讨马尔可夫链 的定义、特性、应用及改进方法,展望其未来发展。
什么是随机过程?
随机过程是一种数学模型,用于描述随机变量在时间上的演化。根据性质和分类不同,随机过程可分为多种类 型。
马尔可夫链的概念
定义
马尔可夫链是一种随机过程,具有马尔可夫性质,即未来状态仅与当前状态相关。
马尔可夫链的局限性和优缺点
马尔可夫链具有简单、易于实现的优点,但在某些情况下存在局限性。
马尔可夫链的未来发展方向
未来,马尔可夫链有望结合更多机器学习、深度学习技术,在更多领域得到应用和改进。
马尔可夫链的改进
局限性
马尔可夫链模型在某些情况下存 在局限性,如长期依赖性和大状 态空间问题。
改进方法
针对马尔可夫链的局限性,研究 者提出了多种改进方法,如隐马 尔可夫模型和条件随机场。
马尔可夫决策过程
马尔可夫决策过程是对马尔可夫 链进行扩展,引入了决策和奖励 机制,用于解决决策问题。
总结与展望
马尔可夫链的平稳分布
平稳分布是马尔可夫链在长期 运行后,状态分布稳定的概率 分布。
马尔可夫链的应用
1
模拟系统
2
马尔可夫链在模拟系统中用于模拟随机
事件和状态转移,如队列模型和流程模
3
型。
自然语言处理
马尔可夫链在自然语言处理中用于语言 模型、文本生成和机器翻译等。
金融领域
马尔可夫链在金融领域中用于风险评估、 投资组合优化和市场分析等。
特性
马尔可夫链具有无记忆性、状态空间有限、状态转移概率固定等特性。
状态转移图
马尔可夫链可用状态转移图表示,展示各状态之间的转移概率。
本课件将介绍随机过程中一种重要的模型——马尔可夫链。探讨马尔可夫链 的定义、特性、应用及改进方法,展望其未来发展。
什么是随机过程?
随机过程是一种数学模型,用于描述随机变量在时间上的演化。根据性质和分类不同,随机过程可分为多种类 型。
马尔可夫链的概念
定义
马尔可夫链是一种随机过程,具有马尔可夫性质,即未来状态仅与当前状态相关。
马尔可夫链的局限性和优缺点
马尔可夫链具有简单、易于实现的优点,但在某些情况下存在局限性。
马尔可夫链的未来发展方向
未来,马尔可夫链有望结合更多机器学习、深度学习技术,在更多领域得到应用和改进。
马尔可夫链的改进
局限性
马尔可夫链模型在某些情况下存 在局限性,如长期依赖性和大状 态空间问题。
改进方法
针对马尔可夫链的局限性,研究 者提出了多种改进方法,如隐马 尔可夫模型和条件随机场。
马尔可夫决策过程
马尔可夫决策过程是对马尔可夫 链进行扩展,引入了决策和奖励 机制,用于解决决策问题。
总结与展望
马尔可夫链的平稳分布
平稳分布是马尔可夫链在长期 运行后,状态分布稳定的概率 分布。
马尔可夫链的应用
1
模拟系统
2
马尔可夫链在模拟系统中用于模拟随机
事件和状态转移,如队列模型和流程模
3
型。
自然语言处理
马尔可夫链在自然语言处理中用于语言 模型、文本生成和机器翻译等。
金融领域
马尔可夫链在金融领域中用于风险评估、 投资组合优化和市场分析等。
特性
马尔可夫链具有无记忆性、状态空间有限、状态转移概率固定等特性。
状态转移图
马尔可夫链可用状态转移图表示,展示各状态之间的转移概率。
《马尔可夫链讲》课件
平稳分布的概率分布函数与时间无关,只与系统的状态空间和转移概率矩阵有关。
在平稳分布下,系统的各个状态之间转移的次数趋于平衡,每个状态的平均逗留时 的 马尔可夫链,都存在至少一个平
稳分布。
存在性定理的证明基于遍历理论 ,即如果马尔可夫链是遍历的,
那么它必然存在平稳分布。
根据接受概率判断是否接受样本的技 术,可以提高样本的质量和效率。
接受-拒绝抽样技术
接受概率
根据目标分布和当前状态计算出的概率,用于判断是否接受当前状态 转移为下一个状态。
拒绝概率
根据当前状态和接受概率计算出的概率,用于判断是否拒绝当前状态 转移为下一个状态。
接受-拒绝抽样过程
根据当前状态和接受概率计算出接受该状态的概率,如果该概率大于 随机数,则接受该状态作为下一个状态,否则拒绝并重新抽样。
详细描述
马尔可夫链定义为一个随机过程,其 中每个状态只与前一个状态有关,当 前状态只依赖于前一时刻的状态,不 受到过去状态的影响。
马尔可夫链的应用场景
总结词
马尔可夫链在多个领域有广泛应用。
详细描述
在自然语言处理中,马尔可夫链可以用于生成文本、语言模型等;在金融领域 ,马尔可夫链可以用于股票价格预测、风险评估等;在物理学中,马尔可夫链 可以用于描述粒子运动、化学反应等。
模型训练与预测
模型选择
根据数据特点和业务需求选择合适的马尔可 夫链模型。
模型训练
使用历史数据训练马尔可夫链模型。
参数设置
根据经验和业务理解设置模型参数。
预测与推断
基于训练好的模型对未来或未知数据进行预 测和推断。
结果评估与优化
评估指标
选择合适的评估指标(如准确率、召回率、F1值等)对预测结果进行评估。
在平稳分布下,系统的各个状态之间转移的次数趋于平衡,每个状态的平均逗留时 的 马尔可夫链,都存在至少一个平
稳分布。
存在性定理的证明基于遍历理论 ,即如果马尔可夫链是遍历的,
那么它必然存在平稳分布。
根据接受概率判断是否接受样本的技 术,可以提高样本的质量和效率。
接受-拒绝抽样技术
接受概率
根据目标分布和当前状态计算出的概率,用于判断是否接受当前状态 转移为下一个状态。
拒绝概率
根据当前状态和接受概率计算出的概率,用于判断是否拒绝当前状态 转移为下一个状态。
接受-拒绝抽样过程
根据当前状态和接受概率计算出接受该状态的概率,如果该概率大于 随机数,则接受该状态作为下一个状态,否则拒绝并重新抽样。
详细描述
马尔可夫链定义为一个随机过程,其 中每个状态只与前一个状态有关,当 前状态只依赖于前一时刻的状态,不 受到过去状态的影响。
马尔可夫链的应用场景
总结词
马尔可夫链在多个领域有广泛应用。
详细描述
在自然语言处理中,马尔可夫链可以用于生成文本、语言模型等;在金融领域 ,马尔可夫链可以用于股票价格预测、风险评估等;在物理学中,马尔可夫链 可以用于描述粒子运动、化学反应等。
模型训练与预测
模型选择
根据数据特点和业务需求选择合适的马尔可 夫链模型。
模型训练
使用历史数据训练马尔可夫链模型。
参数设置
根据经验和业务理解设置模型参数。
预测与推断
基于训练好的模型对未来或未知数据进行预 测和推断。
结果评估与优化
评估指标
选择合适的评估指标(如准确率、召回率、F1值等)对预测结果进行评估。
《马尔科夫链》课件
通过马尔科夫链模型,生成具 有连贯性的自然语言文本。
六、总结
优点与缺点
马尔科夫链具有简化模型、 易于计算的优点,但忽略了 过去信息和状态空间有限的 缺点。
应用前景
随着人工智能和数据科学的 发展,马尔科夫链在各个领 域的应用将得到更广泛的推 广。
发展趋势
未来马尔科夫链可能进一步 发展和改进,并与其他模型 和技术相结合,实现更强大 的应用。
《马尔科夫链》PPT课件
马尔科夫链是一种概率模型,常用于描述离散时间过程的转移规律。本课件 将详细介绍马尔科夫链的概述、基本概念、应用和常见问题,并通过实际案 例分析展示其重要性和应用前景。
一、概述
定义
马尔科夫链是一种离散时间、离散状态的随机过程,其未来状态仅依赖于当前状态。
特点
马尔科夫链具有无后效性、状态转移 Markov 性、齐次性和有限状态空间等特点。
1 自然语言处理
马尔科夫链可用于模拟语言模型、文本生成和自动翻译等。
2 计算机网络
马尔科夫链可以用来建立网络流量模型、分析网络性能和优化网络传输。
3 金融市场
马尔科夫链在金融市场中的应用包括股票价格预测、投资组合优化和风险管理。四、马尔科ຫໍສະໝຸດ 链的常见问题1收敛性
马尔科夫链是否会收敛到一个稳定状
长期行为
2
态?如何判断?
马尔科夫链在长期运行时会以何种形
式表现?
3
平稳分布
马尔科夫链是否存在一个平稳的状态 分布?如何计算?
五、马尔科夫链的实际案例分析
语音识别
马尔科夫链可用于语音识别系 统中,对语音信号进行建模和 识别。
股票涨跌预测
利用马尔科夫链分析历史股票 价格,预测未来股票价格的涨 跌趋势。
六、总结
优点与缺点
马尔科夫链具有简化模型、 易于计算的优点,但忽略了 过去信息和状态空间有限的 缺点。
应用前景
随着人工智能和数据科学的 发展,马尔科夫链在各个领 域的应用将得到更广泛的推 广。
发展趋势
未来马尔科夫链可能进一步 发展和改进,并与其他模型 和技术相结合,实现更强大 的应用。
《马尔科夫链》PPT课件
马尔科夫链是一种概率模型,常用于描述离散时间过程的转移规律。本课件 将详细介绍马尔科夫链的概述、基本概念、应用和常见问题,并通过实际案 例分析展示其重要性和应用前景。
一、概述
定义
马尔科夫链是一种离散时间、离散状态的随机过程,其未来状态仅依赖于当前状态。
特点
马尔科夫链具有无后效性、状态转移 Markov 性、齐次性和有限状态空间等特点。
1 自然语言处理
马尔科夫链可用于模拟语言模型、文本生成和自动翻译等。
2 计算机网络
马尔科夫链可以用来建立网络流量模型、分析网络性能和优化网络传输。
3 金融市场
马尔科夫链在金融市场中的应用包括股票价格预测、投资组合优化和风险管理。四、马尔科ຫໍສະໝຸດ 链的常见问题1收敛性
马尔科夫链是否会收敛到一个稳定状
长期行为
2
态?如何判断?
马尔科夫链在长期运行时会以何种形
式表现?
3
平稳分布
马尔科夫链是否存在一个平稳的状态 分布?如何计算?
五、马尔科夫链的实际案例分析
语音识别
马尔科夫链可用于语音识别系 统中,对语音信号进行建模和 识别。
股票涨跌预测
利用马尔科夫链分析历史股票 价格,预测未来股票价格的涨 跌趋势。
北大随机过程课件:第 2 章 第 5 讲 马尔可夫链应用分析举例
i= j
= ( c − j )d 0
c− j c c−a b ua = = c c uj =
同样道理,可以得到乙先输光的概率, 当 r ≠ 1 , ua = 当 r= 1 , ub =
1 − (q / p) a , 1 − (q / p) c
a 。 c
该例题是有两个吸收壁的特例, 建立了边界条件、递推关系、首先概率表达式, 该例题着重研究对称和非对称的赌徒输光的问题。
构造:
( p + q )u j = pu j +1 + qu j −1 p (u j − u j +1 ) = q(u j −1 − u j ) (u j − u j +1 ) =
定义
q (u j −1 − u j ) p q =r, p
(u j − u j +1 ) = d j , (0 ≤ j < c),
建模:具有两个吸收壁,五个状态的随机游动
1.一局比赛的建模 问题:一局比赛共有多少个状态 很多,例如 15:0 就是一个状态,40:15 又是一个状态。还是回到我们分析比赛规则的目 的上来,我们是为了得到两名选手最终赢球与输球的概率,那么当一局比赛打到 30:40 的时 候, 如果选手 B 再取胜一球, 则 30:60, 选手 B 获胜, 而之前这局比赛到底是怎么打到 30:40 的并不是我们关心的问题,我们只关心一局比赛会打到 30:40 的概率(初始概率)以及之后 由状态 30:40 打到状态 30:60 的概率(转移概率) 。这是典型的马尔科夫链。 那么我们实际要做的事情就是如何确定比赛中对我们的分析有用的状态以及这些状态
例 2:网球比赛
网球比赛在选手 A 和 B 之间进行。网球的计分制是 15,30,40 和 60 分,如果选手 A 赢了 第一球,比分是 15:0,否则比分是 0:15。如果选手 A 接着赢了第二球,比分为 30:0,如果 A 接着赢了第三球,比分为 40:0,如果 A 再接着赢了第四球,则比分为 60:0,选手 A 赢得 该局比赛。当选手 A 赢了第一球而输了第二球,对手 B 得 15 分,从而比分为 15:15。平分 是指第六球后双方分数相同(例如 30:30,40:40,…)。在平分后,接下来的一球如果选手 A 得分/失分,则称此时的状态为 A 占先/B 占先。如果 A 在占先后再得分,则选手 A 赢得该 局。如果选手 B 在占先后再得分,则选手 B 赢得该局。 一旦第一局比赛结束,选手进入第二局比赛,直到一方赢得至少 6 局且至少领先对手两局, 这样该方获得一盘比赛的胜利。因而,一盘结束时的比分为下列情形之一:6:0,6:1,6:2, 6:3,6:4,7:5,8:6,…或是它们的逆序等等(实际规则中采用了决胜局的办法避免一盘比赛 的时间过长,此处不详细讨论)。一盘结束后,进行另一盘,直到一方赢得三盘中的两盘(或 五盘中的三盘) ,从而赢得整场比赛。 试对网球比赛中一局比赛的规则进行分析讨论。
= ( c − j )d 0
c− j c c−a b ua = = c c uj =
同样道理,可以得到乙先输光的概率, 当 r ≠ 1 , ua = 当 r= 1 , ub =
1 − (q / p) a , 1 − (q / p) c
a 。 c
该例题是有两个吸收壁的特例, 建立了边界条件、递推关系、首先概率表达式, 该例题着重研究对称和非对称的赌徒输光的问题。
构造:
( p + q )u j = pu j +1 + qu j −1 p (u j − u j +1 ) = q(u j −1 − u j ) (u j − u j +1 ) =
定义
q (u j −1 − u j ) p q =r, p
(u j − u j +1 ) = d j , (0 ≤ j < c),
建模:具有两个吸收壁,五个状态的随机游动
1.一局比赛的建模 问题:一局比赛共有多少个状态 很多,例如 15:0 就是一个状态,40:15 又是一个状态。还是回到我们分析比赛规则的目 的上来,我们是为了得到两名选手最终赢球与输球的概率,那么当一局比赛打到 30:40 的时 候, 如果选手 B 再取胜一球, 则 30:60, 选手 B 获胜, 而之前这局比赛到底是怎么打到 30:40 的并不是我们关心的问题,我们只关心一局比赛会打到 30:40 的概率(初始概率)以及之后 由状态 30:40 打到状态 30:60 的概率(转移概率) 。这是典型的马尔科夫链。 那么我们实际要做的事情就是如何确定比赛中对我们的分析有用的状态以及这些状态
例 2:网球比赛
网球比赛在选手 A 和 B 之间进行。网球的计分制是 15,30,40 和 60 分,如果选手 A 赢了 第一球,比分是 15:0,否则比分是 0:15。如果选手 A 接着赢了第二球,比分为 30:0,如果 A 接着赢了第三球,比分为 40:0,如果 A 再接着赢了第四球,则比分为 60:0,选手 A 赢得 该局比赛。当选手 A 赢了第一球而输了第二球,对手 B 得 15 分,从而比分为 15:15。平分 是指第六球后双方分数相同(例如 30:30,40:40,…)。在平分后,接下来的一球如果选手 A 得分/失分,则称此时的状态为 A 占先/B 占先。如果 A 在占先后再得分,则选手 A 赢得该 局。如果选手 B 在占先后再得分,则选手 B 赢得该局。 一旦第一局比赛结束,选手进入第二局比赛,直到一方赢得至少 6 局且至少领先对手两局, 这样该方获得一盘比赛的胜利。因而,一盘结束时的比分为下列情形之一:6:0,6:1,6:2, 6:3,6:4,7:5,8:6,…或是它们的逆序等等(实际规则中采用了决胜局的办法避免一盘比赛 的时间过长,此处不详细讨论)。一盘结束后,进行另一盘,直到一方赢得三盘中的两盘(或 五盘中的三盘) ,从而赢得整场比赛。 试对网球比赛中一局比赛的规则进行分析讨论。
马尔可夫链精品PPT课件
1,i=j .
例2.1 (一维随机游动)
12345
设一随机游动的质点, 在如右上图所示的
直线点集I={1,2,3,4,5}作随机游动,并且仅仅在1秒,2秒
…等时刻发生游动.游动的概率规则是:如果Q现在位于点
i(1<i<5), 则下一时刻各以1/3的概率向左或向右移动
一格,或以1/3的概率留在原处; 如果Q现在位于点1(或5)
式.
利用积事件的概率及上述定义知: P{X0=i0,X1=i1,…,Xn=in} =P{Xn=in|X0=i0,X1=i1,…,Xn-1=in-1}P{X0=i0,X1=i1,…, Xn-1=in-1} =P{Xn=in|Xn-1=in-1}P{X0=i0,X1=i1,…,Xn-1=in-1} =… =P{Xn=in|Xn-1=in-1}P{Xn-1=in-1|Xn-2=in-2}…P{X1=i1| X0=i0}P{X0=i0}.
即马尔可夫链的统计特性完全由条件概率
P{Xn+1=in+1|Xn=in} 所决定. 如何确定这个条件概率,是马尔可夫链理论和应
用中的重要问题之一.
2.转移概率 条件概率P{Xn+1=j|Xn=i}的直观含义是:系统在时刻n处
于状态i的条件下,在时刻n+1系统处于状态j的概率.这相 当于随机游动的质点在时刻n处于状态i的条件下,下一步 转移到状态j的概率.
pij(n)为pij. 下面只讨论齐次马尔可夫链,并将齐次两字省略.
设I=P{为1,一2,步转移概率pij所组成的矩阵,状态空间
…},则 P=
p11 p12 … p1n … p21 p22 … p2n … … … … ……
pi1 pi2 … pin … …… … … …
例2.1 (一维随机游动)
12345
设一随机游动的质点, 在如右上图所示的
直线点集I={1,2,3,4,5}作随机游动,并且仅仅在1秒,2秒
…等时刻发生游动.游动的概率规则是:如果Q现在位于点
i(1<i<5), 则下一时刻各以1/3的概率向左或向右移动
一格,或以1/3的概率留在原处; 如果Q现在位于点1(或5)
式.
利用积事件的概率及上述定义知: P{X0=i0,X1=i1,…,Xn=in} =P{Xn=in|X0=i0,X1=i1,…,Xn-1=in-1}P{X0=i0,X1=i1,…, Xn-1=in-1} =P{Xn=in|Xn-1=in-1}P{X0=i0,X1=i1,…,Xn-1=in-1} =… =P{Xn=in|Xn-1=in-1}P{Xn-1=in-1|Xn-2=in-2}…P{X1=i1| X0=i0}P{X0=i0}.
即马尔可夫链的统计特性完全由条件概率
P{Xn+1=in+1|Xn=in} 所决定. 如何确定这个条件概率,是马尔可夫链理论和应
用中的重要问题之一.
2.转移概率 条件概率P{Xn+1=j|Xn=i}的直观含义是:系统在时刻n处
于状态i的条件下,在时刻n+1系统处于状态j的概率.这相 当于随机游动的质点在时刻n处于状态i的条件下,下一步 转移到状态j的概率.
pij(n)为pij. 下面只讨论齐次马尔可夫链,并将齐次两字省略.
设I=P{为1,一2,步转移概率pij所组成的矩阵,状态空间
…},则 P=
p11 p12 … p1n … p21 p22 … p2n … … … … ……
pi1 pi2 … pin … …… … … …
随机过程第二章课件
0.7 0.3 设 0.7, 0.4 ,则一步转移概率矩阵为 P 0.4 0.6
于是,两步转移概率矩阵和四步转移概率矩阵分别为
p00 P p 10
p01 p11
1 1
2.1 马尔可夫过程的定义
【二】马尔可夫链定义:
【性质】对于马尔可夫链,它的联合概率具有如下性质:
PX n in X 0 i0 , X 1 i1,, X n1 in1PX 0 i0 , X 1 i1,, X n1 in1 PX n in X n1 in1PX 0 i0 , X 1 i1,, X n1 in1
f tm , xm t1 , t2 ,, tm1; x1 , x2 ,, xm1 f t1 , t2 ,, tm1; x1 , x2 ,, xm1 f tm , xm tm1 , xm1 f t1 , t2 ,, tm1; x1 , x2 ,, xm1 f xm xm1 f xm1 xm2 f x2 x1 f x1
0.61 0.39 P 2 P P 0.52 0.48
0.5749 P 4 P 2 P 2 0.5668
0.4251 0.4332
由此可知,今日有雨且第四日仍有雨的概率为
4 p00 0.5749
2.1 马尔可夫过程的定义
【三】转移概率:
【定义二】高步转移概率: 设X n , n 0 为一马尔可夫链,对任意的 整数 0, n 0 ,及状态 j I ,记 i, m
pijm n PX n m j X n i
称为 m 步转移概率。它表示在时刻 n 时, X n 的状态为 i 的条件 m 下,经过 m 步转移到状态 j 的概率。 pij n 具有如下性质:
《马氏链及其应用》课件
马氏链的性质
总结词
马氏链具有无记忆性、强马尔可夫性和转移概率性等性质。
详细描述
马氏链的一个重要性质是无记忆性,即下一个状态与过去状 态无关,只与当前状态有关。此外,马氏链还具有强马尔可 夫性和转移概率性等性质,这些性质使得马氏链在描述随机 现象时具有独特的优势。
马氏链的分类
要点一
总结词
马氏链可以分为离散时间和连续时间的马氏链,以及有向 和无向的马氏链。
机器学习算法
马氏链在强化学习中用于 估计策略值函数和近似最 优策略,提高机器学习的 效率和准确性。
图像处理
通过马氏链模拟图像的随 机过程,实现图像的降噪 、增强和修复等处理。
数据压缩
利用马氏链对数据进行编 码和压缩,降低存储和传 输成本,提高数据处理的 效率。
在其他领域的应用
物理学中的随机过程模拟
在生态领域的应用
种群动态模拟
01
马氏链用于模拟物种数量的变化过程,研究种群的增长规律和
生态平衡机制。
生态系统稳定性分析
02
通过马氏链分析生态系统中的反馈机制和稳定性条件,评估生
态系统受到干扰后的恢复能力。
生物多样性保护
03
利用马氏链预测物种的灭绝风险和保护策略,为生物多样性保
护提供科学依据。
在计算机科学领域的应用
马氏链面临的挑战和问题
理论体系的完善
马氏链理论体系仍需不 断完善和发展,以适应 不断涌现的新问题和挑 战。
应用领域的拓展
尽管马氏链在某些领域 已经取得广泛应用,但 仍需拓展更多应用领域 ,解决实际问题。
计算效率的提高
随着数据规模的增大, 如何提高马氏链的计算 效率成为亟待解决的问 题。
THANKS
随机过程第5讲(马尔科夫链定义和性质)课件
(k 1, 2 ),在从 k 经时段 r 转移到状态 j”等事
件的和事件, 如下图所示:
k
j
i
o
n
2021/6/29
nm
郑州大学信息工程学院
nmr t
14
• C-K方程是指(n)在n时处于状态i的条件下经过m+r步转移与
n+m+r时到达状态j,可以先在n时从状态i出发,经过m步于 n+m时到达某种中间状态k,再在n+m时从状态k出发经过r 步转移于n+m+r时到达最终状态j,而中间状态k要取遍整个 状态空间。 • C-K方程也可以用矩阵形式表示:
夫链,它的一步转移矩阵为 :
P
p00 p10
p01 p11
1 1
设=0.7, =0.4,则一步转移概率矩阵为
P
0.7 0.4
0.3 0.6
2021/6/29
郑州大学信息工程学院
18
则两步转移概率矩阵: 四步转移概率矩阵:
由此可知,今日有雨且第四日仍有雨的概率为:P00(4)=0.5749
2021/6/29
10
齐次马尔可夫链
• 定义:如果在马尔可夫链中 P{ξ(k 1) j/ξk i} pij
即从i状态转移到j状态的概率与k无关,则称这类马尔可 夫链为齐次马尔可夫链。 • 设P代表一步转移概率pij所组成的矩阵,且状态空间I由 状态0,1,2,…所组成,则
一步转移概率矩 阵P中每个元素为 非负,每行之和 均为1。
是如何到达i的完全无关。所以它是一个齐次马尔可夫链, 其状态空间为I: {…,-2,-1,0,1,2,…}, 而其一步转移概率 为:
2021/6/29
郑州大学信息工程学院
件的和事件, 如下图所示:
k
j
i
o
n
2021/6/29
nm
郑州大学信息工程学院
nmr t
14
• C-K方程是指(n)在n时处于状态i的条件下经过m+r步转移与
n+m+r时到达状态j,可以先在n时从状态i出发,经过m步于 n+m时到达某种中间状态k,再在n+m时从状态k出发经过r 步转移于n+m+r时到达最终状态j,而中间状态k要取遍整个 状态空间。 • C-K方程也可以用矩阵形式表示:
夫链,它的一步转移矩阵为 :
P
p00 p10
p01 p11
1 1
设=0.7, =0.4,则一步转移概率矩阵为
P
0.7 0.4
0.3 0.6
2021/6/29
郑州大学信息工程学院
18
则两步转移概率矩阵: 四步转移概率矩阵:
由此可知,今日有雨且第四日仍有雨的概率为:P00(4)=0.5749
2021/6/29
10
齐次马尔可夫链
• 定义:如果在马尔可夫链中 P{ξ(k 1) j/ξk i} pij
即从i状态转移到j状态的概率与k无关,则称这类马尔可 夫链为齐次马尔可夫链。 • 设P代表一步转移概率pij所组成的矩阵,且状态空间I由 状态0,1,2,…所组成,则
一步转移概率矩 阵P中每个元素为 非负,每行之和 均为1。
是如何到达i的完全无关。所以它是一个齐次马尔可夫链, 其状态空间为I: {…,-2,-1,0,1,2,…}, 而其一步转移概率 为:
2021/6/29
郑州大学信息工程学院
马尔科夫链模型及其应用PPT课件
n 时状态概率趋于稳定值,稳定值与初始状态无关
第9页/共27页
马尔科夫链:应用 保险公司
Xn=3为第三种状态 死亡
a1(n+1)=a1(n)p11+a2(n)p21+a3(n)p31 a2(n+1)=a1(n)p12+a2(n)p22+a3(n)p32 a3(n+1)=a1(n)p13+a2(n)p23+a3(n)p33
给定a(0),预测a(n), n=1,2…
设投保 时健康
n
0
a1(n) 1
a2(n) 0
1
2
3
……
0.8 0.78 0.778 …… 7/9
0.2 0.22 0.222 …… 2/9
设投保 时疾病
n
0
a1(n) 1
a2(n) 0
1
2
3
……
0.7 0.77 0.777 …… 7/9
0.3 0.33 0.333 …… 2/9
第15页/共27页
隐马尔科夫模型
一个隐马尔可夫模型 HMM 可用一个5元组描述:λ= { N, M,π, A,B }
N = {H1,…,Hn} 隐藏状态的有限集合 M = {O1,…,Om} 可观测状态的有限集合,可以通过训练集获得 π={πi} 为初始状态概率, A={aij} 为隐藏状态的转移矩阵 B={bik} 表示某个时刻因隐藏状态而可观察的状态的概率,即混淆矩阵 在状态转移矩阵和混淆矩阵中的每个概率都是时间无关的,即当系统演化时, 这些矩阵并不随时间改变。
Kiss
0.6*0.5
Star t
0.4*0.1
H 0.3
*0.7*0.4=0.084
随机过程马尔科夫过程 ppt课件
3442马尔可夫链的状态分类ijij3542马尔可夫链的状态分类ii1称状态i为非常返的ii不返回到i期望值表示由i出发再返回到i的平均返回时间iinfiiii定义3642马尔可夫链的状态分类首达概率与n步转移概率有如下关系式定理44对任意状态iijij定义3742马尔可夫链的状态分类ijij3842马尔可夫链的状态分类引理42周期的等价定义gcdgcd例例4848设马尔可夫链的状态空间i123转移概率矩阵为求从状态1出发经n步转移首次到达各状态的概率3942马尔可夫链的状态分类121212124042马尔可夫链的状态分类同理可得11134142马尔可夫链的状态分类以下讨论常返性的判别与性质数列的母函数与卷积的卷积的母函数4242马尔可夫链的状态分类定理45状态i常返的充要条件为规定则由定理44iiiiii4342马尔可夫链的状态分类iiiiii4442马尔可夫链的状态分类4542马尔可夫链的状态分类ii同理ii4642马尔可夫链的状态分类定理47设i常返且有周期为d则其中ndiindii4742马尔可夫链的状态分类由定理47知对d的非整数倍数的nndiindiindii4842马尔可夫链的状态分类子序列所以d1从而i为非周期的i是遍历的ndiindiilim而由定理limlimndii4942马尔可夫链的状态分类状态的可达与互通状态i与状态j互通ij
输一局后输光)
2020/11/13
23
4.1 马尔可夫链与转移概率
( p q )u i pu i 1 qu i 1
p(ui1 ui ) q (ui ui1 )
ui1 ui
q p
(ui
ui1 )
i 1,2, , c 1
(1q)1,即 pq1
p
2
ui1ui uiui1ui1ui2 u1u0 ˆ
输一局后输光)
2020/11/13
23
4.1 马尔可夫链与转移概率
( p q )u i pu i 1 qu i 1
p(ui1 ui ) q (ui ui1 )
ui1 ui
q p
(ui
ui1 )
i 1,2, , c 1
(1q)1,即 pq1
p
2
ui1ui uiui1ui1ui2 u1u0 ˆ
随机过程马尔科夫过程PPT课件
Xn i
P(Xn1 j Xn i)
记i个个体各自产生的后代数分别记为随机变量
,且
有概率分布
1,2, ,i
l (l 0,1, ,i)
P(l k) pk , k 0,1, 2
故一步转移概率为
P(Xn1 j Xn i) P(1 2 i j)
第21页/共44页
例4(卜里耶模型)设一个坛子里有b个黑球和r个红球,每次随机地从坛子中摸出
当时中国近代数学才刚刚起步,大学也没有概率课程。此时 苏联的概率论水平已届于世界最前列。王梓坤也根本不知道什么 是概率,可他的研究方向又恰恰被定为概率论, 著有《概率论基础及其应用》、《随机过程论》、 《生灭过程与马尔科夫链》等9部数学著作.
第2页/共44页
本章主要内容 马尔可夫过程的定义 马尔可夫链的转移概率与概率分布 齐次马尔可夫链状态的分类 转移概率的稳定性能
m)
(n)
P{X
nk
m
j
Xn
i)
P{( Xnk l), Xnkm j Xn i)
l
P{ ( Xnk l, Xnkm j) Xn i)
l
P( Xnk l, Xnkm j) Xn i)
l
第25页/共44页
P( Xnk l Xn i) P(Xnkm j Xn i, Xnk l)
P(k
)
(n)
(
p(k ij
)
(n))
为系统{Xn , n 0}在 n时的k步转移概率矩阵.
第9页/共44页
特别 当k=1时,
p(1) ij
(n)为系统在n时的一步转移概率,
记为 pij (n)
P(1)
(n)
(
p(1) ij
随机过程Ch5连续时间的马尔可夫链ppt课件
注:虽然前进方程和后退方程在形式上有所不同, 但两者的解都是同一的,费勒在1940年已证明。
由柯尔莫哥洛夫向前方程旳矩阵形式可得
例:设有一参数连续,状态离散的马尔可夫
过程X t,t 0,状态空间为I 1,2,, N,
当i j,时qij 1,i, j 1,2,, N,
当i 1,2,, N时,qii (N 1),求pij t 。
则器件在0, t 正常工作,即寿命超过t的概率为: PX t exdx et
t
已知器件用了t小时,器件寿命超过t h,
即在t,t h器件不坏的概率为:
p00h PX t h / X t
PX
t h, X
PX t
t
PX t h PX t
e t h et
eh
1 h
5.2柯尔莫哥洛夫微分方程
一.连续性条件(正则性条件)
规定lim t 0
pij t ij
1 0
i j i j
或lim Pt I t 0
称此为连续性条件(正则性条件)
阐明:过程刚进入某状态不可能立即又 跳跃到另一状态,这恰好阐明一种物理系统要 在有限时间内发生无限屡次跳跃,从而消耗无 穷多旳能量这是不可能旳,亦即经过很短时间 系统旳状态几乎是不变旳。
定理:设pij (t)是齐次马尔可夫过程的转移概率, 则下列极限存在:
dpij t
dt
t 0
lim
h0
pij h
h
pij 0
lim
h0
pij h ij
h
Hale Waihona Puke qij即: 1dpii t
dt
t 0
lim
h0
pii h 1
h
由柯尔莫哥洛夫向前方程旳矩阵形式可得
例:设有一参数连续,状态离散的马尔可夫
过程X t,t 0,状态空间为I 1,2,, N,
当i j,时qij 1,i, j 1,2,, N,
当i 1,2,, N时,qii (N 1),求pij t 。
则器件在0, t 正常工作,即寿命超过t的概率为: PX t exdx et
t
已知器件用了t小时,器件寿命超过t h,
即在t,t h器件不坏的概率为:
p00h PX t h / X t
PX
t h, X
PX t
t
PX t h PX t
e t h et
eh
1 h
5.2柯尔莫哥洛夫微分方程
一.连续性条件(正则性条件)
规定lim t 0
pij t ij
1 0
i j i j
或lim Pt I t 0
称此为连续性条件(正则性条件)
阐明:过程刚进入某状态不可能立即又 跳跃到另一状态,这恰好阐明一种物理系统要 在有限时间内发生无限屡次跳跃,从而消耗无 穷多旳能量这是不可能旳,亦即经过很短时间 系统旳状态几乎是不变旳。
定理:设pij (t)是齐次马尔可夫过程的转移概率, 则下列极限存在:
dpij t
dt
t 0
lim
h0
pij h
h
pij 0
lim
h0
pij h ij
h
Hale Waihona Puke qij即: 1dpii t
dt
t 0
lim
h0
pii h 1
h
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2
3
状态 4:B 赢 P4 = q + 4q p
4 4
其中状态 0 和状态 4 是两个吸收壁,因此初始概率分布为
p(0) = [ p 4 + 4 p 4 q, 4 p 3 q 2 , 6 p 2 q 2 , 4 p 2 q 3 , q 4 + 4q 4 p]
该随机游动的转移概率矩阵为
⎡1 ⎢p ⎢ P = ⎢0 ⎢ ⎢0 ⎢ ⎣0
例 2:网球比赛
网球比赛在选手 A 和 B 之间进行。网球的计分制是 15,30,40 和 60 分,如果选手 A 赢了 第一球,比分是 15:0,否则比分是 0:15。如果选手 A 接着赢了第二球,比分为 30:0,如果 A 接着赢了第三球,比分为 40:0,如果 A 再接着赢了第四球,则比分为 60:0,选手 A 赢得 该局比赛。当选手 A 赢了第一球而输了第二球,对手 B 得 15 分,从而比分为 15:15。平分 是指第六球后双方分数相同(例如 30:30,40:40,…)。在平分后,接下来的一球如果选手 A 得分/失分,则称此时的状态为 A 占先/B 占先。如果 A 在占先后再得分,则选手 A 赢得该 局。如果选手 B 在占先后再得分,则选手 B 赢得该局。 一旦第一局比赛结束,选手进入第二局比赛,直到一方赢得至少 6 局且至少领先对手两局, 这样该方获得一盘比赛的胜利。因而,一盘结束时的比分为下列情形之一:6:0,6:1,6:2, 6:3,6:4,7:5,8:6,…或是它们的逆序等等(实际规则中采用了决胜局的办法避免一盘比赛 的时间过长,此处不详细讨论)。一盘结束后,进行另一盘,直到一方赢得三盘中的两盘(或 五盘中的三盘) ,从而赢得整场比赛。 试对网球比赛中一局比赛的规则进行分析讨论。
f k ,0
p p ( )k − ( )4 1 − (q / p)4− k q q = = p 1 − (q / p )4 1 − ( )4 q
II) 选手 A 赢得一局比赛的概率
4
pg = P{选手A赢一局} = ∑ pk f k ,0 =
k =0
∑ pk [1 − (q / p)4−k ]
k =0
1, 设 r=
u0 = u0 − uc = ∑ (ui − ui +1 )
i =0 c −1
= ∑ di
i =0
c −1
= ∑ rid0
i =0
c −1
= cd 0
u j = u j − uc = ∑ (ui − ui +1 )
i= j c −1 c −1 c −1
= ∑ di
i= j
= ∑ rid0
4
1 − (q / p)
4
=
1 − ∑ pk ( q / p ) 4 − k
k =0
4
1 − (q / p)4
选手实力之比与赢下一局比赛的概率的关系的具体数值分析, : 选手技术 p 0.75 0.66 0.6 0.55 0.52 0.51 q 0.25 0.34 0.4 0.45 0.48 0.49 赢一局的概率 Pg 0.949 0.856 0.736 0.623 0.55 0.525 1-Pg 0.051 0.144 0.264 0.377 0.45 0.475
a ≥ 1, b ≥ 1 。
这个问题实际是带有两个吸收壁的随机游动问题 问题是从 a 点出发,到达 0 状态的概率,即被 0 状态吸收的概率。 设 0 < j < c , u j 为质点从 j 点出发到 0 状态的概率。由全概率公式有
u j = pu j +1 + qu j −1
边界条件为:
u0 = 1 uc = 0
题意分析:
整个题目都是在分析网球比赛规则, 而分析规则的目的在于得出不同实力的选手在这种规则 下赢球的概率。换句话说,假如有两个选手,选手 A 赢一球的概率为 p,选手 B 赢一球的 概率为 q=1-p,那么若 p>q,但是两者接近,例如 p=0.52,q=0.48,网球比赛的赛制能否保 证选手 A 在经过长时间的较量后最终有很大的概率战胜对手?相反,若两者实力悬殊,例 如 p=0.8,q=0.2,赛制能否保证选手 A 很快就能将 B 淘汰出局。这些都是我们分析比赛规 则时要关注的问题,并应该最后得出一个结论。 分出胜负的最小的单位是分,再上是局,局之上是盘(一方赢得至少 6 局且至少领先对手 2 局,这样取得一盘比赛的胜利) ,然后再上是一场比赛(可能是五盘三胜,也可能是三盘二 胜) 。我们这里暂时只分析一局比赛的规则。
图 1 一局比赛的状态转移图 在完成了上述的分析后, 我们需要做的就只是确定图 1 中的五状态随机游动中, 各状态 的初始概率了。记: 状态 0:A 赢 P0 = p + 4 p q
4 4
状态 1:A 占先 P 1 = 4p q
3
2
状态 2:平分 P2 = 6 p q
2
2
状态 3:B 占先 P 3 = 4p q
相应的差分方程是:
d j = rd j −1 = r 2 d j − 2 = L = r j d 0 ,
设 r ≠ 1,
(0 < j < c )
u0 = u0 − uc = ∑ (ui − ui +1 )
i =0 c −1
= ∑ di
i =0
c −1
= ∑ rid0
i =0
c −1
=
1− r d0 1− r
c
u j = u j − uc = ∑ (ui − ui +1 )
i= j j c −1
= ∑ di
i= j
c −1
= ∑ rid0
i= j
c −1
=
r −r d0 1− r
c
r j − rc uj = 1 − rc ua = ra − rc 1 − rc
( q / p) j − ( q / p)c = 1 − ( q / p)c = ( q / p)a − ( q / p)c 1 − ( q / p)c
系统的一步转移概率矩阵是:
⎡ pon P=⎢ ⎣1 − poff
1 − pon ⎤ poff ⎥ ⎦
(1) 求稳态分布
i= j
= ( c − j )d 0
c− j c c−a b ua = = c c uj =
同样道理,可以得到乙先输光的概率, 当 r ≠ 1 , ua = 当 r= 1 , ub =
1 − (q / p) a , 1 − (q / p) c
a 。 c
该例题是有两个吸收壁的特例, 建立了边界条件、递推关系、首先概率表达式, 该例题着重研究对称和非对称的赌徒输光的问题。
的概率,状态之间相互转移的概率。 首先我们对一局比赛中的所有状态分类,可以分为 6 大类: (1) “过渡”的状态,例如 15:0 这样的状态。 (2) A 赢的状态,例如 60:15, 60:30, 60+2:60, 60+4:60+2,… 这种状态是吸收态 (3) B 赢的状态,例如 15:60, 30:60, 40:60+1, 60+1:60+3, … 这种状态是吸收态 (4) A 占先的状态,也即 A 再赢一球就取胜,而即使 A 再输一球也只是平分的状态, 例如 40:30, 60:40 (5) B 占先的状态,也即 B 再赢一球就取胜,而即使 B 再输一球也只是平分的状态,例 如 30:40, 40:60 (6) 平分的状态,例如 30:30, 40:40, 60:60, 60+1:60+1, … 值得注意的是,15:15 不是平分状态,因为平分状态后再打一球,状态应该转移到 A 占 先或者 B 占先的状态,而 15:15 不符合这个概念。 总结上面的分析, 我们应该关心的是后面五种状态的初始概率以及这五种状态之间的转 移概率,而在得到后面五种状态的初始概率时会需要考虑“过渡”的状态,得到初始概 率后就不用考虑“过渡”的状态了。 下面一幅图是一局的状态转移示意图:
马尔可夫链 应用分析举例 例 1:赌徒输光问题:
两个赌徒进行一系列赌博,在每一局赌博中甲获胜的概率是 p,乙获胜的概率是 1-p, 每一局后,负者要付一元给胜者。如果起始时甲有资本 a 元,乙有资本 b 元,a+b=c,两人 赌博直到甲输光或乙输光为止。 求甲输光的概率。 解: 第 n 时刻甲的资本为ξ,状态空间是 I: {0,1,2, L c} , c = a 随机游动
1.一局比赛的建模 问题:一局比赛共有多少个状态 很多,例如 15:0 就是一个状态,40:15 又是一个状态。还是回到我们分析比赛规则的目 的上来,我们是为了得到两名选手最终赢球与输球的概率,那么当一局比赛打到 30:40 的时 候, 如果选手 B 再取胜一球, 则 30:60, 选手 B 获胜, 而之前这局比赛到底是怎么打到 30:40 的并不是我们关心的问题,我们只关心一局比赛会打到 30:40 的概率(初始概率)以及之后 由状态 30:40 打到状态 30:60 的概率(转移概率) 。这是典型的马尔科夫链。 那么我们实际要做的事情就是如何确定比赛中对我们的分析有用的状态以及这些状态
根据边界条件,并迭代上式,可得:
f 0,0 − f 4,0
p 1 − ( )4 q ( f 0,0 − f1,0 ) =1= p 1− q p p ( )k − ( )4 q q ( f 0,0 − f1,0 ) = p 1− q
f k ,0 − f 4,0 = f k ,0
结合上述两式,可解得:
构造:
( p + q )u j = pu j +1 + qu j −1 p (u j − u j +1 ) = q(u j −1 − u j ) (u j − u j +1 ) =
定义
q (u j −1 − u j ) p q =r, p
3
状态 4:B 赢 P4 = q + 4q p
4 4
其中状态 0 和状态 4 是两个吸收壁,因此初始概率分布为
p(0) = [ p 4 + 4 p 4 q, 4 p 3 q 2 , 6 p 2 q 2 , 4 p 2 q 3 , q 4 + 4q 4 p]
该随机游动的转移概率矩阵为
⎡1 ⎢p ⎢ P = ⎢0 ⎢ ⎢0 ⎢ ⎣0
例 2:网球比赛
网球比赛在选手 A 和 B 之间进行。网球的计分制是 15,30,40 和 60 分,如果选手 A 赢了 第一球,比分是 15:0,否则比分是 0:15。如果选手 A 接着赢了第二球,比分为 30:0,如果 A 接着赢了第三球,比分为 40:0,如果 A 再接着赢了第四球,则比分为 60:0,选手 A 赢得 该局比赛。当选手 A 赢了第一球而输了第二球,对手 B 得 15 分,从而比分为 15:15。平分 是指第六球后双方分数相同(例如 30:30,40:40,…)。在平分后,接下来的一球如果选手 A 得分/失分,则称此时的状态为 A 占先/B 占先。如果 A 在占先后再得分,则选手 A 赢得该 局。如果选手 B 在占先后再得分,则选手 B 赢得该局。 一旦第一局比赛结束,选手进入第二局比赛,直到一方赢得至少 6 局且至少领先对手两局, 这样该方获得一盘比赛的胜利。因而,一盘结束时的比分为下列情形之一:6:0,6:1,6:2, 6:3,6:4,7:5,8:6,…或是它们的逆序等等(实际规则中采用了决胜局的办法避免一盘比赛 的时间过长,此处不详细讨论)。一盘结束后,进行另一盘,直到一方赢得三盘中的两盘(或 五盘中的三盘) ,从而赢得整场比赛。 试对网球比赛中一局比赛的规则进行分析讨论。
f k ,0
p p ( )k − ( )4 1 − (q / p)4− k q q = = p 1 − (q / p )4 1 − ( )4 q
II) 选手 A 赢得一局比赛的概率
4
pg = P{选手A赢一局} = ∑ pk f k ,0 =
k =0
∑ pk [1 − (q / p)4−k ]
k =0
1, 设 r=
u0 = u0 − uc = ∑ (ui − ui +1 )
i =0 c −1
= ∑ di
i =0
c −1
= ∑ rid0
i =0
c −1
= cd 0
u j = u j − uc = ∑ (ui − ui +1 )
i= j c −1 c −1 c −1
= ∑ di
i= j
= ∑ rid0
4
1 − (q / p)
4
=
1 − ∑ pk ( q / p ) 4 − k
k =0
4
1 − (q / p)4
选手实力之比与赢下一局比赛的概率的关系的具体数值分析, : 选手技术 p 0.75 0.66 0.6 0.55 0.52 0.51 q 0.25 0.34 0.4 0.45 0.48 0.49 赢一局的概率 Pg 0.949 0.856 0.736 0.623 0.55 0.525 1-Pg 0.051 0.144 0.264 0.377 0.45 0.475
a ≥ 1, b ≥ 1 。
这个问题实际是带有两个吸收壁的随机游动问题 问题是从 a 点出发,到达 0 状态的概率,即被 0 状态吸收的概率。 设 0 < j < c , u j 为质点从 j 点出发到 0 状态的概率。由全概率公式有
u j = pu j +1 + qu j −1
边界条件为:
u0 = 1 uc = 0
题意分析:
整个题目都是在分析网球比赛规则, 而分析规则的目的在于得出不同实力的选手在这种规则 下赢球的概率。换句话说,假如有两个选手,选手 A 赢一球的概率为 p,选手 B 赢一球的 概率为 q=1-p,那么若 p>q,但是两者接近,例如 p=0.52,q=0.48,网球比赛的赛制能否保 证选手 A 在经过长时间的较量后最终有很大的概率战胜对手?相反,若两者实力悬殊,例 如 p=0.8,q=0.2,赛制能否保证选手 A 很快就能将 B 淘汰出局。这些都是我们分析比赛规 则时要关注的问题,并应该最后得出一个结论。 分出胜负的最小的单位是分,再上是局,局之上是盘(一方赢得至少 6 局且至少领先对手 2 局,这样取得一盘比赛的胜利) ,然后再上是一场比赛(可能是五盘三胜,也可能是三盘二 胜) 。我们这里暂时只分析一局比赛的规则。
图 1 一局比赛的状态转移图 在完成了上述的分析后, 我们需要做的就只是确定图 1 中的五状态随机游动中, 各状态 的初始概率了。记: 状态 0:A 赢 P0 = p + 4 p q
4 4
状态 1:A 占先 P 1 = 4p q
3
2
状态 2:平分 P2 = 6 p q
2
2
状态 3:B 占先 P 3 = 4p q
相应的差分方程是:
d j = rd j −1 = r 2 d j − 2 = L = r j d 0 ,
设 r ≠ 1,
(0 < j < c )
u0 = u0 − uc = ∑ (ui − ui +1 )
i =0 c −1
= ∑ di
i =0
c −1
= ∑ rid0
i =0
c −1
=
1− r d0 1− r
c
u j = u j − uc = ∑ (ui − ui +1 )
i= j j c −1
= ∑ di
i= j
c −1
= ∑ rid0
i= j
c −1
=
r −r d0 1− r
c
r j − rc uj = 1 − rc ua = ra − rc 1 − rc
( q / p) j − ( q / p)c = 1 − ( q / p)c = ( q / p)a − ( q / p)c 1 − ( q / p)c
系统的一步转移概率矩阵是:
⎡ pon P=⎢ ⎣1 − poff
1 − pon ⎤ poff ⎥ ⎦
(1) 求稳态分布
i= j
= ( c − j )d 0
c− j c c−a b ua = = c c uj =
同样道理,可以得到乙先输光的概率, 当 r ≠ 1 , ua = 当 r= 1 , ub =
1 − (q / p) a , 1 − (q / p) c
a 。 c
该例题是有两个吸收壁的特例, 建立了边界条件、递推关系、首先概率表达式, 该例题着重研究对称和非对称的赌徒输光的问题。
的概率,状态之间相互转移的概率。 首先我们对一局比赛中的所有状态分类,可以分为 6 大类: (1) “过渡”的状态,例如 15:0 这样的状态。 (2) A 赢的状态,例如 60:15, 60:30, 60+2:60, 60+4:60+2,… 这种状态是吸收态 (3) B 赢的状态,例如 15:60, 30:60, 40:60+1, 60+1:60+3, … 这种状态是吸收态 (4) A 占先的状态,也即 A 再赢一球就取胜,而即使 A 再输一球也只是平分的状态, 例如 40:30, 60:40 (5) B 占先的状态,也即 B 再赢一球就取胜,而即使 B 再输一球也只是平分的状态,例 如 30:40, 40:60 (6) 平分的状态,例如 30:30, 40:40, 60:60, 60+1:60+1, … 值得注意的是,15:15 不是平分状态,因为平分状态后再打一球,状态应该转移到 A 占 先或者 B 占先的状态,而 15:15 不符合这个概念。 总结上面的分析, 我们应该关心的是后面五种状态的初始概率以及这五种状态之间的转 移概率,而在得到后面五种状态的初始概率时会需要考虑“过渡”的状态,得到初始概 率后就不用考虑“过渡”的状态了。 下面一幅图是一局的状态转移示意图:
马尔可夫链 应用分析举例 例 1:赌徒输光问题:
两个赌徒进行一系列赌博,在每一局赌博中甲获胜的概率是 p,乙获胜的概率是 1-p, 每一局后,负者要付一元给胜者。如果起始时甲有资本 a 元,乙有资本 b 元,a+b=c,两人 赌博直到甲输光或乙输光为止。 求甲输光的概率。 解: 第 n 时刻甲的资本为ξ,状态空间是 I: {0,1,2, L c} , c = a 随机游动
1.一局比赛的建模 问题:一局比赛共有多少个状态 很多,例如 15:0 就是一个状态,40:15 又是一个状态。还是回到我们分析比赛规则的目 的上来,我们是为了得到两名选手最终赢球与输球的概率,那么当一局比赛打到 30:40 的时 候, 如果选手 B 再取胜一球, 则 30:60, 选手 B 获胜, 而之前这局比赛到底是怎么打到 30:40 的并不是我们关心的问题,我们只关心一局比赛会打到 30:40 的概率(初始概率)以及之后 由状态 30:40 打到状态 30:60 的概率(转移概率) 。这是典型的马尔科夫链。 那么我们实际要做的事情就是如何确定比赛中对我们的分析有用的状态以及这些状态
根据边界条件,并迭代上式,可得:
f 0,0 − f 4,0
p 1 − ( )4 q ( f 0,0 − f1,0 ) =1= p 1− q p p ( )k − ( )4 q q ( f 0,0 − f1,0 ) = p 1− q
f k ,0 − f 4,0 = f k ,0
结合上述两式,可解得:
构造:
( p + q )u j = pu j +1 + qu j −1 p (u j − u j +1 ) = q(u j −1 − u j ) (u j − u j +1 ) =
定义
q (u j −1 − u j ) p q =r, p