船舶结构力学:第一章绪论

合集下载

船舶结构力学

船舶结构力学

第一章:绪论1由于船舶经常在航行状态下工作,它所受到的外力是相当复杂的。

这些外力包括船的各种载重(静载荷)、水压力、冲击力、以及运动所产生的惯性力(动载荷)等。

为了保证船舶在各种受力下都能正常工作,船舶具有一定的强度。

所谓具有一定的强度是指船体结构在正常使用的过程中和一定的年限内具有不破坏或不发生过大变形的能力。

2船体强度包括中拱状态、总纵强度、局部强度、扭转强度问题、应力集中问题、低周期疲劳。

3把船舶整体当做空心薄壁梁计算出来的强度就成为船体的总纵强度。

局部强度是指船体的横向构件(如横梁、肋骨、及肋板等)一集船体的局部构建(如船底板、底纵衍等)在局部载荷作用下的强度。

4船体强度所研究的问题通常包括外力,结构在外力作用下的响应,及内力与变形,以及许用应力的确定等一系列问题。

船舶结构力学只研究船体结构的静力响应,及内力与变形,以及受压结构的稳定性问题,因此,船舶结构力学的首要任务是阐明结构力学的基本原理与方法,即阐明经典的方法、位移法及能量原理。

5船舶设计与制造是一个综合性很强的行业。

学习本课程不要仅仅满足于会计算船体结构中一些典型构件(如连续梁、钢架、板架、板)还应学会解决一般工程结构的计算问题。

6船体结构是由板和骨架等构件组成的空间复杂结构,在进行结构计算之前需要对实际的船体结构加以简化。

简化后的结构图形称为实际结构的理想化图形或计算图形(又称计算模型或力学模型等)7结构的计算图形是根据实际结构的受力特征,构建之间的相互影响,计算精度的要求以及所采用的计算方法,计算工具等因素确定的。

因此,对于同一个实际结构,基于不同的考虑就会得出不同的计算图形,对于同一个实际结构,其计算图形不是唯一的,一成不变的。

8首先是船体结构中的板,板是船体的纵、横骨架相连接的,且通常被纵、横骨架划分成许多矩形的板格。

9其次是船体结构中的骨架,船体结构中的骨架无外乎是横向构件—横梁、肋骨、肋板和纵向构件—纵桁、纵骨等,它们大都是细长的型钢或组合型材,故称为“杆件”或简称为“杆”。

船舶结构力学ppt

船舶结构力学ppt

第一章 绪论
船舶结构力学的任务: ① 阐明结构力学的基本原理和方法,包括力法、位移法
和能量原理; ② 应用上述原理解决船舶结构力学所要研究的问题; ③ 阐明有限单元法的基本原理及其在船体结构计算中的
应用。
第一章 绪论
1.2 船体结构的计算图形
理想化模型/计算图形
1.2 船体结构的计算图形 计算图形根据计算要求会有所改变,并不固定。
(2)骨架
船底交叉杆系
大舱口货船悬臂梁结构
基本理论和方法;
结合杆及杆系的强度问题讲述力法、位移法、矩阵法和 能量法;
板的强度; 杆和板的稳定性绪论
研究船舶结构力学主要是为了保证船体结构具有一定的强度, 保证船舶在正常的使用过程和一定的年限内具有不破坏或不发 生过大变形的能力。
船体强度包括:总纵强度、局部强度、稳定性、扭转、应力集 中、动力响应等。 船舶结构力学只研究静力响应,包括外力计算、结构在外力作 用下的响应、许用应力的确定等。
1.2 船体结构的计算图形
(2)骨架 骨架大都为细长的型钢或组合型材,称为杆件或杆。 一般分析时,杆的截面形状如下:
骨架带板
1.2 船体结构的计算图形
(2)骨架 实际中的杆件系统简化为规则的简单计算图形。
上甲板纵骨(杆件)
中间有支柱的舱口杆系
舱口杆系(交叉杆系)
横梁与肋骨组成的刚架
1.2 船体结构的计算图形
1.2 船体结构的计算图形
(1)板
1.2 船体结构的计算图形
(1)板 一般考虑受骨架支撑的矩形平板问题;此时骨架支撑很重要。
另外还有矩形平板上的开口问题;此时骨架边界不是很重要,主要考虑开 口的形状、大小。
板的边界根据研究问题的不同而不同。 当研究板受垂向力的弯曲与变形时,此时的边界条件刚性固定; 当研究板的稳定性问题时,此时的边界条件为自由支持。

集美大学 船舶结构力学(48学时)第一章 绪论(2014年)

集美大学 船舶结构力学(48学时)第一章 绪论(2014年)

8、船体扭转强度:当船舶在 斜浪上航行,整个船体将发生 扭转,船舶抵抗发生过大扭转 变形或受到破坏的能力。
9、应力集中:在船体结构不 连续的地方,发生应力汇集或 突然增大的现象,将引起构件 裂缝形成或蔓延。(参见图16及图片)
注: (1) 船舶强度(或船体强度) 是泛指研究船体结构强度的科 学,它包括外力、结构在外力 作用下的反应即内力研究和许 用应力的确定等一系列的问题。
3、工艺力学; 4、船体结构强度分析的一些特 殊力学问题。
(船舶进坞及下水强度、温度对船体结构的作 用及船舶抗冰强度)
教学目的:
1、通过本课程的学习,使学生掌 握船舶结构力学的基本理论与方 法; 2、 力求培养学生船舶结构分析 与计算等方面的能力;
3、 培养学生自学和独立思考 能力,以便在走上工作岗位后, 能通过自学不断地吸收新知识, 开拓新领域,研究新问题,探 求新的机理,充分发挥自己的 才能。
2、骨架的计算模型(连续梁、 板架、刚架)
就整个船体来说,船体的骨架 系统是一个复杂的空间杆系结构。 在实际计算时,尤其是采用经典方 法计算时,常常把杆系简化成一些 形状比较规则的简单的计算图形。
1) 杆件(杆):细长的型钢 或组合型材如横梁、肋骨、肋 板、纵骨、纵桁等船体骨架。
2) 杆件系统(杆系):相互 连接的船体骨架系统。船体的 杆系是一个复杂的空间系统。 简化后的典型杆系:连续梁; 板架;刚架。
3)连续梁(刚性支座上的连续 梁):两端以一定的形式固定, 中间具有多个刚性支座,且在 横向荷重作用下的直杆。(注: 属多次静不定结构。)
以远洋干货船船体结构甲 板部分(图1-7)为例介绍连 续梁模型的建立: (参见图1-8)
甲板纵骨
当计算甲板纵骨在垂直于甲板 的载荷作用下的弯曲应力与变形时, 可将其取为图1-6 a所示的计算图 形——两端刚性固定、中间自由支 持在刚性支座上的连续梁。

船舶结构力学课件

船舶结构力学课件

教学中具体方法包括: 力法(Force method) 位移法(Displacement) 能量法(Energy method) 矩阵法(Matrix method) 有限元法(Finite element)
一、结构的几何不变性 ① 几何不变的意义 ② 几何不变系统 ③ 瞬时几何可变系统
二、几何不变性的判断
目的:
使学习者具有对船体结构进行 强度及变形分析的能力.
§1-2 船舶结构力学的研究方法
一般船舶结构分析方法
将船体的总强度与横向强度或局部 强度问题分开考虑;
在横向强度或局部强度问题中, 将空间结构拆成平面结构;
计算中又将船体的骨架和板分开考 虑;
计算机出现后的新方法: ➢将总强度与横向强度及局部强度
问题一起考虑; ➢完全可计算空间结构; ➢可不将骨架和板分开,而共同考
虑;
§1-3 船舶结构的计算图形 及典型结构
一般分析的原则: 将板与骨架分开进行分析
又可根据骨架受力以及结构变形特点将骨架 简化为更为简单的平面结构形式
板பைடு நூலகம்构
纵骨
船体结构中三种典型杆系 连续梁、刚架、板架
横梁
肋骨
❖板 板弯曲问题
板平面问题
垂直荷重 开口应力集中问题
板面内受到载荷 作用
组合载荷问题 稳定性问题
刚架
连续梁
船底
甲板结构
板架
平板结构 连续梁 刚架结构
板架结构
结构特点 结构受力特点 结构变形特点
❖空间和复杂结构
悬臂梁 甲板纵绗
肋骨
大舱口悬臂梁计算图形
大型油轮肋骨刚架离 散化计算图形
教学中具体内容: 杆及杆系的强度 板的强度 杆系和板的稳定性问题

21_第一讲第一章绪论课件

21_第一讲第一章绪论课件
有限元-FEM
Pre
Next
Exit
15
2、结构简化
结构的受力特点 结构简化的依据 结构的变形特征
构件之间的影响和计算要求 不同的计算要求,可以简化成不同的模型
船舶结构 主要构件
骨架——包括横梁、肋骨、纵骨、纵桁、扶强材、
支撑
垂直桁、水平桁、支柱等
有两类:板——包括船体外板、内底 Nhomakorabea、各层甲板、
纵横舱壁、平台等
3 稳定破坏
因有构件失稳出现恶性循环,使受压构件逐个失稳,导致全船 失稳的破坏
4 疲劳破坏
在交变应力经过大量循环之后,船体上裂纹变得足够大,致使 构件发生断裂
研究船体结构响应大致过程:
外力 作用 结构物 产生
变形 应力
静响应 称为 响应
动响应 5
3、船舶设计中的计算形式
(1)总纵强度(船体梁-ship hull girder)
★局部强度:研究横向构件(如横梁、肋骨、肋板等)
或局部构件(船底外板、底纵桁等)的强度问题。
Pre
Next
Exit
7
(3)稳定性(buckling)
★稳定性问题:船体在总弯曲时船体受压的构件会因为受压 过度而丧失稳定性。
Pre
Next
Exit
8
(4)扭转问题
★扭转问题:船在斜浪上航行,经常与波浪斜交,导致船体发 生扭转,因此也就存在扭转问题。
Pre
Next
Exit
18
(2)上甲板骨架
在上甲板(或下甲板)的骨架中,甲板纵桁与舱口端横梁尺寸最大, 在计算时常可略去其他骨架对它们的影响,于是在研究甲板纵桁与舱 口端横梁时就得到了一个井字形的平面杆系。此种杆系因外载荷垂直 于杆系平面而发生弯曲,称为“交叉梁系”或“板架” 。如果舱口端横梁 中点有支柱或半舱壁,则结构可以继续化简.

船舶结构力学习题册

船舶结构力学习题册

船舶结构⼒学习题册第⼀章绪论计算⾻架断⾯惯性矩时的表格算法断⾯形式构件名称构件⾯积a (cm 2)构件形⼼距参考轴距离(cm ) ay ay 2构件对其形⼼的惯性矩i (cm 4)带板腹板⾯板 … … … … … … … … … … … … / … /ABC⽔平构件对其形⼼的惯性矩可以不计。

断⾯中和轴离参考轴距离ε=B/A(cm)断⾯对中和轴的惯性矩 I=C-εB(cm 4)最⼩断⾯模数 W min =I/y*max (cm 3)第⼆章单跨梁的弯曲理论⼀.初参数法1.⽤初参数法求两端⾃由⽀持在刚性⽀座上,受均布载荷的梁的挠曲线。

2.⽤初参数法图2所⽰受集中⼒作⽤的单跨梁的挠曲线⽅程式。

梁的左端为弹性固定,柔性系数为α=l/(3EI)。

梁的右端为弹性⽀座,柔性系数为A=l3/(48EI)。

3.两端刚性固定的梁,不受外荷重,当其右⽀座发⽣位移△时,求其挠曲线与断⾯弯矩与剪⼒。

4⽤初参数法求图中单跨梁的挠曲线⽅程式。

5. 图中的双跨梁,试⽤初参数法解之,求出挠曲线⽅程式,设弹性⽀座的柔性系数为A=l3/(3EI)。

6.考虑剪切影响,试导出图中梁的挠曲线⽅程式及两端的弯矩及剪⼒,并将结果推⼴到梁左端与右端分别有位移△i,θi及△j,θj 时的情况。

梁的长度为l,断⾯惯性矩为I,有效抗剪⾯积为A s。

7. 如图所⽰变断⾯梁,⽤初参数法解之。

图中P=q l,求出挠曲线⽅程式及P⼒作⽤点处的挠度和转⾓。

8.⽤初参数法求图所⽰单跨梁的挠曲线⽅程式,转⾓⽅程式,弯矩⽅程式,剪⼒⽅程式。

推导中可令a=αEI/l (1)求出当α→∞时梁两瑞的转⾓,进⾏分析讨论。

(2)求出当α→0时梁左端的转⾓、弯矩及梁右端的转⾓,进⾏分析讨论。

a⼆.利⽤弯曲要素表进⾏计算1.利⽤弯曲要素表进⾏计算(1)计算图a中两端刚性固定梁的弯曲要素/(3EI)(2)求图b所⽰悬臂梁⾃由端点的挠度和转⾓。

α=l(3)求图c所⽰梁的左端弯矩和右端⽀反⼒。

船舶结构力学课后题答案解析(上海交大版)

船舶结构力学课后题答案解析(上海交大版)

s目录第1章绪论 (2)第2章单跨梁的弯曲理论 (2)第3章杆件的扭转理论 (15)第4章力法 (17)第5章位移法 (28)第6章能量法 (41)第7章矩阵法 (56)第9章矩形板的弯曲理论 (69)第10章杆和板的稳定性 (75)第1章绪论1.1题1)承受总纵弯曲构件:连续上甲板,船底板,甲板及船底纵骨,连续纵桁,龙骨等远离中和轴的纵向连续构件(舷侧列板等)2)承受横弯曲构件:甲板强横梁,船底肋板,肋骨3)承受局部弯曲构件:甲板板,平台甲板,船底板,纵骨等4)承受局部弯曲和总纵弯曲构件:甲板,船底板,纵骨,递纵桁,龙骨等1.2题甲板板:纵横力(总纵弯曲应力沿纵向,横向货物或上浪水压力,横向作用)舷侧外板:横向水压力等骨架限制力沿中面底板:主要承受横向力货物重量,骨架限制力沿中面为纵向力舱壁板:主要为横向力如水,货压力也有中面力第2章单跨梁的弯曲理论2.1题设坐标原点在左跨时与在跨中时的挠曲线分别为v(x)与v(1x)1)图2.1333 2334243()()()424 ()26666l l ll l lp x p x p x M x N xv xEI EI EI EI EI---=++++原点在跨中:3230111104()4()266llp xM x N xv x vEI EI EI-=+++,'11'11()0()022(0)0(0)2l lv vpv N⎧==⎪⎨⎪==⎩2)3323()3 2.2()266llp xN xMxv x xEI EI EIθ-=+++图3)333002()2 2.3()666xx x llp xN x qx dxv x xEI EI EIθ-=++-⎰图2.2题a)33111311131(3)(2)616444641624 pp ppl plv v vEI EI⎡⎤⎡⎤=+=⨯⨯-+⨯-⨯⎢⎥⎢⎥⎣⎦⎣⎦=3512plEI333321911()61929641624pl pl pl V EI EI EI⎡⎤⎛⎫=-++=⎪⎢⎥⎝⎭⎣⎦b)2'292 (0)(1)3366Ml Ml PlvEI EI EI-=+++=2220.157316206327Pl Pl PlEIEI EI-+=⨯2291()(1)3366Ml Ml PllEI EI EIθ-=+-+=2220.1410716206327Pl Pl PlEIEI EI---=⨯()()()2222133311121333363l lp llv m mEIl EI⎛⎫⎛⎫⎪ ⎪⎛⎫⎝⎭⎝⎭⎡⎤=----+⎪⎣⎦⎝⎭=2372430plEIc) ()44475321927682304qlql qllvEI EI EI=-=()23233 '11116(0)962416683612l q lql pl ql ql v EI EI EI EI EI⎡⎤=--=--=⎢⎥⎣⎦d)2.1图、2.2图和2.3图的弯矩图与剪力图如图2.1、图2.2和图2.3图2.1图2.2图2.32.3题1)()32212120624452313120Ml ql l l Mlq q EI EI EI EI q l M θ⎡⎤=---+=⎢⎥⎣⎦∴=右2)32101732418026q l Ml l l Ml lq EI EI EIEI θ⎡⎤=-++-⎢⎥⎣⎦=3311117131824360612080q l q l EI EI⎛⎫-++-=-⎪⨯⎝⎭ 2.4 题2.5图3000()6N x v x v x EIθ=++,()00v A p N =-300()6x v x Ap x A N EI θ⎛⎫∴=++- ⎪⎝⎭如图2.4, ()()0v l v l '==由得300200200060263l Ap l A N EI l N EI pl Ap l EI pN θθθ⎫⎛⎫++-=⎪⎪⎪⎝⎭⎬⎪+=⎪⎭⎧-==-⎪⎨⎪=⎩解出 3333()1922pl x x v x EI l l ⎛⎫∴=-+ ⎪⎝⎭图2.42.6图()()()()()()()2300122300012120001221223121212260,42026622M x N x v x x EI EIv l v l M l N l EI EI M l l l EI EIEI M l N l N l EI EI x x v x x l l θθθθθθθθθθθθθθ=++'==⎫⎧=--++=⎪⎪⎪⎪⎬⎨⎪⎪=+++=⎪⎪⎩⎭++∴=++由得解得 2.5题2.5图:(剪力弯矩图如2.5)()132023330222002332396522161848144069186pl Mp pR p ll p pl v AR EI EI v l Mlpl pl pl v EI EI EI EI v Ml pl pl pl v l EI EI EI EIθ-∴==-===⋅=⎛⎫=-=-= ⎪⎝⎭-'==--=-=-()16A pa b b M A l K l ⎡⎤=++⎢⎥⎣⎦, 图2.5 111,0,6632A l a l b A K ====+=将代入得:()16312pl pl M ==2.7图:(剪力弯矩图如2.6)341113422244440.052405021005112384240100572933844009600l ql ql v A R EI EI l ql ql v A R EI EIl qlql v EI EI ql ql EI EI==⋅===⋅=⎛⎫⎛⎫=++ ⎪ ⎪⎝⎭⎝⎭⎛⎫=+=⎪⎝⎭ 图2.6()()3331233312111202424401007511117242440100300v v ql ql ql EI l EI EIv v ql ql qll EI l EI EIθθ-⎛⎫=-=-+=⎪⎝⎭--⎛⎫=--=--+=⎪⎝⎭2.8图(剪力弯矩图如2.7)()2221401112124,,0,11,82411118243212121248243,82864AA Qa b M A K l Q qa a l b A K ql ql M ql qlql R ql v AR EIα⎡⎤⎛⎫=⋅++⎢⎥⎪⎝⎭⎢⎥⎣⎦======++==⨯⨯⨯+==-===由,代入得图2.7442433032355238412816384111(0)246246448192()6488l qlql Ml ql v EI EI EI EI v ql Ml ql EI l EI EI ql EIl ql ql l M EI EI θθα⎛⎫∴=+-=⎪⎝⎭⎛⎫=--=-- ⎪⎝⎭=-=-=-⋅=2.6题. []1max 2max 2113212132142.()()62()()62()()242(0)sN EIv s sss s N dv dx dx dx GGA N EI v dx v C GA GA EI ax bx v v v f x cx d f x ax b C GA EI EIax bx f x f x c a x d GA GA qx qx f x f x EI EIv v τγ'''====-''=−−−→-+⎡⎤''∴=+=++++-+++⎢⎥⎣⎦⎛⎫''=-+++-+ ⎪⎝⎭''==''=⎰式中由于11142323432342(0)00()()00242602,224()241222425()23848s s s ssd b v l v l ql EI ql al EI c a l EI GA EIGA qlal EIql ql c EI EIqx qlx qx qx qlv x x EI EI GA EI GA l ql ql v EI GA ===''==⎧⎛⎫-++-=⎪⎪⎪⎝⎭⎨⎪+=⎪⎩=⎛⎫∴=--++⎪⎝⎭∴=+可得出由得方程组:解出:a=2.7.题先推广到两端有位移,,,i i j j θθ∆∆情形:212,i j s EI GA l β⎛⎫∆=∆-∆=⎪⎝⎭令 321011322162(0)(0)()62()2sii i i j i i j s jjEIax bx v cx d ax GA v d v v c al bl EIv l l al GA al v l bl θθθθθ=+++-=∆∴==∆⎫⎪⎬'=∴=⎪⎭⎫=∆∴+++∆-=∆⎪⎪⎬⎪'=∴+=⎪⎭而由由由()()()2213121i j j i i j a l l b l l l θθθβθθθθβ⎧∆⎡⎤=+-⎪⎣⎦+⎪⎨-⎪∆=-+-⎪+⎩解出 ()()()()()()()()()()()()1121(0)(0)62416642162(0)(0)1()(0)()()4261j i i j i j i j j i j i EI M EIv EIb l l EI l l l EI N EIv EIa l l N l N EI M l EIv l EI b al l l βθβθββθβθβθθββθβθβ∆⎡⎤''∴===+--+⎢⎥+⎣⎦⎡⎤=-∆-∆+++-+⎢⎥+⎣⎦⎧⎡⎤''===+-∆-∆⎪⎢⎥+⎣⎦⎪⎪=⎨⎪∆⎡⎤⎪''==+=++--⎢⎥+⎪⎣⎦⎩令上述结0i j ∆=∆=∆果中,即同书中特例2.8题 已知:20375225, 1.8,751050kgl cm t cm s cm cm σ=⨯====1025100.7576.875kgq hs cm γ==⨯⨯=面积2cm 距参考轴cm面积距3cm惯性矩4cm自惯性矩4cm外板1.845⨯ 81 0 0 0 (21.87)略 球扁钢O N 24a38.75 9430.2 2232 ∑119.8 15.6 604.5 9430.22253.9ABC=11662224604.55.04116628610119.8BBe cm I C cm AA===-=-=275 1.838.75174min ,4555A cm l lI be s cm=⨯+=⎧⎫===⎨⎬⎩⎭计算外力时面积计算时,带板形心至球心表面1240.9 5.0419.862t y h e cm =+-=+-=形心至最外板纤维321186105.94433.5219.86t I y e cm w cm y =+=∴===()32206186101449.45.9422510501740.3662221086100.988,()0.980Iw cm y A l u EI x u u σϕ===⨯===⨯⨯== ()()()222212012020176.8752250.988320424.1212176.8752250.980158915)242415891510501416433.53204241050127114503204241050378433.5ql M x u kg cm ql M u kgcm M kg cm w M kg cm w M kg w ϕσσσσσσ==⨯⨯==-=-⨯⨯⨯=-=+=+==+=+==+=+=中中球头中板固端球头端(2max 21416kg cm cm σ⎫⎪⎪⎪⎪∴=⎬⎪⎪⎪⎪⎭若不计轴向力影响,则令u=0重复上述计算:222max 0176.875225241050142424433.5142414160.56%1424ql kg w cm σσσ⨯==+=+=⨯-=球头中相对误差:结论:轴向力对弯曲应力的影响可忽略不及计。

船舶结构力学习题答案

船舶结构力学习题答案

船舶结构力学习题答案【篇一:船舶结构力学各章思考题】>(摘自习题)(一)绪论1 什么叫做船体总纵弯曲?船体的总纵强度与局部强度有什么区别与联系?2.船体结构中有哪些受压构件?为什么说船在总弯曲时船体受压的构件(主要是中垂状态时的上层甲板)因受压过度而丧生稳定性后,会大大减低船体抵抗总弯曲的能力?3.何谓骨架的带板?带板的宽度(或面积)与什么因素有关,如何确定?试分析带板宽度对骨架断面几何要素的影响。

4.什么叫做船体结构的计算图形,它是用什么原则来确定的?它与真实结构有什么差别?5.一个完整的船体结构计算图形应包含哪些具体内容?为什么对同一船体结构构件,计算图形不是固定的、一成不变的?(二)单跨梁的弯曲理论1 梁弯曲微分方程式是根据什么基本假定导出的,有什么物理意义,适用范围怎样?2 单跨梁初参数法中的四个参数指什么参数?它们与坐标系统的选择有没有关系?3 为什么当单跨梁两端为自由支持与单跨梁两端为弹性支座支持时,在同样外荷重作用下梁梁断面的弯矩和剪力都相等;而当梁两端是刚性固定与梁两端为弹性固定时,在同样外荷重作用下两梁断面的弯矩和剪力都不同?4 梁的边界条件与梁本身的计算长度、剖面几何要素、跨间荷重有没有关系?为什么? 5 当梁的边界点上作用有集中外力p或几种外弯矩m时,一种处理是把该项外力放在梁端,写进边界条件中去。

另一种处理时把该项外力放在梁上,不写进边界条件。

在求解梁的弯曲要素时,两种处理方法的具体过程有哪些不同?最后结果有没有差别?6 梁的弹性支座与弹性固定端各有什么特点?它们与梁本身所受的外荷重(包括大小、方向及分布范围)有没有关系?为什么梁在横弯曲时,横荷重引起的弯曲要素可以用叠加法求出?(三)力法1 什么叫力法?如何建立力法方程式?2 什么是力法的基本结构和基本未知量?基本结构与原结构有什么异同?力法正则方程式的物理意义是什么?3 当连续梁两端为弹性固定时,如何按变形连续条件建立该处的方程?4 力法可否用来计算不可动节点的复杂钢架?如可以,应如何做?5 用力法计算某些支座有限位移的连续梁或平面刚架时应注意什么问题?6 刚架与板架的受力特征和变形特征有何区别?7 何谓梁的固定系数?它与梁端弹性固定端的柔性系数有何不同?(四)位移法1 试举例说明位移法的基本原理。

01228船舶结构力学

01228船舶结构力学

课程名称:船舶构造力学课程代码:01228〔理论〕第一局部课程性质与目标一、课程性质与特点本课程争论的主要对象是船体构造中的杆件、杆系和板的弯曲及稳定性,系统地阐述了构造力学中的根本理论与方法----力法、位移法及能量原理。

是高等教育自学考试船舶与海洋工程专业的一门重要专业根底课。

二、课程目标与根本要求本课程的目标:学生通过该课程的学习,把握构造力学的根本理论和方法,应用它们来解决船体构造中典型构造〔杆系和板的弯曲及稳定性〕的强度计算分析。

还能处理一般工程构造中类似的力学问题。

本课程根本要求:1.把握建立船体构造计算图形的根本学问2.把握单跨梁的弯曲理论3.把握力法的根本原理和应用4.把握位移法和矩阵位移法的根本原理和应用5.把握能量原理及其应用6.了解有限单元法的根本概念和解题过程7.把握矩形薄板的弯曲理论8.把握杆及板的稳定性概念,解答和应用9.了解薄壁杆件扭转的根本概念10.该课程理论性强,力学概念较难建立,涉及数学学问较多,学习和把握有确定的困难。

相比较而言,单跨梁的弯曲理论和板的弯曲理论是本课程的根本根底。

力法,矩阵位移法,能量法局部偏重于原理和方法在构造分析中的应用。

自学过程中应按大纲要求认真阅读教材,切实把握有关内容的根本概念、根本原理和根本方法。

学习过程中遵循吃透原理、把握计算方法、看懂教材例题,完成局部习题。

不懂的地方要反复学,前、后联系起来学,要抑制浮燥心理,欲速则不达,慢工出细活。

从而到达学懂、学会、学熟,及应用它们来解决实际构造计算。

三、与本专业其他课程的关系本课程是船舶与海洋工程专业的一门专业根底课,该课程应在修完学科根底课和相关的专业根底课后进展学习。

先修课程:高等数学,理论力学,材料力学,船体构造与海洋工程制图后续课程:船体强度与构造设计其次局部考核内容与考核目标第1章绪论一、学习目的与要求本章是对船舶构造力学总述性的概述。

通过对本章的学习,明确船舶构造力学的内容与任务,是为了解决船体强度问题,构造力学争论的是船体构造的静力响应,即内力与变形,以及受压构造的稳定性问题。

船舶结构力学课后题答案

船舶结构力学课后题答案

目录第1章绪论 (2)第2章单跨梁的弯曲理论 (2)第3章杆件的扭转理论 (15)第4章力法 (17)第5章位移法 (28)第6章能量法 (41)第7章矩阵法 (56)第9章矩形板的弯曲理论 (69)第10章杆和板的稳定性 (75)第1章绪论1.1题1)承受总纵弯曲构件:连续上甲板,船底板,甲板及船底纵骨,连续纵桁,龙骨等远离中和轴的纵向连续构件(舷侧列板等)2)承受横弯曲构件:甲板强横梁,船底肋板,肋骨3)承受局部弯曲构件:甲板板,平台甲板,船底板,纵骨等4)承受局部弯曲和总纵弯曲构件:甲板,船底板,纵骨,递纵桁,龙骨等1.2题甲板板:纵横力(总纵弯曲应力沿纵向,横向货物或上浪水压力,横向作用)舷侧外板:横向水压力等骨架限制力沿中面内底板:主要承受横向力货物重量,骨架限制力沿中面为纵向力舱壁板:主要为横向力如水,货压力也有中面力第2章单跨梁的弯曲理论2.1题设坐标原点在左跨时与在跨中时的挠曲线分别为v(x)与v(1x)1)图2.1333 2334243()()()424 ()26666l l ll l lp x p x p x M x N xv xEI EI EI EI EI---=++++原点在跨中:3230111104()4()266llp xM x N xv x vEI EI EI-=+++,'11'11()0()022(0)0(0)2l lv vpv N⎧==⎪⎨⎪==⎩2)3323()3 2.2()266llp xN xMxv x xEI EI EIθ-=+++图3)333002()2 2.3()666xx x llp xN x qx dxv x xEI EI EIθ-=++-⎰图2.2题a)33111311131(3)(2)616444641624 pp ppl plv v vEI EI⎡⎤⎡⎤=+=⨯⨯-+⨯-⨯⎢⎥⎢⎥⎣⎦⎣⎦=3512plEI333321911()61929641624pl pl pl V EI EI EI⎡⎤⎛⎫=-++=⎪⎢⎥⎝⎭⎣⎦b) 2'292(0)(1)3366Ml Ml Pl v EI EI EI-=+++ =2220.157316206327Pl Pl Pl EI EI EI-+=⨯2291()(1)3366Ml Ml Pl l EI EI EIθ-=+-+ =2220.1410716206327Pl Pl Pl EI EI EI---=⨯()()()2222133311121333363l l p l l v m m EIl EI ⎛⎫⎛⎫⎪ ⎪⎛⎫⎝⎭⎝⎭⎡⎤=----+ ⎪⎣⎦⎝⎭=2372430pl EIc) ()44475321927682304ql ql ql l v EI EI EI=-=()23233'11116(0)962416683612lq l ql plqlql v EI EI EIEIEI ⎡⎤=--=--=⎢⎥⎣⎦d) 2.1图、 2.2图和 2.3图的弯矩图与剪力图如图2.1、图2.2和图2.3图2.1图2.2图2.32.3题1)()32212120624452313120Ml ql l l Mlq q EI EI EI EI q l M θ⎡⎤=---+=⎢⎥⎣⎦∴=右2)32101732418026q l Ml l l Ml lq EI EI EIEI θ⎡⎤=-++-⎢⎥⎣⎦=3311117131824360612080q l q l EI EI⎛⎫-++-=-⎪⨯⎝⎭ 2.4 题2.5图3000()6N x v x v x EIθ=++,()00v A p N =-300()6x v x Ap x A N EI θ⎛⎫∴=++- ⎪⎝⎭如图2.4, ()()0v l v l '==由得300200200060263l Ap l A N EI l N EI pl Ap l EI pN θθθ⎫⎛⎫++-=⎪⎪⎪⎝⎭⎬⎪+=⎪⎭⎧-==-⎪⎨⎪=⎩解出 3333()1922pl x x v x EI l l ⎛⎫∴=-+ ⎪⎝⎭图2.42.6图()()()()()()()2300122300012120001221223121212260,42026622M x N x v x x EI EIv l v l M l N l EI EI M l l l EI EIEI M l N l N l EI EI x x v x x l l θθθθθθθθθθθθθθ=++'==⎫⎧=--++=⎪⎪⎪⎪⎬⎨⎪⎪=+++=⎪⎪⎩⎭++∴=++由得解得 2.5题2.5图:(剪力弯矩图如2.5)()132023330222002332396522161848144069186pl Mp pR p ll p pl v AR EI EI v l Mlpl pl pl v EI EI EI EI v Ml pl pl pl v l EI EI EI EIθ-∴==-===⋅=⎛⎫=-=-= ⎪⎝⎭-'==--=-=-()16A pa b b M A l K l ⎡⎤=++⎢⎥⎣⎦, 图2.5 111,0,6632A l a l b A K ====+=将代入得:()16312pl pl M ==2.7图:(剪力弯矩图如2.6)341113422244440.052405021005112384240100572933844009600l ql ql v A R EI EI l ql ql v A R EI EIl qlql v EI EI ql ql EI EI==⋅===⋅=⎛⎫⎛⎫=++ ⎪ ⎪⎝⎭⎝⎭⎛⎫=+=⎪⎝⎭ 图2.6()()3331233312111202424401007511117242440100300v v ql ql ql EI l EI EIv v ql ql qll EI l EI EIθθ-⎛⎫=-=-+=⎪⎝⎭--⎛⎫=--=--+=⎪⎝⎭2.8图(剪力弯矩图如2.7)()2221401112124,,0,11,82411118243212121248243,82864AA Qa b M A K l Q qa a l b A K ql ql M ql qlql R ql v AR EIα⎡⎤⎛⎫=⋅++⎢⎥⎪⎝⎭⎢⎥⎣⎦======++==⨯⨯⨯+==-===由,代入得图2.7442433032355238412816384111(0)246246448192()6488l qlql Ml ql v EI EI EI EI v ql Ml ql EI l EI EI ql EIl ql ql l M EI EI θθα⎛⎫∴=+-=⎪⎝⎭⎛⎫=--=-- ⎪⎝⎭=-=-=-⋅=2.6题. []1max 2max 2113212132142.()()62()()62()()242(0)sN EIv s sss s N dv dx dx dx GGA N EI v dx v C GA GA EI ax bx v v v f x cx d f x ax b C GA EI EIax bx f x f x c a x d GA GA qx qx f x f x EI EIv v τγ'''====-''=−−−→-+⎡⎤''∴=+=++++-+++⎢⎥⎣⎦⎛⎫''=-+++-+ ⎪⎝⎭''==''=⎰式中由于11142323432342(0)00()()00242602,224()241222425()23848s s s ssd b v l v l ql EI ql al EI c a l EI GA EIGA qlal EIql ql c EI EIqx qlx qx qx qlv x x EI EI GA EI GA l ql ql v EI GA ===''==⎧⎛⎫-++-=⎪⎪⎪⎝⎭⎨⎪+=⎪⎩=⎛⎫∴=--++⎪⎝⎭∴=+可得出由得方程组:解出:a=2.7.题先推广到两端有位移,,,i i j j θθ∆∆情形:212,i j s EI GA l β⎛⎫∆=∆-∆=⎪⎝⎭令 321011322162(0)(0)()62()2sii i i j i i j s jjEIax bx v cx d ax GA v d v v c al bl EIv l l al GA al v l bl θθθθθ=+++-=∆∴==∆⎫⎪⎬'=∴=⎪⎭⎫=∆∴+++∆-=∆⎪⎪⎬⎪'=∴+=⎪⎭而由由由()()()2213121i j j i i j a l l b l l l θθθβθθθθβ⎧∆⎡⎤=+-⎪⎣⎦+⎪⎨-⎪∆=-+-⎪+⎩解出 ()()()()()()()()()()()()1121(0)(0)62416642162(0)(0)1()(0)()()4261j i i j i j i j j i j i EI M EIv EIb l l EI l l l EI N EIv EIa l l N l N EI M l EIv l EI b al l l βθβθββθβθβθθββθβθβ∆⎡⎤''∴===+--+⎢⎥+⎣⎦⎡⎤=-∆-∆+++-+⎢⎥+⎣⎦⎧⎡⎤''===+-∆-∆⎪⎢⎥+⎣⎦⎪⎪=⎨⎪∆⎡⎤⎪''==+=++--⎢⎥+⎪⎣⎦⎩令上述结0i j ∆=∆=∆果中,即同书中特例2.8题 已知:20375225, 1.8,751050kgl cm t cm s cm cm σ=⨯====1025100.7576.875kgq hs cm γ==⨯⨯=形心至球心表面1240.9 5.0419.862t y h e cm =+-=+-=形心至最外板纤维321186105.94433.5219.86t I y e cm w cm y =+=∴===()322186101449.45.940.3660.988,()0.980Iw cm y u x u u ϕ======== ()()()222212012020176.8752250.988320424.1212176.8752250.980158915)242415891510501416433.53204241050127114503204241050378433.5ql M x u kg cm ql M u kgcm M kg cm w M kg cm w M kg w ϕσσσσσσ==⨯⨯==-=-⨯⨯⨯=-=+=+==+=+==+=+=中中球头中板固端球头端(2max 21416kg cm cm σ⎫⎪⎪⎪⎪∴=⎬⎪⎪⎪⎪⎭若不计轴向力影响,则令u=0重复上述计算:222max 0176.875225241050142424433.5142414160.56%1424ql kg w cm σσσ⨯==+=+=⨯-=球头中相对误差:结论:轴向力对弯曲应力的影响可忽略不及计。

船舶结构力学-1绪论

船舶结构力学-1绪论
船舶结构力学
刘俊
上海交通大学船舶海洋与建筑工程学院结构力学所
目录
第一章 绪论 第二章 单跨梁弯曲理论 第三章 杆件扭转理论 第四章 力法 第五章 位移法 第六章 能量法 第七章 矩阵法 第八章 平面应力有限元法 第九章 矩形板的弯曲理论 第十章 杆及板的稳定性
第一章 绪论
1-1 船舶结构力学的内容与任务 1-2 船舶结构力学的研究方法 1-3 船体结构的计算图形
船舶强度:泛指研究船体结构强度的科学,包括外力、 结构在外力作用下的反应(内力研究,许用应力确定) 等问题
船舶结构力学:研究船体结构内力(不包括外力及许用 应力) 研究船体结构静力响应(动力:船体振动学)
研究内容,目的
内容:研究船体结构中板与骨架的强度与稳定性的科学 目的:强度校核;船舶结构设计 必要性: ➢ 理解规范的需要; ➢ 无规范船舶设计的需要; ➢ 学习后续课程的需要
船体结构中的典型计算图形
船体结构中的典型计算图形
船体中板 ➢ 受骨架支持的矩形平板
骨架(三种典型杆系) ➢ 连续梁(甲板纵骨等) ➢ 板架、交叉梁系(甲板纵桁
与横梁形成的甲板板架,外 载垂直于杆系平面)
船体结构中的典型计算图形
➢ 刚架(横梁,肋骨,肋板组成的杆系,载荷在杆系平面内)
船底板:板架或是组合板(夹层板) 杆及杆系的强度板的强度杆与板的稳定 “力法””位移法” ”能量法” ”矩阵位移法”
1-2 船舶结构力学的研究方法
将实际结构简化然后再进行分析 传统简化方法: ➢ 总强度和横向强度(局部强度)问题分开考虑,必要时
叠加 ➢ 横向强度或局部强度问题简化为平面问题考虑 ➢ 骨架和板分开考虑(带板“附连翼板”) 今后: ➢ 总强度和横向强度(局部强度)一起考虑 ➢ 无需简化为平面问题 ➢ 骨架和板一起考虑

船舶结构力学

船舶结构力学

船舶结构力学第一篇:船舶结构力学船舶结构力学一、基本概念部分1、坐标系船舶结构力学与工程力学的坐标系比较如下图:yz0y 船舶结构力学的坐标系xz工程力学的坐标系0x2、符号规则船船结构力学与工程力学的符号规则有相同点和不同点,弯矩四要素的符号基本不同,主要是指弯矩、剪力和挠度的符号规则不同,而转角的符号一致,即是以顺针方向的转角为正角。

船舶结构力学的符号规则如下图所示。

MN工程力学的符号规则NMMNN船舶结构力学力法的符号规则MMNNM船舶结构力学位移法的符号规则3、约束与约束力对物体的运动预加限制的其他物体称为约束。

约束施加于被约束物体的力称为约束力或约束反力,支座的约束力也叫支反力。

4、支座的类型及其边界条件支座有四类:简支端(包括固定支座与滚动支座)、刚性固定端、弹性支座与弹性固定端。

各类支座的图示及其边界条件如下图:1)简支端2)刚性固定端边界条件:v = 0,v″ = 0边界条件:v = 0,v′ = 03)弹性支座边界条件:v =-AEIv′′(′支座左端)v = AEIv′′′(支座右端)(A为支座的柔性系数)′′′4)弹性固定端边界条件:v =′αEIv′′(左v =-′αEIv′′(右端)端)(α为固定端的柔性系数)5、什么是静定梁?什么是超静定梁?如何求解超静定梁?梁的未知反力与静平衡方程个数相同时,此梁为静定梁。

反之,如果梁的未知反力多于梁的静平衡方程数目时,此时的梁称为超静定梁。

超静定梁可用力法求解。

6、什么是梁的弯曲四要素,查弯曲要素表要注意哪些事项?梁的剪力、弯矩、转角和挠度称为梁的弯曲四要素。

查弯曲要素表要注意,四个要素的符号,在位移法中查梁的固端弯矩时要注意把梁的左端弯矩值加一个负号。

7、简述两类力法基本方程的内容力法方程有两类:一是“去支座法”。

是以支座反力为未知量,根据变形条件所列的方程。

二是“断面法”。

以支座断面弯矩为未知量,根据变形连续性条件所列的方程。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中拱
波面
图 1.1
中垂
波面
图 1.1
船舶局部强度:船舶横向骨架(船体横 梁、肋骨、肋板)、船体局部构件(船底 板、底部纵桁)在局部载荷作用下(如水 压力作用下)的弯曲变形和应力。
图 1.2
船舶扭转强度:船舶在斜浪中航行,载 荷沿船体左右舷非对称分布,导致船体扭 转变形。主要是大开口船(集装箱船)
骨架的带板宽度取骨架的
附连带板
间距和骨架跨距的1/5两 者中的小者
(二)船体结构中的骨架。船体结构中的骨
架包括横梁、肋骨、肋板、纵骨、纵桁等,
他们大多是细长的型钢或组合型材。所以这
种骨架被称为“杆件”,简称“杆”。而相
互连接的骨架系统就称为“杆件系统”。实
践证明,船体中的骨架受力变形时,和骨架
相连的一部分板也会跟着变形,因此在研究
船体结构中的板
图1 横向载荷
图2 面内载荷
图 1.4
横向载荷作用下板的强度计算的边界条件: 由于纵桁骨架的抗弯刚度比板的抗弯刚度大 得多,故可以把骨架近似地作为板的刚性支 撑。面内载荷作用下板的稳定性计算的边界 条件:四边自由支持,两对边受到面内载荷 作用。(计算结果偏于安全)
钢制船舶建造规范规定:
船体构件稳定性问题:船舶受压构件, 压力达到或超过其临界载荷而丧失稳定 性。
图 1.2
总之 船舶结构力学的内容和任务
一.研究对象
结构:承受并传递荷载的船体骨架部分
结构分为:杆系结构,板架结构,刚架结构
二.任务 阐明结构力学的基本原理与方
法——经典的力法、位移法和能量原理
三.内容 结构在外力作用下的响应即强度和
骨架时就把与骨架相连的一部分板一起考虑。
这时的板就称为附连带板。
船体结构中骨架
船体结构中骨架
图 1.6
船体的杆系是一个复杂的空间系统。实 际计算时经常把它划分为一些形状比较规则 的、简单的计算图形考虑。以图1.3为例,看 纵骨在横向载荷下的弯曲应力和变形。在上 甲板骨架中,纵骨的尺寸最小,它穿过强横 梁并通过横舱壁保持纵向连续。在计算纵骨 时可以认为强横梁具有足够的刚性支持纵骨, 从而可以作为纵骨的刚性支座。纵骨在横舱 壁处责作为刚性固定端,这样就得到图1.6所 示的计算图形。
船舶结构力学
第一章绪论
§ 1.1 船舶结构力学的内容和任务
船舶是复杂的水上工程建筑物,经常 在航行状态下执行任务,受到的外力也是 非常复杂。这些外力包括:静载荷(货物、 空船重量等)、水压力、惯性力以及各种 冲击载荷等(动载荷)。为了保证船舶在 各种受力情况下都能正常的工作,船舶应 具有一定的强度——船体结构在正常使用 过程中和服役期限内具有不破坏或不发生 过大变形的能力。
其次看甲板纵桁与舱口端横梁。在上甲 板的骨架中,甲板纵桁和舱口端横梁尺寸 最大,在计算时常略去其他骨架对他们的 影响,于是在研究甲板纵桁和舱口端横梁 时就得到一个“井”字型平面杆系,图1.7 所示。此种杆系在横向载荷作用下发生弯 曲,称之为“交叉梁系(grillage)”或 “板架”.船体结构中的板架应该是指由板 与纵横骨架组成的板、梁组合结构。
结构计算图形是根据实际结构的受力 特征,构件之间的相互影响。计算精度的 要求以及所采用的计算方法等确定的。对 于同一个实际结构,基于不同的考虑就会 得到不同的计是船体结构中常见的、典 型的计算图形。
图 1.3
(一)船体结构中的板。船体结构中的板是 连续的,构成了船体的外形,所以说板是具 有曲度的,受到纵桁骨架的支持。通常把四 周由纵横骨架支持的那一部分板作为对象分 析计算。这样船体中的外板就可简化为具有 矩形周界的板格。板上的荷载分为两类:一 类是垂直于板面的荷载,如甲板货物和水压 力。另一类是位于板平面的的荷载。如船体 总纵弯曲时作用于船体板平面内的应力。
稳定性问题——内力和变形以及许用应力的 确定。
§ 1.2 船舶结构的计算图形
实际结构都是非常复杂的,不管是船体 结构还是其他一些结构,如厂房、剧院的 网壳结构等等。我们在分析计算之前,必 须将实际结构作一定的简化,简化后的结 构图形就称为实际结构的理想化图形或计 算图形(又称计算模型或力学模型等)
船体强度的内容相当广泛:它包括 船舶的总纵强度、局部强度、扭转强 度;船体的稳定性:船体构件或板架受压 过渡会丧失其稳定性;船体的振动;船体 的低周疲劳问题等
船舶总纵强度:人们通过分析船舶的受力和 变形特征,认识到可以将船舶看作是静止于波 浪上的一根空心薄壁梁,计算船体在沿纵向分 布的重力和浮力作用下的弯曲变形和应力。这 种把船舶整体作为空心薄壁梁计算出来的强度 就称为船舶总纵强度。如下图所示:
图 1.7
再看横梁。由于船体横剖面内,横梁、 肋骨及船底肋板共同组成一个平面杆系, 因此常把他们一起考虑作为船体横向强度 的研究对象。这种杆系的连接点是刚性的, 并受到作用于杆系平面内的载荷作用,故 称为“刚架”(Rigid Frame)。图1.8所 示
图 1.8
以上介绍的连续梁、刚架和板架就 是船体结构中三种典型的杆系。应用结 构力学中经典理论和方法,人工计算就 能得到比较满意的结果,但是这些计算 图形具有一定的近似性。随着电子计算 机的普遍应用,大型超大型商业有限元 软件的发展,整船有限元分析已经成为 现实。
相关文档
最新文档