《BP神经网络模型》PPT课件
合集下载
《BP神经网络》演示PPT
![《BP神经网络》演示PPT](https://img.taocdn.com/s3/m/2a5ee7772cc58bd63186bdef.png)
第13页
14
神经网络控制
第1页
神经网络控制
什么是人工神经网络? T.Koholen的定义:“人工神经网络是由 具有适应性的简 单单元组成的广泛并行互连的网络,它的组织能够模拟生 物神经系统对真实世界物体所作出的交互反应。”
第2页
神经网络控制
神经元模型
神经网络模型是由大量的处理单元(神经元)互相连接而 成的网络。神经元一般表现为一个多输入、单输出的非线 性器件,通用的结构模型如图所示。
输出单元的修正增量:
p jk pk ypj
对于与输出层相邻的隐层中的神经元j 和该隐层前低一层 中的神经元i :
pj y pj (1 y pj ) pk w jk
k
Δ p wij pj y pj
输出层中神经元输出的误差反向传播到前面各层,对各 层之间的权值进行修正。
第12页
谢谢
E p
w jk
其中, E p E p netk
w jk
netk w jk
由 netk wjk y j 式得到:
j
netk w jk w jk
w jk y pj y pj
j
第11页
BP神经网络
令 pk E p netk , 可得
输出单元的误差:
pk (d pk y pk ) y pk (1 y pk )
对输入模式Xp,若输出层中第k个神经元的期望输出为 dpk,实际输出为ypk。输出层的输出方差 :
E p
1 2
k
(d pk y pk )2
第10页
BP神经网络
若输入N个模式,网络的系统均方差为:
E 1 2N
p
k
(d pk
y pk )2
14
神经网络控制
第1页
神经网络控制
什么是人工神经网络? T.Koholen的定义:“人工神经网络是由 具有适应性的简 单单元组成的广泛并行互连的网络,它的组织能够模拟生 物神经系统对真实世界物体所作出的交互反应。”
第2页
神经网络控制
神经元模型
神经网络模型是由大量的处理单元(神经元)互相连接而 成的网络。神经元一般表现为一个多输入、单输出的非线 性器件,通用的结构模型如图所示。
输出单元的修正增量:
p jk pk ypj
对于与输出层相邻的隐层中的神经元j 和该隐层前低一层 中的神经元i :
pj y pj (1 y pj ) pk w jk
k
Δ p wij pj y pj
输出层中神经元输出的误差反向传播到前面各层,对各 层之间的权值进行修正。
第12页
谢谢
E p
w jk
其中, E p E p netk
w jk
netk w jk
由 netk wjk y j 式得到:
j
netk w jk w jk
w jk y pj y pj
j
第11页
BP神经网络
令 pk E p netk , 可得
输出单元的误差:
pk (d pk y pk ) y pk (1 y pk )
对输入模式Xp,若输出层中第k个神经元的期望输出为 dpk,实际输出为ypk。输出层的输出方差 :
E p
1 2
k
(d pk y pk )2
第10页
BP神经网络
若输入N个模式,网络的系统均方差为:
E 1 2N
p
k
(d pk
y pk )2
BP神经网络bp设计PPT课件
![BP神经网络bp设计PPT课件](https://img.taocdn.com/s3/m/8500494addccda38376baf4b.png)
第三章 前馈人工神经网络
--误差反传(BP)算法的改进 与BP网络设计
3.4 基于BP算法的多层前馈网络模型
三层BP网络
o1 W1○
…
ok Wk○
…
ol
输出层
Wl
○
…
y1○ V1
y2○
…
○ yj
○ym
Vm
隐层
○
x1
○
x2
…
○
xi
…
○
xn-1
○
xn
输入层
数学表达
模型的数学表达
输入向量: X=(x1,x2,…,xi,…,xn)T 隐层输出向量: Y=(y1,y2,…,yj,…,ym)T
利用算法使得权值在更新的过程中,‘走’合适的路径,
比如跳出平坦区来提高收敛速度,跳出局部最小点等等
如何操作?
需要在进入平坦区或局部最小点时进行一些判断,通过
改变某些参数来使得权值的调整更为合理。
标准的BP算法内在的缺陷:
⑴ 易形成局部极小而得不到全局最优; ⑵ 训练次数多使得学习效率低,收敛速度慢; ⑶ 隐节点的选取缺乏理论指导; ⑷ 训练时学习新样本有遗忘旧样本的趋势。
输出层与隐层之间的连接权值调整
E w jk w jk
j=0,1,2,…,m; k=1,2,…,l (3.4.9a)
隐层和输入层之间的连接权值调整
E vij vij
i=0,1,2,…,n; j=1,2,…,m
(3.4.9b)
式中负号表示梯度下降,常数η∈(0,1)表示比例系数,反映了 训练速率。可以看出BP算法属于δ学习规则类,这类算法常被 称为误差的梯度下降(Gradient Descent)算法。
--误差反传(BP)算法的改进 与BP网络设计
3.4 基于BP算法的多层前馈网络模型
三层BP网络
o1 W1○
…
ok Wk○
…
ol
输出层
Wl
○
…
y1○ V1
y2○
…
○ yj
○ym
Vm
隐层
○
x1
○
x2
…
○
xi
…
○
xn-1
○
xn
输入层
数学表达
模型的数学表达
输入向量: X=(x1,x2,…,xi,…,xn)T 隐层输出向量: Y=(y1,y2,…,yj,…,ym)T
利用算法使得权值在更新的过程中,‘走’合适的路径,
比如跳出平坦区来提高收敛速度,跳出局部最小点等等
如何操作?
需要在进入平坦区或局部最小点时进行一些判断,通过
改变某些参数来使得权值的调整更为合理。
标准的BP算法内在的缺陷:
⑴ 易形成局部极小而得不到全局最优; ⑵ 训练次数多使得学习效率低,收敛速度慢; ⑶ 隐节点的选取缺乏理论指导; ⑷ 训练时学习新样本有遗忘旧样本的趋势。
输出层与隐层之间的连接权值调整
E w jk w jk
j=0,1,2,…,m; k=1,2,…,l (3.4.9a)
隐层和输入层之间的连接权值调整
E vij vij
i=0,1,2,…,n; j=1,2,…,m
(3.4.9b)
式中负号表示梯度下降,常数η∈(0,1)表示比例系数,反映了 训练速率。可以看出BP算法属于δ学习规则类,这类算法常被 称为误差的梯度下降(Gradient Descent)算法。
神经网络bp.ppt
![神经网络bp.ppt](https://img.taocdn.com/s3/m/01f06295f8c75fbfc67db262.png)
)
1
1 e 2.975
0.0486
可以看出, 实际输出与期望输出d (0.95,0.05)T 不一致,因此 更改各权
修改各层权值:
根据以下公式计算权值改变量
d o o o w jk
o k
yj
(
k
)
k
1
k
k yj
w y y l
vij
误差E是nw+1维空间中一个形状记为复杂的曲面,改曲面 每个高度对应于一个误差值,每个点的坐标向量对应nw权 值,此空间称为误差的权空间。
• 误差曲面分布有两个特点:
• (1)存在平坦区域
– 从图可以看出,误差曲面上有些区域比较平坦, 在这些区域中,误差梯度变化很小,即使权值 调整量很大,误差仍下降慢。这种情况与各节 点净输入过大相关。以输出层为例:
d o o o w
h1 jk
h1 k
y
h j
(
k
)
k
1
k
k
y
h j
.
..
...
..
....
..
(12a)
第h隐层
w y y w
h jk
l
h j
yih1
(
k 1
0 k
h1)
jk
h j
1
h j
yih1...
..
...
....
..
(12a)
d o o o o ( ) 1 ..............(10a)
k
k kk
k
数学建模之BP神经网络ppt课件
![数学建模之BP神经网络ppt课件](https://img.taocdn.com/s3/m/c91d0ea0b4daa58da0114ac8.png)
单 纯 型 层 次 型 结 构
.
14
Ø 按网络连接的拓扑结构分类:
Ø 互连型网络结构:网络中任意两个节点之 间都可能存在连接路径
局 部 互 连 型
.
15
人工神经网络的分类(C.)
Ø 按网络内部的信息流向分类:
Ø 前馈型网络:网络信息处理的方向是从输入层到各 隐层再到输出层逐层进行
前 馈 型 网 络
Ø 它是有指导训练的前馈多层网络训练算法,是靠调 节各层的权值,使网络学会由输入输出对组成的训 练组。其核心思想是将输出误差以某种形式通过隐 含层向输入层逐层反传,即:信号正向传播;误差 反向传播
Ø 执行优化的方法是梯度下降法
Ø 最常用的激活函数是Sigmoid函数
f
(x) .
1 1ex
21
Ø BP算法
PF:性能函数,默认函数为mse函数。
.
28
具体算法如下:
%%清空环境变量 clc clear %%输入样本数据 p1=[1.24,1.27;1.36,1.74;1.38,1.64;1.38,1.82;1.38,1.90; 1.40,1.70;1.48,1.82;1.54,1.82;1.56,2.08]; %Af p2=[1.14,1.82;1.18,1.96;1.20,1.86; 1.26,2.00;1.28,2.00;1.30,1.96]; %Apf p=[p1;p2]'; pr=minmax(p); %输入向量的最小值和最大值 %%输出样本数据 goal=[ones(1,9),zeros(1,6);zeros(1,9),ones(1,6)]; %%绘图 plot(p1(:,1),p1(:,2),'h',p2(:,1),p2(:,2),'o')
《BP神经网络模型》课件
![《BP神经网络模型》课件](https://img.taocdn.com/s3/m/da366c57876fb84ae45c3b3567ec102de2bddfd5.png)
BP神经网络模型的发展历程
1
1943
McCulloch和Pitts提出了第一个抽象神经元模型,为神经网络的发展奠定了基础。
2
1960s-1980s
Werbos和Rumelhart等人提出了反向传播算法,并在神经网络研究中取得重要突 破。
3
19 9 0 s - 至今
BP神经网络模型得到了广泛应用并取得了显著的研究成果,在各个领域产生了 深远的影响。
隐藏层
对输入数据进行加权和激活, 提取更高层次的特征表达。
输出层
根据隐藏层的输出计算最终结 果,并输出给外部。
BP神经网络模型中的权重和偏 差
权重和偏差是BP神经网络模型中的两个重要参数,它们决定了神经元之间的 连接强度和偏移量,直接影响网络的学习和推理能力。
BP神经网络模型中的激活函数
激活函数是BP神经网络模型中的非线性变换函数,它将输入信号映射到一个 非线性的输出,增加了网络的表达能力。
引入动量项来加速权重 的更新,并提高网络参 数的稳定性。
2 自适应学习率
3 正则化
根据权重和偏差的变化 情况自动调整学习率, 以获得更好的收敛效果。
通过添加正则化项来控 制权重和偏差的大小, 防止过拟合。
BP神经网络模型的应用领域
BP神经网络模型在模式识别、预测和控制等广泛领域有着重要的应用,如图像识别、语音识别、数据 预测等。
BP神经网络模型在模式识别中 的应用
BP神经网络模型能够通过学习和训练识别复杂的图像模式,应用于人脸识别、 物体检测等领域。
BP神经网络模型在预测和回归中的应用
BP神经网络模型能够通过学习和拟合数据的非线性关系,实现对未知数据的预测和回归分析。
BP神经网络模型在控制中的应 用
BP神经网络ppt课件
![BP神经网络ppt课件](https://img.taocdn.com/s3/m/7ba2cc7014791711cd791713.png)
2019/10/29
17
2019/10/29
18
2019/10/29
11
调整网络参数并进行训练
从图中可以看出,神经网络运行27步后,网络输出误差 达到设定的训练精度。
2019/10/29
12
对于训练好的网络进行仿真
2019/10/29
13
改变非线性函数的频率和BP函数的隐
层神经元的数目,对于函数逼近的效
果有一定的影响。网络的非线性度越
高,对于BP网络的要求越高,则相同
BP神经网络在函数逼近过程及在 MATLAB中的应用
2019/10/29
1
一、BP神经网络简介及其模型
二、BP神经网络的逼近能力简介
三、BP神经网络函数逼近在 MATLAB中的实现及其影响因素
2019/10/29
2
BP网络简介
BP(Back Propagation)网络是一种神经网路学
习算法。网络按有教师试教的方式进行学习,
2019/10/29
4
BP神经网络的逼近能力
BP神经网络可以看作是一个从输入到输出 的高度非线性映射,即F : Rn Rm, f (x) Y
。现要求求出一个映射f,使得在某种意 义下(通常是最小二乘意义下),f是g 的最佳逼近。BP神经网络通过对简单的 非线性函数进行数次复合,可以近似复 杂的函数
2019/10/29
5
BP神经网络的函数逼近在MATLAB中 的实现
下面将结合一个实例详细阐述基于BP神经 网络的函数逼近过程及其在MATLAB中的 实现方法。
设逼近的非线性函数为:
f (x) 1 sin(k * pi / 4* p)
BP神经网络详解和实例ppt课件
![BP神经网络详解和实例ppt课件](https://img.taocdn.com/s3/m/6f4d011da5e9856a561260a9.png)
• 得到的结果见图1
• 图1飞蠓的触角长和翼长
• 思路:作一直线将两类飞蠓分开
• 例如;取A=(1.44,2.10)和 B=(1.10,1.16), 过A B两点作一条直线:
•
y= 1.47x - 0.017
• 其中X表示触角长;y表示翼长.
• 分类规则:设一个蚊子的数据为(x, y) • 如果y≥1.47x - 0.017,则判断蚊子属Apf类; • 如果y<1.47x - 0.017;则判断蚊子属Af类.
算法的目的:根据实际的输入与输出数据,计算模型的参 数(权系数) 1.简单网络的B-P算法
图6 简单网络
• 假设有P个训练样本,即有P个输入输出对 • (Ip, Tp),p=1,…,P, 其中
输入向量为 :
I p (i p1 ,...,i pm )T
目标输出向量为(实际上的):
Tp (t p1 ,...,t pn )T
神经网络研究的两个方面
• 从生理上、解剖学上进行研究 • 从工程技术上、算法上进行研究
脑神经信息活动的特征
(1)巨量并行性。 (2)信息处理和存储单元结合在一起。 (3)自组织自学习功能。
神经网络基本模型
电脉冲
输 入
树 突
细胞体 形成 轴突
突
输
触
出
信息处理
传输
图 12.2 生物神经元功能模型
• 神经元的数学模型
cqk
… … c1 Wp1
W1j cj Wpj
W1q cq
输出层LC
W11 Wi1
Wij
Wiq Wpq W
… b1 Vn1
Vh1 V11
V1i bi Vhi
… Vni
V1p bp Vhp Vnp
• 图1飞蠓的触角长和翼长
• 思路:作一直线将两类飞蠓分开
• 例如;取A=(1.44,2.10)和 B=(1.10,1.16), 过A B两点作一条直线:
•
y= 1.47x - 0.017
• 其中X表示触角长;y表示翼长.
• 分类规则:设一个蚊子的数据为(x, y) • 如果y≥1.47x - 0.017,则判断蚊子属Apf类; • 如果y<1.47x - 0.017;则判断蚊子属Af类.
算法的目的:根据实际的输入与输出数据,计算模型的参 数(权系数) 1.简单网络的B-P算法
图6 简单网络
• 假设有P个训练样本,即有P个输入输出对 • (Ip, Tp),p=1,…,P, 其中
输入向量为 :
I p (i p1 ,...,i pm )T
目标输出向量为(实际上的):
Tp (t p1 ,...,t pn )T
神经网络研究的两个方面
• 从生理上、解剖学上进行研究 • 从工程技术上、算法上进行研究
脑神经信息活动的特征
(1)巨量并行性。 (2)信息处理和存储单元结合在一起。 (3)自组织自学习功能。
神经网络基本模型
电脉冲
输 入
树 突
细胞体 形成 轴突
突
输
触
出
信息处理
传输
图 12.2 生物神经元功能模型
• 神经元的数学模型
cqk
… … c1 Wp1
W1j cj Wpj
W1q cq
输出层LC
W11 Wi1
Wij
Wiq Wpq W
… b1 Vn1
Vh1 V11
V1i bi Vhi
… Vni
V1p bp Vhp Vnp
BP人工神经网络的基本原理模型与实例培训课件
![BP人工神经网络的基本原理模型与实例培训课件](https://img.taocdn.com/s3/m/ad4bd71b49649b6649d7479c.png)
1/7/2021
BP人工神经网络的基本原理模型与实例
2
8.1人工神经网络的基本概念
人工神经网络在本质上是由许多小的非线性函数组成 的大的非线性函数,反映的是输入变量到输出变量间的复 杂映射关系。先给出单个人工神经网络的一般模型描述:
1/7/2021
BP人工神经网络的基本原理模型与实例
3
8.1人工神经网络的基本概念
本讲大纲:
人工神经网络的基本概念 误差反向传播(BP)神经网络
1/7/2021
BP人工神经网络的基本原理模型与实例
1
8.1人工神经网络的基本概念
从数学和物理方法以及信息处理的角度,对人脑神经 网络进行抽象,并建立某种简化模型,称为人工神经网络。
应用领域: 模式识别 系统辨识 预测预估 数据挖掘 经济学 ……
1/7/2021
x1
x2
w1
w2
θ
1
0
0.2
0.4
0.4
BP人工神经网络的基本原理模型与实例
9
8.1人工神经网络的基本概念
x1 w1 x2 w2
f (·) wm xm
-1
...... ......
1/7/2021
BP人工神经网络的基本原理模型与实例
10
8.1人工神经网络的基本概念
当多个神经元组合起来时,人工神经网络的总体结构如下:
5 θ5
w46 -0.1842
0.5459
6
w56
θ6
净输入和输出的计算
单元 j
净输入 Ij
净输出 Oj
4
0.192+0-0.306-0.408=-0.522
1/(1+e-0.522)=0.6276
BP人工神经网络的基本原理模型与实例
2
8.1人工神经网络的基本概念
人工神经网络在本质上是由许多小的非线性函数组成 的大的非线性函数,反映的是输入变量到输出变量间的复 杂映射关系。先给出单个人工神经网络的一般模型描述:
1/7/2021
BP人工神经网络的基本原理模型与实例
3
8.1人工神经网络的基本概念
本讲大纲:
人工神经网络的基本概念 误差反向传播(BP)神经网络
1/7/2021
BP人工神经网络的基本原理模型与实例
1
8.1人工神经网络的基本概念
从数学和物理方法以及信息处理的角度,对人脑神经 网络进行抽象,并建立某种简化模型,称为人工神经网络。
应用领域: 模式识别 系统辨识 预测预估 数据挖掘 经济学 ……
1/7/2021
x1
x2
w1
w2
θ
1
0
0.2
0.4
0.4
BP人工神经网络的基本原理模型与实例
9
8.1人工神经网络的基本概念
x1 w1 x2 w2
f (·) wm xm
-1
...... ......
1/7/2021
BP人工神经网络的基本原理模型与实例
10
8.1人工神经网络的基本概念
当多个神经元组合起来时,人工神经网络的总体结构如下:
5 θ5
w46 -0.1842
0.5459
6
w56
θ6
净输入和输出的计算
单元 j
净输入 Ij
净输出 Oj
4
0.192+0-0.306-0.408=-0.522
1/(1+e-0.522)=0.6276
BP神经网络模型PPT课件
![BP神经网络模型PPT课件](https://img.taocdn.com/s3/m/4745abb084868762caaed570.png)
激活函数: f()
误差函数:e
1 2
q o1
(do (k )
yoo (k ))2
BP网络的标准学习算法
第一步,网络初始化 给各连接权值分别赋一个区间(-1,1) 内的随机数,设定误差函数e,给定计 算精度值 和最大学习次数M。
第二步,随机选取第 k个输入样本及对应 期望输出
修正各单元权 值
误差的反向传播
BP网络的标准学习算法-学习过程
正向传播:
输入样本---输入层---各隐层---输出层
判断是否转入反向传播阶段:
若输出层的实际输出与期望的输出(教师信号)不 符
误差反传
误差以某种形式在各层表示----修正各层单元 的权值
网络输出的误差减少到可接受的程度 进行到预先设定的学习次数为止
x(k) x1(k), x2(k), , xn(k)
do (k) d1(k),d2(k), ,dq(k)
BP网络的标准学习算法
第三步,计算隐含层各神经元的输入和
输出
n
hih (k ) wih xi (k ) bh
i 1
h 1, 2, , p
hoh (k) f(hih (k)) h 1, 2, , p
f(
yio (k)))2)
hoh (k)
hoh (k)
hih (k)
( 1 2
q
((do (k)
o1
p
f(
h1
whohoh (k)
bo )2 ))
hoh (k)
hoh (k)
hih (k)
q o1
(do (k )
神经网络BP网络课堂PPT
![神经网络BP网络课堂PPT](https://img.taocdn.com/s3/m/4422d08727fff705cc1755270722192e45365807.png)
它是一种多层前向反馈神经网络,其神经元的 变换函数是S型函数
输出量为0到1之间的连续量,它可实现从输入 6 到输出的任意的非线性映射
.
2.1 BP网络简介
BP网络主要用于下述方面 函数逼近:用输入矢量和相应的输出矢量训练一个 网络逼近一个函数 模式识别和分类:用一个特定的输出矢量将它与输 入矢量联系起来;把输入矢量以所定义的合适方式 进行分类; 数据压缩:减少输出矢量维数以便于传输或存储
利用梯度下降法求权值变化及误差的反向传播
– 输出层的权值变化
• 其中 • 同理可得
16
.
2.3 学习规则
利用梯度下降法求权值变化及误差的反向传播
– 隐含层权值变化
• 其中
• 同理可得
17
.
2.3 学习规则
对于f1为对数S型激活函数,
对于f2为线性激活函数
18 .
2.4 误差反向传播图形解释
之间的误差修改其权值,使Am与期望的Tm,(m=l,…,q) 尽可能接近
12
.
2.3 学习规则
BP算法是由两部分组成,信息的正向传递与误差 的反向传播
– 正向传播过程中,输入信息从输入层经隐含层逐层计 算传向输出层,每一层神经元的状态只影响下一层神 经元的状态
– 如果在输出层未得到期望的输出,则计算输出层的误 差变化值,然后转向反向传播,通过网络将误差信号 沿原来的连接通路反传回来修改各层神经元的权值直 至达到期望目标
38
.
4.2 附加动量法
带有附加动量因子的权值调节公式
其中k为训练次数,mc为动量因子,一般取0.95左右
附加动量法的实质是将最后一次权值变化的影响,通 过一个动量因子来传递。
当动量因子取值为零时,权值变化仅根据梯度下降法产生
输出量为0到1之间的连续量,它可实现从输入 6 到输出的任意的非线性映射
.
2.1 BP网络简介
BP网络主要用于下述方面 函数逼近:用输入矢量和相应的输出矢量训练一个 网络逼近一个函数 模式识别和分类:用一个特定的输出矢量将它与输 入矢量联系起来;把输入矢量以所定义的合适方式 进行分类; 数据压缩:减少输出矢量维数以便于传输或存储
利用梯度下降法求权值变化及误差的反向传播
– 输出层的权值变化
• 其中 • 同理可得
16
.
2.3 学习规则
利用梯度下降法求权值变化及误差的反向传播
– 隐含层权值变化
• 其中
• 同理可得
17
.
2.3 学习规则
对于f1为对数S型激活函数,
对于f2为线性激活函数
18 .
2.4 误差反向传播图形解释
之间的误差修改其权值,使Am与期望的Tm,(m=l,…,q) 尽可能接近
12
.
2.3 学习规则
BP算法是由两部分组成,信息的正向传递与误差 的反向传播
– 正向传播过程中,输入信息从输入层经隐含层逐层计 算传向输出层,每一层神经元的状态只影响下一层神 经元的状态
– 如果在输出层未得到期望的输出,则计算输出层的误 差变化值,然后转向反向传播,通过网络将误差信号 沿原来的连接通路反传回来修改各层神经元的权值直 至达到期望目标
38
.
4.2 附加动量法
带有附加动量因子的权值调节公式
其中k为训练次数,mc为动量因子,一般取0.95左右
附加动量法的实质是将最后一次权值变化的影响,通 过一个动量因子来传递。
当动量因子取值为零时,权值变化仅根据梯度下降法产生
BP神经网络实例分析ppt课件
![BP神经网络实例分析ppt课件](https://img.taocdn.com/s3/m/081b3f2cb52acfc788ebc90c.png)
1 1 exp(u1 (i))
i 1,2
u 2 (1) 8.4075 a1 (1) 0.4838 a1 (2) 3.9829 1 a 2 (1) 1 exp(u 2 (1))
谢谢!
后面内容直接删除就行 资料可以编辑修改使用 资料可以编辑修改使用
训练样本 • 已知的两类蚊子的数据如表1:
翼长 1.78 1.96 1.86 1.72 2.00 2.00 1.96 1.74
触角长 类别 目标值 1.14 Apf 0.9 1.18 Apf 0.9 0.9 1.20 Apf 0.1 1.24 Af 0.9 1.26 Apf 0.9 1.28 Apf 0.9 1.30 Apf 0.1 1.36 Af
u1 (1) w1 (1,1)a0 (1) w1 (1,2)a0 (2) w1 (1,3)a0 (3) w1 (1, j )a0 ( j )
j 1 3
u1 (2) w1 (2,1)a0 (1) w1 (2,2)a0 (2) w1 (2,3)a0 (3) w1 (2, j )a0 ( j )
(4) 训练隐藏单元的权值 PS:利用隐含层各神经元的误差项 1( p1) (i) 和输入层 各神经元的输入来修正权值。
( p 1) 1( p 1) (i) f ' [u1 (i )] 2 (1)W2( p 1) (1, i ) ( p 1) a1 (i )[1 a1 (i )] 2 (1)W2( p 1) (1, i )
x 1 e ' f ( x)[1 f ( x)] 取激励函数 f ( x) 则 f ( x) x 2 1 e x (1 e )
2 (1) (t (1) a2 (1)) f ' (u2 (1))
BP神经网络PPTppt课件
![BP神经网络PPTppt课件](https://img.taocdn.com/s3/m/bb252d7966ec102de2bd960590c69ec3d5bbdb94.png)
输 入 至 网 络 , 由 前 向 后 , 逐 层 得 到 各 计 算 单 元 的 实 际 输 出 y:
对 于 当 前 层 l 的 第 j个 计 算 单 元 ,j 1,..., nl
该
单
元
的
净
输
入
实
际
输
出
n l1
n
e
t
l j
Ol l 1 ij i
i 1
O
l j
f
n
e
t
l j
1
=
1+
e
➢ 可见层
输入层 (input layer) 输入节点所在层,无计算能力
输出层 (output layer) 节点为神经元
➢ 隐含层( hidden layer) 中间层,节点为神经元
可编辑课件PPT
20
具有三层计算单 元的前馈神经网络结 构
可编辑课件PPT
21
2. 感知器神经网络(感知器)、感知器神经元
s ig n 型 函 数 , 不 可 微 ; 对 称 硬 极 限 函 数 ;
双
极
函
数
f
net
=
sgn
net
=
1
-
1
net 0 net < 0
m atlab函 数 hardlim s
D .阈 值 函 数
f
net
=
-
net net <
其 中 , , 非 负 实 数
可编辑课件PPT
单层感知器网络
感知器神经元
可编辑课件PPT
22
2. 感知器神经网络、感知器神经元(续)
感知器神经元的传递函数
BP神经网络原理ppt课件
![BP神经网络原理ppt课件](https://img.taocdn.com/s3/m/d134e9a601f69e314232940f.png)
精选ppt课件
6
(3)输入和输出神经元的确定
利用多元回归分析法对神经网络的输入参数 进行处理,删除相关性强的输入参数,来减 少输入节点数。
(4)算法优化
由于BP算法采用的是剃度下降法,因而易陷 于局部最小并且训练时间较长。用基于生物 免疫机制地既能全局搜索又能避免未成熟收 敛的免疫遗传算法IGA取代传统BP算法来克 服此缺点。
精选ppt课件
13
(2)学习率对收敛速度的影响 学习率的设置对BP算法的收敛性有很大的影响。
学习率过小,误差波动小,但学习速度慢,往往由于训 练时间的限制而得不到满意解;学习率过大,学习速度 加快,会引起网络出现摆动现象,导致不收敛的危险。 因此,选择一个合适的学习率是B P算法的一个较关 键的问题。学习率的主要作用是调整权值、阈值的 修正量. (3)隐层层数的选择对收敛速度的影响
精选ppt课件
12
BP神经网络收敛速度
阈值、学习率、隐层层数、隐层节点个数等对神 经网络的学习速度(收敛速度)都有较大的影响。本 文在BP网络的基础上,研究讨论了各个参数对收敛 速度的影响,以减小选取网络结构和决定各参数值的 盲目性,达到提高收敛速度的目的。
(1)初始权值和阈值对收敛速度的影响 初始权值和阈值要选得小一些。选择隐层节点数的 原则是尽量使网络结构简单,运算量小。从实验数据 分析可知:当节点数太少时,每个节点负担过重,迭代 而有的选择却要迭代几千次,或者更多,甚至不收敛。
精选ppt课件
11
BP神经网络理论应用于系统安全评价中的优点
(1)利用神经网络并行结构和并行处理的特征,通 过适当选择评价项目,能克服安全评价的片面性, 可以全面评价系统的安全状况和多因数共同作用下 的安全状态。 (2)运用神经网络知识存储和自适应特征,通过适 应补充学习样本,可以实现历史经验与新知识完满 结合,在发展过程中动态地评价系统的安全状态。 (3)利用神经网络理论的容错特征,通过选取适当 的作用函数和数据结构,可以处理各种非数值性指 标,实现对系统安全状态的模糊评价。
BP神经网络的基本原理+很清楚.pptx
![BP神经网络的基本原理+很清楚.pptx](https://img.taocdn.com/s3/m/f9bf746d26fff705cd170a5c.png)
4. BP 神经网络的基本原理
BP(Back Propagation)网络是 1986 年由 Rinehart 和 McClelland 为首的科学家小组提出,是一种按误差逆传播算 法训练的多层前馈网络,是目前应用最广泛的神经网络模型 之一。BP 网络能学习和存贮大量的输入-输出模式映射关系, 而无需事前揭示描述这种映射关系的数学方程。它的学习规 则是使用最速下降法,通过反向传播来不断调整网络的权值 和阈值,使网络的误差平方和最小。BP 神经网络模型拓扑结 构包括输入层(input)、隐层(hide layer)和输出层(output layer)(如图 5.2 所示)。 1. BP 神经元 图 5.3 给出了第 j 个基本 BP 神经元(节点),它只模仿了生物神经元所具有的三个最基本 也是最重要的功能:加权、求和与转移。其中 x1、x2…xi…xn 分别代表来自神经元 1、2…i…n 的输入;wj1、wj2…wji…wjn 则分别表示神经元 1、2…i…n 与第 j 个神经元的连接强度,即权 值;bj 为阈值;f(·)为传递函数;yj 为第 j 个神经元的输出。 第 j 个神经元的净输入值 为:
(5.20) (5.21) (5.22) (5.23) (5.24) (5.25)
3)隐层权值的变化 定义误差信号为: 其中第一项: 依链定理有:
第二项: 是隐层传递函数的偏微分。 于是: 由链定理得:
5
(5.26) (5.27) (5.28) (5.29) (5.30)
(5.31) (5.32)
式中: 为期望输出。 对于 个样本,全局误差为:
(5.17)
2)输出层权值的变化 采用累计误差 BP 算法调整 ,使全局误差 变小,即
3
(5.18)
式中: —学习率 定义误差信号为: 其中第一项:
BP(Back Propagation)网络是 1986 年由 Rinehart 和 McClelland 为首的科学家小组提出,是一种按误差逆传播算 法训练的多层前馈网络,是目前应用最广泛的神经网络模型 之一。BP 网络能学习和存贮大量的输入-输出模式映射关系, 而无需事前揭示描述这种映射关系的数学方程。它的学习规 则是使用最速下降法,通过反向传播来不断调整网络的权值 和阈值,使网络的误差平方和最小。BP 神经网络模型拓扑结 构包括输入层(input)、隐层(hide layer)和输出层(output layer)(如图 5.2 所示)。 1. BP 神经元 图 5.3 给出了第 j 个基本 BP 神经元(节点),它只模仿了生物神经元所具有的三个最基本 也是最重要的功能:加权、求和与转移。其中 x1、x2…xi…xn 分别代表来自神经元 1、2…i…n 的输入;wj1、wj2…wji…wjn 则分别表示神经元 1、2…i…n 与第 j 个神经元的连接强度,即权 值;bj 为阈值;f(·)为传递函数;yj 为第 j 个神经元的输出。 第 j 个神经元的净输入值 为:
(5.20) (5.21) (5.22) (5.23) (5.24) (5.25)
3)隐层权值的变化 定义误差信号为: 其中第一项: 依链定理有:
第二项: 是隐层传递函数的偏微分。 于是: 由链定理得:
5
(5.26) (5.27) (5.28) (5.29) (5.30)
(5.31) (5.32)
式中: 为期望输出。 对于 个样本,全局误差为:
(5.17)
2)输出层权值的变化 采用累计误差 BP 算法调整 ,使全局误差 变小,即
3
(5.18)
式中: —学习率 定义误差信号为: 其中第一项:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(
yio (k) who
h
whohoh (k) bo )
who
hoh (k)
e
yio
(1 2
q
(do(k)
o1
yio
yoo (k)))2
(do(k)
yoo (k)) yoo
(k)
(do(k) yoo (k))f ( yio(k)) o(k)
2.4.2 BP网络的标准学习算法
第五步,利用隐含层到输出层的连接权
• 学习的过程: • 信号的正向传播
修正各单元权 值
误差的反向传播
2.4.2 BP网络的标准学习算法-学习过程
• 正向传播:
• 输入样本---输入层---各隐层---输出层
• 判断是否转入反向传播阶段:
• 若输出层的实际输出与期望的输出(教师信号)不 符
• 误差反传
• 误差以某种形式在各层表示----修正各层单元 的权值
• 输出的导数
f
'(net)
1 1 e-net
1 (1 enet )2
y(1
y)
➢根据S型激活函数的图形可知,对神经网络进行训练,应该将net的值 尽量控制在收敛比较快的范围内
2.4.2 BP网络的标准学习算法
• 学习的过程: • 神经网络在外界输入样本的刺激下不断改变网 络的连接权值,以使网络的输出不断地接近期 望的输出。
e
(1 2
q o1
(do (k )
yoo (k))2 )
hoh (k)
hih (k)
hoh (k)
hih (k)
( 1 2
q o1
(do (k )
f(
yio (k)))2)
hoh (k)
hoh (k)
hih (k)
( 1 2
ห้องสมุดไป่ตู้q o1
((do (k)
p
f(
h1
whohoh (k)
bo )2 ))
h (k ) xi (k )
hoh (k)
hoh (k)
hih (k)
q o1
(do
(k)
yoo (k
))
f
(
yio
(k ))who
hoh (k ) hih (k)
q
( o (k)who ) f (hih (k)) h (k)
o1
2.4.2 BP网络的标准学习算法
• 第六步,利用输出层各神经元的 和隐含层各神经元的输出来修正连接权值 。
• 网络输出的误差减少到可接受的程度 进行到预先设定的学习次数为止
2.4.2 BP网络的标准学习算法
• 网络结构
• 输入层有n个神经元,隐含层有p个神经元,
输出层有q个神经元
• 变量定义
• 输入向量;
x x1, x2,
• 隐含层输入向量; hi hi1, hi2,
• 隐含层输出向量; ho ho1, ho2,
k 1,2,
bh bo
m
wih
who
f()
e
1 2
q o1
(do (k )
yoo
(k ))2
2.4.2 BP网络的标准学习算法
• 第一步,网络初始化 • 给各连接权值分别赋一个区间(-1,1)内的随机数,设定误差函数e,给定 计算精度值 和最大学习次数M。
• 第二步,随机选取第 个输入样本及对应期望输出
• 输出层输入向量; yi yi1, yi2,
• 输出层输出向量; yo yo1, yo2,
• 期望输出向量; do d1, d2,
, xn
, hip
, hop
, yiq
, yoq
, dq
2.4.2 BP网络的标准学习算法
• 输入层与中间层的连接权值: • 隐含层与输出层的连接权值: • 隐含层各神经元的阈值: • 输出层各神经元的阈值: • 样本数据个数: • 激活函数: • 误差函数:
p
yio (k) whohoh (k ) bo o 1, 2, q
h1
yoo (k) f( yio (k)) o 1, 2, q
2.4.2 BP网络的标准学习算法
• 第四步,利用网络期望输出和实际输出,计算误差函数对输出层的各神经元的偏 导数 。
o (k )
p
e e yio who yio who
o (k )
who (k )
who (k )
e who
o (k)hoh (k)
wN 1 ho
whNo
o (k)hoh (k)
2.4.2 BP网络的标准学习算法
• 第七步,利用隐含层各神经元的 和输入层各神经元的输入修正连接权。
h (k )
wih (k )
e wih
e hih (k )
hih (k ) wih
k
x(k) x1(k), x2(k), , xn(k)
do (k) d1(k),d2(k), ,dq(k)
2.4.2 BP网络的标准学习算法
• 第三步,计算隐含层各神经元的输入和输出
n
hih (k ) wih xi (k ) bh h 1, 2, , p
i 1
hoh (k) f(hih (k)) h 1, 2, , p
2.4 BP神经网络模型与学习算法
概述
• Rumelhart,McClelland于1985年提出了BP网络的误差反 向后传BP(Back Propagation)学习算法
David Ru melhart
J. McClel land
• BP算法基本原理
• 利用输出后的误差来估计输出层的直接前导层的误差 ,再用这个误差估计更前一层的误差,如此一层一层 的反传下去,就获得了所有其他各层的误差估计。
值、输出层的 o (k )和隐含层的输出计算误 差函数对隐含层各神经元的偏导数 h (k)。
e who
e yio
yio who
o (k )hoh (k )
e e hih (k ) wih hih (k ) wih
n
hih (k)
wih
(
i 1
wih xi (k ) wih
bh )
xi (k )
2.4.2 BP网络的标准学习算法
• 学习的本质: • 对各连接权值的动态调整
• 学习规则: • 权值调整规则,即在学习过程中网络中各神经 元的连接权变化所依据的一定的调整规则。
2.4.2 BP网络的标准学习算法-算法思想
• 学习的类型:有导师学习 • 核心思想:
• 将输出误差以某种形式通过隐层向输入层逐层反传
将误差分摊给各层的所有 单元---各层单元的误 差信号
2.4.1 BP神经网络模型
• 三层BP网络
2.4.1 BP神经网络模型
• 激活函数 • 必须处处可导 • 一般都使用S型函数
• 使用S型激活函数时BP网络输入与输出关系 • 输入
• 输出
net x1w1 x2w2 ... xnwn
y
f
(net)
1
1 enet
2.4.1 BP神经网络模型