微专题2三角形中的最值问题(含答案)

合集下载

三角形内最值问题

三角形内最值问题

三角形内最值问题
三角形内最值问题是一个常见的问题,它涉及到在给定三角形中找到某些几何量的最大值或最小值。

下面是一些解决这类问题的一般方法:
1. 基础几何知识:解决这类问题需要掌握一些基本的几何知识,如三角形的性质、三角函数、勾股定理等。

2. 对称性:考虑三角形是否具有某种对称性,如轴对称或中心对称,这有助于找到最值的位置。

3. 极值定理:在某些情况下,可以使用极值定理(如AM-GM不等式、Cauchy-Schwarz不等式等)来找到最值。

4. 函数建模:将问题转化为函数的最值问题,然后使用导数或其他数学工具来找到最值。

5. 参数方程:有时可以通过引入参数来表示几何量,然后通过参数的变化找到最值。

6. 优化技术:可以使用一些优化技术,如梯度下降、牛顿法等,来找到最值。

解决三角形内最值问题的具体方法取决于问题的具体情况和给定的条件。

在处理这类问题时,需要仔细分析问题,选择合适的数学工具和方法来解决。

【经典压轴题】三角形面积最值问题30题含详细答案

【经典压轴题】三角形面积最值问题30题含详细答案

试卷第1页,总14页………外…………○…………订…………○……学:___________考号:___________………内…………○…………订…………○……三角形面积最值问题30题含详细答案1.如图,抛物线2y ax bx c =++与x 轴交于点(1,0)A -,点(3,0)B ,与y 轴交于点C ,且过点(2,3)D -.点P 、Q 是抛物线2y ax bx c =++上的动点.(1)求抛物线的解析式;(2)当点P 在直线OD 下方时,求POD ∆面积的最大值.(3)直线OQ 与线段BC 相交于点E ,当OBE ∆与ABC ∆相似时,求点Q 的坐标.2.如图,在平面直角坐标系xOy 中,已知抛物线22y ax x c =-+与直线y kx b =+都经过(0,3)A -、(3,0)B 两点,该抛物线的顶点为C . (1)求此抛物线和直线AB 的解析式;(2)设直线AB 与该抛物线的对称轴交于点E ,在射线EB 上是否存在一点M ,过M 作x 轴的垂线交抛物线于点N ,使点M 、N 、C 、E 是平行四边形的四个顶点?若存在,求点M 的坐标;若不存在,请说明理由;(3)设点P 是直线AB 下方抛物线上的一动点,当PAB ∆面积最大时,求点P 的坐标,并求PAB ∆面积的最大值.3.如图,抛物线25(0)y ax bx a =+-≠经过x 轴上的点A (1,0)和点B 及y 轴上的点C ,经过B 、C 两点的直线为y x n =+.试卷第2页,总14页……订…………○……※※内※※答※※题※※……订…………○……①求抛物线的解析式.②点P 从A 出发,在线段AB 上以每秒1个单位的速度向B 运动,同时点E 从B 出发,在线段BC 上以每秒2个单位的速度向C 运动.当其中一个点到达终点时,另一点也停止运动.设运动时间为t 秒,求t 为何值时,△PBE 的面积最大并求出最大值. ③过点A 作AM BC ⊥于点M ,过抛物线上一动点N (不与点B 、C 重合)作直线AM 的平行线交直线BC 于点Q .若点A 、M 、N 、Q 为顶点的四边形是平行四边形,求点N 的横坐标.4.如图,在平面直角坐标系中,已知抛物线22(0)y ax bx a =++≠与x 轴交于()1,0A -),()3,0B 两点,与y 轴交于点C ,连接BC .(1)求该抛物线的解析式,并写出它的对称轴;(2)点D 为抛物线对称轴上一点,连接CD BD 、,若DCB CBD ∠=∠,求点D 的坐标;(3)已知()1,1F ,若(),E x y 是抛物线上一个动点(其中12x <<),连接CE CF EF 、、,求CEF ∆面积的最大值及此时点E 的坐标.(4)若点N 为抛物线对称轴上一点,抛物线上是否存在点M ,使得以,,,B C M N 为顶点的四边形是平行四边形?若存在,请直接写出所有满足条件的点M 的坐标;若不存在,请说明理由.试卷第3页,总14页…○…………外………………订…………………线…………○……___________考号:______…○…………内………………订…………………线…………○……5.如图1,在Rt △ABC 中,∠A =90°,AB =AC ,点D ,E 分别在边AB ,AC 上,AD =AE ,连接DC ,点M ,P ,N 分别为DE ,DC ,BC 的中点.(1)观察猜想:图1中,线段PM 与PN 的数量关系是 ,位置关系是 ; (2)探究证明:把△ADE 绕点A 逆时针方向旋转到图2的位置,连接MN ,BD ,CE ,判断△PMN 的形状,并说明理由;(3)拓展延伸:把△ADE 绕点A 在平面内自由旋转,若AD =4,AB =10,请直接写出△PMN 面积的最大值.6.已知抛物线y =a (x ﹣1)2过点(3,4),D 为抛物线的顶点. (1)求抛物线的解析式;(2)若点B 、C 均在抛物线上,其中点B (0,1),且∠BDC =90°,求点C 的坐标: (3)如图,直线y =kx +1﹣k 与抛物线交于P 、Q 两点,∠PDQ =90°,求△PDQ 面积的最小值.7.如图,抛物线y =ax 2+bx+c 经过A (0,3)、B (﹣1,0)、D (2,3),抛物线与x试卷第4页,总14页装…………○……………○…………线※要※※在※※装※※订※答※※题※※装…………○……………○…………线轴的另一交点为E ,点P 为直线AE 上方抛物线上一动点,设点P 的横坐标为t . (1)求抛物线的表达式;(2)当t 为何值时,△PAE 的面积最大?并求出最大面积;(3)是否存在点P 使△PAE 为直角三角形?若存在,求出t 的值;若不存在,说明理由.8.如图,四边形ABCD 是边长为2,一个锐角等于60°的菱形纸片,小芳同学将一个三角形纸片的一个顶点与该菱形顶点D 重合,按顺时针方向旋转三角形纸片,使它的两边分别交CB 、BA (或它们的延长线)于点E 、F ,∠EDF=60°,当CE=AF 时,如图1小芳同学得出的结论是DE=DF .(1)继续旋转三角形纸片,当CE≠AF 时,如图2小芳的结论是否成立?若成立,加以证明;若不成立,请说明理由;(2)再次旋转三角形纸片,当点E 、F 分别在CB 、BA 的延长线上时,如图3请直接写出DE 与DF 的数量关系;(3)连EF ,若△DEF 的面积为y ,CE=x ,求y 与x 的关系式,并指出当x 为何值时,y 有最小值,最小值是多少?9.已知ABC 和ADE 都是等腰三角形,AB AC =,AD AE =,DAE BAC ∠=∠. (初步感知)(1)特殊情形:如图①,若点D ,E 分别在边AB ,AC 上,则DB __________EC .(填>、<或=)试卷第5页,总14页…………○………………○………………○…………………○……学校:____:___________班级:____:___________…………○………………○………………○…………………○……(2)发现证明:如图②,将图①中的ADE 绕点A 旋转,当点D 在ABC 外部,点E 在ABC 内部时,求证:DB EC =.(深入研究)(3)如图③,ABC 和ADE 都是等边三角形,点C ,E ,D 在同一条直线上,则CDB ∠的度数为__________;线段CE ,BD 之间的数量关系为__________.(4)如图④,ABC 和ADE 都是等腰直角三角形,90BAC DAE ∠=∠=︒,点C 、D 、E 在同一直线上,AM 为ADE 中DE 边上的高,则CDB ∠的度数为__________;线段AM ,BD ,CD 之间的数量关系为__________.(拓展提升)(5)如图⑤,ABC 和ADE 都是等腰直角三角形,90BAC DAE ∠=∠=︒,将ADE 绕点A 逆时针旋转,连结BE 、CD .当5AB =,2AD =时,在旋转过程中,ABE △与ADC 的面积和的最大值为__________.试卷第6页,总14页…○…………外………订…………○………………○……※内※※答※※题※※…○…………内………订…………○………………○……10.如图,在平面直角坐标系xOy 中,反比例函数(0)m y x x =>的图像经过点34,2A ⎛⎫⎪⎝⎭,点B 在y 轴的负半轴上,AB 交x 轴于点C ,C 为线段AB 的中点.(1)m =________,点C 的坐标为________;(2)若点D 为线段AB 上的一个动点,过点D 作//DE y 轴,交反比例函数图像于点E ,求ODE 面积的最大值.11.如图,直线l :y =﹣3x +3与x 轴、y 轴分别相交于A 、B 两点,抛物线y =ax 2﹣2ax +a +4(a <0)经过点B ,交x 轴正半轴于点C . (1)求该抛物线的函数表达式;(2)已知点M 是抛物线上的一个动点,并且点M 在第一象限内,连接AM 、BM ,设点M 的横坐标为m ,△ABM 的面积为S ,求S 与m 的函数表达式,并求出S 的最大值及此时动点M 的坐标;(3)将点A 绕原点旋转得点A ′,连接CA ′、BA ′,在旋转过程中,一动点M 从点B 出发,沿线段BA ′以每秒3个单位的速度运动到A ′,再沿线段A ′C 以每秒1个单位长度的速度运动到C 后停止,求点M 在整个运动过程中用时最少是多少?12.(问题提出)试卷第7页,总14页……○…………外装…………○……姓名:___________班级:____……○…………内装…………○……(1)如图①,在等腰Rt ABC 中,斜边4AC =,点D 为AC 上一点,连接BD ,则BD 的最小值为 .(问题探究)(2)如图2,在ABC 中,5AB AC ==,6BC =,点M 是BC 上一点,且4BM =,点P 是边AB 上一动点,连接PM ,将BPM △沿PM 翻折得到DPM △,点D 与点B 对应,连接AD ,求AD 的最小值.(问题解决)(3)如图③,四边形ABCD 是规划中的休闲广场示意图,其中135BAD ADC ∠=∠=︒,30DCB ∠=︒,AD =,3AB km =,点M 是BC 上一点,4MC km =.现计划在四边形ABCD 内选取一点P ,把DCP 建成商业活动区,其余部分建成景观绿化区.为方便进入商业区,需修建小路BP 、MP ,从实用和美观的角度,要求满足PMB ABP ∠=∠,且景观绿化区面积足够大,即DCP 区域面积尽可能小.则在四边形ABCD 内是否存在这样的点P ?若存在,请求出DCP 面积的最小值;若不存在,请说明理由.13.在平面直角坐标系中,点O 是原点,四边形AOBC 是矩形,点(5,0)A ,点(0,3)B .以点A 为中心,顺时针旋转矩形AOBC ,得到矩形ADEF ,点O B C ,,的对应点分别为D E F ,,.(1)如图①,当点D 落在BC 边上时,求点D 的坐标;(2)如图②,当点D 落在线段BE 上时,AD 与BC 交于点H .求点H 的坐标; (3)记K 为矩形AOBC 对角线的交点,S 为KDE 的面积,求S 的取值范围(直接写出结果即可).试卷第8页,总14页……外…………○……………订…………○…※※请※※线※※内※※答※※题※※……内…………○……………订…………○…14.(1)如图1,四边形ABCD 中,//AD BC ,点E 为DC 边的中点,连接AE 并延长交BC 的延长线于点F ,求证:ABF ABCD S S ∆=四边形.(S 表示面积)(2)如图2,在ABC ∆中,过AC 边的中点P 任意作直线EF ,交BC 边于点F ,交BA 的延长线于点E ,试比较EBF ∆与ABC ∆的面积,并说明理由.(3)如图3,在平面直角坐标系中,已知一次函数y kx b =+的图像过点()2,4P 且分别于x 轴正半轴,y 轴正半轴交于点A 、B ,请问AOB ∆的面积是否存在最小值?若存在,求出此时一次函数关系式;若不存在,请说明理由.15.△ABC 为等边三角形,AB =8,AD ⊥BC 于点D ,E 为线段AD 上一点,AE =.以AE 为边在直线AD 右侧构造等边三角形AEF ,连接CE ,N 为CE 的中点. (1)如图1,EF 与AC 交于点G ,连接NG ,求线段NG 的长;(2)如图2,将△AEF 绕点A 逆时针旋转,旋转角为α,M 为线段EF 的中点,连接DN ,MN .当30°<α<120°时,猜想∠DNM 的大小是否为定值,并证明你的结论; (3)连接BN .在△AEF 绕点A 逆时针旋转过程中,当线段BN 最大时,请直接写出△ADN 的面积.16.如图,已知A ,B 是线段MN 上的两点,4MN =,1MA =,1MB >,以A 为中心顺时针旋转点M ,以B 为中心逆时针旋转点N ,使M ,N 两点重合成一点C ,构成ABC ,设AB x =.试卷第9页,总14页…外…………○………………○…………订………○……学校:_____名:___________班级:___________考号…内…………○………………○…………订………○……(1)求x 的取值范围; (2)求ABC 面积的最大值.17.在平面直角坐标系中,抛物线265y x mx =-+与y 轴的交点为A ,与x 轴的正半轴分别交于点B (b ,0),C (c ,0).(1)当b =1时,求抛物线相应的函数表达式;(2)当b =1时,如图,E (t ,0)是线段BC 上的一动点,过点E 作平行于y 轴的直线l 与抛物线的交点为P .求△APC 面积的最大值;(3)当c =b + n .时,且n 为正整数.线段BC (包括端点)上有且只有五个点的横坐标是整数,求b 的值.18.如图,抛物线2y ax bx c =++与坐标轴交于点()()()0, 31,03,0A B E --、、,点P 为抛物线上动点,设点P 的横坐标为t .(1)若点C 与点A 关于抛物线的对称轴对称,求C 点的坐标及抛物线的解析式; (2)若点P 在第四象限,连接PA PE 、及AE ,当t 为何值时,PAE ∆的面积最大?最大面积是多少?(3)是否存在点P ,使PAE ∆为以AE 为直角边的直角三角形,若存在,直接写出点P试卷第10页,总14页…外…………○…※…内…………○…的坐标;若不存在,请说明理由. 19.综合与实践问题情境:在综合与实践课上,老师让同学们以“两个大小不等的等腰直角三角板的直角顶点重合,并让一个三角板固定,另一个绕直角顶点旋转”为主题开展数学活动,如图1,三角板ABC 和三角板CDE 都是等腰直角三角形,90C ∠=︒,点D ,E 分别在边BC ,AC 上,连接AD ,点M ,P ,N 分别为DE ,AD ,AB 的中点.试判断线段PM 与PN 的数量关系和位置关系.探究展示:勤奋小组发现,PM PN =,PM PN ⊥.并展示了如下的证明方法:∵点P ,N 分别是AD ,AB 的中点,∴PNBD ,12PN BD =. ∵点P ,M 分别是AD ,DE 的中点,∴PM AE ∥,12PM AE =.(依据1)∵CA CB =,CD CE =,∴BD AE =,∴PM PN =. ∵PNBD ,∴DPN ADC ∠=∠.∵PM AE ∥,∴DPM DAC ∠=∠.∵90BCA ∠=︒,∴90ADC CAD ∠+∠=︒.(依据2)∴90MPN DPM DPN CAD ADC ∠=∠+∠=∠+∠=︒.∴PM PN ⊥. 反思交流:(1)①上述证明过程中的“依据1”,“依据2”分别是指什么? ②试判断图1中,MN 与AB 的位置关系,请直接回答,不必证明;(2)创新小组受到勤奋小组的启发,继续进行探究,把CDE △绕点C 逆时针方向旋转到如图2的位置,发现PMN 是等腰直角三角形,请你给出证明;(3)缜密小组的同学继续探究,把CDE △绕点C 在平面内自由旋转,当4CD =,10CB =时,求PMN 面积的最大值.20.如图,在平面直角坐标系中,四边形 OABC 为菱形,点 C 的坐标为(4,0),∠AOC = 60°,垂直于 x 轴的直线 l 从 y 轴出发,沿 x 轴正方向以每秒 1 个单位长度的速度运动,设直线 l 与 菱形 OABC 的两边分别交与点 M 、N (点 M 在点 N 的上方).○…………外…………订………………○……级:___________考号:__○…………内…………订………………○……(1)求 A 、B 两点的坐标;(2)设 OMN 的面积为 S ,直线 l 运动时间为 t 秒(0 ≤t ≤6 ),试求 S 与 t 的函数表达 式;(3)在题(2)的条件下,t 为何值时,S 的面积最大?最大面积是多少.21.如图,抛物线y=ax 2+bx+c 经过点A (﹣1,0),C (0,3),抛物线的顶点在直线1x =上.(1)求抛物线的解析式;(2)若点P 为第一象限内抛物线上的一点,设△PBC 的面积为S ,求S 的最大值并求出此时点P 的坐标; 22.综合与探究如图,已知抛物线()20y ax bx c a =++≠与x 轴交于A 、()20B ,两点,与y 轴交于点C ,顶点坐标为点1924D ⎛⎫⎪⎝⎭,. (1)求此抛物线的解析式;(2)点P 为抛物线对称轴上一点,当PA PC +最小时,求点P 坐标;(3)在第一象限的抛物线上有一点M ,当BCM ∆面积最大时,求点M 坐标; (4)在x 轴下方抛物线上有一点H ,ABH ∆面积为6,请直接写出点H 的坐标.○…………装………○…………线…………※※请※※不※※要※※在※※○…………装………○…………线…………23.如图,已知抛物线23y ax bx =++与x 轴交于A 、B 两点,过点A 的直线l 与抛物线交于点C ,其中A 点的坐标是(1,0),C 点坐标是(4,3).(1)求抛物线的解析式;(2)抛物线的对称轴上是否存在点D ,使△BCD 的周长最小?若存在,求出点D 的坐标,若不存在,请说明理由;(3)点P 是抛物线上AC 下方的一个动点,是否存在点p ,使△PAC 的面积最大?若存在,求出点P 的坐标,若不存在,请说明理由.二、填空题24.如图,直线AB 交坐标轴于A(-2,0),B(0,-4),点P 在抛物线1(2)(4)2y x x =--上,则△ABP 面积的最小值为__________.25.如图,在平面直角坐标系xOy 中,半径为2的O 与x 轴的正半轴交于点A ,点B 是O 上一动点,点C 为弦AB 的中点,直线334y x =-与x 轴、y 轴分别交于点D 、E ,则CDE △面积的最小值为________.………○…………装………………订……………线…………○……学校:___________姓名:_级:___________考号:………○…………装………………订……………线…………○……26.如图,30AOB ∠=,C 是BO 上的一点,4CO =,点P 为AO 上的一动点,点D 为CO 上的一动点,则PC PD +的最小值为 ________,当PC PD +的值取最小值时,则OPC ∆的面积为________.27.如图,已知直线433y x =-与x 轴、y 轴分别交于A ,B 两点,P 是以(0,1)C 为圆心,1为半径的圆上一动点,连接PA ,PB ,当PAB ∆的面积最大时,点P 的坐标为__________.28.如图,在Rt ABC ∆中,90ACB ∠=︒,4AB =,点D ,E 分别在边AB ,AC 上,且2DB AD =,3AE EC =连接BE ,CD ,相交于点O ,则ABO ∆面积最大值为__________.…………装…………○…订…………○……线…………○……※请※※不※※要※※在※※装※※订内※※答※※题※※…………装…………○…订…………○……线…………○……29.如图,在△ABC 中,∠ACB =120°,AC =BC =2,D 是AB 边上的动点,连接CD ,将△BCD 绕点C 沿顺时针旋转至△ACE ,连接DE ,则△ADE 面积的最大值=_____.30.如图,∠AOB=45°,点M 、N 分别在射线OA 、OB 上,MN=7,△OMN 的面积为14,P 是直线MN 上的动点,点P 关于OA 对称的点为P 1,点P 关于OB 对称点为P 2,当点P 在直线NM 上运动时,△OP 1P 2的面积最小值为_____参考答案1.(1)抛物线的表达式为:223y x x =--;(2)POD S ∆有最大值,当14m =时,其最大值为4916;(3) Q -或(或1122⎛-+- ⎝⎭或⎝⎭. 【分析】(1)函数的表达式为:y=a (x+1)(x-3),将点D 坐标代入上式,即可求解; (2)设点()2,23P m m m --,求出32OG m =+,根据()12POD D P S OG x x ∆=⨯-1(32)(2)2m m =+-2132m m =-++,利用二次函数的性质即可求解; (3)分∠ACB=∠BOQ 、∠BAC=∠BOQ ,两种情况分别求解,通过角的关系,确定直线OQ 倾斜角,进而求解. 【详解】解:(1)函数的表达式为:(1)(3)y a x x =+-,将点D 坐标代入上式并解得:1a =, 故抛物线的表达式为:223y x x =--…①;(2)设直线PD 与y 轴交于点G ,设点()2,23P m m m --,将点P 、D 的坐标代入一次函数表达式:y sx t =+并解得,直线PD 的表达式为:32y mx m =--,则32OG m =+, ()12POD D P S OG x x ∆=⨯-1(32)(2)2m m =+-2132m m =-++,∵10-<,故POD S ∆有最大值,当14m =时,其最大值为4916; (3)∵3OB OC ==,∴45OCB OBC ︒∠=∠=,∵ABC OBE ∠=∠,故OBE ∆与ABC ∆相似时,分为两种情况:①当ACB BOQ ∠=∠时,4AB =,BC =AC = 过点A 作AH ⊥BC 与点H ,1122ABC S AH BC AB OC ∆=⨯⨯=⨯,解得:AH =,∴CH 则tan 2ACB ∠=,则直线OQ 的表达式为: 2 y x =-…②,联立①②并解得:x =故点Q -或(; ②BAC BOQ ∠=∠时,3tan 3tan 1OC BAC BOQ OA ∠====∠, 则直线OQ 的表达式为: 3 y x =-…③,联立①③并解得:x =故点13,22Q ⎛⎫-+- ⎪ ⎪⎝⎭或1322⎛⎫-+ ⎪ ⎪⎝⎭;综上,点Q -或(或1122⎛-+- ⎝⎭或13,22⎛-+ ⎝⎭. 【点睛】本题考查的是二次函数综合运用,涉及到解直角三角形、三角形相似、面积的计算等,其中(3),要注意分类求解,避免遗漏.2.(1)抛物线的解析式为223y x x =--,直线AB 的解析式为3y x =-,(2)(2,1)-或33(22+-+.(3)当32m =时,PAB∆面积的最大值是278,此时P 点坐标为33(,)22-. 【解析】 【分析】(1)将(0,3)A -、(3,0)B 两点坐标分别代入二次函数的解析式和一次函数解析式即可求解;(2)先求出C 点坐标和E 点坐标,则2CE =,分两种情况讨论:①若点M 在x 轴下方,四边形CEMN 为平行四边形,则CE MN =,②若点M 在x 轴上方,四边形CENM 为平行四边形,则CE MN =,设(,3)M a a -,则2(,23)N a a a --,可分别得到方程求出点M 的坐标;(3)如图,作//PG y 轴交直线AB 于点G ,设2(,23)P m m m --,则(,3)G m m -,可由12PAB S PG OB ∆=,得到m 的表达式,利用二次函数求最值问题配方即可. 【详解】解:(1)∵抛物线22y ax x c =-+经过(0,3)A -、(3,0)B 两点,∴9603a c c -+=⎧⎨=-⎩,∴13a c =⎧⎨=-⎩,∴抛物线的解析式为223y x x =--, ∵直线y kx b =+经过(0,3)A -、(3,0)B 两点,∴303k b b +=⎧⎨=-⎩,解得:k 1b 3=⎧⎨=-⎩,∴直线AB 的解析式为3y x =-,(2)∵2223(1)4y x x x =--=--,∴抛物线的顶点C 的坐标为(1,4)-, ∵//CE y 轴, ∴(1,2)E -, ∴2CE =,①如图,若点M 在x 轴下方,四边形CEMN 为平行四边形,则CE MN =, 设(,3)M a a -,则2(,23)N a a a --,∴223(23)3MN a a a a a =----=-+, ∴232a a -+=,解得:2a =,1a =(舍去), ∴(2,1)M -,②如图,若点M 在x 轴上方,四边形CENM 为平行四边形,则CE MN =,设(,3)M a a -,则2(,23)N a a a --,∴2223(3)3MN a a a a a =----=-, ∴232a a -=,解得:a =,a =(舍去),∴M ,综合可得M 点的坐标为(2,1)-或33(22+-+. (3)如图,作//PG y 轴交直线AB 于点G ,设2(,23)P m m m --,则(,3)G m m -, ∴223(23)3PG m m m m m =----=-+, ∴22211393327(3)3()2222228PAB PGA PGB S S S PG OB m m m m m ∆∆∆=+==⨯-+⨯=-+=--+, ∴当32m =时,PAB ∆面积的最大值是278,此时P 点坐标为33(,)22-.【点睛】本题是二次函数综合题,考查了待定系数法求函数解析式,二次函数求最值问题,以及二次函数与平行四边形、三角形面积有关的问题.3.①265y x x =-+-;②当2t =时,△PBE 的面积最大,最大值为;③点N 的横坐标为:4或52+或52.【解析】 【分析】①点B 、C 在直线为y x n =+上,则B (﹣n ,0)、C (0,n ),点A (1,0)在抛物线上,所以250505a b an bn n +-=⎧⎪+-=⎨⎪=-⎩,解得1a =-,6b =,因此抛物线解析式:265y x x =-+-; ②先求出点P 到BC 的高h为sin 45)BP t ︒=-,于是211)22)22PBE S BE h t t t ∆=⋅=-⨯=-+2t =时,△PBE 的面积最大,最大值为③由①知,BC 所在直线为:5y x =-,所以点A 到直线BC的距离d =N 作x轴的垂线交直线BC 于点P ,交x 轴于点H .设()2,65N m m m -+-,则(,0)H m 、(,5)P m m -,易证△PQN为等腰直角三角形,即NQ PQ ==4PN =,Ⅰ.4NH HP +=,所以265(5)4m m m -+---=解得11m =(舍去),24m =,Ⅱ.4NH HP +=,()25654m m m ---+-=解得152m +=,252m =(舍去),Ⅲ.4NH HP -=,()265[(5)]4m m m --+----=,解得152m =(舍去),252m =.【详解】解:①∵点B 、C 在直线为y x n =+上, ∴B(﹣n ,0)、C (0,n ), ∵点A (1,0)在抛物线上,∴250505a b an bn n +-=⎧⎪+-=⎨⎪=-⎩, ∴1a =-,6b =,∴抛物线解析式:265y x x =-+-;②由题意,得,4PB t =-,2BE t =,由①知,45OBC ︒∠=,∴点P 到BC 的高h 为sin 45)2BP t ︒=-,∴211(4)2(2)2222PBE S BE h t t t ∆=⋅=⨯-⨯=-+当2t =时,△PBE 的面积最大,最大值为③由①知,BC 所在直线为:5y x =-,∴点A 到直线BC 的距离d =过点N 作x 轴的垂线交直线BC 于点P ,交x 轴于点H .设()2,65N m m m -+-,则(,0)H m 、(,5)P m m -,易证△PQN 为等腰直角三角形,即NQ PQ ==∴4PN =,Ⅰ.4NH HP +=,∴265(5)4m m m -+---=解得11m =,24m =,∵点A 、M 、N 、Q 为顶点的四边形是平行四边形,∴4m =;Ⅱ.4NH HP +=,∴()25654m m m ---+-=解得152m =,252m =, ∵点A 、M 、N 、Q 为顶点的四边形是平行四边形,5m >,∴m =,Ⅲ.4NH HP -=,∴()265[(5)]4m m m --+----=,解得1m =,2m = ∵点A 、M 、N 、Q 为顶点的四边形是平行四边形,0m <,∴52m =,综上所述,若点A 、M 、N 、Q 为顶点的四边形是平行四边形,点N 的横坐标为:4或52或52-. 【点睛】本题考查了二次函数,熟练掌握二次函数的性质、平行四边形的判定与性质是解题的关键.4.(1)224233y x x =-++,对称轴1x =;(2)11,4D ⎛⎫ ⎪⎝⎭;(3)面积有最大值是4948,755,424E ⎛⎫ ⎪⎝⎭;(4)存在点M 使得以,,,B C M N 为顶点的四边形是平行四边形,()2,2M 或104,3M ⎛⎫- ⎪⎝⎭或102,3M ⎛⎫-- ⎪⎝⎭. 【解析】【分析】(1)将点A (-1,0),B (3,0)代入y=ax 2+bx+2即可;(2)过点D 作DG ⊥y 轴于G ,作DH ⊥x 轴于H ,设点D (1,y ),在Rt △CGD 中,CD 2=CG 2+GD 2=(2-y )2+1,在Rt △BHD 中,BD 2=BH 2+HD 2=4+y 2,可以证明CD=BD ,即可求y 的值; (3)过点E 作EQ ⊥y 轴于点Q ,过点F 作直线FR ⊥y 轴于R ,过点E 作FP ⊥FR 于P ,证明四边形QRPE 是矩形,根据S △CEF =S 矩形QRPE -S △CRF -S △EFP ,代入边即可;(4)根据平行四边形对边平行且相等的性质可以得到存在点M 使得以B ,C ,M ,N 为顶点的四边形是平行四边形,点M (2,2)或M (4,-103)或M (-2,-103); 【详解】 解:(1)将点()()1,0,3,0A B -代入22y ax bx =++, 可得24,33a b =-=, 224233y x x ∴=-++; ∴对称轴1x =;(2)如图1:过点D 作DG y ⊥轴于G ,作DH x ⊥轴于H ,设点()1,D y ,()()0,2,3,0C B ,∴在Rt CGD ∆中,()222221CD CG GD y =+=-+,∴在Rt BHD ∆中,22224BD BH HD y =+=+,在BCD ∆中,DCB CBD ∠=∠CD BD ∴=,22CD BD ∴=()22214y y ∴-+=+14y ∴=, 11,4D ⎛⎫∴ ⎪⎝⎭;(3)如图2:过点E 作EQ y ⊥轴于点Q ,过点F 作直线FR y ⊥轴于R ,过点E 作FP FR ⊥于P ,90EQR QRP RPE ︒∴∠=∠=∠=,∴四边形QRPE 是矩形,CEF CRF EFP QRPE S S S S ∆∆∆=--矩形,()()(),,0,2,1,1E x y C F ,111•222CEF SEQ QR EQ QC CR RF FP EP ∴=⋅-⨯⋅-⋅- ()()()()111121111222CEF S x y x y x y ∆∴=----⨯⨯--- 224233y x x =-++, 21736CEF S x x ∆∴=-+ ∴当74x =时,面积有最大值是4948, 此时755,424E ⎛⎫ ⎪⎝⎭; (4)存在点M 使得以,,,B C M N 为顶点的四边形是平行四边形,设()()1,,,N n M x y ,①四边形CMNB 是平行四边形时,1322x += 2x ∴=-102,3M ⎛⎫∴-- ⎪⎝⎭ ②四边形CNBM 时平行四边形时,3122x += 2x ∴=,()2,2M ∴;③四边形CNNB 时平行四边形时,1322x +=, 4x ∴=,104,3M ⎛⎫∴- ⎪⎝⎭; 综上所述:()2,2M 或104,3M ⎛⎫-⎪⎝⎭或102,3M ⎛⎫-- ⎪⎝⎭; 【点睛】本题考查了待定系数法求二次函数解析式,二次函数的图象及性质,勾股定理,平行四边形的判定与性质,及分类讨论的数学思想.熟练掌握二次函数的性质、灵活运用勾股定理求边长、掌握平行四边形的判定方法是解题的关键.5.(1)PM =PN ,PM ⊥PN ;(2)△PMN 是等腰直角三角形.理由见解析;(3)S △PMN 最大=492. 【分析】(1)由已知易得BD CE =,利用三角形的中位线得出12PM CE =,12PN BD =,即可得出数量关系,再利用三角形的中位线得出//PM CE 得出DPM DCA ∠=∠,最后用互余即可得出位置关系;(2)先判断出ABD ACE ∆≅∆,得出BD CE =,同(1)的方法得出12PM BD =,12PN BD =,即可得出PM PN =,同(1)的方法由MPN DCE DCB DBC ACB ABC ∠=∠+∠+∠=∠+∠,即可得出结论;(3)方法1:先判断出MN 最大时,PMN ∆的面积最大,进而求出AN ,AM ,即可得出MN 最大AM AN =+,最后用面积公式即可得出结论.方法2:先判断出BD 最大时,PMN ∆的面积最大,而BD 最大是14AB AD +=,即可得出结论.【详解】解:(1)点P ,N 是BC ,CD 的中点,//PN BD ∴,12PN BD =, 点P ,M 是CD ,DE 的中点, //PM CE ∴,12PM CE =, AB AC =,AD AE =,BD CE ∴=,PM PN ∴=,//PN BD ,DPN ADC ∴∠=∠,//PM CE ,DPM DCA ∴∠=∠,90BAC ∠=︒,90ADC ACD ∴∠+∠=︒,90MPN DPM DPN DCA ADC ∴∠=∠+∠=∠+∠=︒,PM PN ∴⊥,故答案为:PM PN =,PM PN ⊥;(2)PMN ∆是等腰直角三角形.由旋转知,BAD CAE ∠=∠,AB AC =,AD AE =,()ABD ACE SAS ∴∆≅∆,ABD ACE ∴∠=∠,BD CE =, 利用三角形的中位线得,12PN BD =,12PM CE =, PM PN ∴=,PMN ∴∆是等腰三角形,同(1)的方法得,//PM CE ,DPM DCE ∴∠=∠,同(1)的方法得,//PN BD ,PNC DBC ∴∠=∠,DPN DCB PNC DCB DBC ∠=∠+∠=∠+∠,MPN DPM DPN DCE DCB DBC ∴∠=∠+∠=∠+∠+∠BCE DBC ACB ACE DBC =∠+∠=∠+∠+∠ACB ABD DBC ACB ABC =∠+∠+∠=∠+∠,90BAC ∠=︒,90ACB ABC ∴∠+∠=︒,90MPN ∴∠=︒,PMN ∴∆是等腰直角三角形;(3)方法1:如图2,同(2)的方法得,PMN ∆是等腰直角三角形,MN ∴最大时,PMN ∆的面积最大,//DE BC ∴且DE 在顶点A 上面,MN ∴最大AM AN =+,连接AM ,AN ,在ADE ∆中,4AD AE ==,90DAE ∠=︒,AM ∴=在Rt ABC ∆中,10AB AC ==,AN =MN ∴==最大,22211114922242PMN S PM MN ∆∴==⨯=⨯=最大.方法2:由(2)知,PMN ∆是等腰直角三角形,12PM PN BD ==, PM ∴最大时,PMN ∆面积最大,∴点D 在BA 的延长线上,14BD AB AD ∴=+=,7PM ∴=,2211497222PMN S PM ∆∴==⨯=最大. 【点睛】此题属于几何变换综合题,主要考查了三角形的中位线定理,等腰直角三角形的判定和性质,全等三角形的判断和性质,直角三角形的性质的综合运用;解(1)的关键是判断出12PM CE =,12PN BD =,解(2)的关键是判断出ABD ACE ∆≅∆,解(3)的关键是判断出MN 最大时,PMN ∆的面积最大.6.(1)y =(x ﹣1)2;(2)点C 的坐标为(2,1);(3)1【分析】(1)将点(3,4)代入解析式求得a 的值即可;(2)设点C 的坐标为(x 0,y 0),其中y 0=(x 0﹣1)2,作CF ⊥x 轴,证△BDO ∽△DCF 得BO DF DO CF=,即1=00x 1y -=()01x 1-,据此求得x 0的值即可得; (3)过点D 作x 轴的垂线交直线PQ 于点G ,则DG =4,根据S △PDQ =12DG•MN 列出关于k 的等式求解可得.【详解】解:(1)将点(3,4)代入解析式,得:4a =4,解得:a =1,所以抛物线解析式为y =(x ﹣1)2;(2)由(1)知点D 坐标为(1,0),设点C 的坐标为(x 0,y 0),(x 0>1、y 0>0),则y 0=(x 0﹣1)2,如图1,过点C 作CF ⊥x 轴,∴∠BOD =∠DFC =90°,∠DCF+∠CDF =90°,∵∠BDC =90°,∴∠BDO+∠CDF =90°,∴∠BDO =∠DCF ,∴△BDO ∽△DCF , ∴BO DF DO CF=, ∴1=00x 1y -=()01x 1-,解得:x 0=2,此时y 0=1,∴点C 的坐标为(2,1).(3)设点P 的坐标为(x 1,y 1),点Q 为(x 2,y 2),(其中x 1<1<x 2,y 1>0,y 2>0), 如图2,分别过点P 、Q 作x 轴的垂线,垂足分别为M 、N ,由y=(x-1)2 ,y=kx+1-k ,得x 2﹣(2+k )x+k =0.∴x 1+x 2=2+k ,x 1•x 2=k .∴MN =|x 1﹣x 2|=|2﹣k|.则过点D作x轴的垂线交直线PQ于点G,则点G的坐标为(1,1),所以DG=1,∴S△PDQ=12DG•MN=12×1×|x1﹣x2|=12|2﹣k|,∴当k=0时,S△PDQ取得最小值1.【点睛】本题主要考查二次函数的综合问题,解题的关键是熟练掌握待定系数法求函数解析式、相似三角形的判定与性质及一元二次方程根与系数的关系等知识点.7.(1)y=﹣x2+2x+3;(2)t=32时,△PAE的面积最大,最大值是278;(3)t的值为1.【分析】(1)由A、B、C三点的坐标,利用待定系数法可求得抛物线解析式;(2)由抛物线的对称性可求得E点坐标,从而可求得直线EA的解析式,作PM∥y轴,交直线AE于点M,则可用t表示出PM的长,从而可表示出△PAE的面积,再利用二次函数的性质可求得其最大值即可;(3)由题意可知有∠PAE=90°或∠APE=90°两种情况,当∠PAE=90°时,作PG⊥y轴,利用等腰直角三角形的性质可得到关于t的方程,可求得t的值;当∠APE=90°时,作PK⊥x 轴,AQ⊥PK,则可证得△PKE∽△AQP,利用相似三角形的性质可得到关于t的方程,可求得t的值.【详解】解:(1)由题意得:0 4233a b ca b cc-+=⎧⎪++=⎨⎪=⎩,解得:123abc=-⎧⎪=⎨⎪=⎩,∴抛物线解析式为y=﹣x2+2x+3;(2)∵A(0,3),D(2,3),∴抛物线对称轴为x=1,∴E(3,0),设直线AE的解析式为y=kx+3,∴3k+3=0,解得,k=﹣1,∴直线AE的解析式为y=﹣x+3,如图1,作PM∥y轴,交直线AE于点M,设P(t,﹣t2+2t+3),M(t,﹣t+3),∴PM=﹣t2+2t+3+t﹣3=﹣t2+3t,∴12PAE PMA PMES S S PM OE=+=⋅=()21332t t⨯⨯-+=23327228t⎛⎫--+⎪⎝⎭,∴t=32时,△PAE的面积最大,最大值是278.(3)由图可知∠PEA≠90°,∴只能有∠PAE=90°或∠APE=90°,①当∠PAE=90°时,如图2,作PG⊥y轴,∵OA=OE,∴∠OAE=∠OEA=45°,∴∠PAG=∠APG=45°,∴PG=AG,∴t =﹣t 2+2t+3﹣3,即﹣t 2+t =0,解得t =1或t =0(舍去), ②当∠APE =90°时,如图3,作PK ⊥x 轴,AQ ⊥PK ,则PK =﹣t 2+2t+3,AQ =t ,KE =3﹣t ,PQ =﹣t 2+2t+3﹣3=﹣t 2+2t , ∵∠APQ+∠KPE =∠APQ+∠PAQ =90°, ∴∠PAQ =∠KPE ,且∠PKE =∠PQA , ∴△PKE ∽△AQP , ∴PK KEAQ PQ=, ∴222332t t t t t t-++-=-+,即t 2﹣t ﹣1=0,解得:t 或t 0(舍去),综上可知存在满足条件的点P ,t 的值为1或12+. 【点睛】本题考查了待定系数法求二次函数解析式、二次函数与几何面积最值问题以及二次函数与特殊三角形的问题,解题的关键是灵活运用二次函数的性质及几何知识.8.(1)成立,证明见解析;(2)DF=DE .(3)当x=0时,y 最小值 【分析】(1)如图1,连接BD .根据题干条件首先证明∠ADF=∠BDE ,然后证明△ADF ≌△BDE (ASA ),得DF=DE ;(2)如图2,连接BD .根据题干条件首先证明∠ADF=∠BDE ,然后证明△ADF ≌△BDE(ASA ),得DF=DE ;(3)根据(2)中的△ADF ≌△BDE 得到:S △ADF =S △BDE ,AF=BE .所以△DEF 的面积转化为:y=S △BEF +S △ABD .据此列出y 关于x 的二次函数,通过求二次函数的最值来求y 的最小值. 【详解】(1)DF=DE .理由如下: 如图1,连接BD .∵四边形ABCD 是菱形, ∴AD=AB . 又∵∠A=60°,∴△ABD 是等边三角形, ∴AD=BD ,∠ADB=60°, ∴∠DBE=∠A=60° ∵∠EDF=60°, ∴∠ADF=∠BDE . ∵在△ADF 与△BDE 中,ADF BDE AD BDA DBE ∠=⎧∠=∠=∠⎪⎨⎪⎩, ∴△ADF ≌△BDE (ASA ), ∴DF=DE ;(2)DF=DE .理由如下: 如图2,连接BD .∵四边形ABCD 是菱形, ∴AD=AB . 又∵∠A=60°,∴△ABD 是等边三角形, ∴AD=BD ,∠ADB=60°, ∴∠DBE=∠A=60° ∵∠EDF=60°, ∴∠ADF=∠BDE . ∵在△ADF 与△BDE 中,ADF BDE AD BDA DBE ∠=⎧∠=∠=∠⎪⎨⎪⎩, ∴△ADF ≌△BDE (ASA ), ∴DF=DE ;(3)由(2)知,△ADF ≌△BDE .则S △ADF =S △BDE ,AF=BE=x . 依题意得:y=S △BEF +S △ABD =12(2+x )xsin60°+12×2×2sin60°x+1)2.即x+1)20, ∴该抛物线的开口方向向上, ∴当x=0即点E 、B 重合时,y 最小值=29.(1)=;(2)证明见解析;(3)60°,BD=CE ;(4)90°,AM+BD=CM ;(5)7【分析】(1)由DE ∥BC ,得到DB ECAB AC=,结合AB=AC ,得到DB=EC ; (2)由旋转得到的结论判断出△DAB ≌△EAC ,得到DB=CE ;(3)根据等边三角形的性质和全等三角形的判定定理证明△DAB ≌△EAC ,根据全等三角形的性质求出结论;(4)根据全等三角形的判定和性质和等腰直角三角形的性质即可得到结论;(5)根据旋转的过程中△ADE 的面积始终保持不变,而在旋转的过程中,△ADC 的AC 始终保持不变,即可. 【详解】[初步感知](1)∵DE ∥BC , ∴DB ECAB AC=, ∵AB=AC , ∴DB=EC , 故答案为:=, (2)成立.理由:由旋转性质可知∠DAB=∠EAC , 在△DAB 和△EAC 中AD AE DAB EAC AB AC ⎪∠⎪⎩∠⎧⎨===, ∴△DAB ≌△EAC (SAS ), ∴DB=CE ;[深入探究](3)如图③,设AB ,CD 交于O ,∵△ABC 和△ADE 都是等边三角形, ∴AD=AE ,AB=AC ,∠DAE=∠BAC=60°,∴∠DAB=∠EAC , 在△DAB 和△EAC 中AD AE DAB EAC AB AC ⎪∠⎪⎩∠⎧⎨===, ∴△DAB ≌△EAC (SAS ), ∴DB=CE ,∠ABD=∠ACE , ∵∠BOD=∠AOC , ∴∠BDC=∠BAC=60°;(4)∵△DAE 是等腰直角三角形, ∴∠AED=45°, ∴∠AEC=135°, 在△DAB 和△EAC 中AD AE DAB EAC AB AC ⎪∠⎪⎩∠⎧⎨===, ∴△DAB ≌△EAC (SAS ), ∴∠ADB=∠AEC=135°,BD=CE , ∵∠ADE=45°,∴∠BDC=∠ADB-∠ADE=90°,∵△ADE 都是等腰直角三角形,AM 为△ADE 中DE 边上的高, ∴AM=EM=MD , ∴AM+BD=CM ;故答案为:90°,AM+BD=CM ; 【拓展提升】 (5)如图,由旋转可知,在旋转的过程中△ADE 的面积始终保持不变, △ADE 与△ADC 面积的和达到最大, ∴△ADC 面积最大,∵在旋转的过程中,AC 始终保持不变, ∴要△ADC 面积最大, ∴点D 到AC 的距离最大, ∴DA ⊥AC ,∴△ADE 与△ADC 面积的和达到的最大为2+12×AC×AD=5+2=7, 故答案为7. 【点睛】此题是几何变换综合题,主要考查了旋转和全等三角形的性质和判定,旋转过程中面积变化分析,解本题的关键是三角形全等的判定.10.(1)m=6,()2,0;(2)当a=1时,ODE 面积的最大值为278【分析】(1)将点34,2A ⎛⎫ ⎪⎝⎭代入反比例函数解析式求出m ,根据坐标中点公式求出点C 的横坐标即可;(2)由AC 两点坐标求出直线AB 的解析式为3342y x =-,设D 坐标为33,(04)42D a a a ⎛⎫-<≤ ⎪⎝⎭,则6,E a a ⎛⎫⎪⎝⎭,进而得到2327(1)88ODESa =--+,即可解答【详解】解:(1)把点34,2A ⎛⎫ ⎪⎝⎭代入反比例函数(0)m y x x=>,得:324m =,解得:m=6,∵A 点横坐标为:4,B 点横坐标为0,故C 点横坐标为:4022+=, 故答案为:6,(2,0);(2)设直线AB 对应的函数表达式为y kx b =+.将34,2A ⎛⎫ ⎪⎝⎭,(2,0)C 代入得34220k b k b ⎧+=⎪⎨⎪+=⎩,解得3432k b ⎧=⎪⎪⎨⎪=-⎪⎩. 所以直线AB 对应的函数表达式为3342y x =-. 因为点D 在线段AB 上,可设33,(04)42D a a a ⎛⎫-<≤ ⎪⎝⎭, 因为//DE y 轴,交反比例函数图像于点E .所以6,E a a ⎛⎫ ⎪⎝⎭. 所以221633333273(1)2428488ODESa a a a a a ⎛⎫=⋅⋅-+=-++=--+ ⎪⎝⎭. 所以当a =1时,ODE 面积的最大值为278. 【点睛】本题考查了函数与几何综合,涉及了待定系数法求函数解析式、三角形面积、坐标中点求法、二次函数的应用等知识点,解题关键是用函数解析式表示三角形面积.11.(1)y =﹣x 2+2x +3;(2)S 与m 的函数表达式是S =252m m --,S 的最大值是258,此时动点M 的坐标是(52,74);(3)点M在整个运动过程中用时最少是3秒. 【分析】(1)首先求出B 点的坐标,根据B 点的坐标即可计算出二次函数的a 值,进而即可计算出二次函数的解析式;。

微专题-三角形中的最值(范围)问题--高一数学-(苏教版2019必修第二册)

微专题-三角形中的最值(范围)问题--高一数学-(苏教版2019必修第二册)

π 3
=12×2×1×sin θ+ 43(OA2+OB2-2OA·OB·cos θ)
=sin θ-
3cos
θ+5 4 3=2sinθ-π3+5
4
3 .
∵0<θ<π,∴-π3<θ-π3<23π,
故当 θ-π3=π2,即 θ=56π时,sinθ-π3取得最大值 1,
故 S 四边形 OACB 的最大值为 2+543=8+45
(2)若a=2,求sin B+sin C的取值范围.
解 sin B+sin C=sin B+sin23π-B = 3sinB+π6, ∵0<B<23π,π6<B+π6<56π,
∴12<sinB+π6≤1,∴
3 2 <sin
B+sin
C≤
3.
∴sin
B+sin
C
的取值范围为
23,
3.
三、与三角形的周长有关的范围问题
解三角形
微专题 三角形的最值(范围)问题
三角形中的最值或者范围问题,是高中数学的重要内容,也是高考 的热点之一.现阶段,三角形的最值或范围问题,一般转化为条件最值或 范围问题:先根据正弦、余弦定理及三角形面积公式结合已知条件灵活 转化边和角的关系,再利用三角函数的有界性去求最值.
一、与三角形的边有关的最值问题
二、与三角形的角或角的三角函数有关的范围或最值问题
求三角函数式的范围一般是先确定角的范围,利用三角函数的单调 性及有界性求范围或最值.
例2
△ABC 的内角 A,B,C 所对的边分别为 a,b,c,向量 m=a,
3b
与 n=(cos A,sin B)平行.
(1)求角 A 的大小;

中小学三角形中的最值(范围)问题公开课教案教学设计课件案例测试练习题卷

中小学三角形中的最值(范围)问题公开课教案教学设计课件案例测试练习题卷

信手拈来,精准打击
高考题:(2018·江苏卷)在△ABC 中,角 A,B,C 所对的边分别为 a,b,c,∠ABC=120°,BD 是∠ABC 的平分线,交
AC 于点 D,且 BD=1,求 4a+c 的最小值.
A
解法 1:
D
设∠BCD= ,易得 0°< <60°,则∠A=60°- ,∠BDC=120°- ,∠ADB=60°+
解法 1.三角函数法:
3
b 2c 2sin B 4sin C
2
sin
B
4
sin
2
3
B
4
sin
B
2
3 cos B 2
7 sin B
解法 2.判别式法:
设b 2c t,b t 2c代入3=b2 c2 bc,得7c2 5tc t 2 3 0 ,
通性通法的 巩固与总结
BD sin 750
AB sin

则 AB=
BC sin sin
2sin 1350 sin
2 1 cot

+750 +750
<1800 <1800

300<
<1050,
3-2<cot <
32则
6-
2 <AB<
6+
2
代数视角
750 B
解法 2:极限法 如图,动态地审视平面四边形 ABCD:边 BC=2 固定,∠B=∠C=75°固定,延长 BA,CD 交于点 P.虽然∠BAD=75°,
由 =25t2 28(t2 3) 0,得t 2 7
解法 3.导数法:
巧妙引入参数,注重课堂生成

完整版)解三角形中的最值问题

完整版)解三角形中的最值问题

完整版)解三角形中的最值问题解三角形中的最值问题1.在三角形ABC中,已知角A,B,C所对边长分别为a,b,c,且a²+b²=2c²,求cosC的最小值。

解析:由余弦定理知cosC=(a²+b²-c²)/(2ab),代入已知条件得cosC≥-1/2.因此cosC的最小值为-1/2.2.在三角形ABC中,已知角B=60°,AC=3,求AB+2BC的最大值。

解析:根据余弦定理,AB²=AC²+BC²-2AC·BCcosB,代入已知条件得AB²=9+BC²-6BC·1/2,即AB²=BC²-3BC+9.由于AB+2BC=AB+BC+BC,因此可将其转化为求AB+BC的最大值。

设x=BC,则AB²=x²-3x+9,求导得x=3/2时,AB+BC取得最大值,即AB+2BC的最大值为9/2.3.在三角形ABC中,已知角A,B,C的对边分别为a,b,c,且a≥b,sinA+3cosA=2sinB。

(1)求角C的大小;(2)求(a+b)/c的最大值。

解析:(1)由sinA+3cosA=2sinB得2sin(A+π/3)=2sinBsinA/3,因此sin(A+π/3)=sinB/3.由于a≥b,因此A≥B,所以A+π/3=B/3,即A=π/3-B/3.由正弦定理得c/sinC=2b/sinB,代入已知条件得c=2b(sinA+3cosA)/sinB=6b/√3=2√3b,因此角C的大小为π/3.2)由正弦定理得(a+b)/c=sinA+sinB/sinC,代入已知条件得(a+b)/c=2sinB/sinC,即sinC=2sinB(a+b)/c。

由于sinC≤1,因此(a+b)/c≤1/2.当且仅当A=π/2时,(a+b)/c取得最大值1/2.4.在三角形ABC中,已知内角A,B,C的对边分别为a,b,c,且a=___。

高考数学《与解三角形有关的最值问题》

高考数学《与解三角形有关的最值问题》

高考数学 与解三角形有关的最值问题
例 2 在△ABC 中,已知角 A,B,C 的对边分别为 a,b,c,tanC=csoinsAA+ +scionsBB. (1) 求角 C 的大小; (2) 若△ABC 的外接圆直径为 1,求 a2+b2+c2 的取值范围. 解析:(1) 因为 tanC=csoinsAA+ +scionsBB,即csoinsCC=csoinsAA++csionsBB, 所以 sinCcosA+sinCcosB=cosCsinA+cosCsinB, 即 sinCcosA-cosCsinA=cosCsinB-sinCcosB,所以 sin(C-A)=sin(B-C). 所以 C-A=B-C 或 C-A=π-(B-C)(不成立),即 2C=A+B,所以 C=π3.
tanAtanBtanC 将问题作进一步处理.
因为 2sin2A+sin2B=2sin2C,所以由正弦定理可得 2a2+b2=2c2.
由余弦定理及正弦定理可得 cosC=a2+2ba2b-c2=4ba2b=4ba=4ssiinnBA.
高考数学 与解三角形有关的最值问题
又因为 sinB=sin(A+C)=sinAcosC+cosAsinC, 所以 cosC=sinAcosC4s+incAosAsinC=co4sC+4stiannCA, 可得 tanC=3tanA,代入 tanA+tanB+tanC=tanAtanBtanC 得 tanB=3ta4nta2AnA-1, 所以ta1nA+ta1nB+ta1nC=ta1nA+3ta4nta2AnA-1+3ta1nA=3ta4nA+121ta3nA.
高考数学 与解三角形有关的最值问题
(2) 解法一:由 C=π3可得 c=2RsinC=1× 23= 23, 且 a=2RsinA=sinA,b=2RsinB=sinB. 设 A=π3+α,B=π3-α,0<A<23π,0<B<23π,知-π3<α<3π. 所以 a2+b2+c2=34+sin2A+sin2B=34+1-c2os2A+1-c2os2B =74-12cos23π+2α+cos23π-2α=74+12cos2α. 由-π3<α<π3知-23π<2α<23π,-12<cos2α≤1,故32<a2+b2+c2≤94.

高三理科数学最值微专题(2)三角函数篇

高三理科数学最值微专题(2)三角函数篇

高三理科数学二轮复习最值专题(2)三角函数篇类型一:形如y =a sin x +b cos x +c 的三角函数化为y =A sin(ωx +φ)+c 的形式,再求值域(最值)。

例1.函数f (x )=sin ⎝⎛⎭⎫2x -π4在区间⎣⎡⎦⎤0,π2上的最小值为( ) A .-1 B .-22C .0 D.22解析:因为0≤x ≤π2,所以-π4≤2x -π4≤3π4,由正弦函数的图象知,1≥sin ⎝⎛⎭⎫2x -π4≥-22,所以函数f (x )=sin ⎝⎛⎭⎫2x -π4在区间⎣⎡⎦⎤0,π2上的最小值为-22,故选B. 例2.已知函数f (x )=(sin x +cos x )2+cos 2x .(1)求f (x )的最小正周期;(2)求f (x )在区间⎣⎡⎦⎤0,π2上的最大值和最小值. 解:(1)因为f (x )=sin 2x +cos 2x +2sin x cos x +cos 2x =1+sin 2x +cos 2x =2sin ⎝⎛⎭⎫2x +π4+1, 所以函数f (x )的最小正周期T =2π2=π. (2)由(1)知,f (x )=2sin ⎝⎛⎭⎫2x +π4+1. 当x ∈⎣⎡⎦⎤0,π2时,2x +π4∈⎣⎡⎦⎤π4,5π4,由正弦函数y =sin x 在⎣⎡⎦⎤π4,5π4上的图象知,当2x +π4=π2,即x =π8时,f (x )取最大值2+1;当2x +π4=5π4,即x =π2时,f (x )取最小值0.综上,f (x )在⎣⎡⎦⎤0,π2上的最大值为2+1,最小值为0.类型二:形如y =a sin 2x +b sin x +c 的三角函数,可先设sin x =t ,化为关于t 的二次函数求值域(最值)。

例3、求函数y =cos 2x +sin x ⎝⎛⎭⎫|x |≤π4的最大值与最小值. [思路点拨] 利用换元法求解,令t =sin x .转化为二次函数最值问题.[解]:令t =sin x ,∵|x |≤π4,∴t ∈⎣⎡⎦⎤-22,22.∴y =-t 2+t +1=-⎝⎛⎭⎫t -122+54,∴当t =12时,y max =54,t =-22时,y min =1-22.∴函数y =cos 2x +sin x ⎝⎛⎭⎫|x |≤π4的最大值为54,最小值为1-22. 类型三:形如y =a sin x cos x +b (sin x ±cos x )+c 的三角函数,可设t =sin x ±cos x ,再化为关于t 的二次函数求值域(最值).例4、求函数y =sin x +cos x +3cos x sin x 的最值.[解] 令t =sin x +cos x ,∴t ∈[-2, 2 ].又(sin x +cos x )2-2sin x cos x =1,∴sin x cos x =t 2-12, ∴y =32t 2+t -32,t ∈[-2,2],∵t 对=-13∈[-2,2],∴y 小=f ⎝⎛⎭⎫-13=32×19-13-32=-53,y 大=f (2)=32+ 2. 类型四:“逆向题”,即已知函数的最值去求某参数的值。

公开课解三角形中的最值及取值范围问题

公开课解三角形中的最值及取值范围问题
2、数学思想方法:
谢谢!
4
4
2 cos A 2 cos A 2 sin A
B , A C 3
4
4
2
2
A(0, 3 )
A
(
,
)
2 cos A 2 sin A
4
44
2
2ቤተ መጻሕፍቲ ባይዱ
当A ,即A 时,取得最大值为1.
42
4
sin(A )
4
例2:在ABC中,角A,B,C所对的边分别为a,b,c,
已知:3b 2a sin B ,角A为锐角. (1)求角A的大小. (2)若a 6, 求b c的取值范围.
例1.(2016年北京卷) ABC中,角A,B,C所对的边分别是a,b,c, 已知a2 c2 b2 2ac, (1)求B的大小. (2)求 2 cos A cos C的最大值.
(2) 2 cos A cosC 2 cos A cos(3 A)
4
2 cos A cos3 cos A sin 3 sin A
例2:在ABC中,角A,B,C所对的边分别为a,b,c,
已知:3b 2a sin B ,角A为锐角. (1)求角A的大小. (2)若a 6, 求b c的取值范围.
解:(1) 3b 2a sin B
3 sin B 2sin Asin B
3 2sin A
sin A 3
2
A为锐角 A
3
微专题 解三角形中取值范围(最值)问题
学习目标
1.能利用正弦、余弦定理来解三角形; 2.掌握解决解三角形问题中的取值范围问题 的常规解法:函数法,不等式法等.
知识要点归纳
(1)正弦定理: (2)余弦定理:
a b c 2R sinA sinB sinC

新高考数学二轮复习三角中的最值、范围问题

新高考数学二轮复习三角中的最值、范围问题
索引
易错提醒
求三角函数式的最值范围问题要注意: (1)把三角函数式正确地化简成单一函数形式; (2)根据所给自变量的范围正确地确定ωx+φ的范围,从而根据三角函数的单调 性求范围.
索引
训练 1 (2022·潍坊质检)在①函数 y=f(x)的图象关于直线 x=π3对称,②函数 y= f(x) 的图象关于点 Pπ6,0对称,③函数 y=f(x)的图象经过点 Q23π,-1,这 三个条件中任选一个,补充在下面问题中并解答. 问题:已知函数 f(x)=sin ωxcos φ+cos ωxsin φω>0,|φ|<π2的最小正周期为 π,且________,判断函数 f(x)在区间π6,π2上是否存在最大值?若存在,求 出最大值及此时的 x 值;若不存在,说明理由. 解 f(x)=sin ωxcos φ+cos ωxsin φ=sin(ωx+φ), 由已知函数 f(x)的周期 T=2ωπ=π,得 ω=2, 所以 f(x)=sin(2x+φ).
考向 2 由单调性求参数的范围
例 3 已知 f(x)=sin(2x-φ)0<φ<π2在0,π3上是增函数,且 f(x)在0,78π上有最
小值,那么 φ 的取值范围是( B )
A.π6,π2
B.π6,π4
C.π3,π2
D.π4,π3
解析 由 x∈0,π3,得 2x-φ∈-φ,23π-φ, 又由 0<φ<π2,且 f(x)在0,π3上是增函数, 可得23π-φ≤π2,所以π6≤φ<π2. 当 x∈0,78π时,2x-φ∈-φ,74π-φ,
索引
热点二 与三角函数性质有关的参数范围
///////
核心归纳
与三角函数性质有关的参数问题,主要分为三类,其共同的解法是将y= Asin(ωx+φ)中的ωx+φ看作一个整体,结合正弦函数的图象与性质进行求解.

解三角形中的范围(最值)问题教案-2022届高三数学二轮复习微专题复习

解三角形中的范围(最值)问题教案-2022届高三数学二轮复习微专题复习

微专题:解三角形中的范围(最值)问题教学设计一、教学内容分析在高中数学知识体系中,解三角形是一个基础知识点,也是高考的一个必考点。

在解三角形的题型中,考查正弦定理和余弦定理的应用,涉及最值和范围的问题相对较难,综合性也较强。

解三角形问题是高考高频考点,在解三角形中的求最值或范围问题是高三复习中的难点,这类问题常常在知识的交汇点处命题,其涵盖及关联三角函数、平面向量、平面几何、基本不等式、导数等多领域的知识。

近几年的高考突出以能力立意,加强对知识综合性的考查,故常常在知识的交汇处设计问题。

主要考查“三基”(基本知识、基本技能、基本思想和方法)以及综合能力,对正弦定理和余弦定理的考查较为灵活,题型多变,以选择题、填空题、解答题体现。

试题难度多为容易题和中档题,主要考查灵活变式求解计算能力,推理论证能力,数学应用意识,数形结合思想等。

而在解三角形中求解某个量(式子)最值或范围是命题的热点,又是一个重点,本节课通过近几年高考试题及模拟试题进行分析,对解三角形的范围(最值)进行优化归纳,并给出针对性巩固练习,以期求得热点难点的突破。

二、学情诊断分析授课对象为高三平行班学生。

本节课之前,学生已经学习了正余弦定理、基本不等式、三角函数、导数等有关内容,但是对于知识前后间联系、理解、应用综合性强的题有一定难度,学习起来比较吃力。

题目稍作变形就不会,独立分析、解决问题的能力有限。

但对一些简单数学规律和基本数学方法的学习,具有一定的基础。

本节课是针对他们在做此类型题目中能做但不能得全对的情形下做的一个探究归纳,使学生对此类问题有一个更高更深刻的认识掌握,解题能力有一个提升。

三、教学目标分析1.巩固正弦、余弦定理的应用,学会利用均值不等式、三角函数有界性和导数在处理范围问题中的应用;2.强化转化与化归的数学思想以及数形结合的数学思想,提高学生研究问题,分析问题与解决问题的能力。

四.教学重难点分析重点:正弦定理和余弦定理及三角形面积公式的运用,能运用正弦余弦和差角公式进行简单的三角函数的恒等变换,理解基本不等式、三角函数的图像与性质和导数简单应用。

中考数学《最值问题》及参考答案

中考数学《最值问题》及参考答案

中考数学《最值问题》及参考答案一、轴对称求最小值1.如图,四边形ABCD是边长为6的正方形,△ABC是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE的值最小,求这个最小值.2.四边形ABCD中,∠BAD=122°,∠B=∠D=90°,在BC、CD上分别找一点M、N,当△AMN周长最小时,求∠MAN的度数.3.如图,∠AOB =45°,OC为∠AOB内部一条射线,点D为射线OC上一点,OD=√2,点E、F分别为射线0A、OB上的动点,求△DEF周长的最小值.二、垂线段最短求最值4.如图,矩形ABCD中,AD=3,AB=4,M为线段BD上一动点,MP⊥CD于点P,MQ⊥BC于点Q,求PQ 的最小值.5.如图,边长为6的等边三角形ABC中,E是对称轴AD上一个动点,连接EC,将线段EC绕点C逆时针旋转60°得到FC,连接DF,则在点E运动的过程中,求DF的最小值.6.如图所示,在RtΔABC中,∠C=90°,AC=4,BC=3,P为AB上一动点(不与A、 B重合),作PE ⊥AC于点E,PF⊥BC于点F,连接EF,求EF的最小值.7.如图,在ΔABC中,∠BAC=90,AB=6,BC=10,BD平分∠ABC,若P,Q分别是BD,AB上的动点,求PA+PQ的最小值.8.如图,Rt△ABC中,∠C=90°,以AB为边在AB上方作正方形ABDE,过点D作DF⊥CB,交CB的延长线于点F,连接BE,P,N分别为AC,BE上的动点,连接AN, PN,若DF=5,AC=9,求AN+PN的最小值.二、两点之间,线段最短求最值9.如图,等边△ABC的边长为4,过点B的直线l⊥AB,且△ABC与△A´B´C´公关于直线l对称,D为线段BC´上一动点,求AD+CD的最小值是( )10.如图,在长方形ABCD中,AB=3,AD=4,动点P满足S△PCD=14S长方形ABCD´,求点P到A,B两点的距离之和PA+PB的最小值.三、三角形三边的关系求最值问题11.如图,在平面直角坐标系中,平行四边形ABCD的坐标分别为A(-1,0)、B(0,2)、 C(4,2)、D(3,0),点P是AD边上的一个动点,若点A关于BP的对称点为A´,求则A´C的最小值.参考答案1.析:连接BP.因为点B 与点D 关于直线AC 对称,所以PB=PD .所以PD+PE =PB+PE≥BE,所以PD+PE 的最小值即为BE 的长.BE =AB =6,则PD+PE 的值最小为6.2.析:如图,延长AB 到A ´使得BA ´=AB,延长AD 到A ´使得DA"=AD,连接A ´A"与BC 、CD 分别交于点M 、N.∵∠ABC=∠ADC=90° ∴ A 、A ´关于BC 对称,A 、A"关于CD 对称,此时ΔAMN 的周长最小∵BA=BA ´,MB ⊥ AB ∴MA =MA ´同理:NA=NA" ∴∠A ´=∠MAB,∠A"=∠NAD∵∠AMN =∠A ´+∠MAB =2∠A ´,∠ANM =∠A"+∠NAD =2∠A"∴∠AMN +∠ANM = 2(∠A ´+∠A")∵∠BAD=122° ∴ ∠A ´+LA"=180°-∠BAD=58° ∴∠AMN +∠ANM=2x58°=116∴∠MAN =180-116°=64°3.析:作点D 作关于OA 的对称点P,点D 关于OB 的对称点Q,连接PQ,与OA 的交点为点E,与OB 的交点为点F.△DEF 的最小周长为DE +EF +QF =PE+EF+QF =PQ连接OP 、OQ,则OP=0Q=√2 ∵∠POQ =2∠AOB=90°∴ΔOPQ 是等腰直角三角形∴PQ =√2OD=2∴ΔDEF 的周长的最小值是2.4.析:如图,连接CM∵MP ⊥CD 于点P,MQ ⊥BC 于点Q ∴∠CPM =∠CQM=90°∴四边形ABCD 是矩形∴BC=AD=3,CD=AB=4,∠BCD=90°∴四边形PCQM 是矩形,PQ =CM∴BD =√32+42=5当CM ⊥BD 时,CM 最小,则PQ 最小,此时,S △BCD =1 2BD ·CM=12BC ·CD ∴PQ 的最小值为125.5.析:取线段AC 的中点G,连接EG∵ΔABC 为等边三角形,AD 为△ABC 的对称轴∴CD=CG=1 2AB=3,∠ACD =60° ∵ ∠ECF =60°∴∠FCD =∠ECG在ΔFCD 和ΔECG 中,FC =EC,∠FCD=∠ECG,DC=GC∴ΔFCD ≌AECG ∴DF =GE当EG ⊥AD 时,EG 最短,即DF 最短∵点G 为AC 的中点,EG=DF=1 2CD=32 6.析: 连接CP.∵∠C=90,AC=3,BC =4 ∴AB =√32+42=5∵PE ⊥AC,PF ⊥BC,∠C=90°∴四边形CFPE 是矩形∴EF =CP由垂线段最短可得CP ⊥AB 时,线段EF 的值最小S △ABC=1 2BC ·AC=12AB ·CP ∴1 2×4×3=12×5·CP ∴CP =2.4 7.如图,作点Q 关于直线BD 的对称点Q ´∵BD 平分∠ABC ∴点Q 在BC 上连接PQ ´,则PA+PQ 的最小值即为PA+PQ ´的最小值∴当A 、P 、Q ´三点共线且AQ ´⊥BC 时,PA+PQ 的值最小过点A 作AM ⊥BC 于点M,则PA+PQ 的最小值即为AM 的长∵AB=6,BC=10 ∴AC ²=10²-6²=64 ∴AC=8∵ S △ABC =1 2AM ·BC=1 2AB ·AC ∴AM=AB·AC BC =48 10=4.88.析:连接AD ,与BE 交于点O∵四边形ABDE 是正方形 ∴BE ⊥AD,OD =OA ,点A 与点D 关于直线BE 对称 求PN + AN 的最小值,只需D ,N ,P 在同一条直线上,由于P ,N 分别是AC 和BE 上的动点,过点D 作DP ⊥AC 于P 交BE 于点 N ,此时PN + AN =PN+ND=PD ,由△ABC ≌ △BDF 可知,BF= AC = 9,BC=DF=5,易知四边形DFCP 是矩形,CF=PD=BF+BC=9+5=149.析:如图,连接AD∵△ABC 是边长为4的等边三角形 ∴AB =BC=4,∠ABC=60° ∵△ABC 与△ A ´B ´C ´关于直线l 对称∴A ´B=BC,∠AB ´C ´=60°∴∠CBC ´=60°=∠A ´BD∴△BCD ≌△BA ´D(SAS)∴A ´D=CD ∴CD +AD =AD +A ´D当A 、D 、A ´三点共线时,AD+A ´D 最小,此时CD+AD 最小,最小为4+4=8.10.析:如图,设APC 的CD 边上的高是h.∵S △PCD =1 2S 长形ABCD ,AD=4 ∴1 2·CD ·h =1 4CD ·AD ∴h=12AD=2 ∵动点P 在与CD 平行且与CD 的距离是2的直线l 上连接AC 交直线l 于点P ´∵l//CD,AD=4,四边形ABCD 是长方形 ∴l ⊥AD,l ⊥BC∴直线l 是BC 边的垂直平分线 ∴BP ´=CP ´∴AP ´+BP ´=AP ´+CP ´ ∴ AC 的长是最短距离∴AC=√32+4=5,PA +PB 的最小值为5.11.析:连接BA ´∵AB=√5,BC =4若点A 关于BP 的对称点为A ´ ∴BA ´=BA=√5在△BA ´C 中,A ´C ≥BC-BA ´,即AC ´≥4-√5∴AC ´的最小值为4-√5。

解三角形中的最值与范围问题(解析版)

解三角形中的最值与范围问题(解析版)

专题5解三角形中的最值与范围问题一、三角形中的最值范围问题处理方法1、利用基本不等式或常用不等式求最值:化角为边余弦定理公式里有“平方和”和“积”这样的整体,一般可先由余弦定理得到等式,再由基本不等式求最值或范围,但是要注意“一正二定三相等”,尤其是取得最值的条件。

2、转为三角函数求最值:化边为角如果所求整体结构不对称,或者角度有更细致的要求,用余弦定理和基本不等式难以解决,这时候可以转化为角的关系,消元后使得式子里只有一个角,变为三角函数最值问题进行解决。

要注意三角形隐含角的范围、三角形两边之和大于第三边。

二、边化角与角化边的变换原则在解三角形的问题中,若已知条件同时含有边和角,但不能直接使用正弦定理或余弦定理得到答案,要选择“边化角”或“角化边”,变换原则如下:(1)若式子中含有正弦的齐次式,优先考虑正弦定理“角化边”; (2)若式子中含有a 、b 、c 的齐次式,优先考虑正弦定理“边化角”; (3)若式子中含有余弦的齐次式,优先考虑余弦定理“角化边”; (4)代数式变形或者三角恒等变换前置;(5)含有面积公式的问题,要考虑结合余弦定理求解;(6)同时出现两个自由角(或三三个自由角)时,要用到三角形的内角和定理.【分析】设220CDBD m ==>,利用余弦定理表示出22AC AB 后,结合基本不等式即可得解. 【详解】[方法一]:余弦定理 设220CDBD m ==>, 则在ABD △中,2222cos 42AB BD AD BD AD ADB m m =+⋅∠=++,在ACD 中,22222cos 444AC CD AD CD AD ADC m m =+−⋅∠=+−, 所以()()()2222224421214441243424211m m m AC m m AB m m m mm m ++−++−===−+++++++44≥=−当且仅当311m m +=+即1m =−时,等号成立,所以当ACAB取最小值时,1m =−.1.[方法二]:建系法令 BD=t ,以D 为原点,OC 为x 轴,建立平面直角坐标系. 则C (2t,0),A (1,B (-t,0)()()()2222222134441244324131111t AC t t AB t t t t t t BD −+−+∴===−≥−++++++++==当且仅当即时等号成立。

微专题三角函数与解三角形中最值问题

微专题三角函数与解三角形中最值问题
A. B. C. D.
【分析】 在对称轴处取得最值有 ,结合 ,可得 ,易得曲线 的解析式为 ,结合其对称中心为 可得 即可得到 的最小值.
【解析】∵直线 是曲线 的一条对称轴. ,又 . .∴平移后曲线 为 .曲线 的一个对称中心为 . .
,注意到 ,故 的最小值为 .故选:C.
例题9:某同学用“五点法”画函数 在某一个周期内的图象时,列表并填入了部分数据,如下表:
1.(2020·黑龙江高三)若函数 的图像向左平移 个单位得到函数 的图像.则 在区间 上的最小值为()
A. B. C. D.
【分析】注意平移是针对自变量x,所以 ,再利用整体换元法求值域(最值)即可.
【解析】由已知 ,
,又 ,故 ,
,所以 的最小值为 .
2.(2020·河北正定中学高三)已知函数 ( )的部分图象如图所示,且 ,则 的最小值为()
0
0
5
0
(Ⅰ)请将上表数据补充完整,并直接写出函数 的解析式;
(Ⅱ)将 图象上所有点向左平行移动 个单位长度,得到 的图象.若 图象的一个对称中心为 ,求 的最小值.
【解析】(Ⅰ)根据表中已知数据,解得 .数据补全如下表:
0
0
5
0
0
且函数表达式为 .
(Ⅱ)由(Ⅰ)知 ,得 .
因为 的对称中心为 , .令 ,解得 , .
5.(2020北京高三)将函数 图像上的点 向左平移 ( )个单位长度得到点 .若 位于函数 的图像上,则
A. , 的最小值为 B. , 的最小值为
C. , 的最小值为 D. , 的最小值为
【解析】因为点 在函数 的图象上,所以 ,
又 在函数 的图象上,所以 ,则 或 , ,得 或 , .又 ,故 的最小值为 ,故选A.

微专题二:解三角形基础中档常考题型总结-解析

微专题二:解三角形基础中档常考题型总结-解析

解三角形基础中档常考题型总结一、单选题1.如图,在ABC 中,4BC =,4BA BC ⋅=,点P 为边BC 上的一动点,则PA PC ⋅的最小值为( )A .0B .2-C .94-D .3-【答案】C 【分析】作辅助线AO BC ⊥,利用向量数量积公式,可求得1BO =,3CO =,再利用向量的三角形法则,将求PA PC ⋅的最小值,转化为求PO PC ⋅得最小值,然后分类讨论P 与O 的位置关系,可知P 在O 右侧时,PA PC ⋅最小,再利用基本不等式求最值. 【详解】如图所示,作AO BC ⊥4BA BC ⋅=,4BC =,cos 4BA BC B ∴⋅=,可得cos 1BA B =,即1BO =,3CO ∴= 利用向量的三角形法则,可知()PA PO OA PC PO PC PC ⋅=+⋅=⋅若P 与O 重合,则0PC PA ⋅=若P 在O 左侧,即P 在OB 上时, PA PO PC PC ⋅=⋅若P 在O 右侧,即P 在OC 上时,PA PO PC PC ⋅=-⋅,显然此时PA PC ⋅最小,利用基本不等式2924PO PC PO PC ⎛⎫+⎪-⋅≥-=- ⎪ ⎪⎝⎭(当且仅当PO PC =,即P 为OC 中点时取等号) 故选:C. 【点睛】本题考查向量的三角形法则,向量的数量积公式,及利用基本不等式求最值,考查学生的转化能力,数形结合思想,属于中档题.2.在ABC 中,内角A ,B ,C 的对边分别是a ,b ,c ,()()sin sin sin sin a c A C b B a B +-+=,24b a +=,点D 在边AB 上,且2AD DB =,则线段CD 长度的最小值为( ) A .3B .3C .3D .2【答案】A 【分析】由已知条件和正弦定理,得()()2a c a cb ab +-+=,再由余弦定理得, 3C π=.由向量的线性运算得1233CD CA CB =+,两边平方,可得()2212299CD b a ab =+-,运用基本不等式可得选项.【详解】由()()sin sin sin sin a c A C b B a B +-+=及正弦定理,得()()2a c a cb ab +-+=,即222a b c ab +-=,由余弦定理得,2221cos 22a b c C ab +-==,∵()0,C π∈,∴3C π=.由于2AD DB =,∴()2212++++3333CD CA AD CA AB CA AC CB CA CB ====+,两边平方,得 ()()2222222214414212112cos 2299999999992b a CD b a ab C b a ab b a ab b a +⎛⎫=++=++=+-≥+- ⎪⎝⎭,当且仅当22b a ==时取等号,即()22142123CD b a ≥+=,∴线段CD 长度的最小值为3. 故选:A.【点睛】本题考查综合运用正弦定理、余弦定理、向量的线性运算、向量的数量积运算,以及运用基本不等式求最值,属于较难题.二、多选题3.如图,ABC 的内角A ,B ,C 所对的边分别为a ,b ,c .若a b =,且()3cos cos 2sin a C c A b B +=,D 是ABC 外一点,1DC =,3DA =,则下列说法正确的是( )A .ABC 是等边三角形B .若23AC =A ,B ,C ,D 四点共圆 C .四边形ABCD 面积最大值为5332+ D .四边形ABCD 面积最小值为5332- 【答案】AC 【分析】利用三角函数恒等变换化简已知等式可求sin B ,再利用a b =,可知ABC 为等边三角形,从而判断A ;利用四点A ,B ,C ,D 共圆,四边形对角互补,从而判断B ;设AC x =,0x >,在ADC 中,由余弦定理可得2106cos x D =-,利用三角形的面积公式,三角函数恒等变换的,可求ABCD S 四边形,利用正弦函数的性质,求出最值,判断CD . 【详解】由正弦定理2sin ,2sin ,2sin a R A b R B c R C ===, 3(sin cos sin cos )2sin sin A C C A B B +=⋅,332sin ,sin B B =∴=a b =,B 是等腰ABC 的底角,(0,)2B π∴∈,,3B ABC π∴=∴△是等边三角形,A 正确;B 不正确:若,,,A BCD 四点共圆,则四边形对角互补, 由A 正确知21,cos 32D D π∠==-,但由于1,3,DC DA AC ===22211cos 232DC DA AC D DA DC +-===-≠-⋅⋅,∴B 不正确. C 正确,D 不正确:设D θ∠=,则2222cos 106cos AC DC DA DC DA θθ=+-⋅⋅=-,(106cos )cos 422ABC S θθ∴=⋅-=-△, 3sin 2ADC S θ=△,3sin cos 222ABCADCABCD S SSθθ∴=+=-+四边形,13(sin cos 2θθ=⋅-+,3sin()3πθ=-+,(0,),sin()(3πθπθ∈∴-∈,3ABCD S <≤+四边形,∴C 正确,D 不正确; 故选:AC.. 【点睛】本题主要考查正弦定理,余弦定理,三角函数恒等变换,正弦函数的图象和性质在解三角形中的综合应用,考查计算能力和转化思想,属于中档题.三、填空题4.在ABC 中,记角A ,B ,C 所对的边分别是a ,b ,c ,面积为S,则22Sa bc+的最大值为______【答案】312【分析】利用面积公式和余弦定理,结合均值不等式以及线性规划即可求得最大值. 【详解】2221sin 1sin 222cos 2222cos bc AS Ab c a bc b c bc A bc A c b==⨯++-+++-1sin 4cos 2A A ≤-⨯-(当且仅当b c =时取等号).令sin ,cos A y A x ==,故21242S ya bc x ≤-⨯+-, 因为221x y +=,且0y >,故可得点(,)x y 表示的平面区域是半圆弧上的点,如下图所示:目标函数2yz x =-上,表示圆弧上一点到点(2,0)A 点的斜率, 由数形结合可知,当且仅当目标函数过点132H ⎛ ⎝⎭,即60A =︒时,取得最小值3 故可得32yz x ⎡⎫=∈⎪⎢⎪-⎣⎭, 又21242S y a bc x ≤-⨯+-,故可得213324S a bc ≤-⨯=+, 当且仅当60,A b c =︒=,即三角形为等边三角形时,取得最大值.. 【点睛】本题主要考查利用正余弦定理求范围问题,涉及线性规划以及均值不等式,属综合困难题.5.已知在锐角三角形ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若2sin sin sin 0A B C -=,则sin sin 2sin B CA-的取值范围为_________【答案】11,22⎛⎫- ⎪⎝⎭【分析】由已知结合正弦定理可得,2a bc =然后结合余弦定理,2222cos a b c bc A =+-()()221cos b c bc A =-+-,令sin sin 2sin 2B C b cp A a--==,代换后结合余弦的性质即可求解.【详解】因为2sin sin sin 0A B C -=, 所以2a bc =,由余弦定理可得:()()22222cos 21cos a b c bc A b c bc A =+-=-+-, 令sin sin 2sin 2B C b cp A a--==,则2b c pa -=,因此()()222221cos a pa a A =+-, 所以22cos 14A p -=, 因为A 为锐角,0cos 1A <<,所以22cos 1144A p -=<, 所以1122p -<<,故答案为:11,22⎛⎫- ⎪⎝⎭ 【点睛】关键点点睛:首先利用正弦定理化角为边可得2a bc =,再利用余弦定理并配方可得()()2221cos a b c bc A =-+-关键是令sin sin 2sin 2B C b cp A a--==,2b c pa -=,将b c -、bc 代换掉,结合余弦的性质即可求得范围. 6.若ABC 的内角满足123tan tan tan A B C+=,则cos C 的最小值为___________.【答案】3【分析】由同角三角函数的关系切化弦得cos 2cos 3cos sin sin sin A B CA B C+=,再运用三角恒等变换和正、余弦定理将角转化边可得222+230a b c -=,根据余弦定理和基本不等式可求得cos C 的最小值. 【详解】 由123tan tan tan A B C +=得,cos 2cos 3cos sin sin sin A B C A B C +=,即sin cos 2cos sin 3cos sin sin sin B A B A CA B C +=,sin()+cos sin 3cos sin sin sin B A B A C A B C+∴=,所以2sin +cos sin sin 3sin sin cos C B A C A B C =, 由正弦定理和余弦定理得:22222222+32a c b a b c c ac ab ac ab+-+-⋅=⋅,化简得:222+230a b c -=,22222222222122123333cos 2226+63a b a b a ba b c a b C ab ab ab ab ab +--++-∴====≥=(当且仅当a b =时取等号), 所以cos C的最小值为3.. 【点睛】本题考查同角三角函数间的关系,三角恒等变换,正、余弦定理,以及运用基本不等式求最值,关键在于运用合适的公式将角转化为边,属于较难题.7.ABC 的内角A ,B ,C 所对的边分别为a ,b ,c,sin cos 0a B A -=,bc =,内切圆半径为1,则ABC 的周长为______. 【答案】6 【分析】利用正弦定理将sin cos 0a B A =中的边化为角,从而求得3A π=,再由ABC 的面积11()sin 22S a b c r bc A =++=,即可得解.【详解】解:由正弦定理知,sin sin sin a b cA B C==,sin cos 0a B A =,sin sin cos 0A B B A ∴=,sin 0B ≠,sin 0A A ∴=,即tan A =(0,)A π∈, 3A π∴=,设ABC 的内切圆半径为r ,则1r =,ABC 的面积11()sin 22S a b c r bc A =++=,()143sin3a b c π∴++=⨯,6a b c ∴++=,即ABC 的周长为6.故答案为:6. 【点睛】解三角形的基本策略:一是利用正弦定理实现“边化角”,二是利用余弦定理实现“角化边”;求三角形面积的最大值也是一种常见类型,主要方法有两类,一是找到边之间的关系,利用基本不等式求最值,二是利用正弦定理,转化为关于某个角的函数,利用函数思想求最值.8.已知锐角三角形ABC 的内角A ,B ,C 的对边分别为a ,b ,c 且2sin b a B =,则cos sin B C +的取值范围为_________.【答案】32⎫⎪⎪⎝⎭【分析】由正弦定理化边为角可得1sin 2A =,得出6A π=,再由三角形是锐角三角形得32B ππ<<,化简o sin 3c s B B C π⎛++⎫ ⎪⎝⎭,利用三角函数的性质即可得出.【详解】依题意2sin b a B =,由正弦定理得sin 2sin sin B A B =,sin 0B ≠,∴1sin 2A =, 由于三角形ABC 是锐角三角形,所以6A π=.由202A B B ππ⎧+>⎪⎪⎨⎪<<⎪⎩,可得32B ππ<<,所以5cos sin cos sin 6B C B B π⎛⎫+=+- ⎪⎝⎭1cos cos 22B B B =++3cos 2B B =+3B π⎛⎫=+ ⎪⎝⎭,由于25336B πππ<+<,所以1sin ,322B π⎛⎛⎫+∈ ⎪ ⎝⎭⎝⎭3322B π⎛⎫⎛⎫+∈ ⎪ ⎪ ⎪⎝⎭⎝⎭.故答案为:322⎛⎫⎪ ⎪⎝⎭.【点睛】关键点睛:本题考查解三角形和三角函数性质的应用,解题的关键是利用正弦定理得出6A π=,再得出32B ππ<<,将cos sin B C +3B π⎛⎫+ ⎪⎝⎭利用三角函数性质求解.四、双空题9.在ABC 中,()sin sin sin A B C B -=-,则cos A =__________;点D 是BC 上靠近点B 的一个三等分点,记sin sin ABDλBAD∠=∠,则当λ取最大值时,tan ACD ∠=__________.【答案】122+ 【分析】根据题意,由三角恒等变换将原式化简,即可求出1cos 2A =;设BD x =,BAD θ∠=,πθ0,3,则2DC x =,sin sin B t =θ,根据正弦定理,得到AD x =λ,sin sin23Cπλθ,求出cos cos 3B ⎛⎫=+ ⎪⎝⎭πλθ,得到222222sin cos sin cos 13B B ⎛⎫+=++= ⎪⎝⎭πλθλθ,表示出2221sin cos 3=⎛⎫++ ⎪⎝⎭λπθθ,求出最值,即可得出结果.【详解】因为()sin sin sin A B C B -=-,所以()sin sin sin B C A B =--, 即()()sin sin sin 2cos sin B A B A B A B =+--=, 又因为sin 0B ≠,所以1cos 2A =; 设BD x =,BAD θ∠=,πθ0,3, 则2DC x =,sin sin B =λθ, 由正弦定理可得AD x =λ,sin sin sin23AD DACCDCπθλ,又313sin sincos sin cos sin 222223C B B BB λθπ,由sin sin 2223B ⎛⎫+=- ⎪⎝⎭λλπθθ,得cos cos 3B ⎛⎫=+ ⎪⎝⎭πλθ.因为222222sin cos sin cos 13B B ⎛⎫+=++=⎪⎝⎭πλθλθ, 所以222122sin cos 1cos 21cos 233==⎛⎫⎛⎫++-+++ ⎪⎪⎝⎭⎝⎭λππθθθθ2226=⎛⎫-- ⎪⎝⎭πθ,因为πθ0,3,所以2,662πππθ⎛⎫-∈-⎪⎝⎭, 所以当206πθ-=时,λ1,此时)sin 12B ==,所以4B π=,tan tan 2334ACD ⎛⎫∠=--=+ ⎪⎝⎭πππ;答案为:12;23+. 【点睛】本题主要考查由三角恒等变换求函数值,考查三角函数的性质,考查正弦定理的应用,属于常考题型.五、解答题10.(本小题满分12分)如图,在凸四边形ABCD 中,D C ,为定点,3=CD ,B A ,为动点,满足1===DA BC AB .(1)写出C cos 与A cos 的关系式;(2)设BCD ∆和ABD ∆的面积分别为S 和T ,求22S T +的最大值.【答案】(1)1cos 3cos -=C A ;(2)22T S +的最大值87. 【解析】试题分析:(1)在三角形中处理边角关系时,一般全部转化为角的关系,或全部转化为边的关系.题中若出现边的一次式一般采用正弦定理,出现边的二次式一般采用余弦定理,应用正弦、余弦定理时,注意公式变形的应用,解决三角形问题时,注意角的限制范围;(2)在三角形中,注意隐含条件π=++C B A (3)解决三角形问题时,根据边角关系灵活的选用定理和公式;(4)转化为二次函数求最值,注意角的取值范围.试题解析:(1)由余弦定理,在BCD ∆中, C CD BC CD BC BD cos 2222⋅⋅-+=C cos 324-=在ABD ∆中,A BD cos 222-=所以24-C cos 3A cos 22-=,即1cos 3cos -=C A 4分 (2)2sin 3sin 21C C CD BC S ⋅=⋅⋅⋅=,=T A A AD AB sin 21sin 21=⋅ 6分 所以)cos 1(41)cos 1(43sin 41sin 43222222A C A C T S -+-=+=+ 43cos 23cos 23-2++=C C 87)63(cos 232+--=C 由题意易知,)9030(00,∈C ,所以),(230cos ∈C当63cos =C 时,22T S +有最大值87.考点:1、余弦定理的应用;2、三角函数求最大值. 11.如图,四边形ABCD 的四个顶点共圆,5cos 13ABD ∠=,14AB =,15AD =.(1)求BD 和sin A 的值;(2)求四边形ABCD 的周长的最大值.【答案】(1)13BD =,4sin 5A =;(2)135292+ 【分析】(1)在ABD △中利用余弦定理可求得BD ,再利用正弦定理可求得sin A ;(2)求四边形ABCD 的周长的最大值,即求BC CD +的最大值,在BCD △中,利用余弦定理得到BC 与CD 关系式,利用基本不等式求最值,即可求得四边形周长的最大值.【详解】(1)在ABD △中,5cos 13ABD ∠=,14AB =,15AD = 利用余弦定理:22222214155cos 221413AB BD AD BD ABD AB BD BD +-+-∠===⋅⨯⋅,解得13BD =或2913BD =-(舍去) 在ABD △中,5cos 013ABD ∠=>,可知02ABD π<∠<,则12sin 13ABD ∠= 利用正弦定理知sin sin AD BD ABD A =∠,即1513sin 1213A =,解得4sin 5A = 所以13BD =,4sin 5A =.(2)由四边形ABCD 的四个顶点共圆,可知A C π+=,即4sin 5C =, 又由(1)知,BD AB AD <<,即A 为ABD △中最小角,则2C ππ<<,所以3cos 5C =- 在BCD △中, 利用余弦定理:2222223513cos 22BC CD BD BC CD C BC CD BC CD +-+-===-⋅⋅, 整理得:()2221696964551BC CD BC CD BC CD BC CD +⋅=⇒+-⋅=+ 利用基本不等式得:()()2216944554BC CD BC CD BC CD +⨯+-=⋅≤即()216945BC CD +≤,解得0BC CD <+≤,当且仅当BC CD ==时,等号成立. 所以四边形ABCD的周长的最大值为:141529++=+ 【点睛】关键点睛:本题考查利用正弦定理和余弦定理解三角形,求四边形周长的最值,解题的关键是利用四边形外接圆找的A C π+=,从而求出cos C ,再利用余弦定理结合基本不等式求最值,考查学生的转化能力与运算解能力,属于中档题.12.ABC ∆的内角A ,B ,C 所对边分别为a ,b ,c .已知sin sin()2A C a bBC +=+. (1) 求B ;(2) 若ABC ∆为锐角三角形,且2c =,求ABC ∆面积的取值范围。

基于关键能力考查的“解三角形中的最值与范围问题”微专题复习课教学

基于关键能力考查的“解三角形中的最值与范围问题”微专题复习课教学

基于关键能力考查的“解三角形中的最值与范围问题”微专题复习课教学广西南宁市第一中学(530200) 黄柱凤 陈兆坚[摘 要]基于高考评价体系和数学学科特点,高考数学命题越来越加强对关键能力的考查,由考知识向考能力转变。

解三角形中的最值与范围问题是高考数学的考查热点,是考查学生关键能力的重要载体。

结合学生的学情,通过微专题复习,可让学生不仅掌握利用基本不等式和三角函数求解三角形中的最值与范围的方法,而且能够让学生通过比较和思考,发现解题规律和策略。

文章以高三复习课“解三角形中的最值与范围问题”为例对基于关键能力考查的微专题复习课教学进行探讨。

[关键词]关键能力;解三角形;最值;范围[中图分类号] G 633.6 [文献标识码] A [文章编号] 1674-6058(2024)08-0033-03纵观近几年的高考数学试卷,解三角形中的最值与范围问题考查频率不低,一般处于解答题第二小问的位置,分值大多为5~6分。

对于解三角形中的最值与范围问题,笔者结合本校学生的实际情况,采用微专题的形式引导学生复习。

而选择入口小、针对性强的微专题,能让学生在完成相关知识内容复习的同时,培养逻辑推理、直观想象、数学运算等数学学科核心素养。

本文以高三复习课“解三角形中的最值与范围问题”为例,对基于关键能力考查的微专题复习课教学进行探讨。

一、教学过程(一)忆一忆【例1】[广西南宁市2023届高中毕业班第一次适应性测试数学(理科)第17题]在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,已知(b -c )(sin B +sin C )=a (sin A -sin C ) 。

(1)求B ;(2)若△ABC 为锐角三角形,b =3,求a 2+c 2的取值范围。

解:(1)由(b -c )(sin B +sin C )=a (sin A -sin C ),根据正弦定理可得(b -c )(b +c )=a (a -c ),所以a 2+c 2-b 2=ac ,由余弦定理可得cos B =a 2+c 2-b 22ac =12,∵B ∈(0,π),∴B =π3。

专题02 解三角形中的最值问题(解析版)

专题02 解三角形中的最值问题(解析版)

专题02 解三角形中的最值问题常见考点考点一 面积最值问题典例1.已知在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,且cos (2)cos 0c B b a C +-=. (1)求角C 的大小;(2)若2c =,求△ABC 的面积S 的最大值. 【答案】 (1)3C π=;(2 【分析】(1)由正弦定理、和角正弦公式及三角形内角的性质可得sin 2sin cos A A C =,进而可得C 的大小; (2)由余弦定理可得224a b ab +-=,根据基本不等式可得4ab ≤,由三角形面积公式求面积的最大值,注意等号成立条件. (1)由正弦定理知:sin cos (sin 2sin )cos 0C B B A C +-=,∴sin cos cos sin sin()sin 2sin cos C B C B B C A A C +=+==,又0,A C <<π, ∴sin 0A ≠,则1cos 2C =,故3C π=.(2)由2221cos 22a b c C ab +-==,又2c =,则224a b ab ab +-=≥,∴1sin 2S ab C =≤a b =时等号成立,∴△ABC 的面积S变式1-1.ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,且22(sin sin )sin sin sin .A C B A C -=- (1)求角B(2)当b =3时,求ABC 的面积的最大值. 【答案】 (1)3B π=(2【分析】(1)由正弦定理角化边可得222b a c ac =+-,根据余弦定理结合角B 的范围,即可得答案. (2)由题意,结合基本不等式,可得9ac ≤,代入面积公式,即可得答案. (1)由正弦定理得:22()a c b ac -=-,整理得222b a c ac =+-,所以2221cos 22a cb B ac +-==, 因为(0,)B π∈,所以3B π=(2)因为2222b a c ac ac ac ac =+-≥-=, 所以9ac ≤(当且仅当a c =时等号成立),所以ABC 面积的最大值max 19sin 2S B =⨯=变式1-2.已知ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,sin()sin sin A B C B -=-. (1)求A ;(2)若2a =,求ABC 面积的最大值. 【答案】 (1)3A π=;(2 【分析】(1)利用两角差的正弦公式及诱导公式对sin()sin sin A B C B -=-进行转化,得到1cos 2A =,即可得A ; (2)利用余弦定理、三角形的面积公式以及基本不等式,即可求出ABC 面积的最大值. (1)解:sin()sin sin A B C B -=-,sin cos cos sin sin()sin A B A B A B B ∴-=+-, sin cos sin cos sin cos sin cos sin A B B A A B B A B ∴-=+-, 2sin cos sin 0B A B ∴-=.sin 0B ≠,1cos 2A ∴=,(0,)A π∈,3A π∴=. (2)解:由余弦定理得2222cos23b c bc π+-=,224b c bc ∴+-=.222b c bc bc bc bc +-≥-=,当且仅当2b c ==时取等号,4bc ∴≤, 11sin 422ABCSbc A ∴=≤⨯=ABC变式1-3.△ABC 中,角,,A B C 的对边分别为,,a b c ,已知a =22()a b c bc --=, (1)若4B π=,求边长b 的值;(2)求△ABC 的面积S 的最大值. 【答案】(1)(2)【分析】(1)根据已知条件,结合余弦定理可以求出△A ,再结合正弦定理,即可求出边b ; (2)使用三角形面积公式1sin 2bc A ⋅结合余弦定理和基本不等式即可求出面积最大值﹒ (1)()22a b c bc --=∵ 2222a b bc c bc ∴-+-=222b c a bc ∴+-=2221.222b c a bc bc bc +-∴==由余弦定理可知2221cos 22b c a A bc +-==△(0,)A π∈3A π∴=又23a =4B π=△由正弦定理可知:sin sin a bA B=,,4b ∴== (2)1sin 2ABCSbc A =⋅ 由(1)可知3A π=S ∴=又222b c bc +≤ 由余弦定理可知2222cos a b c bc A =+-⋅2212b c bc ∴+=+122bcbc +∴≤12bc ∴≤当且仅当b =c 时,bc 有最大值为12max []12ABC S ==△∴则△ABC 面积最大值考点二 周长最值问题典例2.在锐角ABC 中,角,,A B C 所对的边分别为,,a bc sin cos A a B a =+. (1)求角B 的值;(2)若2b =,求ABC 周长的取值范围. 【答案】(1)3π(2)(2+ 【分析】(1)利用正弦定理把边化为角,结合三角变换可得解;(2)用正弦定理把边化角,结合三角恒等变换化简,利用三角函数的值域求解,即可得到答案. (1)sin sin cos sin B A A B A =+, 因为A 为三角形内角,所以sin 0A ≠,cos 1B B =+,可得:2sin 16B π⎛⎫-= ⎪⎝⎭,即1sin 62B π⎛⎫-= ⎪⎝⎭, 因为(0,)B π∈,可得5,666B πππ⎛⎫-∈- ⎪⎝⎭,可得66B ππ-=,所以可得3B π=(2)由正弦定理得,2sin sin sin a b c R A B C ===所以2sin )sin sin 3a c A C A A π⎤⎛⎫+=+=+- ⎪⎥⎝⎭⎣⎦1sin sin 2cos 4sin 26A A A A A A π⎫⎛⎫+=+=+⎪ ⎪⎪⎝⎭⎝⎭, 因为022032A A πππ⎧<<⎪⎪⎨⎪<-<⎪⎩,所以62A ππ<<从而2363A πππ<+<sin 16A π⎛⎫<+≤ ⎪⎝⎭,所以4a c +≤,故周长的取值范围是(2+变式2-1.已知a ,b ,c 分别是ABC 的内角A ,B ,C 所对的边,()cos 2cos 0b C a c B --=. (1)求角B ;(2)若4AC =,求ABC 的周长的最大值. 【答案】(1)3π(2)12 【分析】(1)根据正弦定理进行边角互化,进而得解; (2)利用余弦定理结合基本不等式求最值. (1)()cos 2cos 0b C a c B --=,由正弦定理得:()sin cos 2sin sin cos 0B C A C B --=, 则sin cos sin cos 2sin cos B C C B A B +=. 即()sin 2sin cos B C A B +=,sin 2sin cos A A B ∴=.又sin 0A ≠,1cos 2B ∴=.()0,B π∈,3B π∴=; (2)由余弦定理得:2222cos b a c ac B =+-,即2216a c ac =+-, 16=a 2+c 2−ac =(a +c )2−3ac ,由22a c ac +⎛⎫≤ ⎪⎝⎭,所以()221632a c a c +⎛⎫≥+- ⎪⎝⎭8a c +≤,当且仅当4a c ==取等号. 故ABC 的周长的最大值为12.变式2-2.在锐角ABC 中,向量(,3)m a b =与(cos ,sin )n A B =平行. (1)求角A ;(2)若a =2,求ABC 周长的取值范围. 【答案】(1)3π;(2)2,6]+. 【分析】(1)利用向量共线的坐标表示结合锐角三角形条件计算作答.(2)由(1)结合正弦定理用角B 表示边b ,c ,借助三角函数的性质计算作答. (1)因向量(,3)m a b =与(cos ,sin )n AB =平行,则sin cos a BA ,由正弦定理得:sin sin cos A B B A =,而ABC 是锐角三角形,即sin0B >,从而有sin A A=,即tan A =02A π<<,所以3A π=.(2) 在锐角ABC 中,由正弦定理得:2sin sin sin sin 3b c a B C A π===,即,b B c C ==,而23C B π=-,且022032B B πππ⎧<<⎪⎪⎨⎪<-<⎪⎩,解得62B ππ<<,则23sin()](sin )4sin()326b c B B B B B ππ+=+-=+,而2363B πππ<+<sin(16B π<+)≤,则有4b c+≤,即26a b c <++≤,所以ABC 周长的取值范围是2,6].变式2-3.在ABC 中,已知内角A 、B 、C 的对边分别是a 、b 、c ,且2cos 2c B a b =+. (1)求角C 的大小;(2)若c =,求ABC 周长的最大值. 【答案】 (1)23π(2)4+【分析】(1)根据正弦定理结合三角恒等变换得到sin (2cos 1)0B C +=,即1cos 2C =-,得到答案. (2)根据余弦定理得到2212a b ab =++,利用均值不等式得到4a b +≤,得到周长最大值. (1)由已知得2sin cos 2sin sin C B A B =+,即2sin cos 2sin()sin C B B C B =++,2sin cos 2(sin cos cos sin )sin C B B C B C B =++,所以2sin cos sin 0B C B +=,sin (2cos 1)0B C +=,()0,πB ∈,sin 0B ≠,所以2cos 10C +=,即1cos 2C =-, ()0,πC ∈,故2π3C =. (2)由余弦定理得2222cos c a b ab C =+-,即222π122cos3a b ab =+-, 2212a b ab =++2()a b ab =+-2223()()24a b a b a b ++⎛⎫≥+-=⎪⎝⎭(当且仅当2a b ==时,等于号成立).所以2()16+≤a b ,即4a b +≤,于是周长4l a b c =++≤+故ABC ∆周长的最大值是4+考点三 角的最值问题典例3.在锐角ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若(),m c b =,3,sin 2n B ⎛⎫= ⎪ ⎪⎝⎭,m n ∥.(1)求C ;(2)求sin sin A B +的取值范围. 【答案】 (1)3C π=(2)32⎛ ⎝【分析】(1)由m n ∥得sin c B ,由正弦边化角可求C ;(2)将sin B 代换成()sin A C +,化简得sin sin 6π⎛⎫++ ⎪⎝⎭A B A ,结合锐角三角形关系求出A 范围,结合三角函数即可求解sin sin A B +的取值范围. (1)由m n ∥得sin c B ,由正弦边化角得sin sin C B B =,因三角形中sin 0B ≠,故sin C =3C π=或23π(舍去);(2)()3sin sin sin sin sin 26A B A A C A A A π⎛⎫+=++=+ ⎪⎝⎭,3C π=, 20,32B A C A πππ⎛⎫=--=-∈ ⎪⎝⎭,解得2,63A ππ⎛⎫∈ ⎪⎝⎭,又0,2A π⎛⎫∈ ⎪⎝⎭,所以,62A ππ⎛⎫∈ ⎪⎝⎭,2,633A πππ⎛⎫+∈ ⎪⎝⎭,3sin sin 62A B A π⎛⎫⎛+=+∈ ⎪ ⎝⎭⎝.变式3-1.在ABC 中,A ∠、B 、C ∠所对的边分别为a 、b 、c ,且222a b c +-=ABC (1)求角C 的大小;(2cos 4A B π⎛⎫-+ ⎪⎝⎭的最大值,并求取得最大值时角A 、B 的大小.【答案】 (1)4Cπ(2)最大值为2,此时3A π=,512B π=【分析】(1)根据面积公式和余弦定理得到sin cos C C =,结合角度范围得到答案. (2)利用三角恒等变换得到原式为2sin 6πA ⎛⎫+ ⎪⎝⎭,根据角度范围得到最值.(1)1sin 2ABC S ab C ==△,故2sin ab C =222cos 2a b c C ab +-==2cos ab C = 即sin cos C C =,即tan 1C =,又0πC <<,故π4C =. (2)π4C =,故3π4B A =-, ()cos cos πππcos 2sin 46A B A A A A A ⎛⎫⎛⎫-+=--=+=+ ⎪ ⎪⎝⎭⎝⎭,304A π<<,故ππ11π6612A <+<, 当ππ62A +=,即π3A =时,2sin 6A π⎛⎫+ ⎪⎝⎭取最大值为2.,此时π3A =,5π12B =.变式3-2.在ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,面积cos S C =. (1)求角C 的大小;(2)求2sin cos cos 223A A H B π⎛⎫=-+ ⎪⎝⎭的最大值,及取得最大值时角A 的值. 【答案】 (1)3C π=;(2)H ,此时4A π=.【分析】(1)由三角形的面积公式可求得tan C 的值,结合角C 的取值范围可求得角C 的值;(2)利用三角恒等变换化简得出4H A π⎛⎫=+ ⎪⎝⎭,求出角A 的取值范围,利用正弦型函数的基本性质可求得H 的最大值及其对应的角A 的值. (1)解:由in 12s S ab C =及题设条件得1sin cos 2ab C C =,即sin C C =,又cos 0C ≠,tan C ∴0C π<<,3C π∴=.(2)解:因为()2sincos cos sin cos sin cos 223A A H B A A A A ππ⎛⎫=-+=--=+ ⎪⎝⎭4A π⎛⎫=+ ⎪⎝⎭,3C π=,则203A π<<,114412A πππ∴<+<,故当42A ππ+=时,即当4A π=时,H变式3-3.在锐角ABC 中,角,,A B C 所对的边分别是,,a b c ,且sin sin 2sin sin 6b B a A b Ac C π⎡⎤⎛⎫-=+- ⎪⎢⎥⎝⎭⎣⎦.(1)求角A 的大小;(2)求sin cos C B ⋅的取值范围. 【答案】 (1)6π(2)1(0,)2【分析】(1)由正弦定理化角为边,再由余弦定理变形可得求得A 角;(2)求出B 角范围,把sin cos C B 用B 角表示,然后结合二倍角公式、两角和的正弦公式变形,再由正弦函数性质得取值范围. (1)sin sin 2sin sin (2sin cos 2cos sin )si 66n 6b B a A b A c C b A b A c C πππ⎡⎤⎛⎫-=+-=+- ⎪⎢⎥⎝⎭⎣⎦,由正弦定理得2222sin cos 2cos sin 66b a bc A bc A c ππ-=+-,222sin cos 2cos A bc A b c a bc A +=+-=cos A A =,cos 0A ≠,所以tan A =,又(0,)A π∈,所以6A π=;(2)三角形为锐角三角形,所以62A B B ππ+=+>,3B π>,即32B ππ<<.25551sin cos sin()cos (sin cos cos sin )cos cos cos 6662C B B B B B B B B B πππ=-=-=1cos 21111122cos 2)sin(2)4224264B B B B B π+==++=++, 32B ππ<<,则572666B πππ<+<,11sin(2)262B π-<+<,所以10sin cos 2C B <<.即sin cos C B 的范围是1(0,)2.考点四 边的最值问题典例4.已知在锐角ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,sin cos 20B b A b +-=. (1)求角A ;(2)若a =b c -的取值范围. 【答案】 (1)π3; (2)()2,2-. 【分析】(1)利用正弦定理化边为角,结合诱导公式以及特殊角的三角函数值即可求角A ; (2)由(1)知:2π3C B =-,根据ABC 是锐角三角形可求出ππ62B <<,利用正弦定理化角为边,4sin b B =,4sin c C =,结合2π3C B =-以及角B 的范围,再利用三角恒等变换以及三角函数的性质(1)sin cos 20B b A b +-=,sin sin sin cos 2sin 0A B B A B +-=, 因为π02B <<,所以sin 0B ≠cos 2A A +=, 所以π2sin 26A ⎛⎫+= ⎪⎝⎭,πsin 16A ⎛⎫+= ⎪⎝⎭,因为π02A <<,ππ2π663A <+<,所以 可得:ππ62A +=,所以π3A =.(2)由正弦定理知:4sin sin sin b c a B C A ====, 所以4sin b B =,4sin c C =,所以()2π4sin sin 4sin sin 3b c B C B B ⎡⎤⎛⎫-=-=--⎪⎢⎥⎝⎭⎣⎦11π4sin sin 4sin 4sin 223B B B B B B ⎛⎫⎛⎫⎛⎫=-==- ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 因为π022ππ032B B ⎧<<⎪⎪⎨⎪<-<⎪⎩,故ππ62B <<,所以πππ636B -<-<,1π1sin 232B ⎛⎫-<-< ⎪⎝⎭,所以()π4sin 2,23B ⎛⎫-∈- ⎪⎝⎭, 故b c -的取值范围为()2,2-.变式4-1.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且22cos a c b C -=. (1)求角B ;(2)若b =12a +c 的最大值. 【答案】 (1)3B π=(2(1)由正弦定理和题设条件,化简得sin 2cos sin C B C =,进而求得1cos 2B =,从而可得3B π=;(2)由(1)和正弦定理化简得()12a c A ϕ+=+,结合三角函数的性质,即可求得12a +c 的范围. (1)根据正弦定理,由22cos a c b C -=得2sin sin 2sin cos A C B C -=, 又因为()sin sin sin cos sin cos A B C B C C B =+=+, 所以2sin cos sin C B C =,又因为sin 0C ≠, 所以1cos 2B =,又因为()0,B π∈,所以3B π=(2)根据正弦定理2sin sin a cA C=== △2sin a A =,2sin c C =△1212sin sin 2sin sin 2sin sin 232a c A C A A A A A π⎛⎫+=+=+-=+ ⎪⎝⎭故()12a c A ϕ++其中(tan ϕ=)又203A π<<.当2A πϕ+=时,12a +c变式4-2.记ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知()sin sin sin a A b a B c C +-=. (1)求角C ; (2)求a bc+的取值范围. 【答案】 (1)3C π=(2)(]1,2 【分析】(1)由正弦定理角化边以及余弦定理即可求解. (2) 由正弦定理边化角,再由三角函数求最值.(1)由已知及正弦定理得222a b ab c +-=, 即222a b c ab +-=,由余弦定理得2221cos 22a b c C ab +-==,可得3C π=.(2)根据正弦定理得)sin sin sin sinsin a b A B A B c C ++==+2sin sin33A A π⎛⎫⎛⎫=++ ⎪ ⎪⎝⎭⎝⎭3sin 2A A ⎛⎫=⎪⎪⎭2sin 6A π⎛⎫=+ ⎪⎝⎭, 又203A π<<,则5666A πππ<+< 故12sin 26A π⎛⎫<+≤ ⎪⎝⎭,则a b c+的取值范围是(]1,2.变式4-3.在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,已知sin sin sin sin A C a bA B c--=+.(1)求角B 的大小;(2)设2m a c =-,若b =A ,C 都为锐角,求m 的取值范围. 【答案】 (1)60B =; (2)(0,3). 【分析】(1)根据题意,结合正弦定理角化边,以及余弦定理,即可求解;(2)根据题意,结合正弦定理边化角,三角恒等变换,以及三角函数的性质,即可求解. (1)根据题意,由已知及正弦定理,得a c a ba b c--=+, 即22()a c c a b -=-,故222ac a c b =+-.由余弦定理,得2221cos 22a cb B ac +-==, 因为()0,B π∈,所以60B =. (2)根据题意,由60b B =︒,知2sin sin a c A C ===, 即2sin a A =,2sin c C =,故()4sin 2sin 4sin 2sin 120m A C A A =-=-︒-14sin 2sin 2A A A ⎫=-+⎪⎝⎭()13sin cos 302A A A A A ⎫==-=-⎪⎭︒.由A ,C 都为锐角,180120A C B +=-=,知3090A,03060A <-<,易得()30sin 302A <-<,故(0,3)m ∈.巩固练习练习一 面积最值问题1.ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知cos 2B B =. (1)求B ;(2)若ABC 为锐角三角形,且1c =,求ABC 面积的取值范围. 【答案】 (1)3B π=(2)⎝⎭【分析】(1)利用辅助角公式可得sin 16B π⎛⎫+= ⎪⎝⎭,再根据B 的取值范围,即可求出角B ;(2)由三角形面积公式可得ABC S =△,再利用正弦定理可得12=a ,根据三角形为锐角三角形求出C 的取值范围,再根据正切函数的性质求出a 的取值范围,即可得解; (1)解:由cos 2B B =,即12cos 22B B ⎛⎫= ⎪ ⎪⎝⎭,所以sin 16B π⎛⎫+= ⎪⎝⎭.又(0,)B π∈,所以7,666B πππ⎛⎫+∈ ⎪⎝⎭,所以3B π=. (2)解:由题设及(1)知ABC的面积1sin 2△=ABC S ac B .由正弦定理得2sin sin 13sin sin 2C c A a C C π⎛⎫- ⎪⎝⎭===. 由于ABC 为锐角三角形,故02A π<<,02C <<π,由(1)知23A C π+=, 所以62C ππ<<,所以tan C2tan C102tan C <<11222<<,即122a <<ABCS <<, 因此,ABC面积的取值范围是⎝⎭.2.已知ABC 中,内角,,A B C 的对边分别为,,a b c ,且满足()1sin cos 22b C ab c B ⎛⎫-=+- ⎪⎝⎭.(1)求b 的值; (2)若3B π=,求ABC 面积的最大值.【答案】 (1)2; (2【分析】(1)利用正弦定理以及逆用两角和的正弦公式得出1sin sin 2A b A =,而sin 0A ≠,即可求出b 的值; (2)根据题意,由余弦定理得224a c ac +-=,再根据基本不等式求得4ac ≤,当且仅当2a c ==时取得等号,即可求出ABC 面积的最大值. (1)解:由题意得1cos cos 2b C abc B =-,由正弦定理得:1sin cos sin sin cos 2B C b A C B =-, 即1sin cos sin cos sin 2B C C B b A +=,即1sin sin 2A b A =, 因为sin 0A ≠, 所以2b =. (2)解:由余弦定理2222cos b a c ac B =+-,即224a c ac +-=, 由基本不等式得:2242a c ac ac ac +-=≥-,即4ac ≤, 当且仅当2a c ==时取得等号,11sin 4sin 3223ABC S ac B ∴=≤⋅⋅=△,所以ABC 3.已知△ABC 的内角A 、B 、C 满足sin sin sin sin sin sin sin sin A B C BC A B C-+=+-.(1)求角A ;(2)若△ABC 的外接圆半径为1,求△ABC 的面积S 的最大值. 【答案】(1)3π(2【分析】 (1)将sin sin sin sin sin sin sin sin A B C BC A B C-+=+-,转化为222b c a bc +-=,再由余弦定理求解;(2)根据△ABC 的外接圆半径为1,得到2sin a R A ==3bc ≤,再由1sin 2ABCSbc A =求解. (1) 解:因为sin sin sin sin sin sin sin sin A B C BC A B C-+=+-,所以a b c b c a b c-+=+-, 即222b c a bc +-=,所以2221cos 22b c a A bc +-==,因为()0,A π∈,所以3A π=;(2)因为△ABC 的外接圆半径为1,所以2sin a R A ==由余弦定理得2222cos a b c bc A =+-,22b c bc bc =+-≥,所以3bc ≤,当且仅当b c =时,等号成立,所以11sin 322ABC S bc A =≤⨯=△故△ABC 的面积S 4.在ABC 中,A ∠、B 、C ∠的对边分别为a 、b 、c ,其中边c 最长,并且22sin sin 1A B +=.(1)求证:ABC 是直角三角形; (2)当1c =时,求ABC 面积的最大值. 【答案】 (1)证明见解析 (2)14【分析】(1)利用同角关系,将已知条件变形,配合诱导公式,可以证明结论.(2)利用勾股定理知222=1a b c +=,利用基本不等式可得面积最大值(1)证明:由22sin sin 1A B +=,得22sin 1sin A B =-,即22sin cos A B =, 又边c 最长,则A 、B 均为锐角,所以sin =cos =sin()2A B B π-,解得2A B π=-,2A B π+=即2C π=,所以ABC 为直角三角形.(2) 因为2C π=,由勾股定理222+=a b c ,因为1c =,所以221a b +=.记ABC 面积为S ,则12S ab =,由222ab a b ≤+得()22111244S ab a b =≤+=,当且仅当a b ==时等号成立.所以当a b ==时,ABC 面积取到最大值14.练习二 周长最值问题5.在ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,sin sin sin sin A C bB C a c-=-+.(1)求角A 的大小;(2)若2a =,求ABC 周长的最大值. 【答案】 (1)3A π=(2)6 【分析】(1)利用正弦定理可得222b c a bc +-=,结合余弦定理可得结果; (2)由余弦定理及均值不等式即可得到结果. (1) ∵sin sin sin sin A C bB C a c -=-+,∴a c bb c a c-=-+, ∴222b c a bc +-=,∴2221cos 22b c a A bc +-==,又()0,A π∈,∴3A π=;(2)由余弦定理2222cos a b c bc A =+-, 得224bc b c +=+, 即2()34b c bc +=+. 因为2()2b c bc+,所以223()()44b c b c +++.即4b c +(当且仅当2b c ==时等号成立). 所以6a b c ++.故ABC 周长的最大值6.6()sin cos 1C c A =+;②()()()sin sin sin a b A B c b C -+=-;③)2224ABC S b c a +-△中任选一个,补充在下面问题的横线上,并作答.问题:在ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,且______. (1)求角A 的大小;(2)若2a =,求ABC 的周长l 的取值范围. 注:如果选择多个条件分别解答,按第一个解答计分. 【答案】(1)条件选择见解析,3A π=(2)(]4,6l ∈ 【分析】(1)选择①,运用正弦定理及辅助角公式可求解;选择②运用正弦定理及余弦定理可求解;选择③,由三角形面积公式及余弦定理可求解. (2)由正弦定理及辅助角公式可求解. (1)()sin sin cos 1A C C A =+,又()0,C π∈,所以sin 0C >cos 1A A -=,则2sin 16A π⎛⎫-= ⎪⎝⎭,故1sin 62A π⎛⎫-= ⎪⎝⎭. 又因为5666A πππ-<-<,所以66A ππ-=,解得3A π=.选择②,由正弦定理可得()()()a b a b c b c -+=-, 则222b c a bc +-=,则由余弦定理可得2cos bc bc A =,故1cos 2A =. 又因为0A π<<,所以3A π=.选择③,由三角形面积公式可得)22214sin cos 2bc A b c a A ⨯=+-=,得tan A =又因为0A π<<,故3A π=.(2)由正弦定理得sin sin a b B B A ==,sin sin a c C C A ==. 因为23B A C C ππ=--=-,203C π<<,所以)22sin sin 2sin sin 3l a b c B C C C π⎡⎤⎛⎫=++=+=-+ ⎪⎢⎥⎝⎭⎣⎦32sin 2C C ⎫=++⎪⎪⎝⎭24sin 6C π⎛⎫=++ ⎪⎝⎭.又5666C <+<πππ,所以1sin ,162C π⎛⎫⎛⎤+∈ ⎪ ⎥⎝⎭⎝⎦,从而(]4,6l ∈.7.在ABC 中,内角A B C 、、所对边分别为a b c 、、,已知()sin sin sin sin .c C b B a A B -=- (1)求角C 的值;(2)若3c =,求ABC 周长的最大值. 【答案】(1)3π(2)9 【解析】 (1)因为()sin sin sin sin .c C b B a A B -=-由正弦定理可得222c b a ab -=-,即222,c a b ab =+- 又因为2222cos c a b ab C =+-, 所以1cos 2C =, 因为0C π<<, 所以3C π=;(2)由余弦定理得22222cos ()3c a b ab C a b ab =+-=+-,所以2222()()3()24a b a b c a b ++≥+-=,即6a b +≤,当且仅当a b =时,等号成立, 所以ABC 周长的最大值为9.8.在ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,ABC 的面积为()1sin sin sin 2c a A b B c C +-. (1)求角C 的大小;(2)若c =ABC 周长的最大值. 【答案】 (1)3C π=;(2) 【分析】(1)根据ABC 的面积公式可得出()11sin sin sin sin 22ac B c a A b B c C =+-,化简后利用正弦定理进行角化边可得出222ab a b c =+-,然后运用余弦定理可求出cos C 的值,从而可求出角C 的大小;;(2)根据c =3C π=,利用余弦定理得出()22233a b ab a b ab =+-=+-,然后根据基本不等式即可求出a b +≤ABC 周长的最大值. (1)因为ABC 的面积为()1sin sin sin 2c a A b B c C +-, 所以()11sin sin sin sin 22S ac B c a A b B c C ==+-,即sin sin sin sin a B a A b B c C =+-,所以由正弦定理,得222ab a b c =+-,所以2221cos 222a b c ab C ab ab +-===.又0C π<<,所以3C π=. (2)因为c 3C π=,由余弦定理2222cos c a b ab C =+-,得()()22222233()324a b a b a b ab a b ab a b ++⎛⎫=+-=+-≥+-⋅= ⎪⎝⎭,所以()212a b +≤,即a b +≤a b =时“=”成立.所以a b c ++≤a b =时“=”成立.所以当ABC 是正三角形时,ABC 的周长取最大值练习三 角的最值问题9.ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且满足()2sin cos 2sin b A B c b B =- (1)求角A 的大小;(2)求cos cos B C +的取值范围. 【答案】 (1)π3A = (2)1,12⎛⎤ ⎥⎝⎦【分析】(1)根据正弦定理得到2sin cos 2sin sin A B C B =-,再利用三角恒等变换得到1cos 2A =,得到角度. (2)利用三角恒等变换得到cos cos si πn 6B C B ⎛⎫+=+ ⎪⎝⎭,再根据角度的范围得到答案.(1)由正弦定理得()2sin sin cos 2sin sin sin B A B C B B =-, 因为0πB <<,所以sin 0B ≠,所以2sin cos 2sin sin A B C B =- 即2sin cos 2sin cos 2sin cos sin A B A B B A B =+-,解得1cos 2A =, 因为0πA <<,所以π3A =. (2)π3A =,故2π3B C +=,所以2π3C B =-且2π0,3B ⎛⎫∈ ⎪⎝⎭, 2πcos cos cos cos 3B C B B ⎛⎫+=+- ⎪⎝⎭2π2π1cos coscos sin sin cos sin 3326πB B B B B B ⎛⎫=++==+ ⎪⎝⎭. 因为2π0,3B ⎛⎫∈ ⎪⎝⎭,所以ππ5π,666B ⎛⎫+∈ ⎪⎝⎭,所以π1sin ,162B ⎛⎫⎛⎤+∈ ⎪ ⎥⎝⎭⎝⎦,即cos cos B C +的取值范围为1,12⎛⎤ ⎥⎝⎦.10.已知向量(,)m a c b =+,(,)n a c b a =--,且0m m ⋅=,其中A 、B 、C 是ABC 的内角,a ,b ,c 分别是角A ,B ,C 的对边.(1)求角C 的大小; (2)求sin sin A B +的最大值. 【答案】 (1)3C π=(2【分析】(1)由0m m ⋅=,得222a b c ab +-=,由余弦定理可得答案;(2)利用23A B π+=,可得sin sin 6π⎛⎫++ ⎪⎝⎭A B A ,再由A 的范围可得答案.(1)由0m m ⋅=,得222()()()0a c a c b b a a b c ab +-+-=⇒+-=,由余弦定理2221cos 222a b c ab C ab ab +-===,又0C π<<,则3C π=. (2) 由(1)得3C π=,则23A B π+=,可得:23sin sin sin sin sin 326ππ⎛⎫⎛⎫+=+-==+⎪ ⎪⎝⎭⎝⎭A B A A A A A ,203A π<<,∴5666A πππ<+<,∴1sin 126A π⎛⎫<+≤ ⎪⎝⎭,∴)6A π+≤即sin sin A B +11.在ABC 中,已知角A ,B ,C 的对边分别为a ,b ,c ,且b ,c 为方程2312100x x -+=的两个根,a =(1)求三角形ABC 的面积; (2)求sin sin B C +的值. 【答案】(1(2【分析】(1)根据韦达定理得到4b c+=,10 3bc=,再由余弦定理得到22()1cos122b c aAbc+-=-=,所以3Aπ=,根据三角形面积公式得到结果即可;(2)由正弦定理得到sin sinb cB C+=+sin sinB C+==(1)因为b,c为方程2312100x x-+=的两个根,所以4b c+=,103bc=因为a=22222()cos122b c a b c aAbc bc+-+-==-1123==因为0Aπ<<,所以3Aπ=,所以三角形ABC的面积为1110sin sin2233bc Aπ=⨯⨯=(2)在三角形ABC中,由正弦定理得,sin sin sinb c aB C A===所以sin sinb cB C+=+sin sinB C+==12.在ABC中,角A,B,C所对边分别为a,b,c,且sin sin sin sina Ab Cc C b B+=+.(1)求角A的大小;(2)求sin sinB C+的取值范围.【答案】(1)3Aπ=(2)⎝【分析】(1)由正弦定理,将角化边,再根据余弦定理,求解即可.(2)由(1)可知,3Aπ=,则sin sin6B C Bπ⎛⎫+=+⎪⎝⎭6Aπ⎛⎫=+⎪⎝⎭,根据正弦型三角函数的图象和性质,求解即可.(1)由正弦定理可得:222a bc c b +=+, 又△2222cos a b c bc A =+- △1cos 2A = △0A π<< △3A π=(2)由A B C π++=得23C B π=-,且20,3B π⎛⎫∈ ⎪⎝⎭,23sin sin sin sin sin 326BC B B B B B ππ⎛⎫⎛⎫+=+-==+ ⎪ ⎪⎝⎭⎝⎭ △5,666B πππ⎛⎫+∈ ⎪⎝⎭6B π⎛⎫+∈ ⎪⎝⎭⎝.所以sin sin B C +的取值范围是⎝练习四 边的最值问题13.已知ABC 的内角,,A B C 对边分别为,,a b c ,且()22sin sin sin sin sin A C B A C -=-. (1)求角B 的大小;(2)若ABC 为锐角三角形,且b =c a -的取值范围. 【答案】 (1)3B π=(2)()1,1- 【分析】(1)根据正弦定理边角互化和余弦定理求解即可;(2)由正弦定理得2sin ,2sin c C a A ==,进而π2sin 3c a C ⎛⎫-=- ⎪⎝⎭,再结合ππ,62C ⎛⎫∈ ⎪⎝⎭求解即可得答案.(1)解:由已知得222sin sin sin sin sin A C B A C +-=, 故由正弦定理得222a c b ac +-=,由余弦定理得2221cos 22a cb B ac +-==, 因为()0,B π∈,所以π3B =. (2)解:由(1)知sin B =, △2sin sin sin a c bA C B===,△2sin ,2sin c C a A ==△ ()()π2(sin sin )2sin sin sin 2sin .3c a C A C B C C C C ⎛⎫-=-=-+==- ⎪⎝⎭在锐角三角形ABC 中,π3B =, △ππ,62C ⎛⎫∈ ⎪⎝⎭,△πππ,366C ⎛⎫-∈- ⎪⎝⎭,△()π2sin 1,13C ⎛⎫-∈- ⎪⎝⎭,△c a -的取值范围为()1,1-.14.在锐角ABC 中,角,,A B C 的对边分别为a ,b ,c ,()222sin cos a b c B B -+.(1)求B ;(2)若1b =,求2c a -的取值范围. 【答案】(1)3π(2)()【分析】(1)利用余弦定理对已知条件化简,可求sin B 的值,结合B 为锐角,可求B 的值;(2)由正弦定理可得,a A c C =,再根据锐角三角形,可得,62A ππ⎛⎫∈ ⎪⎝⎭,所以2c a -的范围转化为三角函数求取值范围的问题求解. (1)解:因为()222sin cos a b c B B -+=,所以222sin 2a c b B B ac +-=,即cos sin B B B =,因为B 为锐角,所以cos 0B ≠,所以sin B =, 又0,2B π⎛⎫∈ ⎪⎝⎭,所以3B π=;(2)解:在锐角ABC 中,3B π=,所以23A C π+=, 所以20,20,23A A C πππ⎧⎛⎫∈ ⎪⎪⎪⎝⎭⎨⎛⎫⎪∈ ⎪⎭=-⎪⎝⎩,所以,62A ππ⎛⎫∈ ⎪⎝⎭,因为3B π=,1b =,所以sin sin sin a b c A B C ===所以,a A c C ==,所以223c a C A A A π⎪-=⎛⎝-⎭=⎫cos 2cos 3A A A π⎛⎫ ⎪+⎝=⎭=,又,62A ππ⎛⎫∈ ⎪⎝⎭,所以5,326A πππ⎛⎫+∈ ⎪⎝⎭,可得cos 3A π⎛⎫⎛⎫+∈ ⎪ ⎪ ⎪⎝⎭⎝⎭,所以()2cos 3A π⎛⎫+∈ ⎪⎝⎭,即2c a -的取值范围是().15.在锐角ABC 中,角A ,B ,C 的对边分别为a ,b ,c,已知a =cos (cos )+C B B cos 0A =.(1)求角A 的大小; (2)求2b c +的取值范围. 【答案】 (1)3A π=(2)(8, 【分析】(1)根据三角恒等变换化简可得tan A(2)利用正弦定理及三角恒等变换可得2)b c B θ+=+,再根据三角函数的值域求解.(1)△cos (cos )cos 0C B B A +=,△cos()cos cos cos 0A B B A B A -++=.即cos cos sin sin cos cos cos 0-++-=A B A B B A B A ,sin sin cos 0A B B A =,△sin 0B >,△sin A A =, 又cos 0A ≠,△tan A = △02A π<<,△3A π=.(2)由正弦定理可得24sin sin 3a R A ===,228sin 4sin 8sin 4sin 10sin )3⎛⎫+=+=+-=+=+ ⎪⎝⎭b c B C B B B B B πθ,其中tan θ=,sin θ=cos θ=θ为锐角△ABC 为锐角三角形,则62B ππ<<,从而62B ππθθθ+<+<+,得sin sin()61⎛⎫+<+⎪⎭≤⎝B πθθ,sin sin cos cos sin 666⎛⎫+=+= ⎪⎝⎭πππθθθ△sin()17<+≤B θ,8)<+≤B θ△82b c <+≤从而2b c +的取值范围为(8,.16.在锐角ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且sin B +sin (A -C )=cos C . (1)求角A 的大小;(2)当c =时,求a 2+b 2的取值范围. 【答案】 (1)6A π=(2)(12,20) 【分析】(1)利用两角和与差的正弦公式展开,求得1sin 2A =,即可得到答案; (2)由正弦定理得3b =,根据tan C >3<b <4,再利用二次函数的值域即可得到答案; (1)(1)ABC 中,由sinB +sin (A -C )=cosC 得sin (A +C )+sin (A -C )=cosC , 化简2sinAcosC =cosC ,而ABC 为锐角三角形,即cosC ≠0, 得1sin 2A =,又02A π<<,故6A π=;(2)(2)由正弦定理得sin sin b cB C=,得13(cos )sin 223sin sin C C c B b C C ⋅==== 又022062C C πππ⎧<<⎪⎪⎨⎪<-<⎪⎩,即32C ππ<<,tan C >3<b <4,由余弦定理得a 2=b 2+c 2-2bccosA =b 2-6b +12,所以222231526122(12,20)22a b b b b ⎛⎫+=-+=-+∈ ⎪⎝⎭.。

微专题 三角函数的范围与最值(解析版)(1)

微专题 三角函数的范围与最值(解析版)(1)

微专题三角函数的范围与最值【秒杀总结】一、三角函数f(x)=A sin(ωx+φ)中ω的大小及取值范围1.任意两条对称轴之间的距离为半周期的整数倍,即k T2(k∈Z);2.任意两个对称中心之间的距离为半周期的整数倍,即k T2(k∈Z);3.任意对称轴与对称中心之间的距离为14周期加半周期的整数倍,即T4+k T2(k∈Z);4.f(x)=A sin(ωx+φ)在区间(a,b)内单调⇒b-a≤T2且kπ-π2≤aω+φ≤bω+φ≤kπ+π2(k∈Z)5.f(x)=A sin(ωx+φ)在区间(a,b)内不单调⇒(a,b)内至少有一条对称轴,aω+φ≤kπ+π2≤bω+φ(k∈Z)6.f(x)=A sin(ωx+φ)在区间(a,b)内没有零点⇒b-a≤T2且kπ≤aω+φ≤bω+φ≤(k+1)π(k∈Z)7.f(x)=A sin(ωx+φ)在区间(a,b)内有n个零点⇒(k-1)π≤aω+φ<kπ(k+n-1)π<bω+φ≤(k+n)π(k∈Z) .二、三角形范围与最值问题1.坐标法:把动点转为为轨迹方程2.几何法3.引入角度,将边转化为角的关系4.最值问题的求解,常用的方法有:(1)函数法;(2)导数法;(3)数形结合法;(4)基本不等式法.要根据已知条件灵活选择方法求解.【典型例题】例1.(2023·全国·高三专题练习)在△ABC中,cos A=725,△ABC的内切圆的面积为16π,则边BC长度的最小值为( )A.16B.24C.25D.36【答案】A【解析】因为△ABC的内切圆的面积为16π,所以△ABC的内切圆半径为4.设△ABC内角A,B,C所对的边分别为a,b,c.因为cos A=725,所以sin A=2425,所以tan A=247.因为S△ABC=12bc sin A=12(a+b+c)×4,所以bc=256(a+b+c).设内切圆与边AC切于点D,由tan A=247可求得tan A 2=34=4AD,则AD =163.又因为AD =b +c -a 2,所以b +c =323+a .所以bc =256323+2a =253163+a .又因为b +c ≥2bc ,所以323+a ≥2253163+a ,即323+a 2≥1003163+a ,整理得a 2-12a -64≥0.因为a >0,所以a ≥16,当且仅当b =c =403时,a 取得最小值.故选:A .例2.(2023·全国·高三专题练习)已知函数f (x )=sin (ωx +φ),其中ω>0,|φ|≤π2,-π4为f (x )的零点:且f (x )≤f π4 恒成立,f (x )在-π12,π24区间上有最小值无最大值,则ω的最大值是( )A.11 B.13C.15D.17【答案】C【解析】由题意,x =π4是f (x )的一条对称轴,所以f π4 =±1,即π4ω+φ=k 1π+π2,k 1∈Z ①又f -π4 =0,所以-π4ω+φ=k 2π,k 2∈Z ②由①②,得ω=2k 1-k 2 +1,k 1,k 2∈Z 又f (x )在-π12,π24 区间上有最小值无最大值,所以T ≥π24--π12 =π8即2πω≥π8,解得ω≤16,要求ω最大,结合选项,先检验ω=15当ω=15时,由①得π4×15+φ=k 1π+π2,k 1∈Z ,即φ=k 1π-13π4,k 1∈Z ,又|φ|≤π2所以φ=-π4,此时f (x )=sin 15x -π4 ,当x ∈-π12,π24 时,15x -π4∈-3π2,3π8 ,当15x -π4=-π2即x =-π60时,f (x )取最小值,无最大值,满足题意.故选:C例3.(2023·高一课时练习)如图,直角ΔABC 的斜边BC 长为2,∠C =30°,且点B ,C 分别在x 轴,y 轴正半轴上滑动,点A 在线段BC 的右上方.设OA =xOB +yOC ,(x ,y ∈R ),记M =OA ⋅OC,N =x +y ,分别考查M ,N 的所有运算结果,则A.M 有最小值,N 有最大值B.M 有最大值,N 有最小值C.M 有最大值,N 有最大值D.M 有最小值,N 有最小值【答案】B【解析】依题意∠BCA =30∘,BC =2,∠A =90∘,所以AC =3,AB =1.设∠OCB =α,则∠ABx =α+30∘,0∘<α<90∘,所以A 3sin α+30∘ ,sin α+30∘,B 2sin α,0 ,C 0,2cos α ,所以M =OA ⋅OC =2cos αsin α+30∘ =sin 2α+30∘ +12,当2α+30∘=90∘,α=30∘时,M 取得最大值为1+12=32.OA =xOB +yOC ,所以x =3sin α+30∘ 2sin α,y =sin α+30∘2cos α,所以N =x +y =3sin α+30∘2sin α+sin α+30∘ 2cos α=1+32sin2α,当2α=90∘,α=45∘时,N 有最小值为1+32.故选B .例4.(2023·全国·高三专题练习)已知函数f x =a sin x +b cos x +cx 图象上存在两条互相垂直的切线,且a 2+b 2=1,则a +b +c 的最大值为( )A.23 B.22C.3D.2【答案】D【解析】由a 2+b 2=1,令a =sin θ,b =cos θ,由f x =a sin x +b cos x +cx ,得f x =a cos x -b sin x +c =sin θcos x -cos θsin x +c =sin θ-x +c ,所以c -1≤f x ≤c +1由题意可知,存在x 1,x 2,使得f (x 1)f (x 2)=-1,只需要c -1 c +1 =c 2-1 ≥1,即c 2-1≤-1,所以c 2≤0,c =0,a +b +c =a +b =sin θ+cos θ=2sin θ+π4≤2所以a +b +c 的最大值为2.故选:D .例5.(2023·全国·高三专题练习)已知m >0,函数f (x )=(x -2)ln (x +1),-1<x ≤m ,cos 3x +π4,m <x ≤π,恰有3个零点,则m 的取值范围是( )A.π12,5π12 ∪2,3π4B.π12,5π12 ∪2,3π4C.0,5π12 ∪2,3π4D.0,5π12 ∪2,3π4【答案】A【解析】设g x =(x -2)ln (x +1),h x =cos 3x +π4,求导g x =ln (x +1)+x -2x +1=ln (x +1)+1-3x +1由反比例函数及对数函数性质知g x 在-1,m ,m >0上单调递增,且g 12<0,g 1 >0,故gx 在12,1 内必有唯一零点x 0,当x ∈-1,x 0 时,g (x )<0,g x 单调递减;当x ∈x 0,m 时,g (x )>0,g x 单调递增;令g x =0,解得x =0或2,可作出函数g x 的图像,令h x =0,即3x +π4=π2+k π,k ∈Z ,在0,π 之间解得x =π12或5π12或3π4,作出图像如下图数形结合可得:π12,5π12∪2,3π4,故选:A例6.(2023·全国·高三专题练习)已知函数f x =cos ωx -π3(ω>0)在π6,π4 上单调递增,且当x ∈π4,π3 时,f x ≥0恒成立,则ω的取值范围为( )A.0,52 ∪223,172B.0,43 ∪8,172C.0,43 ∪8,283D.0,52 ∪223,8【答案】B【解析】由已知,函数fx =cos ωx -π3(ω>0)在π6,π4 上单调递增,所以2k 1π-π≤ωx -π3≤2k 1πk 1∈Z ,解得:2k 1πω-2π3ω≤x ≤2k 1πω+π3ωk 1∈Z ,由于π6,π4 ⊆2k 1πω-2π3ω,2k 1πω+π3ω k 1∈Z ,所以π6≥2k 1πω-2π3ωπ4≤2k 1πω+π3ω,解得:12k 1-4≤ω≤8k 1+43k 1∈Z ①又因为函数f x =cos ωx -π3(ω>0)在x ∈π4,π3上f x ≥0恒成立,所以2k 2π-π2≤ωx -π3≤2k 2π+π2k 2∈Z ,解得:2k 2πω-π6ω≤x ≤2k 2πω+5π6ωk 2∈Z ,由于π4,π3 ⊆2k 2πω-π6ω,2k 2πω+5π6ω k 2∈Z ,所以π4≥2k 2πω-π6ωπ3≤2k 2πω+5π6ω,解得:8k 2-23≤ω≤6k 2+52k 2∈Z ②又因为ω>0,当k 1=k 2=0时,由①②可知:ω>0-4≤ω≤43-23≤ω≤52,解得ω∈0,43;当k 1=k 2=1时,由①②可知:ω>08≤ω≤283223≤ω≤172,解得ω∈8,172.所以ω的取值范围为0,43 ∪8,172.故选:B .例7.(2023·全国·高三专题练习)在锐角△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,△ABC 的面积为S ,若sin (A +C )=2S b 2-a2,则tan A +13tan (B -A )的取值范围为( )A.233,+∞ B.233,43C.233,43D.233,43【答案】C【解析】在△ABC 中,sin (A +C )=sin B ,S =12ac sin B ,故题干条件可化为b 2-a 2=ac ,由余弦定理得b 2=a 2+c 2-2ac cos B ,故c =2a cos B +a ,又由正弦定理化简得:sin C =2sin A cos B +sin A =sin A cos B +cos A sin B ,整理得sin (B -A )=sin A ,故B -A =A 或B -A =π-A (舍去),得B =2A △ABC 为锐角三角形,故0<A <π20<2A <π20<π-3A <π2 ,解得π6<A <π4,故33<tan A <1tan A +13tan (B -A )=tan A +13tan A ∈233,43故选:C例8.(2023·上海·高三专题练习)在钝角△ABC 中,a ,b ,c 分别是△ABC 的内角A ,B ,C 所对的边,点G 是△ABC 的重心,若AG ⊥BG ,则cos C 的取值范围是( )A.0,63B.45,63C.63,1D.45,1【答案】C【解析】延长CG 交AB 于D ,如下图所示:∵G 为△ABC 的重心,∴D 为AB 中点且CD =3DG ,∵AG ⊥BG ,∴DG =12AB ,∴CD =32AB =32c ;在△ADC 中,cos ∠ADC =AD 2+CD 2-AC 22AD ⋅CD=52c 2-b 232c 2=5c 2-2b 23c 2;在△BDC 中,cos ∠BDC =BD 2+CD 2-BC 22BD ⋅CD =52c 2-a 232c 2=5c 2-2a 23c 2;∵∠BDC +∠ADC =π,∴cos ∠BDC =-cos ∠ADC ,即5c 2-2a 23c 2=-5c 2-2b 23c 2,整理可得:a 2+b 2=5c 2>c 2,∴C 为锐角;设A 为钝角,则b 2+c 2<a 2,a 2+c 2>b 2,a >b ,∴a 2>b 2+a 2+b 25b 2<a 2+a 2+b 25,∴b a 2+15+15b a 2<1b a 2<1+15+15b a2,解得:b a 2<23,∵a >b >0,∴0<b a <63,由余弦定理得:cos C =a 2+b 2-c 22ab =25⋅a 2+b 2ab =25a b +b a >25×63+36 =63,又C 为锐角,∴63<cos C <1,即cos C 的取值范围为63,1.故选:C .例9.(2023·全国·高三专题练习)设锐角△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若A =π3,a =3,则b 2+c 2+bc 的取值范围为( )A.(1,9] B.(3,9]C.(5,9]D.(7,9]【答案】D 【解析】因为A =π3,a =3,由正弦定理可得asin A=332=2=b sin B =csin 2π3-B ,则有b =2sin B ,c =2sin 2π3-B ,由△ABC 的内角A ,B ,C 为锐角,可得0<B <π2,0<2π3-B <π2,,∴π6<B <π2⇒π6<2B -π6<5π6⇒12<sin 2B -π6 ≤1⇒2<4sin 2B -π6≤4, 由余弦定理可得a 2=b 2+c 2-2bc cos A ⇒3=b 2+c 2-bc ,因此有b 2+c 2+bc =2bc +3=8sin B sin 2π3-B+3=43sin B cos B +4sin 2B +3=23sin2B -2cos2B +5=5+4sin 2B -π6∈7,9 故选:D .例10.(2023·上海·高三专题练习)某公园有一个湖,如图所示,湖的边界是圆心为O 的圆,已知圆O 的半径为100米.为更好地服务游客,进一步提升公园亲水景观,公园拟搭建亲水木平台与亲水玻璃桥,设计弓形MN ,NP ,PQ ,QM 为亲水木平台区域(四边形MNPQ 是矩形,A ,D 分别为MN ,PQ 的中点,OA =OD =50米),亲水玻璃桥以点A 为一出入口,另两出入口B ,C 分别在平台区域MQ ,NP 边界上(不含端点),且设计成∠BAC =π2,另一段玻璃桥F -D -E 满足FD ⎳AC ,FD =AC ,ED ⎳AB ,ED =AB .(1)若计划在B ,F 间修建一休闲长廊该长廊的长度可否设计为70米?请说明理由;(附:2≈1.414,3≈1.732)(2)设玻璃桥造价为0.3万元/米,求亲水玻璃桥的造价的最小值.(玻璃桥总长为AB +AC +DE +DF ,宽度、连接处忽略不计).【解析】(1)由题意,OA =50,OM =100,则MQ =100,AM =503,∠BAC =π2,设∠MAB =θ,∠NAC =α=π2-θ.若C ,P 重合,tan α=100503=23,tan θ=1tan α=32=MB503,得MB =75,∴75<MB <100,32<tan θ<23,MB =AM ⋅tan θ=503tan θ,NC =AN ⋅tan α=503tan θ,而MF =CP =100-NC =100-503tan θ,∴BF =MB -MF =503tan θ+1tan θ -100≥100(3-1),当tan θ=1(符合题意)时取等号,又100(3-1)>70,∴可以修建70米长廊.(2)AB =AM cos θ=503cos θ,AC =AN cos α=503sin θ,则AB +AC =503cos θ+503sin θ=503(sin θ+cos θ)sin θcos θ.设t =sin θ+cos θ=2sin θ+π4 ,则t 2=1+2sin θcos θ,即sin θcos θ=t 2-12.AB +AC =1003t t 2-1=1003t -1t,由(1)知32<tan θ<23,而33<32<1<23<3,∴∃θ使θ+π4=π2且π4<θ+π4<3π4,即1<t ≤2,0<t -1t ≤22,∴AB +AC =1003t -1t≥1006,当且仅当t =2,θ=π4时取等号.由题意,AB +AC =DE +DF ,则玻璃桥总长的最小值为2006米,∴铺设好亲水玻璃桥,最少需2006×0.3=606万元.例11.(2023·全国·高三专题练习)在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,满足b sin A =a sin B +π3(1)设a =3,c =2,过B 作BD 垂直AC 于点D ,点E 为线段BD 的中点,求BE ⋅EA的值;(2)若△ABC 为锐角三角形,c =2,求△ABC 面积的取值范围.【解析】(1)b sin A =a sin B +π3,由正弦定理得:sin B sin A =sin A sin B +π3 =12sin A sin B +32sin A cos B ,所以12sin A sin B -32sin A cos B =0,因为A ∈0,π ,所以sin A ≠0,所以12sin B -32cos B =0,即tan B =3,因为B ∈0,π ,所以B =π3,因为a =3,c =2,由余弦定理得:b 2=a 2+c 2-2ac cos B =9+4-6=7,因为b >0,所以b =7,其中S △ABC =12ac sin B =12×3×2×32=332,所以BD =2S △ABC AC =337=3217,因为点E 为线段BD 的中点,所以BE =32114,由题意得:EA =ED +DA =BE +DA,所以BE ⋅EA =BE ⋅BE +DA =BE 2+0=2728.(2)由(1)知:B =π3,又c =2,由正弦定理得:a sin A =c sin C =2sin A +π3,所以a =2sin A sin A +π3 =2sin A 12sin A +32cos A =41+3tan A,因为△ABC 为锐角三角形,所以A ∈0,π2C =2π3-A ∈0,π2,解得:A ∈π6,π2 ,则tan A ∈33,+∞,3tan A ∈0,3 ,1+3tan A∈1,4 ,故a =41+3tan A∈1,4 ,△ABC 面积为S =12ac sin B =32a ∈32,23 故△ABC 面积的取值范围是32,23.【过关测试】一、单选题1.(2023·全国·高三专题练习)已知a ,b ∈R ,设函数f 1(x )=cos2x ,f 2(x )=a -b cos x ,若当f 1(x )≤f 2(x )对x ∈[m ,n ](m <n )恒成立时,n -m 的最大值为3π2,则( )A.a ≥2-1 B.a ≤2-1C.b ≥2-2D.b ≤2-2【答案】A【解析】设t =cos x ,x ∈[m ,n ],因为n -m 的最大值为3π2>π=T2,所以x ∈[m ,n ]时,t =cos x 必取到最值,当n -m =3π2时,根据余弦函数对称性得cos m +n 2=1⇒m +n2=2k π,k ∈Z ,此时cos m =cos m +n 2-n -m 2=cos 2k π-3π4 =cos 3π4=-22cos n =cos m +n 2+n -m 2 =cos 2k π+3π4 =cos 3π4=-22或者cos m +n 2=-1⇒m +n 2=π+2k π,k ∈Z ,此时cos m =cos m +n 2-n -m2 =cos 2k π+π-3π4 =-cos 3π4=22cos n =cos m +n 2+n -m 2=cos 2k π+π+3π4 =-cos 3π4=22由f 1(x )≤f 2(x )⇒2cos 2x -1≤a -b cos x ⇒2cos 2x +b cos x -1+a ≤0,设t =cos x ,x ∈[m ,n ]时 2t 2+bt -1+a ≤0对应解为t 1≤t ≤t 2,由上分析可知当t 1=-22,t 2≥1或t 1≤-1,t 2=22时,满足n -m 的最大值为3π2,所以t 1t 2≤-22,即-1+a 2≤-22,所以a ≥2-1.-b 2=t 1+t 2≥1-22或-b 2=t 1+t 2≤-1+22,即b ≤2-2或b ≥2-2,故选:A .2.(2023·全国·高三专题练习)△ABC 中,AB =2,∠ACB =π4,O 是△ABC 外接圆圆心,是OC ⋅AB+CA ⋅CB的最大值为( )A.0 B.1C.3D.5【答案】C【解析】过点O 作OD ⊥AC ,OE ⊥BC ,垂足分别为D ,E ,如图,因O 是△ABC 外接圆圆心,则D ,E 分别为AC ,BC 的中点,在△ABC 中,AB =CB -CA ,则|AB |2=|CA |2+|CB|2-2CA ⋅CB ,即CA ⋅CB =|CA |2+|CB|2-22,CO ⋅CA =CO CA cos ∠OCA = CD ⋅ CA =12CA 2,同理CO ⋅CB =12|CB |2,因此,OC ⋅AB +CA ⋅CB =OC ⋅CB -CA+CA ⋅CB =CO ⋅CA -CO ⋅CB +CA ⋅CB=12|CA |2-12|CB |2+|CA |2+|CB |2-22=|CA |2-1,由正弦定理得:|CA |=|AB|sin B sin ∠ACB =2sin B sin π4=2sin B ≤2,当且仅当B =π2时取“=”,所以OC ⋅AB +CA ⋅CB的最大值为3.故选:C3.(2023·全国·高三专题练习)在锐角△ABC 中,若3sin A cos A a +cos Cc=sin B sin C ,且3sin C +cos C =2,则a +b 的取值范围是( )A.23,4 B.2,23C.0,4D.2,4【答案】A【解析】由3sin C +cos C =2sin C +π6 =2,得C +π6=π2+2k π,k ∈Z ,∵C ∈0,π2 ,∴C =π3.由题cos A a +cos C c =sin B sin C 3sin A,由正弦定理有cos A a +cos Cc =b ⋅323a=b 2a ,故cos A sin A +cos C sin C =b 2sin A,即cos A ⋅sin C +sin A ⋅cos C =b sin C 2=3b 4,故sin A +C =sin B =3b 4,即b sin B =433,由正弦定理有a sin A=b sin B =c sin C =433,故a =433sin A ,b =433sin B ,又锐角△ABC ,且C =π3,∴A ∈0,π2 ,B =2π3-A ∈0,π2 ,解得A ∈π6,π2 ,∴a +b =433(sin A +sin B )=433sin A +sin 2π3-A =433sin A +32cos A +12sin A =4sin A +π6,∵A ∈π6,π2,∴A +π6∈π3,2π3 ,sin A +π6 ∈32,1 ,∴a +b 的取值范围为23,4 .故选:A .4.(2023·全国·高三专题练习)设ω∈R ,函数f x =2sin ωx +π6 ,x ≥0,32x 2+4ωx +12,x <0,g x =ωx .若f (x )在-13,π2 上单调递增,且函数f x 与g (x )的图象有三个交点,则ω的取值范围是( )A.14,23B.33,23C.14,33D.-43,0 ∪14,23【答案】B 【解析】当x ∈0,π2 时,ωx +π6∈π6,πω2+π6 ,因为f (x )在-13,π2 上单调递增,所以πω2+π6≤π2-4ω3≤-132sin π6≥12 ,解得14≤ω≤23,又因函数f x 与g (x )的图象有三个交点,所以在x ∈-∞,0 上函数f x 与g (x )的图象有两个交点,即方程32x 2+4ωx +12=ωx 在x ∈-∞,0 上有两个不同的实数根,即方程3x 2+6ωx +1=0在x ∈-∞,0 上有两个不同的实数根,所以Δ=36ω2-12>0-ω<032×02+6ω×0+1>0 ,解得ω>33,当ω∈33,23时,当x ≥0时,令f x -g x =2sin ωx +π6-ωx ,由f x -g x =1>0,当ωx +π6=5π2时,ωx =7π3,此时,f x -g x =2-7π3<0,结合图象,所以x ≥0时,函数f x 与g (x )的图象只有一个交点,综上所述,ω∈33,23.故选:B .5.(2023秋·湖南长沙·高三长郡中学校考阶段练习)已知函数f (x )=sin ωx +π3 (ω>0)在π3,π上恰有3个零点,则ω的取值范围是( )A.83,113 ∪4,143 B.113,4 ∪143,173C.113,143 ∪5,173D.143,5 ∪173,203【答案】C 【解析】x ∈π3,π,ωx +π3∈π3ω+π3,πω+π3 ,其中2πω≤π-π3<4πω,解得:3≤ω<6,则π3ω+π3≥4π3,要想保证函数在π3,π 恰有三个零点,满足①π+2k 1π≤π3ω+π3<2π+2k 1π4π+2k 1π<πω+π3≤5π+2k 1π,k 1∈Z ,令k 1=0,解得:ω∈113,143 ;或要满足②2k 2π≤π3ω+π3<π+2k 2π2k 2π+3π<πω+π3≤2k 2π+4π,k 2∈Z ,令k 2=1,解得:ω∈5,173;经检验,满足题意,其他情况均不满足3≤ω<6条件,综上:ω的取值范围是113,143 ∪5,173.故选:C6.(2023·全国·高三专题练习)已知函数f (x )=sin ωx +π4(ω>0)在区间[0,π]上有且仅有4条对称轴,给出下列四个结论:①f (x )在区间(0,π)上有且仅有3个不同的零点;②f (x )的最小正周期可能是π2;③ω的取值范围是134,174;④f (x )在区间0,π15上单调递增.其中所有正确结论的序号是( )A.①④ B.②③C.②④D.②③④【答案】B【解析】由函数f (x )=sin ωx +π4 (ω>0), 令ωx +π4=π2+k π,k ∈Z ,则x =1+4k π4ω,k ∈Z 函数f (x )在区间[0,π]上有且仅有4条对称轴,即0≤1+4k π4ω≤π有4个整数k 符合,由0≤1+4k π4ω≤π,得0≤1+4k4ω≤1⇒0≤1+4k ≤4ω,则k =0,1,2,3,即1+4×3≤4ω<1+4×4,∴134≤ω<174,故③正确;对于①,∵x ∈(0,π),∴ωx +π4∈π4,ωπ+π4,∴ωπ+π4∈7π2,9π2当ωx +π4∈π4,7π2时,f (x )在区间(0,π)上有且仅有3个不同的零点;当ωx +π4∈π4,9π2时,f (x )在区间(0,π)上有且仅有4个不同的零点;故①错误;对于②,周期T =2πω,由134≤ω<174,则417<1ω≤413,∴8π17<T ≤8π13,又π2∈8π17,8π13,所以f (x )的最小正周期可能是π2,故②正确;对于④,∵x ∈0,π15 ,∴ωx +π4∈π4,ωπ15+π4 ,又ω∈134,174 ,∴ωπ15+π4∈7π15,8π15 又8π15>π2,所以f (x )在区间0,π15 上不一定单调递增,故④错误.故正确结论的序号是:②③故选:B7.(2023·全国·高三专题练习)函数y =sin ωx -π6ω>0 在0,π 有且仅有3个零点,则下列说法正确的是( )A.在0,π 不存在x 1,x 2使得f x 1 -f x 2 =2B.函数f x 在0,π 仅有1个最大值点C.函数f x 在0,π2上单调进增D.实数ω的取值范围是136,196 【答案】D【解析】对于A ,f (x )在0,π 上有且仅有3个零点,则函数的最小正周期T <π ,所以在0,π 上存在x 1,x 2 ,且f (x 1)=1,f (x 2)=-1 ,使得f x 1 -f x 2 =2,故A 错误;由图象可知,函数在0,π 可能有两个最大值,故B 错误;对于选项D ,令ωx -π6=k π,k ∈Z ,则函数的零点为x =1ωk π+π6 ,k ∈Z ,所以函数在y 轴右侧的四个零点分别是:π6ω,7π6ω,13π6ω,19π6ω,函数y =sin ωx -π6ω>0 在0,π 有且仅有3个零点,所以13π6ω≤π19π6ω>π,解得ω∈136,196 ,故D 正确;由对选项D 的分析可知,ω的最小值为136,当0<x <π2 时,ωx -π6∈-π6,11π12 ,但-π6,11π12 不是0,π2的子集,所以函数f x 在0,π2上不是单调进增的,故C 错,故选:D .8.(2023·上海·高三专题练习)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若sin (A +C )cos B b +cos C c =sin A sin C ,B =π3,则a +c 的取值范围是( )A.32,3B.32,3C.32,3 D.32,3【答案】A【解析】由题知sin (A +C )cos B b+cos C c=sin A sin C ,B =π3∴sin B cos B b +cos C c =sin Asin C 即cos B b +cos C c =23sin A3sin C由正弦定理化简得∴c ⋅cos B +b ⋅cos C =23bc sin A 3sin C=23ab3∴sin C cos B +cos C sin B =23b sin A3∴sin (B +C )=sin A =23b sin A3∴b =32∵B =π3∴a sin A =b sin B =c sin C =1∴a +c =sin A +sin C =sin A +sin 2π3-A =32sin A +32cos A =3sin A +π6∵0<A <2π3∴π6<A +π6<5π6∴32<3sin A +π6≤3即32<a +c ≤3故选:A .二、多选题9.(2023秋·山东济南·高三统考期中)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,且tan A +B 1-tan A tan B =3ca cos B,则下列结论正确的是( )A.A =π6B.若b -c =33a ,则△ABC 为直角三角形C.若△ABC 面积为1,则三条高乘积平方的最大值为33D.若D 为边BC 上一点,且AD =1,BD :DC =2c :b ,则2b +c 的最小值为977【答案】BCD【解析】对于A ,因为tan A +B 1-tan A tan B =3c a cos B ,所以tan A +tan B =3ca cos B,则由正弦定理得3sin C =sin A cos B tan A +tan B =sin A cos B ⋅sin A cos B +cos A sin Bcos A cos B =sin A ⋅sin A +B cos A =sin A ⋅sin Ccos A ,则3sin C cos A =sin A sin C ,因为0<C <π,所以sin C >0,故tan A =3,又0<A <π,所以A =π3,故A 错误;对于B ,由余弦定理得a 2=b 2+c 2-2bc cos A =b 2+c 2-bc ,因为b -c =33a ,即b =33a +c ,代入上式得a 2=33a +c 2+c 2-33a +c c ,整理得3c 2+3ac -2a 2=0,解得a =3c 或a =-32c (舍去),则b =2c ,所以b 2=a 2+c 2,故B 正确;对于C ,设AB ,AC ,BC 边上的高分别是CE ,BF ,AD ,则由三角形面积公式易得AD =2a ,BF =2b ,CE =2c ,则AD ×BF ×CE 2=8abc2,因为1a +1b +1c ≥331abc ,当且仅当1a =1b=1c ,即a =b =c 时,等号成立,此时S =12bc sin A =34b 2=1,得b 2=433,所以AD ×BF ×CE 2=8abc2≤33,故C 正确;对于D ,因为BD :DC =2c :b ,所以AD =AB +BD =AB+2c b +2c BC =AB +2cb +2c AC -AB=b b +2c AB +2c b +2cAC,可得1=b 2(b +2c )2c 2+4c 2(b +2c )2b 2+22bc (b +2c )2cb cos60°,整理得b +2c 2=7b 2c 2,故1c +2b=7,所以2b +c =2b +c ×171c +2b =172b c +2c b +5 ≥1722b c ⋅2c b+5=977,当且仅当2b c =2c b 且1c +2b=7,即b =c =377时,等号成立,所以2b +c ≥977,即2b +c 的最小值为977,故D 正确.故选:BCD .10.(2023秋·江苏苏州·高三苏州中学校考阶段练习)已知函数f x =sin2x1+2cos 2x,则下列说法中正确的是( )A.f x +π =f xB.f x 的最大值是33C.f x 在-π2,π2上单调递增D.若函数f x 在区间0,a 上恰有2022个极大值点,则a 的取值范围为60643π,60673π【答案】ABD 【解析】f x =sin2x 1+2cos 2x =sin2x 1+21+cos2x 2=sin2x2+cos2x ,A 选项:f x +π =sin 2x +2π 2+cos 2x +2π=sin2x 2+cos2x =f x ,A 选项正确;B 选项:设f x =sin2x2+cos2x=t ,则sin2x -t cos2x =2t =1+t 2sin 2x +φ ≤1+t 2,解得t 2≤13,-33≤t ≤33,即t max =33,即f x 的最大值为33,B 选项正确;C 选项:因为f -π2 =f π2 =0,所以f x 在-π2,π2 上不单调,C 选项错误;D 选项:f x =2cos2x 2+cos2x -sin2x -2sin2x 2+cos2x 2=4cos2x +22+cos2x2,令f x =0,解得cos2x =-12,即x =π3+k π或x =2π3+k π,k ∈Z ,当x ∈π3+k π,2π3+k π ,k ∈Z 时,f x <0,函数单调递减,当当x ∈2π3+k π,4π3+k π ,k ∈Z 时,f x >0,函数单调递增,所以函数f x 的极大值点为π3,4π3,⋯,π3+n-1π,又函数f x 在区间0,a上恰有2022个极大值点,则a∈π3+2021π,π3+2022π,即a∈6064π3,6067π3,D选项正确;故选:ABD.11.(2023·全国·高三专题练习)在△ABC中,角A、B、C的对边分别为a、b、c,面积为S,有以下四个命题中正确的是( )A.Sa2+2bc的最大值为3 12B.当a=2,sin B=2sin C时,△ABC不可能是直角三角形C.当a=2,sin B=2sin C,A=2C时,△ABC的周长为2+23D.当a=2,sin B=2sin C,A=2C时,若O为△ABC的内心,则△AOB的面积为3-13【答案】ACD【解析】对于选项A:Sa2+2bc =12bc sin Ab2+c2-2bc cos A+2bc=12×sin Abc+cb+2-2cos A≤-14×sin Acos A-2(当且仅当b=c时取等号).令sin A=y,cos A=x,故Sa2+2bc≤-14×yx-2,因为x2+y2=1,且y>0,故可得点x,y表示的平面区域是半圆弧上的点,如下图所示:目标函数z=yx-2上,表示圆弧上一点到点A2,0点的斜率,数形结合可知,当且仅当目标函数过点H12,32,即A=60∘时,取得最小值-3 3,故可得z=yx-2∈-33,0,又Sx2+2bc≤-14×yx-2,故可得Sa2+2bc≤-14×-33=312,当且仅当A=60∘,b=c,即三角形为等边三角形时,取得最大值,故选项A正确;对于选项B:因为sin B=2sin C,所以由正弦定理得b=2c,若b是直角三角形的斜边,则有a2+c2= b2,即4+c2=4c2,得c=233,故选项B错误;对于选项C,由A=2C,可得B=π-3C,由sin B=2sin C得b=2c,由正弦定理得,bsin B=csin C,即2csinπ-3C=csin C,所以sin3C=2sin C,化简得sin C cos2C+2cos2C sin C=2sin C,因为sin C≠0,所以化简得cos2C=3 4,因为b=2c,所以B>C,所以cos C=32,则sin C=12,所以sin B=2sin C=1,所以B=π2,C=π6,A=π3,因为a=2,所以c=233,b=433,所以△ABC的周长为2+23,故选项C正确;对于选项D,由C可知,△ABC为直角三角形,且B=π2,C=π6,A=π3,c=233,b=433,所以△ABC的内切圆半径为r=122+233-433=1-33,所以△ABC的面积为12cr=12×233×1-33=3-13所以选项D正确,故选:ACD12.(2023·全国·高三专题练习)在锐角△ABC中,角A,B,C所对的边分别为a,b,c,且c-b=2b cos A,则下列结论正确的有( )A.A=2BB.B的取值范围为0,π4C.a b的取值范围为2,2D.1tan B-1tan A+2sin A的取值范围为533,3【答案】AD【解析】在△ABC中,由正弦定理可将式子c-b=2b cos A化为sin C-sin B=2sin B cos A,把sin C=sin A+B=sin A cos B+cos A sin B代入整理得,sin A-B=sin B,解得A-B=B或A-B+B=π,即A=2B或A=π(舍去).所以A=2B.选项A正确.选项B:因为△ABC为锐角三角形,A=2B,所以C=π-3B.由0<B<π2,0<2B<π2,0<π-3B<π2解得B∈π6,π4,故选项B错误.选项C :a b =sin A sin B =sin2Bsin B =2cos B ,因为B ∈π6,π4 ,所以cos B ∈22,32,2cos B ∈2,3 ,即ab的取值范围2,3 .故选项C 错误.选项D :1tan B -1tan A +2sin A =sin A -B sin A sin B +2sin A =1sin A +2sin A .因为B ∈π6,π4,所以A =2B ∈π3,π2 ,sin A ∈32,1.令t =sin A ,t ∈32,1,则f t =2t +1t.由对勾函数的性质知,函数f t =2t +1t 在32,1上单调递增.又f 32 =533,f 1 =3,所以f t ∈533,3 .即1tan B -1tan A+2sin A 的取值范围为533,3 .故选项D 正确.故选:AD .三、填空题13.(2023·全国·高三专题练习)已知函数f (x )=sin ωx +π6,ω>0,若f π4 =f 5π12 且f (x )在区间π4,5π12 上有最小值无最大值,则ω=_______.【答案】4或10【解析】∵f (x )满足f π4 =f 5π12 ,∴x =π4+5π122=π3是f (x )的一条对称轴,∴π3⋅ω+π6=π2+k π,∴ω=1+3k ,k ∈Z ,∵ω>0,∴ω=1,4,7,10,13,⋯.当x ∈π4,5π12时,ωx +π6∈π4ω+π6,5π12ω+π6 ,y =sin x 图像如图:要使f (x )在区间π4,5π12上有最小值无最大值,则:π2≤π4ω+π6<3π23π2<5π12ω+π6≤5π2⇒4≤ω<163 或5π2≤π4ω+π6<7π27π2<5π12ω+π6≤9π2⇒283≤ω<525 ,此时ω=4或10满足条件;区间π4,5π12 的长度为:5π12-π4=5π12-3π12=π6,当ω≥13时,f (x )最小正周期T =2πω≤2π13<π6,则f (x )在π4,5π12 既有最大值也有最小值,故ω≥13不满足条件.综上,ω=4或10.故答案为:4或10.14.(2023·全国·高三专题练习)函数f x =3sin ωx +φ ω>0,φ <π2,已知f π3 =3且对于任意的x ∈R 都有f -π6+x +f -π6-x =0,若f x 在5π36,2π9上单调,则ω的最大值为______.【答案】5【解析】因为函数f x =3sin ωx +φ ω>0,φ <π2 ,f π3=3,所以f π3=33sin ω·π3+φ =3,所以πω3+φ=π2+k π(k ∈Z ),φ=π2-k π3+k 1π(k 1∈Z ),因为于任意的x ∈R 都有f -π6+x +f -π6-x =0,所以f -π6+x =-f -π6-x ,所以sin x -π6 ⋅ω+φ =-sin -ω⋅x +π6 +φ ,所以sin ωx -ωπ6+φ =sin ωx +ωπ6-φ ,所以ωx -ωπ6+φ=ωx +ωπ6-φ+2k 2π(k 2∈Z )或ωx -ωπ6+φ+ωx +ωπ6-φ=k 3π(k 3∈Z ),所以φ=ωπ6+k 2π(k 2∈Z )或2ωx =k 3π(k 3∈Z ),即x =k 3π2ω(k 3∈Z )(舍去),所以φ=ωπ6+k 2π(k 2∈Z ),因为φ=π2-k π3+k 1π(k 1∈Z ),所以π2-k π3+k 1π=ωπ6+k 2π(k 1∈Z ),即ω=1+2(k 1-k 2),令t =k 1-k 2,所以ω=1+2t (t ∈Z ),f x 在5π36,2π9上单调,所以π12≤T 2=πω,所以ω≤12,而ω=1+2t (t ∈Z ),当ω=11,φ=-π6,所以f x =3sin 11x -π6 ,函数在5π36,2π9不单调,舍去;当ω=9,φ=3π2+k π(k ∈Z ),舍去;当ω=7,φ=π6,所以f x =3sin 7x +π6 ,函数在5π36,2π9 不单调,舍去;当ω=5,φ=-π6,所以f x =3sin 5x -π6 ,函数在5π36,2π9 单调,所以ω的最大值为5.故答案为:5.15.(2023·全国·高三专题练习)已知函数f (x )=sin (ωx +φ),其中ω>0,|φ|≤π2,-π4为f (x )的零点,且f (x )≤f π4恒成立,f (x )在区间-π12,π24 上有最小值无最大值,则ω的最大值是_______【答案】15【解析】由题意知函数f x =sin ωx +φ ω>0,φ ≤π2 ,x =π4为y =f (x )图象的对称轴,x =-π4为f (x )的零点,∴2n +14•2πω=π2,n ∈Z ,∴ω=2n +1.∵f (x )在区间-π12,π24 上有最小值无最大值,∴周期T ≥π24+π12 =π8,即2πω≥π8,∴ω≤16.∴要求ω的最大值,结合选项,先检验ω=15,当ω=15时,由题意可得-π4×15+φ=k π,φ=-π4,函数为y =f (x )=sin 15x -π4,在区间-π12,π24 上,15x -π4∈-3π2,3π8 ,此时f (x )在x =-π12时取得最小值,∴ω=15满足题意.则ω的最大值为15.故答案为:15.16.(2023·全国·高三对口高考)在△ABC 中,AB =3cos x ,cos x ,AC =cos x ,sin x ,则△ABC 面积的最大值是____________【答案】34【解析】S △ABC =12AB⋅AC sin AB ,AC =12AB 2⋅AC 21-cos 2AB ,AC =12AB 2⋅AC 2-AB ⋅AC 2=124cos 2x -3cos 2x +sin x cos x 2=123cos x sin x -cos 2x =12sin 2x -π6 -12 ≤34,当sin 2x -π6 =-1时等号成立.此时2x -π6=-π2,即x =-π6时,满足题意.故答案为:34.17.(2023·高一课时练习)用M I 表示函数y =sin x 在闭区间I 上的最大值.若正数a 满足M [0,a ]≥2M [a ,2a ],则a 的最大值为________.【答案】1312π【解析】①当a ∈0,π2时,2a ∈[0,π),M [0,a ]=sin a ,M [a ,2a ]=1,若M [0,a ]≥2M [a ,2a ],则sin a ≥2,此时不成立;②当a ∈π2,π时,2a ∈[π,2π),M [0,a ]=1,M [a ,2a ]=sin a ,若M [0,a ]≥2M [a ,2a ],则1≥2sin a ⇒sin a ≤12,又a ∈π2,π ,解得a ∈5π6,π ;③当a ∈π,3π2时,2a ∈[2π,3π),M [0,a ]=1,M [a ,2a ]=sin2a ,若M [0,a ]≥2M [a ,2a ],则1≥2sin2a ⇒sin2a ≤12,又a ∈π,3π2 ,解得a ∈π,13π12;④当a ∈3π2,+∞时,2a ∈[3π,+∞),M [0,a ]=1,M [a ,2a ]=1,不符合题意.综上所述,a ∈5π6,13π12 ,即a 的最大值为1312π.故答案为:1312π18.(2023·上海·高三专题练习)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知a =2,b cos C -c cos B =4,π4≤C ≤π3,则tan A 的最大值为_______.【答案】12【解析】在△ABC 中,因为a =2,b cos C -c cos B =4,所以b cos C -c cos B =4=2a ,所以sin B cos C -sin C cos B =2sin A 所以sin B cos C -sin C cos B =2sin (B +C ),所以sin B cos C -sin C cos B =2sin B cos C +2cos B sin C ,所以sin B cos C +3cos B sin C =0,所以sin B cos C +cos B sin C +2cos B sin C =0,所以sin (B +C )+2cos B sin C =0,所以sin A +2cos B sin C =0,所以由正弦定理得a +2c cos B =0,所以cos B =-1c<0,所以角B 为钝角,角A 为锐角,所以要tan A 取最大值,则A 取最大值,B ,C 取最小值,从而b ,c 取最小值.又b cos C =c cos B +4=c ×-1c +4=3,∴cos C =3b,由π4≤C ≤π3,得12≤cos C ≤22,∴12≤3b≤22,∴32≤b ≤6,由cos B =a 2+c 2-b 22ac =-1c,∴b 2-c 2=8,∴10≤c ≤27,∴tan A 取最大值时,b =32,c =10,此时由余弦定理可得cos A =b 2+c 2-a 22bc =18+10-42×32×10=255,从而求得tan A =1cos 2A-1=12,即tan A 最大值为12.故答案为:1219.(2023·全国·高三专题练习)在△ABC 中,若∠BAC =120°,点D 为边BC 的中点,AD =1,则AB⋅AC的最小值为______.【答案】-2【解析】AB ⋅AC =AD +DB ⋅AD +DC=AD 2+AD ⋅DC +DB +DB ⋅DC,因为D 为边BC 的中点,AD =1,故AB ⋅AC =1-DB 2,故求DB 的最大值.设DB =DC =x ,AC =a ,AB =c ,则由余弦定理,cos ∠BDA =x 2+12-c 22x ,cos ∠CDA =x 2+12-b 22x,因为∠BDA +∠CDA=180∘,故x 2+12-c 22x +x 2+12-b 22x=0,即2x 2+2=b 2+c 2,又2x 2=b 2+c 2+bc ≥3bc ,故2x 2+2=4x 2-bc ,即2x 2=2+bc ≤2+43x 2,此时x 2≤3,故AB ⋅AC =1-x 2≥-2,当且仅当b =c 时取等号.即AB ⋅AC的最小值为-2故答案为:-220.(2023·全国·高三专题练习)△ABC 中,角A ,B ,C 所对的三边分别为a ,b ,c ,c =2b ,若△ABC 的面积为1,则BC 的最小值是________.【答案】3【解析】因为△ABC 的面积为1,所12bc sin A =12b ×2b sin A =b 2sin A =1,可得b 2=1sin A,由BC =AC -AB ,可得|BC |2=|AC |2+|AB |2-2AC ⋅AB =b 2+c 2-2bc cos A =b 2+2b2-2b ×2b cos A =5b 2-4b 2cos A =5sin A -4cos A sin A =5-4cos Asin A,设m =sin A -4cos A +5=-14×sin A cos A -54,其中A ∈(0,π),因为sin A cos A -54=sin A -0cos A -54表示点P 54,0 与点(cos A,sinA )连线的斜率,如图所示,当过点P 的直线与半圆相切时,此时斜率最小,在直角△OAP 中,OA =1,OP =54,可得PA =34,所以斜率的最小值为k PA =-tan ∠APO =-43,所以m 的最大值为-14×-43 =13,所以|BC |2≥3,所以|BC |≥3,即BC 的最小值为3,故答案为:3.21.(2023·全国·高三专题练习)已知θ>0,对任意n ∈N *,总存在实数φ,使得cos (nθ+φ)<32,则θ的最小值是___【答案】2π5【解析】在单位圆中分析,由题意,nθ+φ的终边要落在图中阴影部分区域(其中∠AOx =∠BOx =π6),必存在某个正整数n ,使得nθ+φ终边在OB 的下面,而再加上θ,即跨越空白区域到达下一个周期内的阴影区域内,∴θ>∠AOB =π3,∵对任意n ∈N *要成立,所以必存在某个正整数n ,使得以后的各个角的终边与前面的重复(否则终边有无穷多,必有两个角的终边相差任意给定的角度比如1°,进而对于更大的n ,次差的累积可以达到任意的整度数,便不可能在空白区域中不存在了),故存在正整数m ,使得2m πθ∈N *,即θ=2m πk ,k ∈N *,同时θ>π3,∴θ的最小值为2π5,故答案为:2π5.22.(2023·上海·高三专题练习)已知函数f (x )=sin (ωx +φ),其中ω>0,0<φ<π,f (x )≤f π4恒成立,且y =f (x )在区间0,3π8上恰有3个零点,则ω的取值范围是______________.【答案】6,10【解析】由已知得:f (x )≤f π4恒成立,则f (x )max =f π4 ,π4ω+φ=π2+2k π,k ∈Z ⇒φ=π2-πω4+2k π,k ∈Z ,由x ∈0,3π8 得ωx +φ∈φ,3π8ω+φ ,由于y =f (x )在区间0,3π8上恰有3个零点,故0<φ<π3π<3π8ω+φ≤4π,则0<π2-πω4+2k π<π3π<3πω8+π2-πω4+2k π≤4π,k ∈Z ,则8k -2<ω<8k +220-16k <ω≤28-16k,k ∈Z ,只有当k =1时,不等式组有解,此时6<ω<104<ω≤12 ,故6<ω<10,故答案为:6,1023.(2023·全国·高三专题练习)已知锐角三角形ABC 的内角A ,B ,C 所对的边分别是a ,b ,c ,且A >B ,若sin C =2cos A sin B +725,则tan B 的取值范围为_______.【答案】34,247【解析】∵sin C =2cos A sin B +725,∴sin A +B =sin A cos B +cos A sin B =2cos A sin B +725,即sin A -B =725,∵又A >B ,且A ,B 都为锐角,故cos A -B =2425,tan A -B =724,因为锐角三角形ABC ,所以tan A >0,tan B >0,tan C >0,所以tan A =tan A -B +B =tan A -B +tan B 1-tan A -B ⋅tan B =724+tan B1-724⋅tan B >0所以1-724⋅tan B>0,所以tan B<247,又因为tan C=-tan A+B=tan A+tan Btan A⋅tan B-1>0所以tan A⋅tan B-1=724+tan B1-724⋅tan B⋅tan B-1>0所以12tan2B+7tan B-12>0,解得tan B>34或tan B<-43(舍去)故34<tan B<247.故答案为:3 4,247.24.(2023·全国·高三专题练习)若函数f x =43x-13sin2x+a cos x在-∞,+∞内单调递增,则实数a的取值范围是___________.【答案】-423,423【解析】因函数f(x)在-∞,+∞内单调递增,则∀x∈R,f (x)=43-23cos2x-a sin x≥0,即a sin x≤43-23cos2x,整理得a sin x≤43sin2x+23,当sin x=0时,则0≤23成立,a∈R,当sin x>0时,a≤43sin x+23sin x,而43sin x+23sin x=232sin x+1sin x≥432,当且仅当2sin x=1sin x,即sin x=22时取“=”,则有a≤423,当sin x<0时,a≥43sin x+23sin x,而43sin x+23sin x=-23(-2sin x)+1-sin x≤-432,当且仅当-2sin x=1-sin x,即sin x=-22时取“=”,则有a≥-423,综上得,-423≤a≤423所以实数a的取值范围是-423,423.故答案为:-423,42325.(2023秋·湖南衡阳·高一衡阳市八中校考期末)设函数f x =2sinωx+φ-1(ω>0),若对于任意实数φ,f x 在区间π4,3π4上至少有2个零点,至多有3个零点,则ω的取值范围是________.【答案】4,16 3【解析】令f x =0,则sinωx+φ=12,令t=ωx+φ,则sin t12,。

解三角形(重点)-备战2023年高考数学一轮复习考点微专题(新高考地区专用)(原卷版)

解三角形(重点)-备战2023年高考数学一轮复习考点微专题(新高考地区专用)(原卷版)

考向22 解三角形【2022·全国·高考真题(理)】记ABC 的内角,,A B C 的对边分别为,,a b c ,已知sin sin()sin sin()C A B B C A -=-.(1)证明:2222a b c =+; (2)若255,cos 31a A ==,求ABC 的周长.【2022·全国·高考真题】记ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知cos sin 21sin 1cos2A BA B=++.(1)若23C π=,求B ; (2)求222a b c+的最小值.解答三角高考题的策略:(1)发现差异:观察角、函数运算间的差异,即进行所谓的“差异分析”. (2)寻找联系:运用相关公式,找出差异之间的内在联系. (3)合理转化:选择恰当的公式,促使差异的转化.两定理的形式、内容、证法及变形应用必须引起足够的重视,通过向量的数量积把三角形和三角函数联系起来,用向量方法证明两定理,突出了向量的工具性,是向量知识应用的实例.另外,利用正弦定理解三角形时可能出现一解、两解或无解的情况,这时应结合“三角形中大边对大角”定理及几何作图来帮助理解.1.方法技巧:解三角形多解情况在△ABC 中,已知a ,b 和A 时,解的情况如下:A 为锐角A 为钝角或直角图形关系式 sin a b A =sin b A a b <<a b ≥a b >a b ≤解的个数一解两解一解一解无解2.在解三角形题目中,若已知条件同时含有边和角,但不能直接使用正弦定理或余弦定理得到答案,要选择“边化角”或“角化边”,变换原则常用:(1)若式子含有sin x 的齐次式,优先考虑正弦定理,“角化边”; (2)若式子含有,,a b c 的齐次式,优先考虑正弦定理,“边化角”; (3)若式子含有cos x 的齐次式,优先考虑余弦定理,“角化边”; (4)代数变形或者三角恒等变换前置;(5)含有面积公式的问题,要考虑结合余弦定理使用;(6)同时出现两个自由角(或三个自由角)时,要用到A B C π++=.1.基本定理公式(1)正余弦定理:在△ABC 中,角A ,B ,C 所对的边分别是a ,b ,c ,R 为△ABC 外接圆半径,则 定理正弦定理余弦定理公式==2sin sin sinCa b c R A B = 2222cos a b c bc A =+-;2222cosB b c a ac =+-; 2222cosC c a b ab =+-.常见变形(1)2sin a R A =,2sinB b R =,2sinC c R =;(2)sin 2a A R =,sinB 2b R =,sinC 2cR =;222cosA 2b c a bc +-=; 222cosB 2c a b ac +-=; 222cosC 2a b c ab+-=.111sin sin sin 222S ABC ab C bc A ac B ∆===1()42abc S ABC a b c r R ∆==++⋅(r 是三角形内切圆的半径,并可由此计算R ,r .) 2.相关应用 (1)正弦定理的应用①边化角,角化边::sin :sin :sin a b c A B C ⇔= ②大边对大角大角对大边sin sin cos cos a b A B A B A B >⇔>⇔>⇔<③合分比:b 2sin sin sin sin sin sin sin sin sin sin sin B sin a bc a b b c a c a cR A B C A B B C A C A C+++++=======+++++(2)ABC △内角和定理:A B C π++=①sin sin()sin cos cos sin C A B A B A B =+=+cos cos c a B b A ⇔=+ 同理有:cos cos a b C c B =+,cos cos b c A a C =+. ②cos cos()cos cos sinAsinB C A B A B -=+=-; ③斜三角形中,tan tan tan tan()1tan tan A BC A B A B+-=+=-⋅tan tan tanC tan tan tanC A B A B ⇔++=⋅⋅④sin()cos 22A B C +=;cos()sin 22A B C+= ⑤在ABC ∆中,内角A B C ,,成等差数列2,33B AC ππ⇔=+=. 3.实际应用 (1)仰角和俯角在视线和水平线所成的角中,视线在水平线上方的角叫仰角,在水平线下方的角叫俯角(如图①).(2)方位角从指北方向顺时针转到目标方向线的水平角,如B 点的方位角为α(如图②). (3)方向角:相对于某一正方向的水平角.①北偏东α,即由指北方向顺时针旋转α到达目标方向(如图③). ②北偏西α,即由指北方向逆时针旋转α到达目标方向. ③南偏西等其他方向角类似.(4)坡角与坡度①坡角:坡面与水平面所成的二面角的度数(如图④,角θ为坡角).②坡度:坡面的铅直高度与水平长度之比(如图④,i 为坡度).坡度又称为坡比.1.(2022·青海·模拟预测(理))在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,若22a b kab +=,则△ABC 的面积为22c 时,k 的最大值是( )A .2B .5C .4D .252.(2022·全国·高三专题练习)在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,且222b c a bc +=+,若2sin sin sin B C A =,则△ABC 的形状是( )A .等腰三角形B .直角三角形C .等边三角形D .等腰直角三角形3.(2022·青海·海东市第一中学模拟预测(理))在ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .已知2a =,222sin 3sin 2sin A B a C +=,则cos C 的最小值为______.4.(2022·上海·位育中学模拟预测)如图所示,在一条海防警戒线上的点、、A B C 处各有一个水声监测点,B C 、两点到点A 的距离分别为 20 千米和 50 千米.某时刻,B 收到发自静止目标P 的一个声波信号,8秒后A C 、同时接收到该声波信号,已知声波在水中的传播速度是 1.5 千米/秒.(1)设A 到P 的距离为x 千米,用x 表示B C 、到P 的距离,并求x 的值; (2)求静止目标P 到海防警戒线AC 的距离.(结果精确到 0.01 千米).5.(2022·全国·模拟预测)在ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,cos 2cos tan sin C AB C-=,a b <. (1)求角B ;(2)若3a =,7b =,D 为AC 边的中点,求BCD △的面积.6.(2022·河南省杞县高中模拟预测(文))在ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,2cos cos cos a A b C c B =+. (1)求角A 的大小;(2)若23a =,6b c +=,求ABC 的面积.7.(2022·全国·高三专题练习)在ABC 中,内角,,A B C 对应的边分别为,,a b c ,6AB AC ⋅=,向量()cos ,sin s A A =与向量()4,3t =-互相垂直. (1)求ABC 的面积; (2)若7b c +=,求a 的值.1.(2022·全国·高三专题练习)已知在ABC 中,30,2,1B a b ===,则A 等于( )A .45B .135C .45或135D .1202.(2022·河南·南阳中学模拟预测(文))ABC 中,若5,6AB AC BC ===,点E 满足21155CE CA CB =+,直线CE 与直线AB 相交于点D ,则CD 的长( ) A 810B 15C 10D 303.(2022·全国·高三专题练习)在ABC 中,A ,B ,C 所对的边分别为a ,b ,c ,若2222a b c bc -=且cos sin =b C a B ,则ABC 是( )A .等腰直角三角形B .等边三角形C .等腰三角形D .直角三角形4.(2022·四川省宜宾市第四中学校模拟预测(文))如图所示,为了测量A ,B 处岛屿的距离,小明在D 处观测,A ,B 分别在D 处的北偏西15°、北偏东45°方向,再往正东方向行驶40海里至C 处,观测B 在C 处的正北方向,A 在C 处的北偏西60°方向,则A ,B 两处岛屿间的距离为 ( )A .6B .406C .20(13)+海里D .40海里5.(多选题)(2022·福建·福州三中高三阶段练习)ABC 中,角,,A B C 的对边分别为,,a b c ,且2,sin 2sin a B C ==,以下四个命题中正确的是( ) A .满足条件的ABC 不可能是直角三角形B .ABC 面积的最大值为43C .M 是BC 中点,MA MB ⋅的最大值为3D .当2A C =时,ABC 236.(多选题)(2022·广东·华南师大附中三模)已知圆锥的顶点为P ,母线长为2,底面圆直径为3A ,B ,C 为底面圆周上的三个不同的动点,M 为母线PC 上一点,则下列说法正确的是( )A .当A ,B 为底面圆直径的两个端点时,120APB ∠=︒ B .△P AB 3C .当△P AB 面积最大值时,三棱锥C -P AB 62+D .当AB 为直径且C 为弧AB 的中点时,MA MB +157.(多选题)(2022·河北·沧县中学模拟预测)在ABC 中,三边长分别为a ,b ,c ,且2abc =,则下列结论正确的是( ) A .222<+a b ab B .22++>ab a b C .224++≥a b cD .22++≤a b c 8.(2022·青海·海东市第一中学模拟预测(文))在ABC 中,O 为其外心,220OA OB OC ++=,若2BC =,则OA =________.9.(2022·河北·高三期中)已知ABC 中角A ,B ,C 所对的边分别为a ,b ,c ,2a b cp ++=,则ABC 的面积()()()S p p a p b p c =---,该公式称作海伦公式,最早由古希腊数学家阿基米德得出.若ABC 的周长为15,()()()sin sin :sin sin :sin sin 4:6:5A B B C C A +++=,则ABC 的面积为___________________.10.(2022·全国·高三专题练习(理))在ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且2224a b c +=,则tan B 的最大值为______.11.(2022·辽宁·沈阳二中模拟预测)沈阳二中北校区坐落于风景优美的辉山景区,景区内的一泓碧水蜿蜒形成了一个“秀”字,故称“秀湖”.湖畔有秀湖阁()A 和临秀亭()B 两个标志性景点,如图.若为测量隔湖相望的A 、B 两地之间的距离,某同学任意选定了与A 、B 不共线的C 处,构成ABC ,以下是测量数据的不同方案: ①测量A ∠、AC 、BC ; ②测量A ∠、B 、BC ; ③测量C ∠、AC 、BC ; ④测量A ∠、C ∠、B .其中一定能唯一确定A 、B 两地之间的距离的所有方案的序号是_____________.12.(2022·青海·海东市第一中学模拟预测(理))如图,在平面四边形ABCD 中,已知BC =2,3cos 5BCD ∠=-.(1)若45CBD ∠=︒,求BD 的长; (2)若5cos ACD ∠=AB =4,求AC 的长.13.(2022·青海玉树·高三阶段练习(文))在ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,且ABC 的面积)2223S a c b =+-. (1)求角B 的大小;(2)若22a b c =,求sin C .14.(2022·上海浦东新·二模)已知函数()()sin cos f x t x x t R =-∈ (1)若函数()f x 为偶函数,求实数t 的值;(2)当3t =时,在ABC 中(,,A B C 所对的边分别为a 、b 、c ),若()223f A c ==,,且ABC 的面积为23a 的值.15.(2022·全国·高三专题练习)记ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知cos sin 21sin 1cos2A BA B =++.(1)若23C π=,求B ; (2)求222a b c+的最小值.16.(2022·青海·海东市第一中学模拟预测(文))在ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,221cos 2a b bc ac B -+=.(1)求角A ;(2)若sin 3sin b A B =,求ABC 面积的最大值.17.(2022·上海金山·二模)在ABC 中,角A 、B 、C 所对的边分别为a 、b 、c .已知2sin 30b A a -=,且B 为锐角.(1)求角B 的大小;(2)若333c a b =+,证明:ABC 是直角三角形.18.(2022·湖南·湘潭一中高三阶段练习)ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知(2)sin (2)sin 2sin a c A c a C b B -+-=. (1)求B ;(2)若ABC 为锐角三角形,且2c =,求ABC 周长的取值范围.19.(2022·上海黄浦·二模)某公园要建造如图所示的绿地OABC ,OA 、OC 为互相垂直的墙体,已有材料可建成的围栏AB 与BC 的总长度为12米,且BAO BCO ∠=∠.设BAO α∠=(02πα<<).(1)当4AB =,3πα=时,求AC 的长;(结果精确到0.1米)(2)当6AB =时,求OABC 面积S 的最大值及此时α的值.20.(2022·上海虹口·二模)如图,某公园拟划出形如平行四边形ABCD 的区域进行绿化,在此绿化区域中,分别以DCB ∠和DAB ∠为圆心角的两个扇形区域种植花卉,且这两个扇形的圆弧均与BD 相切.(1)若437AD =,337AB =,37BD =(长度单位:米),求种植花卉区域的面积; (2)若扇形的半径为10米,圆心角为135︒,则BDA ∠多大时,平行四边形绿地ABCD 占地面积最小?1.(2021·全国·高考真题(理))魏晋时刘徽撰写的《海岛算经》是有关测量的数学著作,其中第一题是测海岛的高.如图,点E ,H ,G 在水平线AC 上,DE 和FG 是两个垂直于水平面且等高的测量标杆的高度,称为“表高”,EG 称为“表距”,GC 和EH 都称为“表目距”,GC 与EH 的差称为“表目距的差”则海岛的高AB =( )A .⨯+表高表距表目距的差表高B .⨯-表高表距表目距的差表高C .⨯+表高表距表目距的差表距D .⨯表高表距-表目距的差表距2.(2021·全国·高考真题(文))在ABC 中,已知120B =︒,19AC 2AB =,则BC =( ) A .1B 2C 5D .33.(2021·浙江·高考真题)在ABC 中,60,2B AB ∠=︒=,M 是BC 的中点,3AM =则AC =___________,cos MAC ∠=___________.4.(2022·浙江·高考真题)我国南宋著名数学家秦九韶,发现了从三角形三边求面积的公式,他把这种方法称为“三斜求积”,它填补了我国传统数学的一个空白.如果把这个方法写成公式,就是222222142c a b S c a ⎡⎤⎛⎫+-=-⎢⎥ ⎪⎢⎥⎝⎭⎣⎦其中a ,b ,c 是三角形的三边,S 是三角形的面积.设某三角形的三边2,3,2a b c ===,则该三角形的面积S =___________.5.(2022·全国·高考真题(理))已知ABC 中,点D 在边BC 上,120,2,2ADB AD CD BD ∠=︒==.当AC AB取得最小值时,BD =________. 6.(2022·上海·高考真题)在△ABC 中,3A π∠=,2AB =,3AC =,则△ABC 的外接圆半径为________ 7.(2021·全国·高考真题(理))记ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,360B =︒,223a c ac +=,则b =________.8.(2022·全国·高考真题(理))记ABC 的内角,,A B C 的对边分别为,,a b c ,已知sin sin()sin sin()C A B B C A -=-.(1)证明:2222a b c =+;(2)若255,cos 31a A ==,求ABC 的周长.9.(2022·全国·高考真题)记ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知cos sin 21sin 1cos2A B A B =++. (1)若23C π=,求B ; (2)求222a b c +的最小值.10.(2022·浙江·高考真题)在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .已知345,cos 5a c C ==. (1)求sin A 的值;(2)若11b =,求ABC 的面积.11.(2022·北京·高考真题)在ABC 中,sin 23C C =.(1)求C ∠;(2)若6b =,且ABC 的面积为63ABC 的周长.12.(2022·全国·高考真题)记ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,分别以a ,b ,c 为边长的三个正三角形的面积依次为123,,S S S ,已知123313S S S B -+==. (1)求ABC 的面积;(2)若2sin sin A C =b .13.(2022·全国·高考真题(文))记ABC 的内角A ,B ,C 的对边分别为a ,b ,c ﹐已知()()sin sin sin sin C A B B C A -=-.(1)若2A B =,求C ;(2)证明:2222a b c =+14.(2022·上海·高考真题)如图,矩形ABCD 区域内,D 处有一棵古树,为保护古树,以D 为圆心,DA 为半径划定圆D 作为保护区域,已知30AB =m ,15AD =m ,点E 为AB 上的动点,点F 为CD 上的动点,满足EF 与圆D 相切.(1)若∠ADE 20︒=,求EF 的长;(2)当点E 在AB 的什么位置时,梯形FEBC 的面积有最大值,最大面积为多少?(长度精确到0.1m ,面积精确到0.01m²)15.(2021·天津·高考真题)在ABC ,角 ,,A B C 所对的边分别为,,a b c ,已知sin :sin :sin 22A B C =2b =(I )求a 的值;(II )求cos C 的值;(III )求sin 26C π⎛⎫- ⎪⎝⎭的值.16.(2021·全国·高考真题)在ABC 中,角A 、B 、C 所对的边长分别为a 、b 、c ,1b a =+,2c a =+..(1)若2sin 3sin C A =,求ABC 的面积;(2)是否存在正整数a ,使得ABC 为钝角三角形?若存在,求出a 的值;若不存在,说明理由.17.(2021·北京·高考真题)在ABC 中,2cos c b B =,23C π=. (1)求B ;(2)再从条件①、条件②、条件③这三个条件中选择一个作为已知,使ABC 存在且唯一确定,求BC 边上中线的长.条件①:2c b =;条件②:ABC 的周长为423+; 条件③:ABC 3318.(2021·全国·高考真题)记ABC 是内角A ,B ,C 的对边分别为a ,b ,c .已知2b ac =,点D 在边AC 上,sin sin BD ABC a C ∠=. (1)证明:BD b =;(2)若2AD DC =,求cos ABC ∠.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

微专题2 三角形中的最值问题
例1 如图,在△ABC 中,若AB =AC ,AD =DC ,BD =3,则△ABC 面积的最大值为________.
(例1)
变式 已知a ,b ,c 分别是△ABC 的三个内角A ,B ,C 的对边,且2b -c a =cosC cosA
. (1) 求角A 的大小;
(2) 当a =3时,求b 2+c 2的取值范围.
1. 求解最值问题时,要注意三角形内角和为π这一限制条件.例如,若△ABC 是锐角
三角形,则0<A<π2,A +B>π2
,sinA>cosB ,sinB>cosC. 2. 求解最值问题的关键在于将三角函数f (x )进行正确地“化一”及“化一”后角的范围的确定,因此,求解时要准确运用三角公式,并借助三角函数的图象和性质去确定函数f (x )
的最值.同时要注意两边之和大于第三边等隐含条件.
3. 求周长或面积的范围与最值可转化为边与角的范围,也可利用基本不等式求范围.
1. 在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,且BC 边上的高为
32a ,则c b +b c
取得最大值时内角A 的值为________. 2. 在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,若a 2+b 2+42=c 2,ab =4,则sinC tan 2Asin2B
的最小值是________. 3. 已知a ,b ,c 分别为△ABC 三个内角A ,B ,C 的对边,a =2,且(2+b)(sinA -sinB)=(c -b)sinC ,则△ABC 的面积的最大值为________.
4. 如图,已知半圆O 的直径为2,A 为直径延长线上的一点,OA =2,B 为半圆上任意一点,以AB 为一边作等边三角形ABC ,则四边形OACB 的面积S 的最大值是________.
(第4题)
5. 已知△ABC 的面积为S ,且BA →·BC →=6S 7
,则sin 2A +sin 2C 的取值范围是________. 6. 已知△ABC 的周长为6,且BC ,CA ,AB 成等比数列,则BA →·BC →的取值范围是________.
7. 已知函数f (x )=2cos 2x -sin ⎝
⎛⎭⎫2x -7π6. (1) 求函数f (x )的最大值,并写出f (x )取最大值时x 的取值集合;
(2) 在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c.若f (A)=32
,b +c =2,求实数a 的最小值.
8. 在锐角三角形ABC 中,设角A ,B ,C 所对的边分别为a ,b ,c ,已知c =2,3a =2csinA.
(1) 若△ABC 的面积等于3,求a ,b 的值;
(2) 求△ABC 的周长的取值范围.
微专题。

相关文档
最新文档