2019年普通高中学业水平考试数学模拟试卷一参考答案

合集下载

辽宁省大连市2019年普通高中学生学业水平考试模拟数学试题(解析版)

辽宁省大连市2019年普通高中学生学业水平考试模拟数学试题(解析版)

2019年大连市普通高中学生学业水平考试模拟试卷数学(本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分, 满分100分,考试时间90分钟) 参考公式:柱体体积公式,锥体体积公式(其中为底面面积,为高);球的表面积公式(其中为球的半径).第I卷一.选择题:(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.集合,则()A. B. C. D.【答案】D【解析】【分析】直接利用并集的定义求解即可.【详解】因为,所以=,故选D.【点睛】研究集合问题,一定要抓住元素,看元素应满足的属性.研究两集合的关系时,关键是将两集合的关系转化为元素间的关系,本题实质求满足属于集合或属于集合的元素的集合.2.函数在区间[-2,-1]上的最大值是( )A. 1B. 2C. 4D.【答案】C【解析】【分析】根据函数的单调性,判断出当时函数取得最大值,并由此求得最大值.【详解】由于为定义域上的减函数,故当时函数取得最大值为.故选C.【点睛】本小题主要考查指数函数的单调性,考查指数运算,考查函数最值的求法,属于基础题.3.函数的最小正周期是()A. B. C. D.【答案】B【解析】【分析】根据求得函数的最小正周期.【详解】依题意可知,函数的最小正周期为,故选B.【点睛】本小题主要考查的最小正周期计算,属于基础题.4.已知,则的值是()A. 0B. –1C. 1D. 2【答案】A【解析】【分析】利用函数解析式,直接求出的值.【详解】依题意.故选A.【点睛】本小题主要考查函数值的计算,考查函数的对应法则,属于基础题.5.如图所示,一个空间几何体的主视图和左视图都是边长为1的正方形,俯视图是一个直径为1的圆,那么这个几何体的表面积为()A. B. C. D.【答案】A【解析】【分析】首先根据三视图得到几何体为圆柱,根据圆柱的表面积公式计算出表面积.【详解】由三视图可知,该几何体为圆柱,故其表面积为,故选A.【点睛】本小题主要考查三视图还原为原图,考查圆柱的表面积计算公式,属于基础题.6.已知向量,向量,若,则实数的值为()A. B.3 C. D. 1【答案】B【解析】【分析】根据两个向量垂直的坐标表示列方程,由此求得的值.【详解】由于两个向量垂直,故,故选B.【点睛】本小题主要考查两个向量垂直的坐标表示,考查方程的思想,属于基础题.7.在某次考试中,共有100个学生参加考试,如果某题的得分情况如表:那么这些得分的众数是()A. 37.0%B. 20.2%C. 0分D. 4分【答案】C【解析】由题意得,得分为0分的比例为37.0%,所占比例最大,所以这些得分的众数是0。

2019年山东省学业水平考试数学模拟试题一(含答案解析)

2019年山东省学业水平考试数学模拟试题一(含答案解析)
【详解】
由已知解得 ,
所以 ,故选B.
【点睛】
本题考查一元二次不等式的解集、指数函数的值域和集合的交集运算,属于基础题.
9.D
【解析】
【分析】
解一元二次不等式 即可得出结果
【详解】
由 得 其在 上的补集为 ,故选D
【点睛】
本题考查集合的补集,是一道基础题。
10.B
【解析】
【分析】
先将 分母实数化,然后直接求其模。
运用复数的除法的运算法则,求出复数 的表达式,最后求出 的虚部.
【详解】
的虚部为 .
【点睛】
本题考查了复数的除法运算法则和复数的虚部的概念,正确运用复数的除法法则,计算出复数的表达式是解题的关键.
23.
【解析】
【分析】
根据二项展开式通项公式求 的系数.
【详解】
因为 ,
所以令 得 ,系数为
【点睛】
本题考查二项展开式通项公式,考查基本分析求解能力,属基础题.
本小题主要考查平面向量共线的坐标表示,熟练掌握向量共线定理是解题的关键,属于基础题.
3.B
【解析】
【分析】
根据复数的除法运算和复数的共轭复数的概念求得.
【详解】
由已知得 ,
所以 ,
所以
故选B.
【点睛】
本题考查复数的除法运算和复数的共轭复数的概念,属于基础题.
4.B
【解析】
【分析】
根据函数的定义域、值域、单调性和奇偶性的判断解得.
绝密★启用前
2019年山东省学业水平考试数学模拟试题
数学
考试范围:xxx;考试时间:100分钟;命题人:xxx
注意事项:
1.答题前填写好自己的姓名、班级、考号等信息

河南省2019级普通高中学业水平考试数学试卷(含答案)

河南省2019级普通高中学业水平考试数学试卷(含答案)

普通高中学业水平考试数 学本试题卷共4页,三大题,29小题,满分100分,考试时间120分钟一、选择题(共16小题,每小题3分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知全集U={1,2,3,4,5,6},集合A={1,3,5},则C U A=A .{1,3,5}B .{2,4,6}C .{3,4,5}D .{1,3,4,5} 2.函数f (x)=21x 的定义域为A .{x|x ≠0}B .(0,+∞)C .[0,+∞)D .R 3.某几何体的三视图如图所示,则该几何体是A .圆柱B .圆锥C .棱台D .圆台4.同时掷两个均匀骰子,向上的点数之和是7的概率是A .31 B .41 C .61 D .121 5.函数f (x)=3x -x-2的零点的个数为A .3B .2C .1D .0 6.直线l 经过点P(0,2),倾斜角是135°,则直线l 的方程是A .x+y-2=0B .x+y+2=0C .x-y+2=0D .x-y-2=0 7.下列函数中,在R 上是增函数的是A . y=lgxB . y=21log xC .221⎪⎭⎫⎝⎛=y D .y=10x8.在等比数列{a n }中,a 2=2,a 3=4,则其前10项和是A .511B .1023C .1024D .2047 9.执行如图所示的程序框图,则输出的S=A .10B .45C .55D .6610.已知对数函数y=f (x)的图象过点(e ,1),则f(e 3)=A .-3B .1C .2D .311.已知样本数据x ,x 2,x 3,x 4,x 5,x 6的平均数为5,方差为2,则样本数据x 1+3,x 2+3,x 3+3,x 4+3,x 5+3,x 6+3的平均数和方差分别为A .8和2B .8和5C .5和3D .5和8 12.已知sin θ>0,cos θ<0,那么θ是A .第一象限角B .第二象限角C .第三象限角D .第四象限角 13.△ABC 的三边长分别为3,5,7,则△ABC 的形状是A .锐角三角形B .直角三角形C .钝角三角形D .不能确定 14.函数y=sin(2x+2π)是 A .周期为2x 的偶函数 B .周期为2π的奇函数 C .周期为π的偶函数 D .周期为π的奇函数15.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,已知b=2a ,A=30°,则B=A .45°B .60°C .60°或120°D .45°或135°16.函数f (x)=1214++x x 的图象关于A .y 轴对称B .直线y=-x 对称C .坐标原点对称D .直线y=x 对称二、填空题(共7小题,每小题3分,共21分)17.函数f (x)=log 2x+x(x ∈[1,4])的值域是 。

2019年普通高等学校招生全国统一考试理科数学模拟考试参考答案

2019年普通高等学校招生全国统一考试理科数学模拟考试参考答案

所以当B

2
时取得最大值......11分 时y取得最大值,最大值为2.........12分
3
18. (I)在方案 3 中,记“甲河流发生洪水”为事件 A,“乙河流发生洪 水”为事件 B,则 P(A)=0.15,P(B)=0.24...........2 分【没有设事 件、只写概率均不给分】 所 以 ,有 且 只 有 一 条 河 流 发 生 洪 水 的 概 率 为 P ( A• 两 河 流 同 时 发 生 洪 水 的 概 率 为 P ( A•B ) =0.036 , 都 不 发 生 洪 水 的 概 率 为 P( • ) =0.646 , .............5 分 + •B )=0.318
因为
=(﹣1, 2, 0),
=( ,﹣3, ) , 所以
(Ⅲ)假设存在这样的切线,设其中一个切点 T ( x ,ln x
0
0

x0 1 ) x0

3
∴切线方程: y 1 x 即 ln x
3 1 2 1 0 x0 x0
0
1 ( x 1) 2 x0
,将点 T 坐标代入得:
ln x0
2 2 2
取 =(2,1,5)...........9 分 而 =(0,3,﹣1),
...........2 分
,PC=
, 所以|cos< , = ,...........11 分 所以 PD 与平面 CDE 所成角的正弦值
...........12 分
所以有 OP +OC =PC ,所以 OP⊥OC...........3 分 而 OB⊥OP,OB∩OC=O,所以 OP⊥平面 OPD...........4 分 又 OB⊥OD,所以 OB、OD、OP 两两垂直.故以 O 为原点,建立空间直角 坐标系(如图),则 P(0,0,1),C(1,1,0),D(0,3,0) 设 E(x,0,1﹣x),其中 0≤x≤1,所以 (1,1,﹣1), 假设 DE 和 SC 垂直,则 =0,有 x﹣3+(1﹣x)(﹣1)=0,解得 =(x,﹣3,1﹣x), =

2019年安徽省普通高中学业水平考试数学试题(解析版)

2019年安徽省普通高中学业水平考试数学试题(解析版)

2019年安徽省普通高中学业水平考试数学试题一、单选题1.已知集合{}13,5A =,,{}0,1,2B =,则=A B I ( ) A .∅ B .{}1C .{0,1}D .{}1,2,3【答案】B【解析】直接根据交集的定义计算可得; 【详解】解:{}13,5A =Q ,,{}0,1,2B =, {}1A B ∴⋂=故选:B 【点睛】本题考查集合的运算,属于基础题. 2.下列函数中为偶函数的是( )A .y =B .1y x =-C .2y x =D .3y x =【答案】C【解析】利用偶函数的定义判断即可. 【详解】解:y =[)0,+∞,不关于原点对称,不是偶函数;1y x =-是非奇非偶函数;2y x =是偶函数,3y x =是奇函数;故选:C . 【点睛】本题考查常见函数的奇偶性的判断,属于基础题.3.立德中学男子篮球队近5场比赛得分情况如茎叶图所示,则这5场比赛的平均得分是( ) 茎叶3 84 2 65 0 4A .42B .44C .46D .48【答案】C【解析】根据茎叶图读取数据,再计算平均数即可; 【详解】解:由茎叶图可得这5场比赛得分分别为:38、42、46、50、54, 则平均数3842465054465++++==故选:C 【点睛】本题考查茎叶图的应用,几个数的平均数的计算,属于基础题. 4.不等式(1)(3)0x x +-<的解集为( ) A .{|13}x x -<< B .{|31}x x -<< C .{|1x x <-,或3}x > D .{|3x x <-,或1}x >【答案】A【解析】直接根据一元二次不等式的解法求解即可; 【详解】解:因为(1)(3)0x x +-< 所以13x -<<即不等式的解集为{|13}x x -<< 故选:A 【点睛】本题考查一元二次不等式的解法,属于基础题.5.函数()1x f x a =+(0a >,且1a ≠)的图象经过定点( ) A .(0,1)B .(01)-,C .(0,2)D .(1,1)【答案】C【解析】由指数函数的定义可知,当指数为0时,指数式的值为1即可得解. 【详解】解:因为()1xf x a =+(0a >,且1a ≠) 令0x =,则()0012f a =+=,故函数过点()0,2,故选:C 【点睛】本题考查指数函数过定点问题,属于基础题.6.一支田径队有男运动员56人,女运动员42人,若用分层抽样的方法从全体运动员中抽取一个容量为28的样本,则在男运动员中需要抽取的人数为( ) A .12 B .14C .16D .18【答案】C【解析】若用分层抽样的方法,则样本中男运动员与所有运动员的人数之比与总体的男运动员与所有运动员的人数之比相同,由此求解即可 【详解】由题,男运动员占总体运动员的56456427=+,所以男运动员中需要抽取的人数为428167⨯=,故选:C 【点睛】本题考查分层抽样的应用,属于基础题7.如图,分别以正方形ABCD 的两条边AB 和CD 为直径,向此正方形内作两个半圆(阴影部分),在正方形内随机取一点,则此点取自阴影部分的概率是( )A .12πB .8πC .6π D .4π 【答案】D【解析】首先求出正方形的面积以及阴影部分的面积,再根据几何概型的概率公式计算可得; 【详解】解:设正方形的边长为2,则正方形的面积为224=,阴影部分恰可拼成一个直径为2的圆,则阴影部分的面积为21ππ⨯=,根据几何概型的概率公式可得,在正方形内随机取一点,则此点取自阴影部分的概率4P π=,故选:D 【点睛】本题考查面积型几何概型的概率计算,属于基础题.8.在平面直角坐标系中,已知角α的终边经过点(3,4),则cos α=( )A .43B .34C .45D .35【答案】D【解析】先求出点P 到原点的距离r ,然后按照cos α的定义:cos xrα=求出结果. 【详解】解:3x =Q ,4y =,5r ==,∴由任意角的三角函数的定义知,3cos 5x r α==, 故选:D . 【点睛】本题考查任意角的三角函数的定义:在角的终边上任取一点(除原点外),求出此点到原点的距离r ,该角的余弦值等于所取点的横坐标除以此点到原点的距离r .9.已知直线l 10y -+=,则直线l 的倾斜角是 A .23πB .56π C .3π D .6π 【答案】C【解析】直线方程即:1y =+ ,直线的斜率k =,则直线的倾斜角为3π .本题选择C 选项.10.已知(2,2)a m =-r ,(4,)b m =r ,且//a b r r,则m =( )A .4B .-4C .6D .-6【答案】A【解析】根据平面向量共线定理的坐标表示得到方程,解得即可; 【详解】解:因为(2,2)a m =-r ,(4,)b m =r ,且//a b r r,所以()242m m ⨯=⨯-, 解得4m = 故选:A 【点睛】本题考查平面向量共线定理的应用,属于基础题. 11.5sin6π=( )A .12 B .12-C D . 【答案】A【解析】根据诱导公式及特殊角的三角函数值计算可得; 【详解】 解:51sinsin sin 6662ππππ⎛⎫=-== ⎪⎝⎭ 故选:A 【点睛】本题考查诱导公式及特殊角的三角函数值,属于基础题.12.已知点(4,9)A ,(6,3)B ,则以线段AB 为直径的圆的标准方程是( ) A .22(5)(6)40x y +++=B .22(5)(6)40x y -+-=C .22(5)(6)10x y +++=D .22(5)(6)10x y -+-=【答案】D【解析】利用中点坐标公式求出AB 的中点坐标即为圆心,再根据平面直角坐标系上两点间的距离公式求出AB 的长即直径,最后写出圆的标准方程. 【详解】解:因为(4,9)A ,(6,3)B ,所以AB 的中点坐标为()5,6,AB ==,则以线段AB 为直径的圆的圆心坐标为()5,6,半径r =,故圆的标准方程为22(5)(6)10x y -+-=,故选:D 【点睛】本题考查了中点坐标公式,两点间的距离公式以及圆的标准方程,解答本题的关键是灵活运用已知条件确定圆心坐标及圆的半径.同时要求学生会根据圆心与半径写出圆的标准方程.13.函数()ln 3f x x x =+-的零点的个数是( ) A .0 B .1C .2D .3【答案】B【解析】首先可以判断函数的单调性,再根据零点存在性定理判断可得; 【详解】解:因为ln y x =与3y x =-在()0,∞+上单调递增, 所以()ln 3f x x x =+-也在()0,∞+上单调递增,又()1ln11320f =+-=-<Q ,()3ln333ln30f =+-=> 所以()()130f f <,故函数在()1,3上存在唯一零点, 故选:B 【点睛】本题考查函数的单调性的判断及应用,零点存在性定理的应用,属于基础题.14.我国古代数学专著《九章算术》中的“堑堵”是指底面为直角三角形的直棱柱.如图,三棱柱111ABC A B C -为堑堵,其中AB AC ⊥,AB =1AC =,则直线BC 与11A B 所成角是( )A .60°B .30°C .120°D .150°【答案】B【解析】由三棱柱的定义可得11//AB A B ,则ABC ∠为异面直线11A B 与BC 所成的角,在ABC ∆中利用三角函数计算可得; 【详解】解:在三棱柱111ABC A B C -中,11//AB A B , 所以ABC ∠为异面直线11A B 与BC 所成的角, 在ABC ∆中,AB AC ⊥,3AB =1AC =, 所以3tan 33AC ABC AB ∠===, 所以30ABC ︒∠=,故异面直线11A B 与BC 所成的角为30︒, 故选:B 【点睛】本题考查异面直线所成的角,属于中档题.15.某人打靶时连续射击两次,事件“至少有一次中靶”的互斥事件是( ) A .至多有一次中靶 B .只有一次中靶 C .两次都中靶 D .两次都不中靶 【答案】D【解析】根据互斥事件的定义逐个分析即可. 【详解】“至少有一次中靶”与 “至多有一次中靶”均包含中靶一次的情况.故A 错误. “至少有一次中靶”与“只有一次中靶” 均包含中靶一次的情况.故B 错误.“至少有一次中靶”与“两次都中靶” 均包含中靶两次的情况.故C错误.根据互斥事件的定义可得,事件“至少有一次中靶”的互斥事件是“两次都不中靶”.故选:D【点睛】本题主要考查了互斥事件的辨析,属于基础题型.16.如图,在ABCV中,CD是AB边上的中线,点P是CD的中点,则()A.1142AP AB AC=+u u u r u u u r u u u rB.1124AP AB AC=+u u u r u u u r u u u rC.1132AP AB AC=+u u u r u u u r u u u rD.1123AP AB AC=+u u u r u u u r u u u r【答案】A【解析】根据平面向量的加法和数乘运算法则计算可得;【详解】解:依题意可得()12AP AC AD=+u u u r u u u r u u u r,12AD AB=u u u r u u u r所以()1111122224AP AC AD AC AB AC AB⎛⎫=+=+=+⎪⎝⎭u u u r u u u r u u u r u u u r u u u r u u u r u u u r故选:A【点睛】本题考查平面向量的线性运算的几何表示,属于基础题.17.不等式组20210x yx y+->⎧⎨--<⎩表示的平面区域是()A.B.C .D .【答案】B【解析】由线定界,由点定域,即可画出线性约束条件所表示的平面区域; 【详解】解: 首先在平面直角坐标系中画出直线20x y +-=,将()0,0代入20x y +->,不等式不成立,可得20x y +->所表示的平面区域在直线20x y +-=的右上方, 同理可得210x y --<所表示的平面区域在直线210x y --=的左上方,即可得到线性约束条件所表示的平面区域为:故选:B 【点睛】本题考查根据线性约束条件画出可行域,属于基础题.18.如图,树人中学欲利用原有的墙(墙足够长)为背面,建造一间长方体形状的房屋作为体育器材室.房屋地面面积为218m ,高度为3m .若房屋侧面和正面每平方米的造价均为1000元,屋顶的造价为6000元,且不计房屋背面和地面的费用,则该房屋的最低总造价为( )A .40000元B .42000元C .45000元D .48000元【答案】B【解析】设房屋的长为xm ,则宽为18m x ,则总造价1860001000323y x x ⎛⎫=+⨯+⨯⨯ ⎪⎝⎭再利用基本不等式求出最小值即可得解; 【详解】解:设房屋的长为xm ,则宽为18m x ,则总造价1860001000323y x x ⎛⎫=+⨯+⨯⨯ ⎪⎝⎭36366000300060003000242000y x x x x ⎛⎫∴=+⨯+≥+⨯⋅= ⎪⎝⎭,当且仅当36x x =,即6x =时取等号;故当长等于6m ,宽等于3m 时,房屋的最低总造价为42000元, 故选:B 【点睛】本题考查函数的应用,基本不等式的应用,属于基础题.二、填空题19.从甲、乙、丙三名学生中任选一名学生参加某项活动,则甲被选中的概率是_______. 【答案】13【解析】由题意可得总的方法种数为133C =,甲被选中只有1种选择方法,由古典概型的概率公式可得. 【详解】解:从甲、乙、丙三人中,任选一人参加某项活动共有133C =种不同的选择方法,而甲被选中,只有1种选择方法,由古典概型的概率公式可得甲被选中的概率13P =,故答案为:13. 【点睛】本题考查古典概型及其概率公式,涉及排列组合简单计数,属于基础题. 20.点M (2,-2)到直线210x y --=的距离为______.【解析】直接利用点到直线的距离公式d =计算可得;【详解】解:点()2,2M -到直线210x y --=的距离d==【点睛】本题考查点到直线的距离公式的应用,属于基础题. 21.2lg2lg25+=______. 【答案】2【解析】通过同底对数的运算法则,求得结果. 【详解】2lg2lg25lg4lg25lg1002+=+==本题正确结果:2 【点睛】本题考查对数的运算,属于基础题.22.如图,设Ox 、Oy 是平面内相交成60︒角的两条数轴,1e u v 、2e u u v分别是与x 轴、y 轴正方向同向的单位向量.若向量12OP xe ye =+u u u v u v u u v ,则把有序实数对,x y 叫做向量OPuuu v在斜坐标系xOy 中的坐标,记作,OP x y =u u u v .在此斜坐标系xOy 中,已知2,3a =v,5,2b =-v , ,a b v v夹角为θ,则θ=______.【答案】23π 【解析】由题意,1223a e e =+u r u u r r ,1252b e e =-+u r u u r r ,分别求出a b ⋅r r ,a r ,b r ,进而利用数量积求出夹角即可 【详解】由题,1223a e e =+u r u u r r,1252b e e =-+u r u u r r ,所以()()21221211221195210116101162223a b e e e e e e e e ⋅=⋅-+=--⋅+=--⨯+=+-u r u u r u r u u r u r u r u u r u u r rr()212112222214129412931922e e e e e e a ==+⋅+=++⨯+=u r u u r u r u r u u r u u r r ,则19a =r()22221211221522520425204192b e e e e e e =-+=-⋅+=-⨯+=u r u u r u r u r u u r u u r r ,则19b =r 所以1912cos 21919a b a bθ-⋅===-⨯⋅r r r r ,则23θπ= 故答案为:23π 【点睛】本题考查平面向量基本定理的应用,考查利用数量积求向量的夹角,考查运算能力三、解答题23.ABC V 中的内角A ,B ,C 所对的边分别为a ,b ,c .已知sin 30A A -=. (1)求角A ;(2)若4b =,2c =,求a . 【答案】(1)3π(2)23【解析】(1)由同角三角函数的基本关系求出角A ; (2)由余弦定理即可求出边a 的值; 【详解】解:(1)由sin 3cos 0A A -=,易知cos 0A ≠,则tan 3A =.因为0A π<<,所以3A π=.(2)由余弦定理得22212cos 164242122a b c bc A =+-=+-⨯⨯⨯=,所以23a =.【点睛】本题考查同角三角函数的基本关系及余弦定理的应用,属于基础题.24.如图,AB 是半圆O 的直径,C 是半圆上一点,M 是PB 的中点,PA ⊥平面ABC ,且23PA =,4AB =,30ABC ︒∠=.(1)求证:BC ⊥平面PAC ; (2)求三棱锥M —ABC 体积. 【答案】(1)证明见解析(2)2【解析】(1)依题意可得AC BC ⊥,再由PA ⊥平面ABC ,得到PA BC ⊥,即可证明BC ⊥平面PAC ;(2)连接OM ,可证//OM PA ,即可得到OM ⊥平面ABC ,OM 为三棱锥M ABC -的高,再根据锥体的体积公式计算可得; 【详解】(1)证明:因为AB 是半圆O 的直径,所以AC BC ⊥. 因为PA ⊥平面ABC ,BC ⊂平面ABC ,所以PA BC ⊥, 又因为AC ⊂平面PAC ,PA ⊂平面PAC ,且AC PA A ⋂= 所以BC ⊥平面PAC .(2)解:因为30ABC ∠=︒,4AB =,所以23BC =,1sin 30232ABC S AB BC ︒=⋅⋅⋅=V .连接OM .因为O 、M 分别是AB ,PB 的中点,所以//OM PA ,132OM PA ==.又PA ⊥平面ABC .所以OM ⊥平面ABC .因此OM 为三棱锥M ABC -的高.所以123323M ABC V -=⨯⨯=.【点睛】本题考查线面垂直的证明,锥体的体积的计算,属于中档题. 25.已知数列{}n a 是等差数列,n S 是其前n 项的和,且11a =,23211a a +=.(1)求数列{}n a 的通项公式; (2)求数列{}n a 的前n 项和n S ; (3)求证:123111174n S S S S +++⋯+<. 【答案】(1)21n a n =-(2)2n S n =(3)证明见解析【解析】(1)设等差数列{}n a 的公差为d ,由题意得方程组,解得1a ,d ,即可求出通项公式;(2)由等差数列的前n 项和公式直接可得;(3)利用()()22111111n n n n =--<+放缩,再利用裂项相消法求和即可得证; 【详解】解:(1)设等差数列{}n a 的公差为d ,由题意得()1111,2211.a a d a d =⎧⎨+++=⎩解得11a =,2d =.所以21n a n =-.(2)由(1)知21n a n =-,21(21)2n n S n n +-∴=⨯=. (3)①当1n =时,左边714=<,原不等式成立. ②当2n …时,左边22222111111234n =+++++L 2222111112131411n <++++⋯+----11111132435(1)(1)n n =++++⋯+⨯⨯⨯-⨯+111171171122142224n n n n ⎛⎫=+⨯+--=--< ⎪++⎝⎭. 综上可得,123111174n S S S S +++⋯+<. 【点睛】本题考查等差数列的通项公式及求和公式的应用,放缩法证明数列不等式及裂项相消法求和,属于中档题.。

2019年广东省普通高中学业水平考试数学模拟训练题一(数学学考模拟题)含答案

2019年广东省普通高中学业水平考试数学模拟训练题一(数学学考模拟题)含答案

取两条网线,则这两条网线通过的最大信息量之和为 5 的概率是
1
.
3
19.已知双曲线
x2 a2

y2 b2
1(a
0,b
0)
的一个焦点与抛物线
y2
12x
的焦点重合,且双曲线的离
心率等于 3 ,则该双曲线的标准方程为
x2 y2 1

36
6
三.解答题:本大题共 2 小题,每小题 12 分,满分 24 分,解答应写出文字说明,证明 过程或演算步骤。
A. 3
B.0
C. 3
D.3
2
2
12.直线 MN 的斜率为 2 ,其中点 N 1, 1 ,点 M 在直线 y x 1上,则 B
A. M 5,7
B. M 4,5
C. M 2,1
D. M 2,3
13.等差数列an 的前 n 项和为 Sn ,已知 a5 8 , S3 6 ,则 S10 S7 的值是 B
交点,M 是 PD 的中点,AB=2,∠BAD=60o。 (1)求证:OM∥平面 PAB; (2)平面 PBD⊥平面 PAC;
(3)当四棱锥 P-ABCD 的体积等于 3 时,求 PB 的长。
4
参考答案
1.设集合 M 1,0 ,1 , N 为自然数集,则 M N C
A.1 , 0
PA 平面 ABCD , AB 平面 ABCD ,
3 ,得 PA 3 …………12 分 2
PA AB .
…………13 分
在 RtPAB 中, PB PA 2 AB 2 3 2 22 5 .
2
2
…………14 分
8

2019年山东省普通高中学业水平合格考试数学试卷(附详解)

2019年山东省普通高中学业水平合格考试数学试卷(附详解)

2019年山东省普通高中学业水平合格考试数学试卷一、单选题(本大题共20小题,共60.0分) 1. 设集合A ={1,3,5},B ={2,3},则A ∪B =( )A. {3}B. {1,5}C. {1,2,5}D. {1,2,3,5}2. 函数f(x)=cos(12x +π6)的最小正周期为( )A. π2B. πC. 2πD. 4π3. 函数f(x)=√x −1+ln(4−x)的定义域是( )A. [1,4)B. (1,4]C. (1,+∞)D. (4,+∞)4. 下列函数中,既是偶函数又在(0,+∞)上是减函数的是( )A. y =−x 3B. y =1xC. y =|x|D. y =1x 25. 已知直线l 过点P(2,−1),且与直线2x +y −1=0互相垂直,则直线l 的方程为( )A. x −2y =0B. x −2y −4=0C. 2x +y −3=0D. 2x −y −5=06. 已知函数f(x)={2x ,x ≤0x 32,x >0,则f(−1)+f(1)=( )A. 0B. 1C. 32D. 27. 已知向量a ⃗ 与b ⃗ 的夹角为π3,且|a ⃗ |=3,|b ⃗ |=4,则a ⃗ ⋅b ⃗ =( )A. 6√3B. 6√2C. 4√3D. 68. 某工厂抽取100件产品测其重量(单位:kg).其中每件产品的重量范围是[40,42].数据的分组依据依次为[40,40.5),[40.5,41),[41,41.5),[41.5,42),据此绘制出如图所示的频率分布直方图,则重量在[40,41)内的产品件数为( )A. 30B. 40C. 60D. 809. sin 110° cos40°−cos70°⋅sin40°=( )A. 12B. √32C. −12D. −√3210. 在平行四边形ABCD 中,AB ⃗⃗⃗⃗⃗ +BD ⃗⃗⃗⃗⃗⃗ −AC⃗⃗⃗⃗⃗ =( ) A. DC⃗⃗⃗⃗⃗ B. BA⃗⃗⃗⃗⃗ C. BC⃗⃗⃗⃗⃗ D. BD⃗⃗⃗⃗⃗⃗ 11. 某产品的销售额y(单位:万元)与月份x 的统计数据如表.用最小二乘法求出y 关于x的线性回归方程为y ̂=7x +a ̂,则实数a ̂=( ) x 3 4 5 6 y25304045A. 3B. 3.5C. 4D. 10.512. 下列结论正确的是( )A. 若a <b ,则a 3<b 3B. 若a >b ,则2a <2bC. 若a <b ,则a 2<b 2D. 若a >b ,则lna >lnb13. 圆心为M(1,3),且与直线3x −4y −6=0相切的圆的方程是( )A. (x −1)2+(y −3)2=9B. (x −1)2+(y −3)2=3C. (x +1)2+(y +3)2=9D. (x +1)2+(y +3)2=314. 已知袋中有大小、形状完全相同的5张红色、2张蓝色卡片,从中任取3张卡片,则下列判断不正确的是( )A. 事件“都是红色卡片”是随机事件B. 事件“都是蓝色卡片”是不可能事件C. 事件“至少有一张蓝色卡片”是必然事件D. 事件“有1张红色卡片和2张蓝色卡片”是随机事件15. 若直线(a −1)x −2y +1=0与直线x −ay +1=0垂直,则实数a =( )A. −1或2B. −1C. 13D. 316. 将函数y =sinx 的图象上所有的点的横坐标缩短到原来的13(纵坐标不变),再将得到的图象向右平移π12个单位,得到的图象对应的函数解析式为( )A. y =sin(3x −π4) B. y =sin(3x −π12) C. y =sin(13x −π4)D. y =sin(13x −π12)17. 3名同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率为( )A. 14B. 23C. 12D. 3418. 如图,在正方体ABCD −A 1B 1C 1D 1中,下列判断正确的是( )A. A 1D ⊥C 1CB. BD 1⊥ADC. A 1D ⊥ACD. BD 1 ⊥AC19. 已知向量a ⃗ ,b ⃗ 不共线,若AB ⃗⃗⃗⃗⃗ =a ⃗ +2b ⃗ ,BC ⃗⃗⃗⃗⃗ =−3a ⃗ +7b ⃗ ,CD ⃗⃗⃗⃗⃗ =4a ⃗ −5b ⃗ ,则( )A. A ,B ,C 三点共线B. A ,B ,D 三点共线C. A ,C ,D 三点共线D. B ,C ,D 三点共线20. 在三棱锥P −ABC 中,PA ,PB ,PC 两两垂直,且PA =1,PB =PC =2,则该三棱锥的外接球体的体积为( )A. 9π2B.27π2C. 9πD. 36π二、单空题(本大题共5小题,共15.0分)21. 某校田径队共有男运动员45人,女运动员36人.若采用分层抽样的方法在全体运动员中抽取18人进行体质测试,则抽到的女运动员人数为______. 22. α为第二象限角sinα=35,则tanα= ______ .23. 已知圆锥底面半径为1,高为√3,则该圆锥的侧面积为______.24. 已知函数f(x)=x 2+x +a 在区间(0,1)内有零点,则实数a 的取值范围为______. 25. 若P 是圆C 1:(x −4)2+(y −5)2=9上一动点,Q 是圆C 2:(x +2)2+(y +3)2=4上一动点,则|PQ|的最小值是______.三、解答题(本大题共3小题,共25.0分)26. 如图,在四棱锥P −ABCD 中,四边形ABCD 是平行四边形,E 、F 分别是AB 、PC 中点,求证:EF//面PAD .27.在△ABC中,a,b,c分别是角A,B,C的对边,且a=6,cosB=1.3(1)若sinA=3,求b的值;5(2)若c=2,求b的值及△ABC的面积S.28.已知函数f(x)=ax+log3(9x+1)(a∈R)为偶函数.(1)求a的值;(2)当x∈[0,+∞)时,不等式f(x)−b≥0恒成立,求实数b的取值范围.答案和解析1.【答案】D【解析】解:∵A={1,3,5},B={2,3},∴A∪B={1,2,3,5}.故选:D.进行并集的运算即可.本题考查了列举法的定义,并集的定义及运算,考查了计算能力,属于基础题.2.【答案】D【解析】解:由三角函数的周期公式得T=2π12=4π,故选:D.根据三角函数的周期公式直接进行计算即可.本题主要考查三角函数周期的计算,结合周期公式是解决本题的关键,比较基础.3.【答案】A【解析】解:∵函数f(x)=√x−1+ln(4−x),∴{x−1≥04−x>0,解得1≤x<4;∴函数f(x)的定义域是[1,4).故选A.根据函数f(x)的解析式,列出使解析式有意义的不等式组,求出解集即可.本题考查求定义域,是基础题.4.【答案】D【解析】解:由幂函数的性质可知,y=−x3,y=1x为奇函数,不符合题意,y=|x|为偶函数且在(0,+∞)上单调递增,不符号题意,y =1x 2为偶函数且在(0,+∞)上单调递减,符合题意. 故选:D .结合基本初等函数的单调性及奇偶性对选项分别进行判断即可. 本题主要考查了基本初等函数的奇偶性及单调性的判断,属于基础试题.5.【答案】B【解析】 【分析】本题考查了直线的一般式方程,是基础题.根据题意设出直线l 的方程,把点P(2,−1)代入方程求出直线l 的方程. 【解答】解:根据直线l 与直线2x +y −1=0互相垂直,设直线l 为x −2y +m =0, 又l 过点P(2,−1), ∴2−2×(−1)+m =0, 解得m =−4,∴直线l 的方程为x −2y −4=0. 故选:B .6.【答案】C【解析】解:∵函数f(x)={2x ,x ≤0x 32,x >0,∴f(−1)=2−1=12,f(1)=132=1,∴f(−1)+f(1)=12+1=32. 故选:C .推导出f(−1)=2−1=12,f(1)=132=1,由此能求出f(−1)+f(1)的值.本题考查函数值的求法,考查函数性质等基础知识,考查运算求解能力,是基础题.7.【答案】D【解析】解:∵向量a⃗与b⃗ 的夹角为π3,且|a⃗|=3,|b⃗ |=4,∴a⃗⋅b⃗ =|a⃗||b⃗ |cosπ3=3×4×12=6.故选:D.进行数量积的运算即可.本题考查了向量数量积的计算公式,考查了计算能力,属于基础题.8.【答案】B【解析】解:由频率分布直方图得:重量在[40,41)内的频率为:(0.1+0.7)×0.5=0.4.∴重量在[40,41)内的产品件数为0.4×100=40.故选:B.由频率分布直方图得重量在[40,41)内的频率为0.4.由此能求出重量在[40,41)内的产品件数.本题考查产品件数的求法,考查频率分布直方图的性质等基础知识,考查运算求解能力,是基础题.9.【答案】A【解析】解:sin110°cos40°−cos70°⋅sin40°=sin70°cos40°−cos70°⋅sin40°=sin(70°−40°)=sin30°=12.故选:A.利用诱导公式以及两角和的正弦函数化简求解即可.本题考查两角和与差的三角函数,特殊角的三角函数求值,考查计算能力.10.【答案】B【解析】解:在平行四边形ABCD 中, AB ⃗⃗⃗⃗⃗ +BD ⃗⃗⃗⃗⃗⃗ −AC ⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ +BD ⃗⃗⃗⃗⃗⃗ +CA ⃗⃗⃗⃗⃗ =CD ⃗⃗⃗⃗⃗ =BA ⃗⃗⃗⃗⃗ . 故选:B .利用平面向量加法法则直接求解.本题考查向量的求法,考查平面向量加法法则等基础知识,考查运算求解能力,是基础题.11.【答案】B【解析】解:x −=3+4+5+64=4.5,y −=25+30+40+454=35,∴样本点的中心坐标为(4.5,35),代入y ̂=7x +a ̂,得35=7×4.5+a ̂,即a ̂=3.5. 故选:B .由已知求得样本点的中心坐标,代入线性回归方程即可求得实数a ^.本题考查线性回归方程,明确线性回归方程恒过样本点的中心是关键,是基础题.12.【答案】A【解析】解:A.a <b ,可得a 3<b 3,正确; B .a >b ,可得2a >2b ,因此B 不正确;C .a <b ,a 2与b 2大小关系不确定,因此不正确;D .由a >b ,无法得出lna >lnb ,因此不正确. 故选:A .利用函数的单调性、不等式的性质即可判断出正误.本题考查了函数的单调性、不等式的性质,考查了推理能力与计算能力,属于基础题.13.【答案】A【解析】解:由题意可知,圆的半径r =|3−12−6|5=3,故所求的圆的方程为(x −1)2+(y −3)2=9. 故选:A .由题意可知,圆的半径即为圆心M 到直线的距离,根据点到直线的距离公式即可求解. 本题主要考查了圆的方程的求解,解题的关键是直线与圆相切性质的应用.14.【答案】C【解析】解:袋中有大小、形状完全相同的5张红色、2张蓝色卡片,从中任取3张卡片, 在A 中,事件“都是红色卡片”是随机事件,故A 正确; 在B 中,事件“都是蓝色卡片”是不可能事件,故B 正确; 在C 中,事件“至少有一张蓝色卡片”是随机事件,故C 错误;在D 中,事件“有1张红色卡片和2张蓝色卡片”是随机事件,故D 正确. 故选:C .利用随机事件的定义直接求解.本题考查命题真假的判断,考查随机事件等基础知识,考查运算求解能力,是基础题.15.【答案】C【解析】解:根据题意,若直线(a −1)x −2y +1=0与直线x −ay +1=0垂直, 必有(a −1)+2a =0,解可得a =13; 故选:C .根据题意,分析可得(a −1)+2a =0,解可得a 的值,即可得答案.本题考查直线平行的判断方法,注意直线的一般式方程的形式,属于基础题.16.【答案】A【解析】解:将函数y =sinx 的图象上所有的点的横坐标缩短到原来的13(纵坐标不变),可得y =sin3x 的图象;再将得到的图象向右平移π12个单位,得到的图象对应的函数解析式为y =sin3(x −π12)=sin(3x −π4), 故选:A .由题意利用函数y =Asin(ωx +φ)的图象变换规律,得出结论.本题主要考查函数y=Asin(ωx+φ)的图象变换规律,属于基础题.17.【答案】D【解析】【分析】本题考查古典概型,是一个古典概型与排列组合结合的问题,解题时先要判断该概率模型是不是古典概型,再要找出随机事件A包含的基本事件的个数和试验中基本事件的总数.求得3位同学各自在周六、周日两天中任选一天参加公益活动、周六、周日都有同学参加公益活动的情况,利用古典概型概率公式求解即可.【解答】解:3位同学各自在周六、周日两天中任选一天参加公益活动,共有23=8种情况,周六、周日都有同学参加公益活动,共有23−2=8−2=6种情况,∴所求概率为68=34.故选D.18.【答案】D【解析】解:因为AC⊥BD,AC⊥DD1;BD∩DD1=D;BD⊆平面DD1B1B,DD1⊆平面DD1B1B,∴AC⊥平面DD1B1B;BD1⊆平面DD1B1B;∴AC⊥BD1;即D对.故选:D.直接可以看出A,B,C均不成立,用线线垂直来推线面垂直进而得到线线垂直.本题主要考查平面中的线线垂直的证明,属于对基础知识的考查.19.【答案】B【解析】解:向量a ⃗ ,b ⃗ 不共线,AB ⃗⃗⃗⃗⃗ =a ⃗ +2b ⃗ ,BC ⃗⃗⃗⃗⃗ =−3a ⃗ +7b ⃗ ,CD ⃗⃗⃗⃗⃗ =4a ⃗ −5b⃗ , ∴BD ⃗⃗⃗⃗⃗⃗ =BC ⃗⃗⃗⃗⃗ +CD ⃗⃗⃗⃗⃗ =(−3a ⃗ +7b ⃗ )+(4a ⃗ −5b ⃗ )=a ⃗ +2b ⃗ =AB ⃗⃗⃗⃗⃗ , ∴BD ⃗⃗⃗⃗⃗⃗ //AB ⃗⃗⃗⃗⃗ ,∴A ,B ,D 三点共线. 故选:B .BD ⃗⃗⃗⃗⃗⃗ =BC ⃗⃗⃗⃗⃗ +CD ⃗⃗⃗⃗⃗ =(−3a ⃗ +7b ⃗ )+(4a ⃗ −5b ⃗ )=a ⃗ +2b ⃗ =AB ⃗⃗⃗⃗⃗ ,从而BD ⃗⃗⃗⃗⃗⃗ //AB ⃗⃗⃗⃗⃗ ,进而A ,B ,D 三点共线.本题考查命题真假的判断,考查向量加法法则、向量共线等基础知识,考查运算求解能力,是基础题.20.【答案】A【解析】解:由三棱锥中PA ,PB ,PC 两两垂直,且PA =1,PB =2,PC =2将此三棱锥放在长方体中,由题意知长方体的长宽高分别是:1,2,2.设外接球的半径为R ,则2R =√12+22+22=3所以R =32, 所以外接球的体积V =43πR 3=92π, 故选:A .由题意将此三棱锥放在长方体中,可得长方体的长宽高,再由长方体的对角线等于外接球的直径求出外接球的体积.考查三棱锥的棱长与外接球的半径之间的关系及球的体积公式,属于基础题.21.【答案】8【解析】解:∵某校田径队共有男运动员45人,女运动员36人, ∴这支田径队共有45+36=81人,用分层抽样的方法从该队的全体运动员中抽取一个容量为18的样本, ∴每个个体被抽到的概率是1881=29, ∵女运动员36人,∴女运动员要抽取36×29=8人, 故答案为:8.根据田径队的男女运动员数目和用分层抽样要抽取的数目,得到每个个体被抽到的概率值,利用每个个体被抽到的概率乘以女运动员的数目,得到女运动员要抽取得人数. 本题考查分层抽样,本题解题的关键是在抽样过程中每个个体被抽到的概率相等,本题是一个基础题.22.【答案】−34【解析】解:∵α为第二象限角sinα=35, ∴cosα=−45,则tanα=sinαcosα=−34, 故答案为:−34.由条件利用同角三角函数的基本关系求得cosα的值,从而求得tanα的值. 本题主要考查同角三角函数的基本关系的应用,属于基础题.23.【答案】2π【解析】解:由已知可得r =1,ℎ=√3,则圆锥的母线长l =√12+(√3)2=2. ∴圆锥的侧面积S =πrl =2π. 故答案为:2π.由已知求得母线长,代入圆锥侧面积公式求解.本题考查圆锥侧面积的求法,关键是对公式的记忆,是基础题.24.【答案】(−2,0)【解析】解:函数f(x)=x2+x+a在区间(0,1)内有零点,f(0)=a,f(1)=2+a,由零点存在性定理得f(0)⋅f(1)=a(a+2)<0,得−2<a<0,经验证a=−2,a=0均不成立,故答案为:(−2,0)由零点存在性定理得f(0)⋅f(1)=a(a+2)<0,求出即可.考查函数零点存在性定理的应用,中档题.25.【答案】5【解析】解:圆C1:(x−4)2+(y−5)2=9的圆心C1(4,5),半径r=3,圆C2:(x+2)2+(y+3)2=4的圆心C2(−2,−3),半径r=2,d=|C1C2|=√(4+2)2+(5+3)2=10>2+3=r+R,所以两圆的位置关系是外离,又P在圆C1上,Q在圆C2上,则|PQ|的最小值为d−(r+R)=10−(2+3)=5,故答案为:5.分别找出两圆的圆心坐标,以及半径r和R,利用两点间的距离公式求出圆心间的距离d,根据大于两半径之和,得到两圆的位置是外离,又P在圆C1上,Q在圆C2上,则|PQ|的最小值为d−(r+R),即可求出答案.本题考查圆与圆的位置关系,属于中档题.26.【答案】证明:取PD的中点G,连接FG、AG.因为PF=CF,PG=DG,CD.所以FG//CD,且FG=12又因为四边形ABCD是平行四边形,且E是AB的中点.CD.所以AE//CD,且AE=12所以FG//AE,且FG=AE,所以四边形EFGA是平行四边形,所以EF//AG.又因为EF⊄平面PAD,AG⊂平面PAD,所以EF//平面PAD .【解析】本题考查直线与平面平行的证明,是基础题.取PD 的中点G ,连接FG 、AG ,由PF =CF ,PG =DG ,所以FG//CD ,且FG =12CD.又因为四边形ABCD 是平行四边形,且E 是AB 的中点.所以AE//CD ,且AE =12CD.证得四边形EFGA 是平行四边形,所以EF//AG ,由线面平行的判定定理即可得证.27.【答案】解:(1)由cosB =13可得sinB =2√23, 由正弦定理可得,a sinA =bsinB , 所以b =asinB sinA=6×2√2335=20√23,(2)由余弦定理可得,cosB =13=a 2+c 2−b 22ac=36+4−b 22×2×6,解可得,b =4√2, S =12acsinB =12×6×2×2√23=4√2.【解析】(1)先根据同角平方关系求出sinB ,然后结合正弦定理即可求解, (2)结合余弦定理及三角形的面积公式即可求解.本题主要考查了正弦定理,余弦定理及三角形的面积公式在求解三角形中的应用,属于基础试题.28.【答案】解:(1)根据题意可知f(x)=f(−x),即ax +log 3(9x+1)=−ax +log 3(9−x+1),整理得log 39x +19−x +1=−2ax ,即−2ax =log 39x =2x ,解得a =−1;(2)由(1)可得f(x)=−x +log 3(9x +1)=log 3(3x +13x ),令ℎ(x)=3x +13x ,x ∈[0,+∞),任取x 1、x 2∈[0,+∞),且x 2>x 1, 则ℎ(x 2)−ℎ(x 1)=3x 2+13x 2−(3x 1+13x 1)=(3x 2−3x 1)⋅3x 1+x 2−13x 1+x 2因为x 2>x 1≥0,所以3x 2−3x 1≥0,3x 1+x 2>1,则3x 1+x 2−1>0, 所以ℎ(x)在[0,+∞)上单调递增,故f(x)在[0,+∞)上单调递增, 因为f(x)−b ≥0对x ∈[0,+∞)恒成立,即−x+log3(9x+1)≥b对x∈[0,+∞)恒成立,因为函数g(x)=−x+log3(9x+1)在[0,+∞)上是增函数,所以g(x)min=g(0)=log32,则b≤log32.【解析】(1)根据偶函数性质f(x)=f(−x),化简整理可求得a的取值;(2)根据条件可知x+log3(9x+1)≥b对x∈[0,+∞)恒成立,求出函数g(x)=x+ log3(9x+1)在[0,+∞)上的最小值即可本题考查利用函数奇偶性求参数值,利用函数增减性求参数取值范围,属于中档题.。

2019年安徽省普通高中学业水平考试数学试卷(含答案)

2019年安徽省普通高中学业水平考试数学试卷(含答案)

2019年安徽省普通高中学业水平考试数学本试卷分为第Ⅰ卷和第Ⅱ卷两部分,第I卷为选择题,共2页;第Ⅱ卷为非选择题,共4页全卷共25题,满分100分.考试时间为90分钟。

第Ⅰ卷(选择题共54分)注意事项:1.答题前,请先将自己的姓名、座位号用钢笔或黑色水笔填写在答题卡上,并用2B铅笔在答题卡规定的位置上将自己的座位号、考试科目涂黑考试结束时,将试卷和答题卡一并交回。

2.选出每小题的答案后,用2B铅笔把答题卡上对应的答案标号涂黑如需改动,要用橡皮擦干净后,再选涂其他答案.请注意保持答题卡整洁,不能折叠答案写在试卷上无效。

一、选择题(本大题共18小题,每小题3分,满分54分每小题4个选项中,只有1个选项符合题目要求,多选不给分.)1.已知集合A={1,3,5},B={0,1,2},则A∩B=A.∅B.{1} C.{0,1} D.{1,2,3}2.下列函数中为偶函数的是y B.y=x-1C.y=x2D.y=x3 A.x3.立德中学男子篮球队近5场比赛得分情况如茎叶图所示,则这5场比赛的平均得分是A.42 Array B.44C.46D.484.不等式(x+1)(x-3)<0的解集为A.{x|-1<x<3} B.{x|x-3<x<1}C.{x|x<-1,或x>3} D.{x|x<-3,或x>1}5.函数f(x)=a x+1(a>0,且a≠1)的图象经过定点A.(0,1) B.(0,-1) C.(0,2) D.(1,1)6.一支田径队有男运动员56人,女运动员42人.用分层抽样的方法从全体运动员中抽出一个容量为28的样本,则应抽取男运动员的人数为A .12B .14C .16D .187.如图,分别以正方形ABCD 的两条边AB 和CD 为直径,向此正方形内作两个半圆(阴影部分).在正方形内随机取一点,则此点取自阴影部分 的概率是A .12πB .8πC .6πD .4π8.在平面直角坐标系中,已知角α的终边经过点(3,4),则cosα=A .34 B .43 C .54 D .53 9.已知直线l :3x -y +1=0,则直线l 的倾斜角为A .6π B .65π C .3π D .32π 10.已知a =(2,m -2),b =(4,m),且a //b ,则m=A .4B .-4C .6D .-611.65sinπ A .21 B .-21 C .23 D .-23 12.已知点A(4,9),B(6,3),则以线段AB 为直径的圆的标准方程是A .(x +5)2+(y +6)2=40B .(x -5)2+(y -6)2=40C .(x +5)2+(y +6)2=10D .(x -5)2+(y -6)2=1013.函数f(x)=1nx +x -3的零点的个数是A .0B .1C .2D .314.我国古代数学专著《九章算术》中的“堑堵”是指底面为直角三角形的直棱柱.如图,三棱柱ABC -A 1B 1C 1为堑堵,其中AB ⊥AC ,AB=3,AC=1,则直线BC 与A 1B 1所成角是A .60°B .30°C .120°D .150°AA 1BB 1CC 1。

2019年江苏省高考数学模拟试卷(1)(含附加,详细答案)

2019年江苏省高考数学模拟试卷(1)(含附加,详细答案)

2019年江苏省高考数学模拟试卷(1)(含附加,详细答案)文章中没有明显的格式错误和有问题的段落,因此直接改写每段话。

2019年高考模拟试卷(1)第Ⅰ卷(必做题,共160分)一、填空题:本大题共14小题,每小题5分,共70分。

1.已知集合A为{x-1<x<1},集合B为{-1≤x≤2},则AB 的并集为[ -1.2 )。

2.复数z=2i/(1-i)的实部是2/5.3.甲、乙两人下棋,结果是一人获胜或下成和棋。

已知甲不输的概率为0.8,乙不输的概率为0.7,则两人下成和棋的概率为0.06.4.某地区连续5天的最低气温(单位:°C)依次为8,-4,-1,0,2,则该组数据的方差为23.2.5.根据XXX所示的伪代码,当输出y的值为2时,则输入的x的值为e。

6.在平面直角坐标系xOy中,圆x^2+y^2-4x+4y+4=0被直线x-y-5=0所截得的弦长为4.7.如图,三个相同的正方形相接,则XXX∠XXX的值为1.8.如图,四棱锥P-ABCD的底面ABCD是矩形,PA⊥底面ABCD,E为PD上一点,且PE=2ED。

设三棱锥P-ACE的体积为V1,三棱锥P-ABC的体积为V2,则.9.已知F是抛物线C:y=8x的焦点,M是C上一点,FM的延长线交y轴于点N。

若M是FN的中点,则FN的长度为16.10.若函数f(x)为定义在R上的奇函数,当x>0时,f(x)=xlnx,则不等式f(x)<-e的解集为(1/e。

e)。

11.钢材市场上通常将相同的圆钢捆扎为正六边形垛(如图)。

现将99根相同的圆钢捆扎为1个尽可能大的正六边形垛,则剩余的圆钢根数为3.12.如图,在△ABC中,点M为边BC的中点,且AM=2,点N为线段AM的中点,若AB×AC=28,则NB×NC的值为21.13.已知正数x,y满足x+y+1/x+1/y=10,则x+y的最小值是4.14.设等比数列{an}满足:a1=2,an=cos(πn/2)+3sin(πn/2),其中n∈N,且nπ/2∈(0.π/2)。

2019年1月广东省普通高中学业水平测试数学模拟测试卷6套及答案详细解析

2019年1月广东省普通高中学业水平测试数学模拟测试卷6套及答案详细解析

2019年1月广东省普通高中学业水平测试数学模拟测试卷(一)(时间:90分钟满分:100分)一、选择题(共15小题,每小题4分,共60分)1.已知集合M={1,2,4,8},N={2,4,6,8},则M∩N=()A.{2,4}B.{2,4,8}C.{1,6}D.{1,2,4,6,8}2.复数z=i·(1+i)(i为虚数单位)在复平面上对应的点位于 ()A.第一象限B.第二象限C.第三象限D.第四象限3.下列函数中,与函数y=定义域相同的函数为()A.y=B.y=C.y=x-2D.y=ln x4.已知直线经过点A(0,4)和点B(1,2),则直线AB的斜率为()A.3B.-2C.2D.不存在5.设S n是等差数列{a n}的前n项和,已知a5=9,S2=4,则a2=()A.1B.2C.3D.56.函数f(x)=-x+2的零点所在的一个区间是()A.(-1,0)B.(0,1)C.(1,2)D.(2,3)7.如图所示,一个空间几何体的正视图和侧视图都是边长为2的等边三角形,俯视图是一个圆,那么这个几何体的体积为()A.πB.πC.πD.π8.已知向量a、b,|a|=2,b=(3,4),a与b夹角等于30°,则a·b等于()A.5B.C.5D.59.为了得到函数y=cos x的图象,只需要把y=cos x图象上所有的点的()A.横坐标伸长到原来的3倍,纵坐标不变B.横坐标缩小到原来的,纵坐标不变C.纵坐标伸长到原来的3倍,横坐标不变D.纵坐标缩小到原来的,横坐标不变10.在[-3,3]中取一实数赋值给a,使得关于x的方程4x2-4ax+2-a=0有两个实根的概率为()A.B.C.D.11.计算sin 240°的值为()A.-B.-C.D.12.在△ABC中,∠A、∠B、∠C所对的边长分别是2、3、4,则cos∠B的值为()A. B.C. D.-13.设x,y满足约束条件则z=x-y的最大值为()A.3B.1C.-1D.-514.函数f(x)=-cos2的单调增区间是()A.,k∈ZB.,k∈ZC.,k∈ZD.,k∈Z15.圆:x2+y2-2x-2y+1=0上的点到直线x-y=2的距离的最小值是()A.2B.1+C.-1D.1+2二、填空题(共4小题,每小题4分,共16分)16.不等式x2-3x+2<0的解集是.17.如图是某中学高二年级举办的演讲比赛上,七位评委为某选手打出的分数的茎叶统计图,去掉一个最高分和一个最低分后,所剩数据的中位数为.18.计算log 28+log 2的值是.19.若双曲线=1(b>0)的渐近线方程为y=±x,则b等于.三、解答题(共2小题,每小题12分,共24分)20.在△ABC中,角A,B,C的对边分别是a,b,c,且a=10,b=8,A=60°.(1)求sin B的值;(2)求cos C的值.21.如图所示,四棱锥P-ABCD中,底面ABCD为矩形,PA⊥平面ABCD,PA=AB,点E为PB的中点.(1)求证:PD∥平面ACE;(2)求证:平面ACE⊥平面PBC.2019年1月广东省普通高中学业水平测试数学模拟测试卷(一)答案解析1.B【解析】由M={1,2,4,8},N={2,4,6,8},得M∩N={1,2,4,8}∩{2,4,6,8}={2,4,8}.2.B【解析】∵z=i·(1+i)=-1+i,∴选B.3.D【解析】函数y=的定义域是(0,+∞),A中函数的定义域是{x|x≠0},B中函数的定义域是{x|x≥0},C中函数的定义域是{x|x≠0},D中函数的定义域是(0,+∞).4.B【解析】由直线的斜率公式得直线AB的斜率为k==-2.5.C【解析】设等差数列{a n}的公差为d,则a5=a1+4d=9,S2=2a1+d=4,解得a1=1,d=2,∴a2=a1+d=3.6.D【解析】f(2)·f(3)==<0.7.B【解析】该几何体是底面直径和母线都为2的圆锥,其高为×2=,体积为·π·π.故选B.8.D【解析】b=(3,4)⇒|b|=5,a·b=|a|·|b|·cos<a,b>=2×5×=5.故选D.9.A【解析】观察周期2π6π,所以横坐标伸长到原来的3倍,又值域没变,所以纵坐标不变.故选A.10.D【解析】在[-3,3]中取一实数赋值给a,则-3≤a≤3,若方程4x2-4ax+2-a=0有两个实根,则判别式Δ=16a2-16(2-a)≥0,即a2+a-2≥0,解得x≥1或x≤-2,故满足条件的概率P=.故选D.11.A【解析】sin 240°=sin (180°+60°)=-sin 60°=-.故选A.12.B【解析】由余弦定理得:cos∠B=.故选B.13.B【解析】作出可行域如图所示,y=x-z,作l0:y=x,当l0移至l1,l2两直线交点H时截距-z最小,即z最大,H(-1,-2),z max=-1+2=1.故选B.14.C【解析】f(x)=-cos2==-sin 2x,即求sin 2x的单调递减区间:2kπ+≤2x≤2kπ+,k∈Z,kπ+≤x≤kπ+,k∈Z.故选C.15.C【解析】把圆的方程化为标准方程得:(x-1)2+(y-1)2=1,∴圆心坐标为(1,1),半径r=1,∴圆心到直线x-y=2的距离d=,则圆上的点到已知直线距离的最小值为d-r=-1.故选C.16.(1,2)【解析】∵x2-3x+2<0,∴(x-2)(x-1)<0,∴{x|1<x<2}.17.85【解析】去掉一个最高分93分和一个最低分79分后,余下的五个分数依次是:84,84,85,86,87,中位数是85.18.2【解析】log 28+log 2=log 2=log 24=log 222=2log 22=2×1=2.19.1【解析】由题意知,解得b=1.20.【解】(1)由正弦定理得,,∵a=10,b=8,A=60°,∴sin B=.(2)由(1)得,sin B=,且a>b,∴cos B=.又∵A=60°,∴sin A=,cos A=,∴cos C=-cos(A+B)=sin A sin B-cos A cos B==.21.【证明】(1)连接BD交AC于O,连接EO, ∵四边形ABCD为矩形,∴O为BD中点.∵E为PB的中点,∴EO∥PD.又EO⊂平面ACE,PD⊄平面ACE,∴PD∥平面ACE.(2)∵PA⊥平面ABCD,BC⊂底面ABCD,∴PA⊥BC.∵底面ABCD为矩形,∴BC⊥AB.∵PA∩AB=A,∴BC⊥平面PAB,∵AE⊂平面PAB,∴BC⊥AE.∵PA=AB,E为PB中点,∴AE⊥PB.∵BC∩PB=B,∴AE⊥平面PBC,而AE⊂平面ACE,∴平面ACE⊥平面PBC.2019年1月广东省普通高中学业水平测试数学模拟测试卷(二)(时间:90分钟满分:100分)一、选择题(共15小题,每小题4分,共60分)1.已知集合M={-1,0,1},N={x|x2=x},则M∩N=()A.{1}B.{0,1}C.{-1,0}D.{-1,0,1}2.已知等比数列{a n}的公比为2,则值为()A. B. C.2 D.43.命题“存在x0∈R,-1=0”的否定是()A.不存在x0∈R,-1=0B.存在x0∈R,-1≠0C.存在x0∈R,-1=0D.对任意的x0∈R,-1≠04.直线l过点(1,-2),且与直线2x+3y-1=0垂直,则l的方程是()A.2x+3y+4=0B.2x+3y-8=0C.3x-2y-7=0D.3x-2y-1=05.已知a、b是两条异面直线,c∥a,那么c与b的位置关系()A.一定是异面B.一定是相交C.不可能平行D.不可能垂直6.在平行四边形ABCD中,等于()A.B.C.D.||7.圆(x-1)2+y2=1与直线y=x的位置关系是 ()A.相交B.相切C.相离D.直线过圆心8.若AD为△ABC的中线,现有质地均匀的粒子散落在△ABC内,则粒子落在△ABD内的概率等于()A. B. C. D.9.一个简单几何体的正视图,侧视图如图所示,则其俯视图不可能为①长方形;②直角三角形;③圆;④椭圆.其中正确的是()A.①B.②C.③D.④10.从一箱产品中随机地抽取一件,设事件A={抽到一等品},事件B={抽到二等品},事件C={抽到三等品},且已知P(A)=0.65,P(B)=0.2,P(C)=0.1.则事件“抽到的不是一等品”的概率为()A.0.7B.0.65C.0.35D.0.311.函数f(x)=x3-2的零点所在的区间是()A.(-2,0)B.(0,1)C.(1,2)D.(2,3)12.已知实数x、y满足则z=x+y的最小值等于()A.0B.1C.4D.513.将函数y=cos x的图象向左平移个单位长度,得到函数y=f(x)的图象,则下列说法正确的是()A.y=f(x)的最小正周期为πB.y=f(x)是偶函数C.y=f(x)的图象关于点对称D.y=f(x)在区间上是减函数14.cos cos-sin sin=()A.1B.0C.-1D.15.已知函数f(x)是奇函数,且在区间[1,2]单调递减,则f(x)在区间[-2,-1]上是()A.单调递减函数,且有最小值-f(2)B.单调递减函数,且有最大值-f(2)C.单调递增函数,且有最小值f(2)D.单调递增函数,且有最大值f(2)二、填空题(共4小题,每小题4分,共16分)16.若A(1,-2,1),B(2,2,2),点P在z轴上,且|PA|=|PB|,则点P的坐标为.17.若函数f(x)=log a(x+m)+1(a>0且a≠1)恒过定点(2,n),则m+n的值为.18.已知角θ的顶点与原点重合,始边与x轴的正半轴重合,终边为射线l:y=-x(x≤0),则cos θ的值是.19.已知椭圆的中心在原点,焦点在x轴上,离心率为,且过点P(-5,4),则椭圆的方程为.三、解答题(共2小题,每小题12分,共24分)20.如图所示,在棱长为2的正方体ABCD-A1B1C1D1中,E、F分别为DD1、DB的中点.(1)求证:EF∥平面ABC1D1;(2)求证:EF⊥B1C;(3)求三棱锥的体积.21.甲,乙两组各4名同学参加学校组织的“抗日战争历史知识知多少”抢答比赛,他们答对的题目个数用茎叶图表示,如图,中间一列的数字表示答对题目个数的十位数,两边的数字表示答对题目个数的个位数.(1)求甲组同学答对题目个数的平均数和方差;(2)分别从甲,乙两组中各抽取一名同学,求这两名同学答对题目个数之和为20的概率.2019年1月广东省普通高中学业水平测试数学模拟测试卷(二)答案解析1.B【解析】x2-x=0⇒x(x-1)=0⇒N={0,1},∴M∩N={0,1}.2.D【解析】=q2=4.3.D4.C【解析】设直线l:3x-2y+c=0,因为(1,-2)在直线上,代点的坐标到直线方程得c=-7.故选C.5.C【解析】a、b是两条异面直线,c∥a,那么c与b异面和相交均有可能,但不会平行.因为若c∥b,又c∥a,由平行公理得a∥b,与a、b是两条异面直线矛盾.故选C.6.A【解析】,故选A.7.A【解析】由圆的方程得到圆心坐标为(1,0),半径r=1,所以(1,0)到直线y=x的距离d=<1=r,则圆与直线的位置关系为相交.故选A.8.C【解析】P=.故选C.9.C【解析】其俯视图若为圆,则正视图中的长度与侧视图中的宽度应一样,由图中可知其主视图与侧视图的宽度不一样,因此其俯视图不可能是圆.故选C.10.C【解析】∵事件A={抽到一等品},且P(A)=0.65,∴事件“抽到的不是一等品”的概率为P=1-P(A)=1-0.65=0.35.故选C.11.C【解析】∵f(1)=(1)3-2=-1<0,f(2)=(2)3-2=6>0.故选C.12.B【解析】作出已知不等式组所表示的可行域,如图,可知目标z=x+y经过点(0,1)时,z 取最小值∴z=0+1=1.故选B.13.D【解析】将函数y=cos x的图象向左平移个单位长度,得到函数y=f(x)=cos=-sin x的图象,再结合正弦函数的图象特征.故选D.14.B15.B【解析】因为函数f(x)是奇函数,所以f(-2)=-f(2),f(-1)=-f(1),又f(x)在区间[1,2]单调递减,所以f(1)>f(2)⇒-f(1)<-f(2)⇒f(-1)<f(-2)f(x)在区间[-2,-1]上是单调递减函数,且有最大值-f(2).故选B.16.(0,0,3)【解析】设P(0,0,z),由|PA|=|PB|,得1+4+(z-1)2=4+4+(z-2)2,解得z=3,故点P的坐标为(0,0,3).17.0【解析】f(x)=log a(x+m)+1过定点(2,n),则log a(2+m)+1=n恒成立,∴∴m+n=0.18.-【解析】终边在y=-x(x≤0)上,∴cos θ<0.⇒cos θ=-.19.=1【解析】设椭圆的方程为=1(a>b>0),将点(-5,4)代入得=1,又离心率e=,即e2=,所以a2=45,b2=36,故椭圆的方程为=1.20.【解】(1)证明:连接BD1,如图,在△DD1B中,E、F分别为D1D,DB的中点,则⇒EF∥平面ABC1D1.⇒⇒EF⊥B1C.(3)∵CF⊥平面BDD1B1,∴CF⊥平面EFB1且CF=BF=,∵EF=BD1=,B1F=,B1E==3.∴EF2+B1F2=B1E2,即∠EFB1=90°,∴·CF=·EF·B1F·CF==1.21.【解】(1)由题图可得,甲组答对题目的个数:8,9,11,12,∴=10,×[(8-10)2+(9-10)2+(11-10)2+(12-10)2]=.(2)由题图可得,乙组答对题目的个数:8,8,9,11,设事件“两名同学答对题目个数之和为20”为事件A,以(x,y)记录甲,乙两组同学答对题目的个数,满足“从甲,乙两组中各抽取一名同学”的事件有:,共16种.满足事件A的基本事件为:,共4种,∴P(A)=.答:两名同学答对题目个数之和为20的概率为.2019年1月广东省普通高中学业水平测试数学模拟测试卷(三)(时间:90分钟满分:100分)一、选择题(共15小题,每小题4分,共60分)1.设集合A={1,2},B={2,3,4}则A∪B=()A.{1,2,3,4}B.{1,2,2,3,4}C.{2}D.{1,3,4}2.下列函数中,为偶函数的是()A.f(x)=xB.f(x)=sin xC.f(x)=D.f(x)=x23.若点P(-3,4)在角α的终边上,则cos α=()A.-B.C.-D.4.如果向量a=(2,1),b=(-3,4),那么向量3a+4b的坐标是()A.(19,-6)B.(-6,19)C.(-1,16)D.(16,-1)5.已知直线的点斜式方程是y-2=-(x-1),那么此直线的倾斜角为 ()A. B. C. D.6.在复平面内,复数i(i-1)对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限7.要得到函数y=cos(2x+1)的图象,只要将函数y=cos 2x的图象()A.向左平移1个单位B.向右平移1个单位C.向左平移个单位D.向右平移个单位8.下列说法不正确的是()A.空间中,一组对边平行且相等的四边形一定是平行四边形B.同一平面的两条垂线一定共面C.过直线上一点可以作无数条直线与这条直线垂直,且这些直线都在同一个平面内D.过一条直线有且只有一个平面与已知平面垂直9.函数f(x)=的零点所在的区间为()A.B.C.D.10.已知等差数列{a n}中,a2=2,a4=6,则前4项的和S4等于()A.8B.10C.12D.1411.某几何体的三视图及其尺寸如图所示,则这个几何体的体积是()A.6B.9C.18D.3612.双曲线=1的一个焦点为(2,0),则m的值为()A. B.1或3 C. D.13.设x,y满足约束条件则z=x-2y的最小值为()A.-10B.-6C.-1D.014.=()A.-B.-C.D.15.小李从甲地到乙地的平均速度为a,从乙地到甲地的平均速度为b(a>b>0),他往返甲、乙两地的平均速度为v,则()A.v=B.v=C.<v<D.b<v<二、填空题(共4小题,每小题4分,共16分)16.首项为1,公比为2的等比数列的前4项和S4=.17.要从165个人中抽取15人进行身体检查,现采用分层抽样的方法进行抽取,若这165人中老年人的人数为22人,则老年人中被抽到参加健康检查的人数是.18.已知函数f(x)=则f的值是.19.在△ABC中,A、B、C是三角形的三内角,a、b、c是三内角的对边,已知b2+c2-a2=bc.则∠A=.三、解答题(共2小题,每小题12分,共24分)20.已知圆C:(x-1)2+y2=9内有一点P(2,2),过点P作直线l交圆C于A、B两点.(1)当l经过圆心C时,求直线l的方程;(2)当弦AB被点P平分时,求直线l的方程;(3)当直线l的倾斜角为45°时,求弦AB的长.21.已知数列{a n}中,a1=1,a2=3,a n=3a n-1-2a n-2(n≥3).(1)求a3的值;(2)证明:数列{a n-a n-1}(n≥2)是等比数列;(3)求数列{a n}的通项公式.2019年1月广东省普通高中学业水平测试数学模拟测试卷(三)答案解析1.A2.D3.A4.B5.C【解析】∵k=tan α=-,∴α=π-.故选C.6.C【解析】i(i-1)=i2-i=-1-i,在复平面内对应的点的坐标为(-1,-1),位于第三象限.故选C.7.C【解析】y=cos 2x→y=cos(2x+1)=cos.故选C.8.D【解析】A.一组对边平行且相等就决定了是平行四边形,故A不符合题意;B.由线面垂直的性质定理知,同一平面的两条垂线互相平行,因而共面,故B不符合题意;C.由线面垂直的定义知,这些直线都在同一个平面内即直线的垂面,故C不符合题意;D.由实际例子,如把书本打开,且把书脊垂直放在桌上,则由无数个平面满足题意,故D符合题意.故选D.9.D10.C【解析】设等差数列{a n}的公差为d,则a4=a2+(4-2)d⇒d==2,a1=a2-d=2-2=0,所以S4==2(0+6)=12.故选C.11.C【解析】由题意可知:几何体是以正视图为底面的三棱柱,其底面面积S=×4×=6,高是3,所以它的体积为Sh=18.故选C.12.A【解析】∵双曲线的焦点为(2,0),在x轴上且c=2,∴m+3+m=c2=4.∴m=.13.B【解析】由z=x-2y得y=x-,作出不等式组对应的平面区域如图(阴影部分),平移直线y=x-,由图象可知当直线y=x-过点B时,直线y=x-的截距最大,此时z最小,由解得即B(2,4).代入目标函数z=x-2y,得z=2-8=-6,∴目标函数z=x-2y的最小值是-6.故选B.14.C【解析】===sin 30°=.故选C.15.D【解析】设甲地到乙地的距离为s.则他往返甲、乙两地的平均速度为v=,∵a>b>0,∴>1,∴v=>b.v=.∴b<v<.故选D.16.15【解析】S4==15.17.218.【解析】f=log2=-2,f=f(-2)=3-2=.19.60°20.【解】(1)已知圆C:(x-1)2+y2=9的圆心为C(1,0),因直线过点P、C,所以直线l的斜率为2,直线l的方程为y=2(x-1),即2x-y-2=0.(2)当弦AB被点P平分时,l⊥PC,直线l的方程为y-2=-(x-2),即x+2y-6=0.(3)当直线l的倾斜角为45°时,斜率为1,直线l的方程为y-2=x-2,即x-y=0.圆心到直线l的距离为,圆的半径为3,弦AB的长为.21.【解】(1)由已知a3=3a2-2a1=3×3-2×1=7.(2)证明:a n=3a n-1-2a n-2⇒a n-a n-1=2a n-1-2a n-2=2(a n-1-a n-2)⇒=2,所以,{a n-a n-1}(n≥2)是首项为3-1=2,公比也为2的等比数列.(3)由(2)可知,n≥2时,a n-a n-1=2·2(n-1)-1=2n-1,所以a n-a n-1=2n-1,a n-1-a n-2=2n-2,a n-2-a n-3=2n-3,…,a4-a3=23,a3-a2=22,a2-a1=21,所以a n-a1=2n-1+…+23+22+2==2×(2n-1-1)=2n-2,所以a n=2n-1(n≥2),又已知a1=1,a1=21-1=1,即a n=2n-1对于n=1也成立.故数列{a n}的通项公式是a n=2n-1(n∈N*).2019年1月广东省普通高中学业水平测试数学模拟测试卷(四)(时间:90分钟满分:100分)一、选择题(共15小题,每小题4分,共60分)1.已知集合M={1,2,3,4},集合N={1,3,5},则M∩N等于()A.{2}B.{2,3}C.{1,3}D.{1,2,3,4,5}2.函数f(x)=ln(x-3)的定义域为()A.{x|x>-3}B.{x|x>0}C.{x|x>3}D.{x|x≥3}3.下列命题中的假命题是()A.∀x∈R,2x-1>0B.∀x∈N*,(x-1)2>0C.∂x∈R,lg x<1D.∂x∈R,tan x=24.设i是虚数单位,若复数z=5(1+i)i,则z的共轭复数为()A.-5+5iB.-5-5iC.5-5iD.5+5i5.已知平面向量a=(0,-1),b=(2,2),|λa+b|=2,则λ的值为()A.1+B.-1C.2D.16.已知点A(1,2),B(3,1),则线段AB的垂直平分线的方程是()A.4x+2y=5B.4x-2y=5C.x+2y=5D.x-2y=57.如图(1)、(2)、(3)、(4)为四个几何体的三视图,根据三视图可以判断这四个几何体依次分别为()(1) (2) (3) (4)A.三棱台、三棱柱、圆锥、圆台B.三棱台、三棱锥、圆锥、圆台C.三棱柱、正四棱锥、圆锥、圆台D.三棱柱、三棱台、圆锥、圆台8.已知f(x)=x+-2(x>0),则f(x)有 ()A.最大值为0B.最小值为0C.最大值为-4D.最小值为-49.要完成下列两项调查:(1)某社区有100户高收入家庭,210户中等收入家庭,90户低收入家庭,从中抽取100户调查消费购买力的某项指标;(2)从某中学高二年级的10名体育特长生中抽取3人调查学习负担情况,应采取的抽样方法是()A.(1)用系统抽样法,(2)用简单随机抽样法B.(1)用分层抽样法,(2)用系统抽样法C.(1)用分层抽样法,(2)用简单随机抽样法D.(1)(2)都用分层抽样法10.在△ABC中,A∶B=1∶2,sin C=1,则a∶b∶c=()A.1∶2∶3B.3∶2∶1C.2∶∶1D.1∶∶211.等差数列{a n}中,a3+a4+a5=12,那么{a n}的前7项和S7=()A.22B.24C.26D.2812.抛物线y=x2的焦点到准线的距离是()A. B. C.2 D.413.=()A.-B.-C.D.14.已知某几何体的三视图都是边长为2的正方形,若将该几何体削成球,则球的最大表面积是()A.16πB.8πC.4πD.2π15.已知数列{a n}的前n项和为S n,且a1=-10,a n+1=a n+3(n∈N*),则S n取最小值时,n的值是()A.3B.4C.5D.6二、填空题(共4小题,每小题4分,共16分)16.若点(2,1)在y=a x(a>0,且a≠1)关于y=x对称的图象上,则a=.17.已知f(x)=x2+(m+1)x+(m+1)的图象与x轴没有公共点,则m的取值范围是(用区间表示).18.设f(x)=则f(f(-2))=.19.已知=1,且x>0,y>0,则x+y的最小值是.三、解答题(共2小题,每小题12分,共24分)20.在△ABC中,角A,B,C所对的边分别为a,b,c,且满足a cos C-c sin A=0.(1)求角C的大小;(2)已知b=4,△ABC的面积为6,求边长c的值.21.已知圆C经过A(3,2)、B(1,6)两点,且圆心在直线y=2x上.(1)求圆C的方程;(2)若直线l经过点P(-1,3)且与圆C相切,求直线l的方程.2019年1月广东省普通高中学业水平测试数学模拟测试卷(四)答案解析1.C【解析】M∩N={1,2,3,4}∩{1,3,5}={1,3},故选C.2.C3.B【解析】当x=1∈N*时,x-1=0,不满足(x-1)2>0,所以B为假命题.故选B.4.B【解析】由复数z=5(1+i)i=-5+5i,得z的共轭复数为-5-5i.故选B.5.C【解析】λa+b=(2,2-λ),那么4+(2-λ)2=4,解得:λ=2.故选C.6.B【解析】线段AB的中点为,k AB==-,∴垂直平分线的斜率k==2,∴线段AB的垂直平分线的方程是y-=2(x-2)⇒4x-2y-5=0.故选B.7.C【解析】(1)三视图复原的几何体是放倒的三棱柱.(2)三视图复原的几何体是四棱锥.(3)三视图复原的几何体是圆锥.(4)三视图复原的几何体是圆台.所以(1)(2)(3)(4)的顺序为:三棱柱、正四棱锥、圆锥、圆台.故选C.8.B【解析】由x>0,可得>0,即有f(x)=x+-2≥2-2=2-2=0,当且仅当x=,即x=1时,取得最小值0.9.C10.D【解析】在△ABC中,A∶B=1∶2,sin C=1,可得A=30°,B=60°,C=90°.a∶b∶c=sin A∶sin B∶sin C=∶1=1∶∶2.故选D.11.D【解析】∵等差数列{a n}中,a3+a4+a5=12,∴3a4=a3+a4+a5=12,解得a4=4,∴S7==7a4=28.故选D.12.C【解析】方程化为标准方程为x2=4y.所以2p=4,p=2.所以焦点到准线的距离为2.故选C.13.D【解析】=cos2-sin2=cos.故选D.14.C【解析】∵三视图均为边长为2的正方形,∴几何体是边长为2的正方体, 将该几何体削成球,则球的最大半径为1,表面积是4π×12=4π.故选C.15.B【解析】在数列{a n}中,由a n+1=a n+3,得a n+1-a n=3(n∈N*),∴数列{a n}是公差为3的等差数列.又a1=-10,∴数列{a n}是公差为3的递增等差数列.由a n=a1+(n-1)d=-10+3(n-1)=3n-13≥0,解得n≥.∵n∈N*,∴数列{a n}中从第五项开始为正值.∴当n=4时,S n取最小值.故选B.16.2【解析】∵点(2,1)在y=a x(a>0,且a≠1)关于y=x对称的图象上,∴点(1,2)在y=a x(a>0,且a≠1)的图象上,∴2=a1,解得a=2.17.(-1,3)【解析】依题意Δ=(m+1)2-4(m+1)=(m+1)(m-3)<0⇒-1<m<3,故m的取值范围用区间表示为(-1,3).18.-2【解析】∵x=-2<0,∴f(-2)=1>0,∴f(10-2)=lg 10-2=-2,即f(f(-2))=-2.19.25【解析】∵=1,且x>0,y>0,∴x+y=(x+y)=13+≥13+2=25,当且仅当即x=10且y=15时取等号.20.【解】(1)在△ABC中,由正弦定理得sin A cos C-sin C sin A=0.因为0<A<π,所以sin A>0,从而cos C=sin C,又cos C≠0,所以tan C=,所以C=.(2)在△ABC中,由S△ABC=×4a×sin=6,得a=6,由余弦定理得c2=62+42-2×6×4cos=28,所以c=2.21.【解】(1)方法1:设圆C的方程为(x-a)2+(y-b)2=r2(r>0),依题意得:解得a=2,b=4,r2=5.所以圆C的方程为(x-2)2+(y-4)2=5.方法2:因为A(3,2)、B(1,6),所以线段AB中点D的坐标为(2,4), 直线AB的斜率k AB==-2,因此直线AB的垂直平分线l'的方程是y-4=(x-2),即x-2y+6=0.圆心C的坐标是方程组的解.解此方程组,得即圆心C的坐标为(2,4).圆C的半径长r=|AC|=.所以圆C的方程为(x-2)2+(y-4)2=5.(2)由于直线l经过点P(-1,3),当直线l的斜率不存在时,x=-1与圆C:(x-2)2+(y-4)2=5相离.当直线l的斜率存在时,可设直线l的方程为y-3=k(x+1),即:kx-y+k+3=0.因为直线l与圆C相切,且圆C的圆心为(2,4),半径为,所以有.解得k=2或k=-.所以直线l的方程为y-3=2(x+1)或y-3=-(x+1),即2x-y+5=0或x+2y-5=0.2019年1月广东省普通高中学业水平测试数学模拟测试卷(五)(时间:90分钟满分:100分)一、选择题(共15小题,每小题4分,共60分)1.已知集合M={-1,0,1},N={0,1,2},则M∪N=()A.{-1,0,1,2}B.{-1,0,1}C.{-1,0,2}D.{0,1}2.“sin A=”是“A=30°”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件3.(2016·衡阳校级模拟)已知a=(4,2),b=(6,y),且a⊥b,则y的值为()A.-12B.-3C.3D.124.若a<b<0,则下列不等式:①|a|>|b|;②;③>2;④a2<b2中,正确的有()A.1个B.2个C.3个D.4个5.已知α是第二象限角,sin α=,则cos α=()A.-B.-C.D.6.下列函数中,既是偶函数,又在区间(0,+∞)上单调递减的函数是()A.y=x-2B.y=x-1C.y=x2-2D.y=lo x7.不等式组表示的平面区域是()8.(2016·衡阳校级模拟),则样本在(10,50]上的频率为()A.B.C.D.9.cos 40°sin 80°+sin 40°sin 10°=()A.B.-C.cos 50°D.10.函数y=log2(x2-3x+2)的递减区间是()A.(-∞,1)B.(2,+∞)C.D.11.为了大力弘扬中华优秀传统文化,某校购进了《三国演义》《水浒传》《红楼梦》和《西游记》若干套,如果每班每学期可以随机领取两套不同的书籍,那么该校高一(1)班本学期领到《三国演义》和《水浒传》的概率为()A. B. C. D.12.将函数y=sin的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再将所得的图象向左平移个单位,得到的图象对应的解析式是()A.y=sin xB.y=sinC.y=sinD.y=sin13.已知双曲线=1(a>0,b>0)的离心率为,则双曲线的渐近线方程为()A.y=±2xB.y=±xC.y=±xD.y=±x14.函数f(x)=log2x+x-2的零点所在的区间是 ()A.(0,1)B.(1,2)C.(2,3)D.(3,4)15.已知向量在正方形网格中的位置如图所示,若=λ+μ,则λ+μ=()A.2B.-2C.3D.-3二、填空题(共4小题,每小题4分,共16分)16.函数y=a x-1+1(a>0,且a≠1)的图象恒过定点.17.等差数列{a n}中,a2=3,a3+a4=9,则a1a6=.18.某学院A,B,C三个专业共有1 200名学生,为了调查这些学生勤工俭学的情况,拟用分层抽样的方法抽取一个容量为120的样本.已知该学院A专业有380名学生,B专业有420名学生,则该学院C专业应抽取名学生.19.设△ABC的内角A,B,C所对的边分别为a,b,c,若b cos C+c cos B=a sin A,则∠A的度数为.三、解答题(共2小题,每小题12分,共24分)20.已知向量a=,b=(sin x,cos 2x),x∈R,设函数f(x)=a·b.(1)求f(x)的最小正周期;(2)求f(x)在上的最大值和最小值.21.已知函数f(x)=1+-xα(α∈R),且f(3)=-.(1)求α的值;(2)求函数f(x)的零点;(3)判断f(x)在(-∞,0)上的单调性,并给予证明.2019年1月广东省普通高中学业水平测试数学模拟测试卷(五)答案解析1.A【解析】因为集合M={-1,0,1},N={0,1,2},所以M∪N={-1,0,1,2}.2.B【解析】因为sin 30°=,所以“sin A=”是“A=30°”的必要条件,又150°,390°等角的正弦值也是,故“sin A=”不是“A=30°”的充分条件.3.A【解析】因为a=(4,2),b=(6,y),且a⊥b,所以a·b=0,即4×6+2y=0,解得y=-12.故选A.4.C【解析】对于①,根据不等式的性质,可知若a<b<0,则|a|>|b|,故正确,对于②,若a<b<0,两边同除以ab,则,即,故正确,对于③,若a<b<0,则>0,>0,根据基本不等式即可得到>2,故正确,对于④,若a<b<0,则a2>b2,故不正确.故选C.5.B【解析】∵α是第二象限角,sin α=,∴cos α=-=-.故选B.6.A【解析】∵y=x-1是奇函数,y=lo x不具有奇偶性,故排除B,D,又函数y=x2-2在区间(0,+∞)上是单调递增函数,故排除C.故选A.7.B【解析】由题意可知(0,0)在x-3y+6=0的下方,满足x-3y+6≥0;(0,0)在直线x-y+2=0的下方,不满足x-y+2<0.故选B.8.D【解析】根据题意,样本在(10,50]上的频数为2+3+4+5=14,所求的频率为P=.故选D.9.D【解析】cos 40°sin 80°+sin 40°sin 10°=cos 40°cos 10°+sin 40°sin10°=cos(40°-10°)=.10.A【解析】由x2-3x+2>0,得x<1或x>2,又y=log2(x3-3x+2)的底数是2,所以在(-∞,1)上递减.故选A.11.D12.C【解析】将函数y=sin的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),可得函数y=sin,再将所得的图象向左平移个单位,得函数y=sin,即y=sin.故选C.13.D【解析】由双曲线的离心率为,则e=,即c=a,b=a,由双曲线的渐近线方程为y=±x,得其渐近线方程为y=±x.故选D.14.B【解析】函数f(x)=log2x+x-2在(0,+∞)上连续,f(1)=0+1-2<0,f(2)=1+2-2>0,故函数f(x)=log2x+x-2的零点所在的区间是(1,2).故选B.15.A【解析】如果以A为原点,AD所在直线为x轴,与AD垂直的直线为y轴建立直角坐标系,那么=(1,0),=(1,2),=(2,-2),那么解得λ=-1,μ=3,所以λ+μ=2.故选A.16.(1,2)【解析】当x-1=0,即x=1时,y=2.∴函数y=a x-1+1(a>0,且a≠1)的图象恒过定点(1,2).17.14【解析】由等差数列的通项公式可得,a3+a4=2a1+5d=9,a1+d=3,所以a1=2,d=1,所以a1a6=2×7=14.18.40【解析】抽样比为1∶10,而C学院的学生有1 200-380-420=400(名),所以按抽样比抽取40名.19.90°【解析】根据正弦定理可得2R sin B cos C+2R sin C cos B=2R sin 2A⇔sin(B+C)=sin 2A,而sin(B+C)=sin A,所以sin A=sin 2A,所以sin A=1,所以∠A=90°.20.【解】f(x)=·(sin x,cos 2x)=cos x sin x-cos 2x=sin 2x-cos 2x=cos sin 2x-sin cos 2x=sin.(1)f(x)的最小正周期为T==π,即函数f(x)的最小正周期为π.(2)∵0≤x≤,∴-≤2x-.由正弦函数的性质知,当2x-,即x=时,f(x)取得最大值1.当2x-=-,即x=0时,f(x)取得最小值-,因此,f(x)在上的最大值是1,最小值是-.21.【解】(1)由f(3)=-,得1+-3α=-,解得α=1.(2)由(1),得f(x)=1+-x.令f(x)=0,即1+-x=0,也就是=0,解得x=.经检验,x=是1+-x=0的根,所以函数f(x)的零点为.(3)函数f(x)=1+-x在(-∞,0)上是减函数.证明如下:设x1,x2∈(-∞,0),且x1<x2,则f(x1)-f(x2)==(x2-x1).因为x1<x2<0,所以x2-x1>0,x1x2>0,所以f(x1)-f(x2)>0,即f(x1)>f(x2),所以f(x)=1+-x在(-∞,0)上是减函数.2019年1月广东省普通高中学业水平测试数学模拟测试卷(六)(时间:90分钟满分:100分)一、选择题(共15小题,每小题4分,共60分)1.不等式x(x-2)≤0的解集是()A.[0,2)B.(-∞,0)∪(2,+∞)C.(-∞,0]∪[2,+∞)D.[0,2]2.全集为实数集R,M={x|-2≤x≤2},N={x|x<1},则(∁R M)∩N= ()A.{x|x<-2}B.{x|-2<x<1}C.{x|x<1}D.{x|-2≤x<1}3.命题“对任意的x∈R,x3-x2+1≤0”的否定是 ()A.不存在x0∈R,+1≤0B.存在x0∈R,+1≥0C.存在x0∈R,+1>0D.对任意的x0∈R,x3-x2+1>04.直线2x-y+2=0与坐标轴围成的三角形的面积是()A.B.1 C.2 D.45.函数f(x)=的定义域是()A.(-1,0)∪(0,+∞)B.[-1,0)∪(0,+∞)C.(-1,+∞)D.[-1,+∞)6.若复数(a∈R,i为虚数单位)是纯虚数,则实数a的值为()A.-6B.13C.D.7.设函数f(x)=则f的值为()A.18B.-C.D.8.一个几何体的三视图如图所示,则该几何体的体积是()A.πB.2πC.3πD.4π9.已知sin α=,则cos(π-2α)等于()A.-B.-C.D.10.实数x,y满足则z=x-y的最大值是()A.-1B.0C.3D.411.已知非零向量不共线,且,则向量=()A.B.C.D.12.函数f(x)=2x+3x的零点所在的一个区间是()A.(-2,-1)B.(-1,0)C.(0,1)D.(1,2)13.函数f(x)=A sin(ωx+φ)+b的图象如图所示,则f(x)的解析式为()A.f(x)=sin x+1B.f(x)=sin x+C.f(x)=sin+1D.f(x)=sin14.设α,β为钝角,且sin α=,cos β=-,则α+β的值为()A.B.C.D.15.已知数列{a n}满足a n+1=,若a1=,则a2 015=()A.2B.-2C.-1D.二、填空题(共4小题,每小题4分,共16分)16.函数y=+ln(2-x)的定义域是.17.抛物线y2=2px(p>0)上的动点Q到焦点的距离的最小值为1,则p=.18.若非零向量a,b满足|a|=|b|,(2a+b)·b=0,则a与b的夹角为.19.计算sin cos tan=.三、解答题(共2小题,每小题12分,共24分)20.在锐角三角形ABC中,角A,B所对的边长分别为a,b,且2a sin B= b.(1)求角A的大小;(2)若a=3,求△ABC周长l的最大值.21.如图,在四棱锥P-ABCD中,PC=AD=CD=AB=2,AB∥DC,AD⊥CD,PC⊥平面ABCD.(1)求证:BC⊥平面PAC;(2)若M为线段PA的中点,且过C,D,M三点的平面与线段PB交于点N,确定点N的位置,说明理由;并求三棱锥N-AMC的体积.2019年1月广东省普通高中学业水平测试数学模拟测试卷(六)答案解析1.D【解析】不等式x(x-2)≤0对应方程的两个实数根为0和2,所以该不等式的解集是[0,2].故选D.2.A【解析】∵M={x|-2≤x≤2},∴∁R M={x|x<-2,或x>2},又∵N={x|x<1},∴(∁R M)∩N={x|x<-2}.故选A.3.C【解析】已知命题为全称命题,其否定为特称命题.4.B【解析】∵2x-y+2=0中,由x=0,得y=2;由y=0,得x=-1.∴直线2x-y+2=0与坐标轴围成的三角形的面积是:S=×2×1=1.故选B.5.A【解析】解得:x>-1且x≠0,区间形式为(-1,0)∪(0,+∞),故选A.6.A7.D【解析】f(2)=22+2-2=4,则f=f=1-.故选D.8.C【解析】三视图复原的几何体是圆柱,底面半径为1、高为3,所以这个几何体的体积是π×12×3=3π.故选C.9.B【解析】由三角函数的诱导公式可知cos(π-2α)=-cos 2α,由倍角公式可得cos2α=1-2sin2α=1-2×,cos(π-2α)=-,故选B.10.C【解析】作出不等式对应的平面区域如图,由z=x-y,得y=x-z,平移直线y=x-z,由图象可知当直线y=x-z经过点B(3,0)时,直线y=x-z的截距最小,此时z 最大.此时z的最大值为z=3-0=3.故选C.11.A【解析】)⇔.故选A.12.B【解析】∵f(-1)=-3<0,f(0)=1>0,∴f(-1)·f(0)<0.又函数f(x)在(-1,0)上是连续的,故f(x)的零点所在的一个区间为(-1,0).故选B.13.C【解析】由函数f(x)=A sin(ωx+φ)+b的图象可知,A=,b==1,又最小正周期T=4=,∴ω=;又0×ω+φ=0,∴φ=0.∴f(x)的解析式为:f(x)=sin+1.故选C.14.C【解析】∵α,β为钝角,且sin α=,cos β=-,∴cos α=-,sin β=,∴cos(α+β)=cos αcos β-sin αsin β=-,又α,β为钝角,∴α+β∈(π,2π),∴α+β=.故选C.15.A【解析】∵a n+1=,a1=,∴a2==2,a3==-1,a4=,∴数列{a n}是以3为周期的周期数列,∵2 015=671×3+2,∴a2 015=a2=2.故选A.16.[1,2)【解析】要使函数有意义,须满足解得1≤x<2,∴函数y=+ln(2-x)的定义域是[1,2).17.2【解析】依题意,设抛物线的焦点为F,点Q的横坐标是x0(x0≥0),则有|QF|=x0+的最小值是=1,则p=2.18.120°【解析】(2a+b)·b=0⇔2ab cos<a,b>+b2=0,因为|a|=|b|,所以cos<a,b>=-,所以<a,b>=120°.19.-【解析】sin cos tan=sin cos tan=cos tan=-.20.【解】(1)由题及正弦定理得2sin A sin B=sin B,∵sin B≠0,∴sin A=,又A∈,∴A=.(2)由a=3,A=得=2,∴b=2sin B,c=2sin C,∴l=a+b+c=2sin B+2sin C+3=2sin B+2sin+3=3sin B+3sinB+3=6sin+3,当B=时,l取最大值9.∴△ABC的周长l的最大值为9.21.【解】(1)证明:在直角梯形ABCD中,AC==2,BC==2.∴AC2+BC2=AB2,即BC⊥AC.∵PC⊥平面ABCD,BC⊂平面ABCD,∴BC⊥PC.又AC∩PC=C,∴BC⊥平面PAC.(2)点N是PB的中点,理由如下;如图,∵点M为PA的中点,点N为PB的中点,∴MN∥AB.又∵AB∥DC,∴MN∥CD.∴M、N、C、D四点共面.即点N为过C、D、M三点的平面与线段PB的交点; ∵BC⊥平面PAC,N为PB的中点,∴点N到平面PAC的距离d=BC=,S△ACM=S△PAC=·PC·AC=×2×2.∴S△AMC·d=.。

2019年山东省普通高中学业水平考试数学试题(带答案)

2019年山东省普通高中学业水平考试数学试题(带答案)

2019年山东省普通高中学业水平考试数学试题(带答案)2019年山东省普通高中学业水平考试数学试题(带答案)一、选择题(共20小题,每小题3分,共60分)1.已知集合 $A=\{2,4,8\}$,$B=\{1,2,4\}$,则 $A\capB=$()A。

{4} B。

{2} C。

{2,4} D。

{1,2,4,8}2.周期为 $\pi$ 的函数是()A。

$y=\sin x$ B。

$y=\cos x$ C。

$y=\tan 2x$ D。

$y=\sin2x$3.在区间 $(1,2)$ 上为减函数的是()A。

$y=x$ B。

$y=x^2$ C。

$y=\frac{1}{x}$ D。

$y=\ln x$4.若角 $\alpha$ 的终边经过点 $(-1,2)$,则 $\cos\alpha=$()A。

$-\frac{5}{13}$ B。

$\frac{5}{13}$ C。

$-\frac{1}{13}$ D。

$\frac{1}{13}$5.把红、黄两张纸牌随机分给甲、乙两个人,每人分得一张,设事件 $P$ 为“甲分得黄牌”,设事件 $Q$ 为“乙分得黄牌”,则()A。

$P$ 是必然事件 B。

$Q$ 是不可能事件 C。

$P$ 与$Q$ 是互斥但不对立事件 D。

$P$ 与 $Q$ 是互斥且对立事件6.在数列 $\{a_n\}$ 中,若 $a_{n+1}=3a_n$,$a_1=2$,则$a_4=$()A。

18 B。

36 C。

54 D。

1087.采用系统抽样的方法,从编号为1~50的50件产品中随机抽取5件进行检验,则所选取的5件产品的编号可以是()A。

1,2,3,4,5 B。

2,4,8,16,32 C。

3,13,23,33,43 D。

5,10,15,20,258.已知 $x,y\in (0,+\infty)$,且 $x+y=1$,则 $xy$ 的最大值为()A。

1 B。

$\frac{1}{3}$ C。

$\frac{1}{4}$ D。

2019年高二数学学业水平模拟试卷(1)及答案解析

2019年高二数学学业水平模拟试卷(1)及答案解析

A. y =B. y =x 2C. y =2xD. y =x 3x C. y =log 3x D. y =( a b2 2 2 211. 已知 sin α = ,且角的终边在第二象限,则 cos α =()5 4 5 41 高中学业水平考试《数学》模拟试卷(一)一、选择题(本大题共 25 小题,第 1~15 题每小题 2 分,第 16~25 题每小题 3 分,共 60 分.每小题中只有一个选项是符合题 意的,不选、多选、错选均不得分)1. 已知集合 P ={0,1},Q ={0,1,2},则 P ∩Q =( ) A. {0} B. {1} C. {0,1} D. {0,1,2}2. 直线 x =1 的倾斜角为( )A. 0°B. 45°C. 90°D. 不存在3. 下列几何体各自的三视图中,有且仅有两个视图相同的几何体是( )(第 3 题) A. 圆锥 B. 正方体 C. 正三棱柱 D. 球 4. 下列函数中,为奇函数的是( )1 1 A. y =x +1 B. y = 2)x5. 下列函数中,在区间(0,+∞)内单调递减的是( )1 x6. 若直线 l 的方程为 2x +y +2=0,则直线 l 在 x 轴与 y 轴上的截距分别为( )A. -1,2B. 1,-2C. -1,-2D. 1,27. 已知平面向量 a =(1,2),b =(-3,x ).若 a ∥b ,则 x 等于( ) A. 2 B. -3 C. 6 D. -68. 已知实数 a ,b ,满足 ab >0,且 a >b ,则( )A. ac 2>bc2B. a 2>b 2C. a 2<b21 1 D. <9. 求值:sin 45°cos 15°+cos 45°sin 15°=( )A. - 3 1 1 3B. -C.D.10. 设 M =2a (a -2)+7,N =(a -2)(a -3),则有( )A. M >NB. M ≥NC. M <ND. M ≤N354 3 4 3A. -B. -C.D.12. 已知等差数列{a n }满足 a 2+a 4=4,a 3+a 5=10,则 a 5+a 7=()A. 16B. 18C. 22D. 2813. 下列有关命题的说法正确的个数是( )①命题“同位角相等,两直线平行”的逆否命题为“两直线不平行,同位角不相等”; ②“若实数 x ,y 满足 x +y =3,则 x =1 且 y =2”的否命题为真命题;14.已知(3,2)在椭圆2+2=1上,则(18.下列各式中,值为319.在△ABC中,已知AB·AC=23,且∠BAC=30°,则△ABC的面积为()21.已知θ∈⎢0,⎥,则直线y=x sinθ+1的倾斜角的取值范围是()26342B.6A.6C.3O E③若p∧q为假命题,则p,q均为假命题;④对于命题p:∃x∈R,x2+2x+2≤0,则p:∀x∈R,x2+2x+2>0.A.1个B.2个C.3个D.4个x2y2a b)A.点(-3,-2)不在椭圆上B.点(3,-2)不在椭圆上C.点(-3,2)在椭圆上D.无法判断点(-3,-2),(3,-2),(-3,2)是否在椭圆上15.设a∈R,则“a=1”是“直线l1:ax+2y=0与直线l2:x+(a+1)y+4=0平行”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分又不必要条件16.下列各式:①(log23)2=2log23;②log232=2log23;③log26+log23=log218;④log26-log23=log23.其中正确的有()A.1个B.2个C.3个D.4个17.下列函数中只有一个零点的是()A.y=x-1B.y=x2-1C.y=2xD.y=lg x2的是()A.sin215°+cos215°B.2sin15°cos15°C.cos215°-sin215°D.2sin215°-1→→A.1B.2C.3D.420.已知实数a1,a2,a3,a4,a5构成等比数列,其中a1=2,a5=8,则a3的值为()A.5B.4C.-4D.±4⎡π⎤⎣2⎦ππππA.[0,]B.[0,]C.[0,]D.[0,](第22题)22.如图,在正方体ABCD-A1B1C1D1中,是底面ABCD的中心,为CC1的中点,那么异面直线OE与AD1所成角的余弦值等于( 323D.2)26.若菱形ABCD的边长为2,则|AB-CD+CD|=________.27.函数y=x+(x>0)的值域是________.30.已知数列{a n}是非零等差数列,且a1,a3,a9组成一个等比数列的前三项,则a1+a3+a9的值是________.31.(本题7分)已知cosα=,<α<2π,,求cos2α,sin2α的值.23.若直线ax+by-3=0与圆x2+y2+4x-1=0切于点P(-1,2),则ab积的值为()A.3B.2C.-3D.-224.已知两个非零向量a,b满足|a+b|=|a-b|,则下面结论正确()A.a∥bB.a⊥bC.|a|=|b|D.a+b=a-b25.已知平面α内有两定点A,B,|AB|=3,M,N在α的同侧且MA⊥α,NB⊥α,|MA|=1,|NB|=2.在α上的动点P满足PM,PN与平面α所成的角相等,则点P的轨迹所包围的图形的面积等于()A.9πB.8πC.4πD.π二、填空题(本大题共5小题,每小题2分,共10分)→→→1x28.若直线2(a+3)x+ay-2=0与直线ax+2y+2=0平行,则a=________.29.若双曲线mx2+y2=1的虚轴长是实轴长的2倍,则m的值为________.a2+a4+a10三、解答题(本大题共4小题,第31,32题每题7分,第33,34题每题8分,共30分)33π5232.(本题7分,有A、B两题,任选其中一题完成,两题都做,以A题计分)[第32题(A)](A)如图所示,四棱锥P-ABCD的底面为一直角梯形,BA⊥AD,CD⊥AD,CD=2AB,PA⊥底面ABCD,E为PC的中点.(1)求证:EB∥平面PAD;(2)若PA=AD,证明:BE⊥平面PDC.(B)如图,正△ABC的边长为4,CD是AB边上的高,E,F分别是AC和BC边的中点,现将△ABC沿CD翻折成直二面角A-DC-B.⎛1⎫x ⎛1⎫x上的有界函数,其中 M 称为函数 f (x )的上界.已知函数 f (x )=1+a ⎪ + ⎪ .[第 32 题(B)](1)试判断直线 AB 与平面 DEF 的位置关系,并说明理由; (2)求二面角 E -DF -C 的余弦值.33. (本题 8 分)已知抛物线 y 2=4x 截直线 y =2x +m 所得弦长 AB =3 5. (1)求 m 的值;(2)设 P 是 x 轴上的一点,且△ABP 的面积为 9,求点 P 的坐标.34. (本题 8 分)定义在 D 上的函数 f (x ),如果满足:对任意的 x ∈D ,存在常数 M >0,都有|f (x )|≤M 成立,则称 f (x )是 D⎝2⎭ ⎝4⎭(1)当 a =1 时,求函数 f (x )在(-∞,0)上的值域,并判断函数 f (x )在(-∞,0)上是否为有界函数,请说明理由;(2)若函数 f (x )在[0,+∞)上是以 3 为上界的有界函数,求实数 a 的取值范围.y),则(x-)2+y2=4[(x+)2+y2]⇒(x+)2+y2=4,所以P的轨迹是半径为2的圆,因此面积为4π.]4m430.1或[提示:设公差为d,则a1·(a1+8d)=(a1+2d)2⇒a1d=d2,∴若d=0,1=1;若d≠0,则a1=d,∴11631.解:cos2α=2cos2α-1=-,∵<α<2π,∴sinα=-,∴sin2α=2sinαcosα=-.32.(A)证明:(1)取PD的中点Q,连接EQ,AQ,则QE∥CD,CD∥AB,∴QE∥AB.又∵QE=CD=AB,∴四边形ABEQ是平行四边⎧⎪DF·n=0,⎧x+3y=0,1),F(1,3,0).平面CDF的法向量为DA=(0,0,2),设平面EDF的法向量为n=(x,y,z),⎨即⎨取n⎪⎩DE·n=0,⎩3y+z=0,DA·n2121=(3,-3,3),cos〈DA,n〉==,所以二面角E-DF-C的余弦值为.|DA||n|33.解:(1)由⎨得4x2+4(m-1)x+m2=0,由根与系数的关系得x1+x2=1-m,x1·x2=4,|AB|=1+k2 12014高中学业水平考试《数学》模拟试卷(一)1.C2.C3.A4.B5.A6.C7.D8.D9.D10.A11.A12.C13.C14.C15.A16.B17.D18.C19.A20.B21.D22.B23.B24.B25.C△[提示:由题意知AMP∽△BNP,所以|PB|=2|PA|,不妨以AB所在直线为x轴,中点为原点建立直角坐标系,设P(x,33522226.227.[2,+∞)28.611129.-[提示:因为是双曲线,所以m<0,-=4,得m=-.]13a+a3+a9a+a3+a9 16a2+a4+a10a2+a4+a10 13=.]73π41225252512形,∴BE∥AQ.又∵AQ⊂平面PAD,∴BE∥平面PAD.(2)PA⊥底面ABCD,∴CD⊥PA.又∵CD⊥AD,∴CD⊥平面PAD,∴AQ⊥CD.若PA=AD,∴Q为PD中点,∴AQ⊥PD∴AQ⊥平面PCD.∵BE∥AQ,∴BE⊥平面PCD.(第32题)(B)(1)如图:在△ABC中,由E,F分别是AC,BC的中点,得EF//AB,又AB平面DEF,EF⊂平面DEF,所以AB//平面DEF.(2)以点D为坐标原点,直线DB,DC为x轴,y轴,建立空间直角坐标系,则A(0,0,2),B(2,0,0),C(0,23,0),E(0,3,→→→→→→77⎧⎪y2=4x,m2⎪⎩y=2x+m,m2(x1+x2)2-4x1x2,=1+22(1-m)2-4·4=5(1-2m).由|AB|=35,即5(1-2m)=35⇒m=-4.2|a -2| 1 2·△S ABP 2|a -2| 2×9 = ,又 △SABP = |AB |·d ,则 d =2 |AB | ⎛1⎫x ⎛1⎫x34. 解:(1)当 a =1 时,f (x )=1+ ⎪ + ⎪ ,因为 f (x )在(-∞,0)上递减,所以 f (x )>f (0)=3,即 f (x )在(-∞,0)的值⎛1⎫x ⎛1⎫x ⎛1⎫x ⎛1⎫x ⎛1⎫x在[1,+∞)上恒成立,即-3≤f (x )≤3,-4- ⎪ ≤a · ⎪ ≤2- ⎪ ,所以-4·2x - ⎪ ≤a ≤2·2x - ⎪ 在[0,+∞)上恒成⎢-4·2x -⎛ 1⎫⎪ ⎥ a ≤⎢2·2x -⎛ 1⎫⎪ ⎥ ,设 2x =t ,g (t )=-4t - ,h (t )=2t - ,由 x ∈[0,+∞)得 t ≥1,所以 g (t )在[1,t t ⎝2⎭ ⎦max(第 33 题)(2)设 P (a ,0),P 到直线 AB 的距离为 d ,则 d =|2a -0-4| 22+(-1)25 5 3 5, = ⇒ |a -2|=3⇒ a =5 或 a =-1,故点 P 的坐标为(5,0)和(-1,0).⎝2⎭⎝4⎭域为(3,+∞),故不存在常数M >0,使得|f (x )|≤M 成立.所以函数 f (x )在(-∞,0)上不是有界函数. (2)由题意知,|f (x )|≤3⎝4⎭ ⎝2⎭ ⎝4⎭ ⎝2⎭ ⎝2⎭ ⎡ x ⎤ ⎡ x ⎤ 1 1 立. ≤⎣ ⎣ ⎝2⎭ ⎦min +∞)上递减,h (t )在[1,+∞)上递增,g (t )max =g (1)=-5,h (t )min =h (1)=1,所以 a ∈[-5,1].。

2019学年山东省学业水平模拟考试数学试卷【含答案及解析】

2019学年山东省学业水平模拟考试数学试卷【含答案及解析】

2019学年山东省学业水平模拟考试数学试卷【含答案及解析】姓名___________ 班级____________ 分数__________一、选择题1. 下列各数中,最大的是().A.0 B.2 C.-2 D.2. 下列选项中能由左图平移得到的是().3. 计算(3ab)2的结果是().A.6ab B.6a2b C.9ab2 D.9a2b24. 下列二次根式中能与合并的二次根式是().A. B. C. D.5. 下列运算正确的是().A. B. C. D.6. 下列的平面图形中,是正方体的平面展开图的是().7. 在下列四个黑体字母中,既是轴对称图形,又是中心对称图形的是().8. 如图,AB∥CD,下列结论中正确的是().A.∠l+∠2+∠3=180° B.∠l+∠2+∠3=360°C.∠l+∠3=2∠2 D.∠l+∠3=∠29. 在原点为O的平面直角坐标系中,⊙O的半径为l,则直线与⊙O的位置关系是().A.相离 B.相切 C.相交 D.以上三种情况都有可能10. 如图,小圆经过大圆的圆心O,且∠ADB=,∠ACB=,则与之间的关系是().A. B.C. D.11. 二次函数的图象如下图,若方程有实数根,则的最大值为().A.-3 B.3 C.-6 D.012. 如下图,在△ABC中,∠C=90°,M是AB的中点,动点P从点A出发,沿AC方向匀速运动到终点C,动点Q从点C出发,沿CB方向匀速运动到终点B.已知P,Q两点同时出发,并同时到达终点.连结MP,MQ,PQ,在整个运动过程中,△MPQ的面积大小变化情况是().A.一直增大 B.一直减小 C.先减小后增大 D.先增大后减小二、填空题13. 计算:.14. 一元二次方程的解是_________.15. 如果,那么.16. 如图,在平面直角坐标系中,点A(,l)关于轴的对称点为点A1,将OA绕原点O逆时针方向旋转90°到OA2,用扇形OA1A2围成一个圆锥,则该圆锥的底面圆的半径为______.17. 如图,已知正方形ABCD的边长为3,E为CD边上一点,DE=1.以点A为中心,把△ADE顺时针旋转90°,得△ABE′,连接EE′,则EE′的长等于_______.18. 如图,在Rt△ABC中,∠C=90°,AC=3,BC=4,⊙O是△ABC的内切圆,点D是斜边AB的中点,则tan∠ODA=________.三、解答题19. (本小题满分6分)解不等式组,并把解集在数轴上表示出来.20. (本小题满分7分)先化简、再求值:,其中.四、填空题21. (本小题满分7分)图(1)是某市6月上旬一周的天气情况,图(2)是根据这一周中每天的最高气温绘制的折线统计图.请你根据两幅图提供的信息完成下列问题:(1)这一周中温差最大的一天是星期_________;(2)这一周中最高气温中的众数是_____℃,中位数是____℃,平均数是_____℃;(3)这两幅图各有特色,而有关折线统计图的优点,下列四句话描述最贴切的一句是_____ (只需填写文字前的小标号).①可以清楚地告诉我们每天天气情况.②可以清楚地告诉我们各部分数量占总量的比值情况.③可以直观地告诉我们这一周每天最高气温的变化情况.④可以清楚地告诉我们这一周每天气温的总体情况.五、解答题22. (本小题满分8分)有3张不透明的卡片,除正面写有不同的数字外,其它均相同.将这三张卡片背面朝上洗匀后,第一次从中随机抽取一张,并把这张卡片标有的数字记作一次函数表达式中的,第二次从余下的两张卡片中再随机抽取一张,上面标有的数字记作一次函数表达式中的.(1)写出为负数的概率;(2)求一次函数的图象经过二、三、四象限的概率。

2019年安徽省普通高中学业水平测试仿真卷数学卷(含答案解析)

2019年安徽省普通高中学业水平测试仿真卷数学卷(含答案解析)

2019年安徽省普通高中学业水平测试仿真卷数学试题考试时间:90分钟;满分:100分注意:本试卷包含Ⅰ、Ⅱ两卷。

第Ⅰ卷为选择题,所有答案必须用2B铅笔涂在答题卡中相应的位置。

第Ⅱ卷为非选择题,所有答案必须填在答题卷的相应位置。

答案写在试卷上均无效,不予记分。

第I卷(选择题共54分)一、选择题(本大题共18小题,共54分)1.设集合A={x|x2-4x+3<0},B={x|2x-3>0},则A∩B=()A. B. C. D.2.下列四个函数中,在(0,+∞)上为增函数的是()A. B. C. D.3.设函数f(x)=,则f(f(4))=()A. 2B. 4C. 8D. 164.如图,终边在阴影部分(含边界)的角的集合是()A.B.C.D.5.某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm3)是()A. 2B. 4C. 6D. 86.已知两点,,则直线AB的斜率为A. 2B.C.D.7.过直线x+y-3=0和2x-y=0的交点,且与直线2x+y-5=0垂直的直线方程是()A. B. C. D.8.如图所示的茎叶图记录了甲、乙两组各5名工人某日的产量数据单位:件若这两组数据的中位数相等,且平均值也相等,则x和y的值分别为A. 3,5B. 5,5C. 3,7D. 5,79.一个学校高一、高二、高三的学生人数之比为2:3:5,若用分层抽样的方法抽取容量为200的样本,则应从高三学生中抽取的人数为( )A. 40B. 60C. 80D. 10010.如图是一个程序框图,运行这个程序,则输出的结果为( )A. B. C. D.11.有5支彩笔(除颜色外无差别),颜色分别为红、黄、蓝、绿、紫.从这5支彩笔中任取2支不同颜色的彩笔,则取出的2支彩笔中含有红色彩笔的概率为()A. B. C. D.12.已知α为第二象限角,则在()A. 第一、二象限B. 第一、三象限C. 第二、四象限D. 第二、三象限13.410°角的终边落在()A. 第一象限B. 第二象限C. 第三象限D. 第四象限14.已知向量=(1,2),=(3,1),则-=()A. B. C. D.15.已知=(3,0),那么||等于()A. 2B. 3C. 4D. 516.在等差数列{a n}中,已知a2=-8,公差d=2,则a12=()A. 10B. 12C. 14D. 1617.已知△ABC中,a=1,,A=30°,则B等于()A. B. 或 C. D. 或18.若log2a<0,()b>1,则()A. ,B. ,C. ,D.,第II 卷(非选择题 共46分)二、填空题(本大题共4小题,共16分)19. △ABC 中,三内角A ,B ,C 的对边分别为a 、b 、c ,且,则角B = ______ . 20. 为调査某高校学生对“一带一路”政策的了解情况,现采用分层抽样的方法抽取一个容量为500的样本,其中大一年级抽取200人,大二年级抽取100人.若其他年级共有学生3000人,则该校学生总人数是______. 21. 方程log 2(2-x )+log 2(3-x )=log 212的解x =______. 22. 函数 的定义域为 . 三、解答题(本大题共3小题,共30.0分)23. 已知函数f (x )= ,, < < ,.(1)求f (π);(2)在坐标系中画出y =f (x )的图象; (3)若f (a )=3,求a 的值.24.如图,在四棱锥S-ABCD中,底面ABCD为菱形,SA⊥平面ABCD.(1)求证:AB∥平面SCD;(2)求证:BD⊥SC.25.已知函数⑴求的最小正周期及对称中心;⑵若,求的最大值和最小值.答案和解析1.【答案】D【解析】【分析】本题考查的知识点是集合的交集及其运算,难度不大,属于基础题.解不等式求出集合A,B,结合交集的定义,可得答案.【解答】解:∵集合A={x|x2-4x+3<0}=(1,3),B={x|2x-3>0}=(,+∞),∴A∩B=(,3).故选D.2.【答案】C【解析】【分析】本题考查函数的单调性,属于基础题.【解答】解:A.∵f(x)=3-x在(0,+∞)上为减函数,故A不正确;B.∵f(x)=x2-3x是开口向上对称轴为x=的抛物线,所以它在(0,+∞)上先减后增,故B 不正确;C.∵f(x)=-在(0,+∞)上y随x的增大而增大,所它为增函数,故C 正确;D.∵f(x)=-|x|在(0,+∞)上y随x的增大而减小,所以它为减函数,故D不正确.故选C.3.【答案】B【解析】【分析】本题考查的是分段函数的函数值求法,属于基础题.可以根据不同的条件选择不同的解析式进行求值,得到本题结论.【解答】解:∵函数f(x)=,∴f(4)=1-log24=1-2=-1,f(f(4))=f(-1)=21-(-1)=22=4.故选B.4.【答案】C【解析】本题考查象限角和轴线角,考查了角的集合的表示法,是基础题.直接由图写出终边落在阴影部分(含边界)的角的集合的答案.【解答】解:如图:终边落在阴影部分(含边界)的角的集合是{α|-45°+k•360°≤α≤120°+k•360°,k Z}.故选C.5.【答案】C【解析】【分析】本题考查的知识要点:三视图的应用.直接利用三视图的复原图求出几何体的体积.【解答】解:根据三视图:该几何体为底面为直角梯形的四棱柱.如图所示:故该几何体的体积为:V=.故选C.6.【答案】A【解析】【分析】本题考查学生会根据两点坐标求过两点直线的斜率,是一道基础题.根据两点坐标求出直线l的斜率即可.【解答】解:直线AB的斜率k==2故选A.7.【答案】D【解析】【分析】本题主要考查两条直线的交点坐标,以及两直线垂直的应用,即可得直线方程的点斜式方程与一般式方程.解:由题意得:,解得,直线2x+y-5=0的斜率是-2,故其垂线的斜率是:,∴所求方程是:y-2=(x-1),即x-2y+3=0,故选D.8.【答案】A【解析】【分析】由已知茎叶图中这两组数据的中位数相等,且平均值也相等,可得x,y的值.本题考查的知识点是茎叶图,平均数和中位数,难度不大,属于基础题.【解答】由已知茎叶图知甲组数据的中位数为65,故乙组数据的中位数也为65,即y=5,则乙组数据的平均数为:66,故x=3,故选:A.9.【答案】D【解析】【分析】本题主要考查分层抽样的应用,根据条件建立比例关系是解决本题的关键,比较基础.根据分层抽样的定义建立比例关系进行求解即可.【解答】解:∵高一、高二、高三的学生人数之比为2:3:5,∴若用分层抽样的方法抽取容量为200的样本,则应从高三学生中抽取的人数为==100,故选D.10.【答案】D【解析】【分析】分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是利用循环计算并输出值.模拟程序的运行过程,用表格对程序运行过程中各变量的值进行分析,不难得到最终的输出结果.根据流程图(或伪代码)写程序的运行结果,是算法这一模块最重要的题型,属于基础题.【解答】解:程序在运行过程中各变量的值如下表示:是否继续循环 x y z,循环前 1 1 2,第一圈是 1 2 3,第二圈是 2 3 5,第三圈是 3 5 8,第四圈否.故最终的输出结果为:.故选D.11.【答案】C【解析】【分析】本小题主要考查概率、古典概型、列举法等基础知识,考查运算求解能力和推理论证能力,是基础题.先运用列举法列出所有基本事件,再列出取出的2支彩笔中含有红色彩笔包含的基本事件,由此能求出取出的2支彩笔中含有红色彩笔的概率.【解答】解:有5支彩笔(除颜色外无差别),颜色分别为红、黄、蓝、绿、紫,从这5支彩笔中任取2支不同颜色的彩笔,所得所有事件为:{红,黄}、{红,蓝}、{红,绿}、{红,紫}、{黄,蓝}、{黄,绿}、{黄,紫}、{蓝,绿}、{蓝,紫}、{绿,紫},共有十种.取出的2支彩笔中含有红色彩笔包含的基本事件为{红,黄}、{红,蓝}、{红,绿}、{红,紫},∴取出的2支彩笔中含有红色彩笔的概率为p==.故选C.12.【答案】B【解析】【分析】本题给出角α的终边在第二象限,求的终边所在的象限,着重考查了象限角、轴线角和终边相同角的概念,属于基础题.根据角α的终边在第二象限,建立角α满足的不等式,两边除以2再讨论整数k的奇偶性,可得的终边所在的象限.【解答】解:∵角α的终边在第二象限,∴2kπ+<α<2kπ+π,k Z∴kπ+<<kπ+,①当k为偶数时,2nπ+<<2nπ+,n Z,得是第一象限角;②当k为奇数时,(2n+1)π+<<(2n+1)π+,n Z,得是第三象限角;故选B.13.【答案】A【解析】【分析】本题考查了象限角、轴线角,是基础题,由410°=360°+50°,即可求出410°角的终边落在第一象限.【解答】解:∵410°=360°+50°,∴410°角的终边落在第一象限.故选A.14.【答案】B【解析】【分析】本题考查向量的坐标运算,是基础题.【解答】解:∵向量=(1,2),=(3,1),∴-=(2,-1)故选B.15.【答案】B【解析】[分析]本小题主要考查向量的模等基础知识,属于基础题.利用向量的模的计算公式:=,即可求解.[解答]解:∵已知,那么=.故选B.16.【答案】B【解析】【分析】本题考查等差数列的第12项的求法,是基础题,解题时要认真审题,注意等差数列的性质的合理运用.利用等差数列通项公式求解.【解答】解:∵等差数列{a n},a2=-8,公差d=2,∴a12=a2+10d=-8+10×2=12.故选B.17.【答案】D【解析】【分析】本题考查正弦定理以及三角形边角关系的应用,解题时注意内角的范围,属于基础题.根据题意和正弦定理求出sinB的值,由边角关系、内角的范围,特殊角的三角函数值即可求出B.【解答】解:由题意得,△ABC中,a=1,,A=30°,由得,sinB===,又b>a,0°<B<180°,则B=60°或B=120°,故选D.18.【答案】D【解析】解:∵log2a<0=log21,由对数函数y=log2x在(0,+∞)单调递增∴0<a<1∵,由指数函数y=单调递减∴b<0故选:D.由对数函数y=log2x在(0,+∞)单调递增及log2a<0=log21可求a的范围,由指数函数y=单调递减,及可求b的范围.本题主要考查了借助指数函数与对数函数的单调性比较大小求解参数的范围,属于基础试题19.【答案】【解析】【分析】本题考查了正弦定理和余弦定理,属于基础题,根据正弦定理得c2-b2+a2=ac,又由余弦定理得cosB==,即可求出角B.【解答】解:由正弦定理可得=,∴c2-b2=ac-a2,∴c2-b2+a2=ac,由余弦定理得cosB==,∵0<B<π,∴B=,故答案.20.【答案】7500【解析】【分析】本题主要考查分层抽样的定义和方法,用每层的个体数乘以每个个体被抽到的概率等于该层应抽取的个体数,属于基础题.由题意,其他年级抽取200人,其他年级共有学生3000人,即可求出该校学生总人数.【解答】解:由题意,其他年级抽取200人,其他年级共有学生3000人,则该校学生总人数是=7500.故答案为7500.21.【答案】-1【解析】解:∵方程log2(2-x)+log2(3-x)=log212,∴,即,解得x=-1.故答案为:-1.利用对数的性质、运算法则直接求解.本题考查对数方程的解法,是基础题,解题时要认真审题,注意对数的性质、运算法则的合理运用.22.【答案】[3,+∞)【解析】【分析】本题主要考查了函数的定义域问题,由根式内部的代数式大于等于0,然后求解指数不等式.【解答】解:由2x-8≥0,得2x≥8,则x≥3,∴函数y=的定义域为[3,+∞).故答案为[3,+∞).23.【答案】解:(1)f(π)=2π;(2)如下图:(3)由图可知,f(a)=3时,a2=3,解得,a=.【解析】(1)由π>2,代入求值;(2)作函数的图象;(3)由题意,a2=3.本题考查了学生对分段函数的掌握情况及学生的作图能力,属于基础题.24.【答案】证明:(1)因为ABCD为菱形,所以AB∥CD.又因为AB⊄平面SCD,CD⊂平面SCD,所以AB∥平面SCD.(2)连接AC,因为底面ABCD为菱形,所以BD⊥AC.又因为SA⊥平面ABCD,BD⊂平面ABCD,所以SA⊥BD.因为SA⊂平面SAC,AC⊂平面SAC,SA∩AC=A,所以BD⊥平面SAC.又因为SC⊂平面SAC,所以BD⊥SC.【解析】本题考查线面平行的证明、线面垂直的判定与性质,属于基础题,解题时要认真审题,注意空间思维能力的培养.(1)由底面ABCD为菱形,得AB∥CD,结合线面平行的判定定理可得AB∥平面SCD. (2)连接AC,由线面垂直得SA⊥BD,由菱形的性质得AC⊥BD,由此能证明BD⊥平面SAC,再由线面垂直的性质可得结论.25.【答案】解:⑴∴ 的最小正周期为,令,则,∴ 的对称中心为.⑵∵∴∴∴∴当时,的最小值为;当时,的最大值为.【解析】本题考查三角函数的图像与性质,属于基本题型.(1)化简三角函数为,然后求最小正周期及对称中心.(2)先由的范围求出,即可得出答案.。

2019年山东省冬季高中学业水平考试数学模拟(一)试题(解析版)

2019年山东省冬季高中学业水平考试数学模拟(一)试题(解析版)
则直线 与平面 可以平行或相交,
所以错误;
对于②,直线 平面 , ,且 ,
则直线 与平面 可以平行或相交,
所以错误;
对于③,直线a平行于平面 内的两条直线,
直线 还有可能在面内,
所以错误.
故选:A.
【点睛】
本题考查根据线线关系和线面关系判断命题,属于简单题.
4.函数 是指数函数,则()
A. 或 B. C. D. 且
16.已知 ,那么 等于()
A. B. C. D.
【答案】B
【解析】 ,选B.
17.经过原点并且与直线 相切于点 的圆的标准方程是()
A. B.
C. D.
【答案】A
【解析】根据题意得到过点 和直线 垂直的直线,该直线与直线 相交,得到圆心坐标,再求出半径,从而得到所求圆的标准方程.
【详解】
因为直线 与圆相切于点 ,
【详解】
函数 ,
当 时, ,
令 ,即 ,解得 (舍),
当 时, ,
令 ,即 ,解得
综上 的零点个数为 .
故选:B.
【点睛】
本题考查根据函数解析式求零点个数,属于简单题.
19.下列函数中,最小正周期为π,且图象关于直线x= 对称的是()
A. B.
C. D.
【答案】D
【解析】判断最小正周期以及直线x= 是否为对称轴,即可作出选择.
【详解】
因为直线 过点 ,
所以 ,即 ,
所以直线的斜率为
故选:B.
【点睛】
本题考查根据直线所过的点求直线斜率,属于简单题.
10.为了解学生在课外活动方面的支出情况,抽取了 个同学进行调查,结果显示这些学生的支出金额(单位:元)都在 ,其中支出金额在 的学生有117人,频率分布直方图如图所示,则 ()
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018年普通高中学业水平考试模拟试卷(一)
数 学
本试题卷包括选择题、填空题和解答题三部分.时量120分钟,满分100分.
一、填空题:本大题共10小题,每小题4分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1.已知集合U={1,2,3,4,5,6,7},A={1,3,6,7},则∁U A 等于 A .{2,4,6} B .{1,3,5} C .{2,4,5} D .{3,5}
2.已知tan α=2,则cos α-2sin α
cos α+sin α
的值等于
A .3
B .2
C .1
D .-1
3.如图所示,随机往正方形中扔一颗豆子(落在正方形外不算),则它落到阴影部分的概率是
A .13
B .12
C .58
D .38
4.设|a |=4,|b |=9,a ·b =182,则a 与b 的夹角为
A .π4
B .π3
C .3π4
D .π
6
5.如图是长和宽分别相等的两个矩形,给定下列三个命题: (1)存在三棱柱,其正(主)视图、俯视图如图; (2)存在四棱柱,其正(主)视图、俯视图如图; (3))存在圆柱,其正(主)视图、俯视图如图. 其中真命题的个数是 A .3 B .2 C .1 D .0 6.在△ABC 中,已知a 2+b 2=c 2-2ab ,则∠C= A .30︒ B .45︒ C .150︒ D .135︒
7.一个单位有职工160人,其中有业务员104人,管理人员32人,后勤服务员24人,要从中抽取一个容量为20的样本,用分层抽样的方法抽取样,则在20人的样本中应抽取后勤服务人员的人数为 A .3 B .4 C .5 D .6 8.圆x 2+y 2+4y +3=0与直线kx -y -1=0的位置关系是 A .相离 B .相交或相切 C .相交 D .相交,相切或相离
9.若函数f (x )唯一的一个零点同时在区间(0,16),(0,8),(0,4),(0,2)内,则下列命题中正确的是
A .函数f (x )在区间(0,1)内有零点
B .函数f (x )在区间(0,1)或(1,2)内有零点
C .函数f (x )在区间[2,16)上无零点
D .函数f (x )在区间(1,16)内无零点 10.两平行直线3x +4y -12=0与ax +8y +11=0间的距离等于
A .1310
B .72
C .235
D .与a 的取值有关
题号 1 2 3 4 5 6 7 8 9 `10 答案
C
D
B
A
A
D
A
B
B
二、填空题:本大题共5小题,每小题4分,满分20分.
11.函数y =2sin(3x +π
6)的最小正周期是[ 2π3
].
12.已知2x =3,log 28
3
=y ,则x +y = [ 3 ].
13.已知x ,y 满足不等式组⎪⎩
⎪⎨⎧≥≥≤+,0,
0,
3y x y x 则S=x -y 的最大值是[ 3 ]. 14.下图给出一个程序框图,其运行结果是[ 30 ]. 15.用一根长为12cm 的铁丝围成一个矩形,
则矩形面积的最大值为[ 9 cm 2 ].
三、解答题:本大题共5小题,满分40分.解答应写出文字说明、证明过程或演算步骤.
16.(本题满分6分)从一个装有3个红球A 1,A 2,A 3和2个白球B 1,B 2的盒子中,随机取出2个球.
(1)用球的标号列出所有可能的取出结果; (2)求取出的2个球都是红球的概率.
解:(1)所有可能的结果共有10个:A 1A 2,A 1A 3,A 1B 1,A 1B 2,A 2A 3,A 2B 1,A 2B 2,A 3B 1,A 3B 2,B 1B 2。

(2)取出的2个球全为红球只占其中的3个:A 1A 2,A 1A 3,A 2A 3,故所求的概率为3
10。

17.(本题满分8分)已知二次函数y =f (x ),当x =2时,函数f (x )取最小值-1,且f (1)+f (4)=3. (1)求f (x )的解析式;
(2)若g (x )=f (x )-kx 在区间(1,4)上无最小值,求实数k 的取值范围.
解:(1)因为x =2时,二次函数f (x )取最小值-1,所以可设f (x )=a (x -2)2-1(a >0)。

又f (1)+f (4)=3,所以a -1+4a -1=3,从而a =1,因此f (x )=(x -2)2-1=x 2-4x +3。

(2)由于g (x )=f (x )-kx =x 2-(k +4)x +3在区间(1,4)上没有最小值,
所以对称轴x =k +42∉(1,4),即k +42≤1或k +4
2
≥4,解得k ≤-2或k ≥4。

因而实数k 的取值范围是),4[]2,(+∞--∞ 。

18.(本题满分8分)如图,四棱锥M-ABCD 中,底面ABCD 是直角梯形,DC ∥AB ,AD ⊥AB ,
AD=AE=DC=1
2
AB=4,△MDC 是等边三角形,且平面MDC ⊥平面ABCD .
(1)证明:EC ∥平面MAD ; (2)求三棱锥B-AMC 的体积.
证:(1)∵DC ∥AB ,AE=DC=4,∴四边形AECD 为□,故AD ∥CE , 而CE ⊄面AMD ,AD ⊂面AMD ,因此EC ∥平面MAD ;
解:(2)∵△MDC 是等边三角形,且平面MDC ⊥平面ABCD ,
∴取CD 的中点N ,连MN ,知MN ⊥CD ,于是MN ⊥平面ABCD 。

在正△MDC 中,MN=23,
在菱形AECD 中,由AD ⊥AB ,知CE=4且CE ⊥AB 。

因而△ABC 的面积为12×8×4=16,所以V B-AMC =V M-ABC =13×16×23=323
3。

19.(本题满分8分)已知函数f (x )=Asin(ωx +ϕ)(A>0,ω>0,0<ϕ<π
2
),x ∈R ,f (x )的最小值为-4,f (0)=22,
且相邻两条对称轴之间的距离为π. (1)求函数f (x )的解析式;
(2)若x ∈(π
2,π),且f (x )=1,求cos(x +5π12
)的值.
解:(1)由f (x )的最小值为-4,知A=4,又相邻两条对称轴之间的距离为π,所以T=2π,ω=1。

于是f (x )=4sin(x +ϕ),又f (0)=22,所以sin ϕ=22,注意到0<ϕ<π2,所以ϕ=π
4。

因此f (x )=4sin(x +π
4
)。

(2)由f (x )=1,可得sin(x +π4)=14,又x ∈(π2,π),所以cos(x +π
4)=-154

于是cos(x +5π12)=cos[(x +π4)+π
6]=-154×32-14×12=-35+18。

20.(本题满分10分)设{a n }为等差数列,S n 为数列{a n }的前n 项和,已知a 2+a 6=2,S 15=75. (1)求数列{a n }的通项公式;
(2)若b n =n a
2-(2n -1),求数列{b n }的前n 项和T n .
解:(1)因为等差数列{a n }中,a 2+a 6=2,S 15=75,所以a 4=1,a 8=5,故d =1, 于是通项公式为a n =a 4+(n -4)d =n -3。

(2)由(1)知b n =2n -3-(2n -1),
于是T n =2-2+2-1+20+2+…+2n -3-(1+3+5+…+(2n -1))=1
2)12(41--n
-n 2=2n -2-14-n 2。

相关文档
最新文档