第六章《特殊平行四边形》
《特殊的平行四边形》PPT课件5
由此可进一步推导得出:对角线互相垂直的四边形的面积都等于两条对角线乘积的一半。
例1:如图,菱形ABCD的边长为4cm,∠BAD=2 ∠ABC。对角线AC、BD相交于点O,求这个菱形的对角线长和面积。
∴四边形ABCD是菱形
判定方法2:数学语言究用一长一短两根细木条,在它们的中点处固定一个小钉,做成一个可以转动的十字,四周围上一根橡皮筋,做成一个四边形.转动木条,这个四边形什么时候变成菱形?
猜想:
对角线互相垂直的平行四边形是菱形.
命题:对角线互相垂直的平行四边形是菱形.
证明:
特殊的平行四边形
- .
情景创设
前面我们学习了平行四边形和矩形,知道了如果平行四边形有一个角是直角时,成为什么图形?
(矩形,由角变化得到)
如果从边的角度,将平行四边形特殊化,又会得到什么特殊的四边形呢?
在平行四边形中,如果内角大小保持不变仅改变边的长度,能否得到一个特殊的平行四边形?
=2×△ABD的面积
∴∠AED=900,
(2)菱形ABCD的面积=△ABD的面积+△CBD的面积
∴AC=2AE=2×12=24(cm).
三、课堂练习(复习巩固)1、菱形的两条对角线长分别是6cm和8cm,则菱形 的周长 ,面积 。2、菱形的面积为24cm2,一条对角线的长为6cm,则另一条对角线长为 ;边长为 。
变式题(1):菱形两条对角线长为6和8,菱形的边长为 ,面积为 。 (2):菱形ABCD的面积为96,对角线AC长为16 ,此菱形的边长为 。 (3):菱形对角线的平方和等于一边平方的 ( ) A. 2倍 B. 3倍 C.4倍 D. 5倍
第6章 特殊平行四边形与梯形
第6章特殊平行四边形与梯形本章是上一章《平行四边形》的深化且延续,从知识体系上看从旋转变换定义了中心对称图形平行四边形以后,从角的特殊性(直角)、从边的特殊性(等边)得到矩形和菱形;从对图形研究的角度看,推理论证在这一章中得到加强与深化,进一步要求学生能清晰、有条理表达自己的思考过程,做到言之有理、落笔有据.同时通过“合作学习”等形式,让学生自主探索这些基本图形的性质及其相互关系,从而丰富对空间图形的认识和感受.应该指出的是:在本套教材中,几何推理证明到此已达到最高要求,根据《数学课程标准》,在后续九(上)《圆的基本性质》《相似三角形》,九(下)《直线与圆、圆与圆的位置关系》等章内容中,除了进一步巩固书写格式、继续训练学生运用数学语言合乎逻辑进行交流讨论外,不再提出其他更高的要求.本章的主要内容有矩形、菱形、正方形、梯形的概念、性质和四边形是矩形、菱形、正方形及等腰梯形的条件.有些内容在前两个学段学生已有接触,但还十分肤浅.本章不是对以前知识的简单复习,而是同类知识的螺旋上升.特殊平行四边形与梯形的概念与性质是学好本章的关键,也是为学好整个平面几何打下一个坚实的基础,是本章的教学重点.与基本图形(矩形、菱形、正方形、梯形)的概念、性质及其相互关系随之而来的是几何证明,学生要正确理解证明的本身,需要一个较长的过程,是本章主要的教学难点.本章教学时间约需14课时,具体安排如下:6.1 矩形3课时6.2 菱形 2课时6.3 正方形 1课时6.4 梯形 2课时课题学习简单平面图形的重心 1课时复习、评估3课时,机动使用1课时,合计13课时一、教科书内容和课程教学目标(1) 本章知识结构框图如下:(2) 本章教学要求①在动手操作(摆火柴棒、折纸)过程中加深对矩形、菱形、正方形的概念、对称性及其他有关性质的理解,探索并掌握四边形是矩形、菱形、正方形的条件.②探索并了解等腰梯形的有关性质和四边形是等腰梯形的条件.③通过交流、讨论、归纳梳理出各个概念的从属关系,各个性质和判定的相互联系与区别,培养学生概括能力,进行矛盾的普遍性寓于矛盾的特殊性之中的客观规律教育.④探索并了解线段、矩形、平行四边形、三角形的重心及物理意义(如一根均匀木棒、一块均匀的矩形木板的重心),培养学生动手操作能力.⑤了解矩形、菱形、正方形是中心对称图形.欣赏现实生活中的轴对称性与中心对称图形.并了解它们之间的关系.(3) 本章教材分析1.本章的主要内容是特殊平行四边形与梯形,课本从学生生活周围熟悉的物体入手,使学生对物体形状的认识从感性逐步上升到抽象的几何图形.教师可以再补充一些日常生活中的具体的事例,以加深对这些基本图形的认识与理解.2.矩形、菱形、正方形、梯形之间存在一定区别与联系,矩形、菱形和正方形都是一类特殊的平行四边形,矩形是有一个角是直角的平行四边形,而菱形是有一组邻边相等的平行四边形,正方形既是特殊的矩形,又是特殊的菱形,因此,它既具有矩形的性质,又具有菱形的性质.梯形不是特殊的平行四边形,它是有一组对边平行,另一组对边不平行的四边形.只有搞清楚它们之间的关系,才能更好把知识学好.可以抓住平行四边形这条主线,搞清楚它们之间的区别与联系.3.本章的学习要注意多从实物出发,让学生感受到图形世界无处不在,引起学生学习的兴趣.还可以结合一些具体问题,让学生感受学习空间与图形知识的重要性和必要性.对于一些抽象的概念、性质等,也要从解决实际问题引入,让学生在探索中真正理解这些性质.同时要注意概念的定义和性质的表述,逐步使学生懂得几何语句的意义并能建立几何语句与图形之间的联系.这些不仅是学习好本章的关键,对于学好整个平面几何各章也是很重要的.4.在教学中应注重对证明本身的理解,虽然前面已有接触,但学生还不熟练,这需要一个过程.因此,教学中不要过分追求证明的数量和技巧,要控制一定的难度,控制在《标准》所规定的范围内.二、本章编写特点(一)充分利用现实世界中的实物原型进行教学,展示丰富多彩的几何世界人们生活在三维空间中,丰富多彩的图形世界给“空间与图形”的学习提供了大量现实有趣的素材.在本章内容的呈现中,充分体现从生活中的实物原型到平面图形,再到基本图形——矩形、菱形、正方形、梯形,从而更好地“把握图形”.在本章教科书的许多地方,如菱形、梯形概念的引入,基本图形的性质与判定的探究,以及合作学习、课内练习、探究活动、作业题中都呈现了大量生活中的图形,在实际教学时还可以向学生展现更多他们熟悉的生活中的物体和图形,增加学生的直观感受,提高学习空间与图形知识的兴趣,从而更好地认识图形,了解图形,最终达到用图形解决现实生活中的实际问题.(二)强调学生的动手操作和主动参与,让他们在观察、操作、想像、交流等活动中认识图形,树立图形观念.学习方式的转变是课程改革的一个重要目标,与其他数学内容相比,“空间与图形”的教学更容易激起学生学习数学的热情.在本章的编写中,注意从学生已有的生活经验和已有的知识出发,给学生提供“现实的、有意义的、富有挑战性的”学习材料,提供充分的数学活动和交流的机会,引导他们在“做数学”的活动中,在自主探索的过程中获得知识和技能,掌握基本的数学思想方法.在本章的教科书中,设置了许多“合作学习”“想一想”“探究活动”等栏目,让学生在观察、操作、想像、交流等活动中认识图形等.比如利用火柴棒首尾相接摆成平行四边形,再通过观察思考这个平行四边形的特点,从而引出矩形、菱形的概念.再比如,利用一张长方形纸片,对折两次,再按照要求剪开,然后通过观察剪出的图形的特点,从而探究出判定菱形的方法等.通过这些“探究点”,鼓励学生勤思考、勤动手、多交流.其中,动手操作是学习开始阶段重要的一环,它可以帮助学生认识图形,丰富直观,验证学生的空间想像能力.(三)重视几何语言与证明思想的培养和训练在本章,特别注意“几何模型→图形→文字→符号”这个抽象的过程.首先,教科书强调实物原型的作用,引入了大量实物模型,让学生从中抽象出几何图形,并从几何图形中抽象出文字和符号.其次,教科书重视几何证明的作用,对于对象的文字和符号描述,都是紧密联系图形,使抽象与直观结合起来,在图形的基础上培养证明思想,从而解决几何证明的有关问题.例如,利用一张长方形纸片,对折两次,再按照要求剪开,然后通过观察剪出的图形的特点,从而探究出判定菱形的方法.这样通过学生自己动手探究出判定菱形的方法,实现了“几何模型→图形→文字”的过程,然后,再将它转化为符号语言并加以论证.因此,教学中应重视对学生几何语言的培养,这对学习几何证明非常重要.另外,几何证明也是训练学生几何语言的一种非常有效的方法,正确的几何证明也能训练人的思维,教师应鼓励学生阅读课文,可以在作业中模仿教材中的证明,注重对证明本身的理解.三、教学建议(一)注意与前两个学段的衔接这一部分知识与前两个学段联系密切,大多数图形、概念在前两个学段都接触过,要衔接前两个学段,就要深入了解前面两个学段数学中“空间与图形”——特殊平行四边形与梯形的有关内容和要求,并了解它们与这一部分内容的联系与区别.从《数学课程标准》看,与这一章的内容相对应,前面两个学段是要直观认识长方形、正方形、梯形等几何图形,并对这些几何图形进行有关的计算.在这一章,要通过丰富的实例,认识基本图形(矩形、菱形、正方形和梯形)之间的关系,通过对平行四边形的进一步的探究,从而发展几何直觉;进一步认识这些基本图形的概念和一些性质,并能初步利用数学语言加以论证并应用.了解了这些联系与区别,教学时便可以在学习知识的基础上,把前面两个学段学过的内容加深一步,同时避免完全的重复.(二)把握好教学要求在本章,不仅要像第一、二学段那样进一步丰富学生对几何图形的感性认识,还要引导学生逐步认识一些基本图形的特征.这并不意味着要用严格的几何推理的方式来展开学习,而是要强调在实际背景中理解图形的概念和性质,经历探索图形性质的过程.例如对于判定菱形的方法,教科书中先利用一张长方形纸片,对折两次,再按照要求剪开,然后通过观察剪出的图形的特点,从而探究出判定菱形的方法,然后,再将它转化为符号语言并加以论证.而课后让学生在作业中模仿教材中的证明,关键是注重对证明本身的理解,决不能片面追求证明的数量和技巧.对于推理能力的培养,整套教科书是按照“说点儿理”“说理”“简单推理”“用符号表示推理”等不同层次,分阶段逐步加深地安排的,推理能力的培养既集中在“空间与图形”中,又结合各领域中适宜的内容自然地进行.在本章,由于已经进入第三学段的后半段,已不仅要求学生通过观察、思考、探究等活动归纳出图形的概念和性质,还要“用符号表示推理”,把它作为通过实验探究得到结论的自然延续.矩形、菱形、正方形和等腰梯形的性质的得出都通过说理来加以论证.但要控制一定的难度,证明的要求控制在《数学课程标准》所规定的范围内.(三)重视现代信息技术的应用现代信息技术的广泛应用正在对数学课程内容、数学教学、数学学习等方面产生深刻的影响,信息技术工具的使用能为学生的数学学习和发展提供丰富多彩的教育环境和有力和学习工具,重视现代信息技术的使用也正是本套教材的特点之一.在这一章,利用信息技术工具,可以给我们展现丰富多彩的图形世界,丰富学习资源,有助于学生从中抽象出几何图形;图形的动态演示,连续变化所形成的众多画面变换,可以在大脑中形成图形空间变化的印象,可以帮助学生在动态变化的图形中寻找图形的性质,从而发现解题思路.比如,通过《几何画板》动态演示四边形的变化过程,帮助学生寻找基本图形之间的联系,体会它们之间的内在含义.同时,也鼓励学生自己利用信息技术工具,来丰富自己的知识,提高自己的认识.(徐鸿斌)。
《特殊平行四边形》精讲课件
特殊平行四边形精讲课件1. 什么是特殊平行四边形?特殊平行四边形是一个有特殊属性的平行四边形。
它有两对对边平行且相等,同时具有一对对角线相等的特点。
2. 特殊平行四边形的性质2.1 对边平行且相等特殊平行四边形的两对对边都是平行的且相等。
这个性质可以通过观察特殊平行四边形的结构来进行证明。
以平行四边形ABCD为例,假设AB || CD 且 AB = CD,那么可以根据平行线与横截线的性质知道,AD || BC。
同理,如果 AD || BC 且 AD = BC,那么可以得出 AB || CD。
因此,特殊平行四边形的两对对边都是平行的且相等。
2.2 对角线相等特殊平行四边形的对角线也是相等的。
证明这个性质可以借助平行四边形的性质。
以平行四边形ABCD为例,连接AC和BD两条对角线。
如果 AB || CD 且 AD = BC,则可以利用平行线与横截线的性质知道 BD = AC。
同理,如果 AD || BC 且 AB= CD,则可以得出 AC = BD。
因此,特殊平行四边形的对角线也是相等的。
3. 特殊平行四边形的分类有两种特殊平行四边形,即矩形和菱形。
3.1 矩形矩形是一种特殊的平行四边形,它有四个直角。
除了特殊平行四边形的性质外,矩形还有以下特点:•所有内角都是直角(即90度);•对角线相等且平分彼此;•任意一对相对的边长相等。
3.2 菱形菱形是另一种特殊的平行四边形,它有四条相等的边。
除了特殊平行四边形的性质外,菱形还有以下特点:•所有内角都是锐角(即小于90度);•所有边长相等;•对角线相等且平分彼此;•对边平行。
4. 特殊平行四边形的应用特殊平行四边形在几何学和实际生活中有广泛的应用,以下是一些常见的应用场景:•建筑设计:特殊平行四边形的结构在建筑设计中起着重要作用,如矩形窗户、菱形地板图案等。
•计算几何:特殊平行四边形的性质被广泛用于计算几何中的问题求解,包括求边长、角度、面积等。
•工程测量:特殊平行四边形的性质可以用于工程测量中的矩形地块划分、菱形阵列布局等。
2021-2022学年鲁教版八年级数学下册《第6章特殊平行四边形》单元综合练习(附答案)
2021-2022学年鲁教版八年级数学下册《第6章特殊平行四边形》单元综合练习(附答案)1.菱形具有而平行四边形不一定具有的性质是()A.两组对边分别平行B.两组对角分别相等C.对角线互相平分D.对角线互相垂直2.下列说法中,错误的是()A.平行四边形的对角线互相平分B.对角线互相平分的四边形是平行四边形C.菱形的对角线互相垂直D.对角线互相垂直的四边形是菱形3.如图,四边形ABCD为平行四边形,延长AD到E,使DE=AD,连接EB,EC,DB,添加一个条件,不能使四边形DBCE成为矩形的是()A.AB=BE B.BE⊥DC C.∠ADB=90°D.CE⊥DE4.如图,E是边长为1的正方形ABCD的对角线BD上一点,且BE=BC,P为CE上任意一点,PQ⊥BC于点Q,PR⊥BE于点R,则PQ+PR的值是()A.B.C.D.5.在△ABC中,点D是边BC上的点(与B,C两点不重合),过点D作DE∥AC,DF∥AB,分别交AB,AC于E,F两点,下列说法正确的是()A.若AD⊥BC,则四边形AEDF是矩形B.若AD垂直平分BC,则四边形AEDF是矩形C.若BD=CD,则四边形AEDF是菱形D.若AD平分∠BAC,则四边形AEDF是菱形6.将五个边长都为2cm的正方形按如图所示摆放,点A、B、C、D分别是四个正方形的中心(对角线的交点),则图中四块阴影面积的和为()A.2cm2B.4cm2C.6cm2D.8cm27.如图,在四边形ABCD中,∠ADC=∠ABC=90°,AD=CD,DP⊥AB于P.若四边形ABCD的面积是18,则DP的长是.8.如图,将正方形OEFG放在平面直角坐标系中,O是坐标原点,点E的坐标为(2,3),则点F的坐标为.9.如图,在正方形ABCD中,边长为2的等边三角形AEF的顶点E、F分别在BC和CD 上,下列结论:①CE=CF;②∠AEB=75°;③BE+DF=EF;④S正方形ABCD=2+.其中正确的序号是(把你认为正确的都填上).10.如图,将两条宽度都为3的纸条重叠在一起,使∠ABC=60°,则四边形ABCD的面积为.11.如图,正方形ABCD和正方形CEFG中,点D在CG上,BC=1,CE=3,H是AF的中点,那么CH的长是.12.如图,点G是正方形ABCD对角线CA的延长线上任意一点,以线段AG为边作一个正方形AEFG,线段EB和GD相交于点H.若AB=,AG=1,则EB=.13.如图,分别以直角△ABC的斜边AB,直角边AC为边向△ABC外作等边△ABD和等边△ACE,F为AB的中点,DE与AB交于点G,EF与AC交于点H,∠ACB=90°,∠BAC=30°.给出如下结论:①EF⊥AC;②四边形ADFE为菱形;③AD=4AG;④FH=BD其中正确结论的为(请将所有正确的序号都填上).14.如图,已知点E在正方形ABCD的边AB上,以BE为边向正方形ABCD外部作正方形BEFG,连接DF,M、N分别是DC、DF的中点,连接MN.若AB=7,BE=5,则MN =.15.一个平行四边形的一条边长为3,两条对角线的长分别为4和2,则它的面积为.16.如图,在正方形ABCD中,点E,N,P,G分别在边AB,BC,CD,DA上,点M,F,Q都在对角线BD上,且四边形MNPQ和AEFG均为正方形,则的值等于.17.如图,已知正方形ABCD的边长为5,点E、F分别在AD、DC上,AE=DF=2,BE 与AF相交于点G,点H为BF的中点,连接GH,则GH的长为.18.如图,在正方形ABCD中,点F为CD上一点,BF与AC交于点E.若∠CBF=20°,则∠AED等于度.19.如图,在平面直角坐标系中,矩形OABC的顶点A、C的坐标分别为(10,0),(0,4),点D是OA的中点,点P在BC边上运动,当△ODP是腰长为5的等腰三角形时,点P 的坐标为.20.如图,在矩形ABCD中,M为BC边上一点,连接AM,过点D作DE⊥AM,垂足为E.若DE=DC=1,AE=2EM,则BM的长为.21.如图,矩形ABCD中,AB=6,BC=4,过对角线BD中点O的直线分别交AB,CD边于点E,F.(1)求证:四边形BEDF是平行四边形;(2)当四边形BEDF是菱形时,求EF的长.22.如图,△ABC中,D是AB上一点,DE⊥AC于点E,F是AD的中点,FG⊥BC于点G,与DE交于点H,若FG=AF,AG平分∠CAB,连接GE,GD.(1)求证:△ECG≌△GHD;(2)小亮同学经过探究发现:AD=AC+EC.请你帮助小亮同学证明这一结论.(3)若∠B=30°,判定四边形AEGF是否为菱形,并说明理由.23.已知正方形ABCD如图所示,连接其对角线AC,∠BCA的平分线CF交AB于点F,过点B作BM⊥CF于点N,交AC于点M,过点C作CP⊥CF,交AD延长线于点P.(1)若正方形ABCD的边长为4,求△ACP的面积;(2)求证:CP=BM+2FN.24.如图,已知四边形ABCD为正方形,AB=4,点E为对角线AC上一动点,连接DE、过点E作EF⊥DE.交BC点F,以DE、EF为邻边作矩形DEFG,连接CG.(1)求证:矩形DEFG是正方形;(2)探究:CE+CG的值是否为定值?若是,请求出这个定值;若不是,请说明理由.25.已知:如图,在菱形ABCD中,点E,O,F分别为AB,AC,AD的中点,连接CE,CF,OE,OF.(1)求证:△BCE≌△DCF;(2)当AB与BC满足什么关系时,四边形AEOF是正方形?请说明理由.26.四边形ABCD为正方形,点E为线段AC上一点,连接DE,过点E作EF⊥DE,交射线BC于点F,以DE、EF为邻边作矩形DEFG,连接CG.(1)如图1,求证:矩形DEFG是正方形;(2)若AB=2,CE=,求CG的长度;(3)当线段DE与正方形ABCD的某条边的夹角是30°时,直接写出∠EFC的度数.27.如图1,在正方形ABCD中,点P是对角线BD上的一点,点E在AD的延长线上,且P A=PE,PE交CD于点F,(1)证明:PC=PE;(2)求∠CPE的度数;(3)如图2,把正方形ABCD改为菱形ABCD,其他条件不变,当∠ABC=120°,连接CE,试探究线段AP与线段CE的数量关系,并说明理由.28.如图,O是矩形ABCD的对角线的交点,E、F、G、H分别是OA、OB、OC、OD上的点,且AE=BF=CG=DH.(1)求证:四边形EFGH是矩形;(2)若E、F、G、H分别是OA、OB、OC、OD的中点,且DG⊥AC,OF=2cm,求矩形ABCD的面积.参考答案1.解:A、不正确,两组对边分别平行;B、不正确,两组对角分别相等,两者均有此性质正确,;C、不正确,对角线互相平分,两者均具有此性质;D、菱形的对角线互相垂直但平行四边形却无此性质.故选:D.2.解:根据平行四边形和菱形的性质得到ABC均正确,而D不正确,因为对角线互相垂直的四边形也可能是梯形,故选:D.3.解:∵四边形ABCD为平行四边形,∴AD∥BC,AD=BC,又∵AD=DE,∴DE∥BC,且DE=BC,∴四边形BCED为平行四边形,A、∵AB=BE,DE=AD,∴BD⊥AE,∴▱DBCE为矩形,故本选项错误;B、∵对角线互相垂直的平行四边形为菱形,不一定为矩形,故本选项正确;C、∵∠ADB=90°,∴∠EDB=90°,∴▱DBCE为矩形,故本选项错误;D、∵CE⊥DE,∴∠CED=90°,∴▱DBCE为矩形,故本选项错误.故选:B.4.解:连接BP,过C作CM⊥BD,∵S△BCE=S△BPE+S△BPC=BC×PQ×+BE×PR×=BC×(PQ+PR)×=BE×CM×,BC=BE,∴PQ+PR=CM,∵BE=BC=1,且正方形对角线BD=BC=,又∵BC=CD,CM⊥BD,∴M为BD中点,又△BDC为直角三角形,∴CM=BD=,即PQ+PR值是.故选:D.5.解:若AD⊥BC,则四边形AEDF是平行四边形,不一定是矩形;选项A错误;若AD垂直平分BC,则四边形AEDF是菱形,不一定是矩形;选项B错误;若BD=CD,则四边形AEDF是平行四边形,不一定是菱形;选项C错误;若AD平分∠BAC,则四边形AEDF是菱形;正确;故选:D.6.解:如图,连接AP,AN,点A是正方形的对角线的交点.则AP=AN,∠APF=∠ANE=45°,∵∠P AF+∠F AN=∠F AN+∠NAE=90°,∴∠P AF=∠NAE,∴△P AF≌△NAE,∴四边形AENF的面积等于△NAP的面积,而△NAP的面积是正方形的面积的,而正方形的面积为4,∴四边形AENF的面积为1cm2,四块阴影面积的和为4cm2.故选:B.7.解:如图,过点D作DE⊥DP交BC的延长线于E,∵∠ADC=∠ABC=90°,∴四边形DPBE是矩形,∵∠CDE+∠CDP=90°,∠ADC=90°,∴∠ADP+∠CDP=90°,∴∠ADP=∠CDE,∵DP⊥AB,∴∠APD=90°,∴∠APD=∠E=90°,在△ADP和△CDE中,,∴△ADP≌△CDE(AAS),∴DE=DP,四边形ABCD的面积=四边形DPBE的面积=18,∴矩形DPBE是正方形,∴DP==3.故答案为:3.8.解:如图,过点E作x轴的垂线EH,垂足为H.过点G作x轴的垂线GM,垂足为M,连接GE、FO交于点O′.∵四边形OEFG是正方形,∴OG=EO,∠GOM=∠OEH,∠OGM=∠EOH,在△OGM与△EOH中,∴△OGM≌△EOH(ASA)∴GM=OH=2,OM=EH=3,∴G(﹣3,2).∴O′(﹣,).∵点F与点O关于点O′对称,∴点F的坐标为(﹣1,5).故答案是:(﹣1,5).9.解:∵四边形ABCD是正方形,∴AB=AD,∵△AEF是等边三角形,∴AE=AF,在Rt△ABE和Rt△ADF中,,∴Rt△ABE≌Rt△ADF(HL),∴BE=DF,∵BC=DC,∴BC﹣BE=CD﹣DF,∴CE=CF,∴①说法正确;∵CE=CF,∴△ECF是等腰直角三角形,∴∠CEF=45°,∵∠AEF=60°,∴∠AEB=75°,∴②说法正确;如图,连接AC,交EF于G点,∴AC⊥EF,且AC平分EF,∵∠CAF≠∠DAF,∴DF≠FG,∴BE+DF≠EF,∴③说法错误;∵EF=2,∴CE=CF=,设正方形的边长为a,在Rt△ADF中,AD2+DF2=AF2,即a2+(a﹣)2=4,解得a=,则a2=2+,S正方形ABCD=2+,④说法正确,故答案为:①②④.10.解:∵纸条的对边平行,即AB∥CD,AD∥BC,∴四边形ABCD是平行四边形,∵两张纸条的宽度都是3,∴S四边形ABCD=AB×3=BC×3,∴AB=BC,∴平行四边形ABCD是菱形,即四边形ABCD是菱形.如图,过A作AE⊥BC,垂足为E,∵∠ABC=60°,∴∠BAE=90°﹣60°=30°,∴AB=2BE,在△ABE中,AB2=BE2+AE2,即AB2=AB2+32,解得AB=2,∴S四边形ABCD=BC•AE=2×3=6.故答案是:6.11.解:∵正方形ABCD和正方形CEFG中,点D在CG上,BC=1,CE=3,∴AB=BC=1,CE=EF=3,∠E=90°,延长AD交EF于M,连接AC、CF,则AM=BC+CE=1+3=4,FM=EF﹣AB=3﹣1=2,∠AMF=90°,∵四边形ABCD和四边形GCEF是正方形,∴∠ACD=∠GCF=45°,∴∠ACF=90°,∵H为AF的中点,∴CH=AF,在Rt△AMF中,由勾股定理得:AF===2,∴CH=,故答案为:.12.解:连接BD交AC于O,∵四边形ABCD、AGFE是正方形,∴AB=AD,AE=AG,∠DAB=∠EAG,∴∠EAB=∠GAD,在△AEB和△AGD中,,∴△EAB≌△GAD(SAS),∴EB=GD,∵四边形ABCD是正方形,AB=,∴BD⊥AC,AC=BD=AB=2,∴∠DOG=90°,OA=OD=BD=1,∵AG=1,∴OG=OA+AG=2,∴GD==,∴EB=.故答案为:.13.解:∵△ACE是等边三角形,∴∠EAC=60°,AE=AC,∵∠BAC=30°,∴∠F AE=∠ACB=90°,AB=2BC,∵F为AB的中点,∴AB=2AF,∴BC=AF,∴△ABC≌△EF A,∴FE=AB,∴∠AEF=∠BAC=30°,∴EF⊥AC,故①正确,∵EF⊥AC,∠ACB=90°,∴HF∥BC,∵F是AB的中点,∴HF=BC,∵BC=AB,AB=BD,∴HF=BD,故④说法正确;∵AD=BD,BF=AF,∴∠DFB=90°,∠BDF=30°,∵∠F AE=∠BAC+∠CAE=90°,∴∠DFB=∠EAF,∵EF⊥AC,∴∠AEF=30°,∴∠BDF=∠AEF,∴△DBF≌△EF A(AAS),∴AE=DF,∵FE=AB,∴四边形ADFE为平行四边形,∵AE≠EF,∴四边形ADFE不是菱形;故②说法不正确;∴AG=AF,∴AG=AB,∵AD=AB,则AD=4AG,故③说法正确,故答案为:①③④.14.解:连接CF,∵正方形ABCD和正方形BEFG中,AB=7,BE=5,∴GF=GB=5,BC=7,∴GC=GB+BC=5+7=12,∴=13.∵M、N分别是DC、DF的中点,∴MN==.故答案为:.15.解:∵平行四边形两条对角线互相平分,∴它们的一半分别为2和,∵22+()2=32,∴两条对角线互相垂直,∴这个四边形是菱形,∴S=4×2=4.故答案为:4.16.解:在正方形ABCD中,∵∠ABD=∠CBD=45°,∵四边形MNPQ和AEFG均为正方形,∴∠BEF=∠AEF=90°,∠BMN=∠QMN=90°,∴△BEF与△BMN是等腰直角三角形,∴FE=BE=AE=AB,BM=MN=QM,同理DQ=MQ,∴MN=BD=AB,∴==,故答案为:.17.解:∵四边形ABCD为正方形,∴∠BAE=∠D=90°,AB=AD,在△ABE和△DAF中,∵,∴△ABE≌△DAF(SAS),∴∠ABE=∠DAF,∵∠ABE+∠BEA=90°,∴∠DAF+∠BEA=90°,∴∠AGE=∠BGF=90°,∵点H为BF的中点,∴GH=BF,∵BC=5、CF=CD﹣DF=5﹣2=3,∴BF==,∴GH=BF=,故答案为:.18.解:∵正方形ABCD,∴AB=AD,∠BAE=∠DAE,在△ABE与△ADE中,,∴△ABE≌△ADE(SAS),∴∠AEB=∠AED,∠ABE=∠ADE,∵∠CBF=20°,∴∠ABE=70°,∴∠AED=∠AEB=180°﹣45°﹣70°=65°,故答案为:6519.解:由题意,当△ODP是腰长为5的等腰三角形时,有三种情况:(1)如答图①所示,PD=OD=5,点P在点D的左侧.过点P作PE⊥x轴于点E,则PE=4.在Rt△PDE中,由勾股定理得:DE===3,∴OE=OD﹣DE=5﹣3=2,∴此时点P坐标为(2,4);(2)如答图②所示,OP=OD=5.过点P作PE⊥x轴于点E,则PE=4.在Rt△POE中,由勾股定理得:OE===3,∴此时点P坐标为(3,4);(3)如答图③所示,PD=OD=5,点P在点D的右侧.过点P作PE⊥x轴于点E,则PE=4.在Rt△PDE中,由勾股定理得:DE===3,∴OE=OD+DE=5+3=8,∴此时点P坐标为(8,4).综上所述,点P的坐标为:(2,4)或(3,4)或(8,4);故答案为:(2,4)或(3,4)或(8,4);20.解:∵四边形ABCD是矩形,∴AB=DC=1,∠B=∠C=90°,AD∥BC,AD=BC,∴∠AMB=∠DAE,∵DE=DC,∴AB=DE,∵DE⊥AM,∴∠DEA=∠DEM=90°,在△ABM和△DEA中,,∴△ABM≌△DEA(AAS),∴AM=AD,∵AE=2EM,∴BC=AD=3EM,设EM=CM=x,则BM=2x,AM=BC=3x,在Rt△ABM中,由勾股定理得:12+(2x)2=(3x)2,解得:x=,∴BM=;故答案为:.21.(1)证明:∵四边形ABCD是矩形,O是BD的中点,∴∠A=90°,AD=BC=4,AB∥DC,OB=OD,∴∠OBE=∠ODF,在△BOE和△DOF中,,∴△BOE≌△DOF(ASA),∴EO=FO,∴四边形BEDF是平行四边形;(2)解:当四边形BEDF是菱形时,BD⊥EF,设BE=x,则DE=x,AE=6﹣x,在Rt△ADE中,DE2=AD2+AE2,∴x2=42+(6﹣x)2,解得:x=,∵BD==2,∴OB=BD=,∵BD⊥EF,∴EO==,∴EF=2EO=.22.解:(1)∵AF=FG,∴∠F AG=∠FGA,∵AG平分∠CAB,∴∠CAG=∠F AG,∴∠CAG=∠FGA,∴AC∥FG,∵DE⊥AC,∴FG⊥DE,∵FG⊥BC,∴DE∥BC,∴AC⊥BC,∴∠C=∠DHG=90°,∠CGE=∠GED,∵F是AD的中点,FG∥AE,∴H是ED的中点,∴FG是线段ED的垂直平分线,∴GE=GD,∠GDE=∠GED,∵DE∥BC,∴∠CGE=∠GED=∠GDE,∴△ECG≌△GHD(AAS);(2)证明:过点G作GP⊥AB于P,∴GC=GP,而AG=AG,∴△CAG≌△P AG,∴AC=AP,由(1)可得EG=DG,∴Rt△ECG≌Rt△DPG,∴EC=PD,∴AD=AP+PD=AC+EC;(3)四边形AEGF是菱形,证明:∵∠B=30°,∴∠ADE=30°,∴AE=AD,∴AE=AF=FG,由(1)得AE∥FG,∴四边形AEGF是平行四边形,∴四边形AEGF是菱形.23.解:∵四边形ABCD是正方形,AC是对角线,∴∠1=∠2=22.5°,又∵CP⊥CF,∴∠3+∠FCD=∠1+∠FCD=90°∴∠3=∠1=22.5°∴∠P=67.5°又四边形ABCD为正方形,∴∠ACP=45°+22.5°=67.5°∴∠P=∠ACP∴AP=AC又AC=AB=4∴AP=4,∴S△APC=AP•CD=4×4=8;(2)∵在△PDC和△FBC中,∴△PDC≌△FBC∴CP=CF在CN上截取NH=FN,连接BH∵FN=NH,且BN⊥FH∴BH=BF∴∠4=∠5∴∠4=∠1=∠5=22.5°又∠4+∠BFC=∠1+∠BFC=90°∴∠HBC=∠BAM=45°在△AMB和△BHC中,,∴△AMB≌△BHC,∴CH=BM∴CF=BM+2FN∴CP=BM+2FN.24.解:(1)如图所示,过E作EM⊥BC于M点,过E作EN⊥CD于N点,∵正方形ABCD,∴∠BCD=90°,∠ECN=45°,∴∠EMC=∠ENC=∠BCD=90°,且NE=NC,∴四边形EMCN为正方形,∵四边形DEFG是矩形,∴EM=EN,∠DEN+∠NEF=∠MEF+∠NEF=90°,∴∠DEN=∠MEF,又∠DNE=∠FME=90°,在△DEN和△FEM中,,∴△DEN≌△FEM(ASA),∴ED=EF,∴矩形DEFG为正方形,(2)CE+CG的值为定值,理由如下:∵矩形DEFG为正方形,∴DE=DG,∠EDC+∠CDG=90°,∵四边形ABCD是正方形,∵AD=DC,∠ADE+∠EDC=90°,∴∠ADE=∠CDG,在△ADE和△CDG中,,∴△ADE≌△CDG(SAS),∴AE=CG,∴AC=AE+CE=AB=×4=8,∴CE+CG=8是定值.25.(1)证明:∵四边形ABCD是菱形,∴∠B=∠D,AB=BC=DC=AD,∵点E,O,F分别为AB,AC,AD的中点,∴AE=BE=DF=AF,OF=DC,OE=BC,OE∥BC,在△BCE和△DCF中,,∴△BCE≌△DCF(SAS);(2)解:当AB⊥BC时,四边形AEOF是正方形,理由如下:由(1)得:AE=OE=OF=AF,∴四边形AEOF是菱形,∵AB⊥BC,OE∥BC,∴OE⊥AB,∴∠AEO=90°,∴四边形AEOF是正方形.26.(1)证明:作EP⊥CD于P,EQ⊥BC于Q,∵∠DCA=∠BCA,∴EQ=EP,∵∠QEF+∠FEC=45°,∠PED+∠FEC=45°,∴∠QEF=∠PED,在Rt△EQF和Rt△EPD中,,∴Rt△EQF≌Rt△EPD(ASA),∴EF=ED,∴矩形DEFG是正方形;(2)如图2中,在Rt△ABC中.AC=AB=2,∵EC=,∴AE=CE,∴点F与C重合,此时△DCG是等腰直角三角形,易知CG=.(3)①当DE与AD的夹角为30°时,∠EFC=120°,②当DE与DC的夹角为30°时,∠EFC=30°综上所述,∠EFC=120°或30°.27.(1)证明:在正方形ABCD中,AB=BC,∠ABP=∠CBP=45°,在△ABP和△CBP中,,∴△ABP≌△CBP(SAS),∴P A=PC,∵P A=PE,∴PC=PE;(2)解:由(1)知,△ABP≌△CBP,∴∠BAP=∠BCP,∴∠DAP=∠DCP,∵P A=PE,∴∠DAP=∠E,∴∠DCP=∠E,∵∠CFP=∠EFD(对顶角相等),∴180°﹣∠PFC﹣∠PCF=180°﹣∠DFE﹣∠E,即∠CPE=∠EDF=90°;(3)解:AP=CE;理由如下:在菱形ABCD中,AB=BC,∠ABP=∠CBP=60°,在△ABP和△CBP中,,∴△ABP≌△CBP(SAS),∴P A=PC,∠BAP=∠BCP,∵P A=PE,∴PC=PE,∴∠DAP=∠DCP,∵P A=PC,∴∠DAP=∠AEP,∴∠DCP=∠AEP∵∠CFP=∠EFD(对顶角相等),∴180°﹣∠PFC﹣∠PCF=180°﹣∠DFE﹣∠AEP,即∠CPF=∠EDF=180°﹣∠ADC=180°﹣120°=60°,∴△EPC是等边三角形,∴PC=CE,∴AP=CE.28.(1)证明:∵四边形ABCD是矩形,∴OA=0B=OC=OD,∵AE=BF=CG=DH,∴AO﹣AE=OB﹣BF=CO﹣CG=DO﹣DH,即:OE=OF=OG=OH,∴四边形EFGH是矩形;(2)解:∵G是OC的中点,∴GO=GC,∵DG⊥AC,∴∠DGO=∠DGC=90°,又∵DG=DG,∴△DGC≌△DGO,∴CD=OD,∵F是BO中点,OF=2cm,∴BO=4cm,∵四边形ABCD是矩形,∴DO=BO=4cm,∴DC=4cm,DB=8cm,∴CB==4,∴矩形ABCD的面积=4×4=16cm2.。
《特殊的平行四边形》公开课教学PPT课件
到四边形EFGH,求证:四边形EFGH是
菱形.
A
E
D
F
G
B
G
C
如图:将菱形ABCD沿AC方向平移至A1B1C1D1,
A1D1交CD于E,A1B1交BC于F,请问四边形
A1FCE是不是菱形?为什么?
D
D1
A
A1形
四条边都相等
菱形
平行四边 形
矩形的性质
边的性质: 矩形的对边平行且相等.
角的性质: 矩形的四个角都是直角.
对角线的性质: 矩形的对角线相等,且互相平分.
想一想
由矩形的对角线性质,我们可以得到直 角三角形的一个性质:直角三角形斜边 上的中线等于斜边的一半.
思考:矩形的两条对角线把矩形分成四个什么三
角形?它们之间有什么关系?
已知:在 ABCD 中,AC ⊥ BD 求证: ABCD 是菱形
证明:∵四边形ABCD是平行四边形
A
∴OA=OC 又∵ AC ⊥ BD;
B
O
D
∴BA=BC
C
∴ ABCD是菱形
菱形常用的判定方法
有一组邻边相等的平行四边形叫做菱形 有四条边相等的四边形是菱形 对角线互相垂直的平行四边形是菱形
例题讲解: 例2 如图,点P是正方形ABCD的对角线 BD上的一点PM⊥BC,PN⊥CD,垂足 分别为点M,N.求证:AP=MN.
一组邻边相等有一组邻边相等的平行四边形叫做菱形平行四边形边对角线角菱形的定义菱形的性质菱形的性质菱形菱形的两条对角线互相平分菱形的两组对边平行菱形的四条边相等菱形的两组对角分别相等菱形的邻角互补菱形的两条对角线互相垂直平分每一条对角线平分一组对角
6.3特殊的平行四边形
鲁教版(五四制)数学八年级下册第六章《特殊平行四边形》课件
1.矩形、菱形、正方形的定义?
2.平行四边形具有哪些性质?从几方面进行概述? 3.菱形有怎样的性质?是否具有平行四边形的所有性质?又具有怎样的特 有性质?
4.矩形有怎样的性质?是否具有平行四边形的所有性质?又具有怎样的特 有性质?
5.正方形具有哪些性质? 6.单独从边或角或对角线位置与数量关系入手,能否把一个平行四边形转 化为菱形? 能否把一个四边形转化为菱形? 如何判断一个四边形或者 平行四边形是菱形?
有一组邻边相等的平行四边形叫做菱形.
A
D
符号语言
B
C
四边形ABCD是平行四边形,且AB AD ABCD是菱形.
让学生在探索知识之间的相互联系及应用的过程中,体验 推理的方法和技巧,获取推理的经验;
通过观察、猜想、分析、推理、归纳、培养提高学生分析 问题,解决问题的能力.
1.理解平行四边形、矩形、菱形、正方形的概念,以及他们之间的关系
2.探索并证明矩形、菱形、正方形的性质定理:菱形的四条边相等,对角线 互相垂直;矩形的四个角都是直角,对角线相等;正方形具有矩形和菱形的 一切性质. 3.探索并证明矩形、菱形、正方形的判定定理:三个角是直角的四边形是矩 形;对角线相等的平行四边形是矩形;有一个角是直角的平行四边形是矩形。 四边相等的四边形是菱形;邻边相等的平行四边形是菱形;对角线互相垂直 的平行四边形是菱形.
菱形、矩形、正方形作为特殊的平行四边 形,不仅具有平行四边形的所有性质,而且还具有其特有 的性质;
特殊平行四边形的性质和判定,并能应用 于相关的推理与证明,以及进行边、角、对角线、周长、 面积的数量计算;
通过对知识的综合应用,初步 学生的逻辑思维能 力.
过程与方法:
通过探索、归纳几类特殊四边形的性质和判定,了解它们 之间的包含关系;
八下第六章《特殊平行四边形复习课》ppt课件-(共42张PPT)-(1)
的有 _______________________(组合序号)
4.若平行四边形一边长为8cm,一条对角线长为6cm,则另一条
对角线长X的取值范围是_____________
5.M为□ABCD 的边AD上一点,若▲MBC的面积为8cm2,□ABCD
的面积为_______
A
D
6.如图,□ABCD中,AE⊥BC,AF⊥CD,E,
(1)求证:EO=FO (2)当点O运动到何处时,四边形AECF是 矩形?并证明你的结论.
A
M E
B
O FN
D C
(1)证明 ∵ CE 平分∠ ACB ∴ ∠ ACE= ∠ ECB ∵ MN // BC ∴ ∠ ECB= ∠ OEC ∴ ∠ OEC= ∠ ECO ∴ OE=OC
同理OF=OC ∴ OE=OF
A、对角相等
B、对角线相 C、对边相等 D、对角线互相平分
2、菱形有而一般的平行四边形不具有的性质是( )
A、对角相等 B、对角线互相平分C、对边平行且相等 D、对角线互相垂直
3.下列性质中,平行四边形不一定具备的是( )
(A)对角相等
(B)邻角互补 (C )对角互补
(D)内角和是360°
(4).下面判定四边形是平行四边形的方法中,错误的是( )。
(B)两条对角线互相平分。
(C )两条对角线互相垂直。 (D)一对邻角的和为180°。
5.不能判定四边形ABCD是平行四边形的条件是( ) (A) AB =CD, AD =BC。(B) BC // AD。 (C ) AB//DC, AD//BC。 (D) AB =CD,AD//BC。
1、矩形具有而一般的平行四边形不具有的性质是( )
O
八年级数学下册 第六章特殊平行四边形与梯形复习学案(无答案) 浙教版
第6章特殊平行四边形与梯形复习一、矩形1、有一角是直角的平行四边形是矩形2、矩形的四个角都是直角;3、矩形的对角线相等。
4、矩形判定定理1:有三个角是直角的四边形是矩形5、矩形判定定理2:对角线相等的平行四边形是矩形6、直角三角形斜边上的中线等于斜边的一半二、菱形1、把一组邻边相等的平行四边形叫做菱形.2、定理1:菱形的四条边都相等3、菱形的对角线互相垂直,并且每条对角线平分一组对角.4、菱形的面积等于菱形的对角线相乘除以25、菱形判定定理1:四边都相等的四边形是菱形6、菱形判定定理2:对角线互相垂直的平行四边形是菱形。
三、正方形1、有一组邻边相等,并且有一个角是直角的平行四边形叫做正方形2、性质:(1)四个角都是直角,四条边相等(2)对角线相等,并且互相垂直平分,每条对角线平分一组对角3、判定:(1)一组邻边相等的矩形是正方形(2)有一个角是直角的菱形是正方形四、梯形1、一组对边平行而另一组对边不平行的四边形叫做梯形。
2、等腰梯形:两腰相等的梯形叫做等腰梯形。
3、直角梯形:一腰和底垂直的梯形叫做直角梯形。
4、①等腰梯形是轴对称图形,对称轴是连接两底中点的直线。
②等腰梯形同一底上的两个内角相等,两条对角线相等。
5、在同一底上的两个角相等的梯形是等腰梯形。
6、作出下列梯形常用的辅助线五、综合1、下列判定正确的是()A、对角线互相垂直的四边形是菱形B、两角相等的四边形是等腰梯形C、四边相等且有一个角是直角的四边形是正方形D、对角线相等且互相垂直的四边形是正方形2、平行四边形的各个内角平分线若能围成一个四边形,则这个四边形一定是()A、正方形B、矩形C、菱形D、平行四边形顺次连接矩形各边中点所得的四边形是_______________;顺次连接对角线互相垂直的四边形各边中点所得的四边形是____________________.下列图形不符合“既是中心对称图形,又是轴对称图形”的是()A、线段B、半圆C、矩形D、菱形3、下列说法中错误..的是()A、四个角相等的四边形是矩形B、四条边相等的四边形是正方形C、对角线相等的菱形是正方形D、对角线互相垂直的矩形是正方形下列性质,矩形没有而菱形有的是()A、对角线互相垂直B、对角线互相平分C、对角线相等D、以上都不对4、下列判断错误的是()A、对角线相等的平行四边形是矩形B、对角线互相垂直平分且相等的四边形是菱形C、对角线垂直且相等的四边形是正方形D、对角线平分一个内角的平行四边形是菱形1、在线段、角、等边三角形、平行四边形、矩形、菱形、正方形中,是轴对称图形的是。
特殊的平行四边形课件
线相等且互相平分的性质。
02
菱形
有一组邻边相等的平行四边形叫做菱形。菱形也是一种特殊的平行四边
形,它除了具有平行四边形的所有性质外,还具有四条边都相等、对角
线互相垂直且平分每一组对角的性质。
03
正方形
有一组邻边相等且一个角是直角的平行四边形叫做正方形。正方形是一
种特殊的菱形和矩形,它同时具有菱形和矩形的所有性质。
特殊的平行四边形课件
目录
• 平行四边形基础回顾 • 矩形特性及其应用 • 菱形特性及其应用 • 正方形特性及其应用 • 特殊平行四边形之间的转换关系 • 解题思路与技巧分享
01
平行四边形基础回顾
平行四边形的定义与性质
定义
两组对边分别平行的四边形叫做 平行四边形。
性质
对边相等,对角相等,对角线互 相平分。
04
正方形特性及其应用
正方形的定义与性质
定义
四边相等且四个角都是直角的四边形叫做正方形。
性质
正方形的四条边相等,四个角都是直角,对角线相等且互相垂直平分,每一条对角线平分一组对角。
正方形在实际生活中的应用举例
建筑
许多古代和现代建筑中都使用了 正方形,如埃及金字塔、希腊神 庙等。正方形的设计使得建筑更
02
矩形特性及其应用
矩形的定义与性质
定义
两组对边分别相等且两组对角都是直 角的四边形叫做矩形。
性质
矩形的四个角都是直角;矩形的对角 线相等且互相平分;矩形是轴对称图 形,对称轴是两条对角线所在的直线 。
矩形在实际生活中的应用举例
01
02
03
建筑
矩形的稳定性和易于计算 的性质使其成为建筑设计 中常用的形状,如门窗、 梁柱等。
初中数学特殊的平行四边形学案练习题
第六章 特殊的平行四边形1.能说出菱形的定义,会判断是否为菱形2.能说出菱形的性质,并能灵活应用菱形的性质解题1. 平行四边形的定义:2. 平行四边形的性质 边 :① ② 角 :① ② 对角线:情景一:将一张长方形的纸横对折,再竖对折,然后沿图中的虚线剪下;情景二:两张等宽的纸条交叉重叠在一起,得到重叠的部分四边形ABCD;学习目标复习回顾新课引入情景三:将一张长方形纸对折,再在折痕上取任意长为底边,剪一个等腰三角形,然后打开;知识点一 菱形的定义 平行四边形叫做菱形.知识点二 菱形的性质1.定理1:菱形的四条边都2.定理2:菱形的对角线3.对称性:菱形既是 图形,又是 图形,对称轴是两条对角线所 在的直线知识点三 菱形的面积重点1 利用菱形的性质求线段长例1 如图,四边形ABCD 是菱形,对角线AC 与BD 相交于O ,菱形ABCD的周长是20,BD=6(1)求AC 的长(2)求菱形ABCD 的高DE 的长变式1 已知一个菱形的面积为cm 2 ,且两条对角线的长度比为1:,则菱形的边长为变式2 如图,菱形的周长为20cm ,相邻两内角的度数之比为1:2,求菱形的两条对角线的长及面积。
新知探究巩固新知重点2 利用菱形的性质求角度例2 在菱形ABCD中,E,F分别是边BC,CD上的点,且AE=EF=AF=AB, 则∠C 的度数为()A 120ºB 100ºC 80ºD 60º变式3 如图,在菱形ABCD中,∠BAD=100º,AB的垂直平分线交对角线AC于点E,F为垂足,连接DF,∠CDF等于变式4 如图,在菱形ABCD中,点E,F分别是BC,CD上的点,且∠B=EAF=60º∠(1)求证:△AEF是等边三角形(2)若∠BAF=37º,求∠CEF的度数重点3 利用菱形的性质求面积例3 如图,在菱形ABCD中,∠ABC与∠BAD的度数比为1:2,周长是40cm,求:(1)两条对角线AC,BD的长度(2)菱形ABCD的面积变式5 已知菱形ABCD中,对角线AC与BD相交于点O,∠BAD=120º,AC=4,则该菱形的面积是( )A B C D 8重点4 利用菱形的性质进行证明例4 如图所示,菱形ABCD的对角线AC,BD相交于点O,点E,F分别是边AB,AD 的中点(1)请判断△OEF的形状,并证明你的结论(2)若AB=13,AC=10,请求出线段EF的长变式6 如图,四边形ABCD是菱形,CE⊥AB交AB的延长线于点E,CF⊥AD交AD的延长线于点F,求证:DF=BE达标测评1.下列性质中,菱形对角线不具有的是( )A 对角线互相垂直B 对角线所在的直线是对称轴C 对角线相等D 对角线互相平分2.如图,菱形ABCD的对角线AC,BD相交于点O,有下列结论:①OA=OD;AC BD;②⊥③∠∠④菱形ABCD =AC BD1=2;S,其中正确的序号是( )ArrayA ①②B ③④C ②④D ②③3.菱形OACB在平面直角坐标系中的位置如图所示,点C的坐标是(6,0),点A的纵坐标是的坐标为( )1,则点B ArrayA (3,1)B (3,-1)C (1,-3)D (1,3)4.菱形ABCD的对角线AC,BD相交于点O,E,F分别是AD,CD边上的中点,连接EF.若FE=, BD=2,则菱形ABCD的面积为( ) A B C D如图1所示,四边形ABCD 为菱形,E 为对角线AC 上的一个动点,连接DE 并延长交射线AB 于点F ,连接BE.(1)求证:∠F=EBC∠(2)若,当△BEF 为等腰三角形时,求的度数(如图2所示)创新培养菱形的判定学习目标1. 能说出菱形的判定定理2. 能利用菱形的判定定理证明菱形课前诊断1.菱形的性质菱形的四条边都 ,菱形的对角线 ,菱形既是 图形,又是 图形,对称轴是 .2.如图所示,菱形ABCD的对角线AC,BD的长分别为6cm,8cm,则这个菱形的周长为()A. 5cmB. 10cmC. 14cmD. 20cm3.在菱形ABCD 中,,AB=2,则菱形ABCD的面积为新知探究活动一 定义法问题: 如果一个四边形是一个平行四边形,只要再添加一个什么条件就可以判定它是一个菱形?依据是什么?【归纳定理】小试牛刀如图所示,在Rt△ABC中,,点E是AC的中点,AC=2AB,∠BAC的平分线AD 交BC于点D,作AF∥BC,连接DE并延长交AF于点F,连接FC.求证:四边形ADCF是菱形.活动二 菱形的第二个判定方法【操作探究】用一长一短两根细木条,在它们的中点处固定一个小钉子,做成一个可转动的十字架,四周围上一根橡皮筋,做成一个四边形。
初中数学八(下)第6章《特殊平行四边形与梯形》小结
浙教版数学八年级(下)第6章《特殊平行四边形与梯形》小结1、有一个角是的叫做矩形。
矩形的个角都是直角。
矩形的对角线。
矩形既是对称图形,又是对称图形,它有条对称轴。
有个角是直角的四边形是矩形。
相等的是矩形。
2、一组相等的叫做菱形。
菱形的条边都相等。
菱形的互相垂直,并且每条对角线平分。
菱形既是对称图形,又是对称图形,它有条对称轴。
四条边相等的四边形是。
对角线的平行四边形是菱形。
3、有一组相等,并且有一个角是的平行四边形叫做正方形。
正方形的个角都是直角,四条边都。
正方形的对角线,并且,每条对角线平分一组。
正方形既是对称图形,又是对称图形,有条对称轴。
4、一组对边,而另一组对边的四边形叫做梯形。
相等的梯形叫做等腰梯形。
等腰梯形的两个底角相等,两条对角线。
在的两个底角相等的梯形是等腰梯形。
5、几种四边形的关系可表示为:条件:条件:条件:条件:条件:6、作用于物体的各部分的重力,可以看做一个大小等于各个重力总和的力作用于物体的某一点,这一点叫做物体的。
线段的重心是这条线段的,三角形的重心是三条的交点,平行四边形的重心是。
7、主要方法和技能:(1)判断一个平行四边形是矩形、菱形、正方形;(2)判断一个梯形是等腰梯形;(3)确定线段、三角形、平行四边形(包括矩形、菱形、正方形)的重心。
(参考答案)1、有一个角是直角的平行四边形叫做矩形。
矩形的 4 个角都是直角。
矩形的对角线相等且互相平分。
矩形既是轴对称图形,又是中心对称图形,它有 2 条对称轴。
有 3 个角是直角的四边形是矩形。
对角线相等的平行四边形是矩形。
2、一组邻边相等的平行四边形叫做菱形。
菱形的 4 条边都相等。
菱形的对角线互相垂直,并且每条对角线平分一组对角。
菱形既是轴对称图形,又是中心对称图形,它有 2 条对称轴。
四条边相等的四边形是菱形。
对角线互相垂直的平行四边形是菱形。
3、有一组邻边相等,并且有一个角是直角的平行四边形叫做正方形。
正方形的 4 个角都是直角,四条边都相等。
北师大版八年级下学期数学教案:6.3特殊的平行四边形
1.理论介绍:首先,我们要了解特殊的平行四边形的基本概念。特殊的平行四边形包括矩形、菱形和正方形,它们在性质上有独特的特点和应用。它们是平面几何中的重要图形,广泛应用于日常生活和建筑等领域。
2.案例分析:接下来,我们来看一个具体的案例。以教室的黑板为例,分析其为何是矩形,探讨矩形的性质和判定方法。
2.提升学生的空间想象力:通过对特殊平行四边形的认识,培养学生对平面图形的空间想象力,能够将抽象的几何图形与实际生活中的物体相对应。
3.增强学生的数据分析能力:使学生能够运用矩形、菱形和正方形的性质进行数据的分析和处理,如计算周长、面积等,培养解决实际问题的能力。
4.培养学广泛应用,提高数学应用意识,增强学习的积极性。
北师大版八年级下学期数学教案:6.3特殊的平行四边形
一、教学内容
北师大版八年级下学期数学教案:6.3特殊的平行四边形
1.矩形的定义与性质:掌握矩形的判定方法,了解矩形的性质,如对边平行且相等,四个角都是直角等。
2.菱形的定义与性质:掌握菱形的判定方法,了解菱形的性质,如对边平行,四条边相等,对角线垂直平分等。
三、教学难点与重点
1.教学重点
-矩形、菱形和正方形的判定方法:这是本节课的核心内容,教师需详细讲解并强调判定条件的具体含义,如矩形的四个角都是直角,对边平行且相等;菱形的对边平行,四边相等,对角线垂直平分;正方形具备矩形和菱形的性质,且对角线相等、垂直平分且互相平分。
-特殊平行四边形的性质应用:教师应重点讲解如何将这些性质应用于解决实际问题,如计算图形的周长和面积。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
第六章 特殊平行四边形与梯形
N第六章 特殊平行四边形与梯形第一节 矩形 第二节 菱形 第三节 正方形 第四节 梯形一、矩形矩形的概念:有一角是直角的平行四边形是矩形矩形的性质:①、矩形的四个角都是直角;②、矩形的对角线相等。
矩形的判定:、①、有三个角是直角的四边形是矩形;②、对角线相等的平行四边形是矩形;③、概念判定:有一角是直角的平行四边形是矩形直角三角形斜边上的中线等于斜边的一半 例:在矩形ABCD 中,AB=10cm ,AD=5cm ,E 是CD 上的一点,且AE=10cm ,则∠CBE= _______例:在△ABC 中,点O 是AC 边上的一个动点,过点O 作直线MN ∥BC ,设MN 交∠BCA 的平分线于点E,交三角形的外角∠ACD 平分线于点F 。
(1)求证:EO=FO(2)当点O 运动到何处时,四边形AECF 是矩形?并证明你的结论.练 习1、一个矩形的两条对角线的交点到小边的距离比到大边的距离多2cm ,若这个矩形的周长是56cm ,则它的面积是( )A 、48cm 2B 、192cm 2C 、196cm 2D 、以上答案都不对2、下列说法不能说明四边形是矩形的是------------------------------------( ) A 、 三个角是直角的四边形 B 、对角线相等的平行四边形 C 、对角线垂直且相等的四边形 D 、四个角都相等的四边形3、下列性质中,矩形具有而平行四边形不具有的是--------------( ) A 、对边平行 B 、对角相等 C 、对边相等 D 、对角线相等4、如果矩形的一条对角线与一边的夹角为40°,那么两条对角线所夹钝角的度数为 。
5、矩形ABCD 的对角线交于O 点,∠AOB=120°,AD=5cm ,则AC= cm 。
6、矩形ABCD 的对角线相交于O ,AC=2AB ,则△COD 为________三角形。
7、如图,E 是矩形ABCD 边CB 延长线上一点,CE =CA ,F 是AE 的中点。
《特殊的平行四边形》四边形PPT课件2
∵EF是折痕,A、M两点重合, ∴EF是AM的中垂线.
∴AE=EM. 设BE=x,则AE=8-x.
在Rt△MEB中,ME2=BE2+BM2. (8-x)2=x2+42. x=3. 1 1 S AEM AE BM 5 4 10. 2 2
1、不要做刺猬,能不与人结仇就不与人结仇,谁也不跟谁一辈子,有些事情没必要记在心上。 2、相遇总是猝不及防,而离别多是蓄谋已久,总有一些人会慢慢淡出你的生活,你要学会接受而不是怀念。 3、其实每个人都很清楚自己想要什么,但并不是谁都有勇气表达出来。渐渐才知道,心口如一,是一种何等的强大! 4、有些路看起来很近,可是走下去却很远的,缺少耐心的人永远走不到头。人生,一半是现实,一半是梦想。 5、没什么好抱怨的,今天的每一步,都是在为之前的每一次选择买单。每做一件事,都要想一想,日后打脸的时候疼不疼。 6、过去的事情就让它过去,一定要放下。学会狠心,学会独立,学会微笑,学会丢弃不值得的感情。 7、成功不是让周围的人都羡慕你,称赞你,而是让周围的人都需要你,离不开你。 8、生活本来很不易,不必事事渴求别人的理解和认同,静静的过自己的生活。心若不动,风又奈何。你若不伤,岁月无恙。 9、与其等着别人来爱你,不如自己努力爱自己,对自己好点,因为一辈子不长,对身边的人好点,因为下辈子不一定能够遇见。 10、你迷茫的原因往往只有一个,那就是在本该拼命去努力的年纪,想得太多,做得太少。 11、有一些人的出现,就是来给我们开眼的。所以,你一定要禁得起假话,受得住敷衍,忍得住欺骗,忘得了承诺,放得下一切。 12、不要像个落难者,告诉别人你的不幸。逢人只说三分话,不可全抛一片心。 13、人生的路,靠的是自己一步步去走,真正能保护你的,是你自己的选择。而真正能伤害你的,也是一样,自己的选择。 14、不要那么敏感,也不要那么心软,太敏感和太心软的人,肯定过得不快乐,别人随便的一句话,你都要胡思乱想一整天。 15、不要轻易去依赖一个人,它会成为你的习惯,当分别来临,你失去的不是某个人,而是你精神的支柱;无论何时何地,都要学会独立行走 ,它会让你走得更坦然些。 16、在不违背原则的情况下,对别人要宽容,能帮就帮,千万不要把人逼绝了,给人留条后路,懂得从内心欣赏别人,虽然这很多时候很难 。 17、要使整个人生都过得舒适、愉快,这是不可能的,因为人类必须具备一种能应付逆境的态度。——卢梭 18、不要太高估自己在集体中的力量,因为当你选择离开时,就会发现即使没有你,太阳照常升起。 19、时间不仅让你看透别人,也让你认清自己。很多时候,就是在跌跌拌拌中,我们学会了生活。 20、命运要你成长的时候,总会安排一些让你不顺心的人或事刺激你。 21、你的假装努力,欺骗的只有你自己,永远不要用战术上的勤奋,来掩饰战略上的懒惰。 22、成长是一场和自己的比赛,不要担心别人会做得比你好,你只需要每天都做得比前一天好就可以了。 23、你没那么多观众,别那么累。做一个简单的人,踏实而务实。不沉溺幻想,更不庸人自扰。 24、奋斗的路上,时间总是过得很快,目前的困难和麻烦是很多,但是只要不忘初心,脚踏实地一步一步的朝着目标前进,最后的结局交给 时间来定夺。 25、你心里最崇拜谁,不必变成那个人,而是用那个人的精神和方法,去变成你自己。 26、运气是努力的附属品。没有经过实力的原始积累,给你运气你也抓不住。上天给予每个人的都一样,但每个人的准备却不一样。不要羡 慕那些总能撞大运的人,你必须很努力,才能遇上好运气。 27、时间只是过客,自己才是主人,人生的路无需苛求,只要你迈步,路就在你的脚下延伸,只要你扬帆,便会有八面来风,启程了,人的 生命才真正开始。 28、每个人身上都有惰性和消极情绪,成功的人都是懂得管理自己的情绪和克服自己的惰性,并像太阳一样照亮身边的人,激励身边的人。 29、最终你相信什么就能成为什么。因为世界上最可怕的二个词,一个叫执着,一个叫认真,认真的人改变自己,执着的人改变命运。只要 在路上,就没有到不了的地方。 30、人生,就要活得漂亮,走得铿锵。自己不奋斗,终归是摆设。无论你是谁,宁可做拼搏的失败者,也不要做安于现状的平凡人。 31、不管做什么都不要急于回报,因为播种和收获不在同一个季节,中间隔着的一段时间,我们叫它为坚持。 32、知人者智,自知者明。胜人者有力,自胜者强。——老子
2022春八年级数学下册第六章特殊平行四边形正方形及其性质习题课件鲁教版五四制ppt
14.如图,在正方形ABCD中,G为BC边上一点, BE⊥AG于E,DF⊥AG于F,连接DE. (1)求证:△ABE≌△DAF; 证明:在正方形ABCD中,AB=AD, ∠BAD=90°,∴∠BAE+∠DAF=90°. ∵BE⊥AG于E,DF⊥AG于F,∴∠AEB=∠DFA= 90°,∠ADF+∠DAF=90°.∴∠BAE=∠ADF. ∴△ABE≌△DAF(AAS).
22+
6 6.
【点拨】判定一个菱形是正方形,只需一个角是90°或 对角线相等即可.答案不唯一.
4.正方形具有而矩形不一定具有的性质是( B ) A.四个角都相等 B.四条边相等 C.对角线相等 D.对角线互相平分
5.【2020·天津】如图,四边形OBCD是正方形,O,D两点 的坐标分别是(0,0),(0,6),点C在第一象限,则点C的 坐标是( D ) A.(6,3) B.(3,6) C.(0,6) D.(6,6)
解:如图,作 AH⊥BD 于点 H,由题意易知∠AGB=60°,
∠ABG=45°,所以∠BAH=45°=∠ABG,∠GAH=30°.
所以 AH=BH,AG=2HG.因为 AB=1,所以在 Rt△ABH
中,由勾股定理可得 AH=BH= 22.在 Rt△AGH 中,由
勾股定理可得
HG=
66.所以
BG=
(2)四边形BFDE是否可能是平行四边形?如果可能,请指出此时点G的位置; 如果不可能,请说明理由. 解:不可能.理由如下: 如图,连接BE,DF,AC,若要使四边形BFDE是平行四边形, 已知DE∥BF,则当DE=BF时,四边形BFDE为平行四边 形.由(1)可知DE=AF,∴BF=AF,即此时∠BAF=45°. 又易知∠BAC=45°.∴点G与点C重合. 与题中点G不与点C重合矛盾, ∴四边形BFDE不可能是平行四边形.
2021-2022学年鲁教版八年级数学下册《第6章特殊平行四边形》章末综合知识点分类训练(附答案)
2021-2022学年鲁教版八年级数学下册《第6章特殊平行四边形》章末综合知识点分类训练(附答案)一.菱形的性质1.如图,在菱形ABCD中,∠A=60°,点E、F分别为AD、DC上的动点,∠EBF=60°,点E从点A向点D运动的过程中,AE+CF的长度()A.逐渐增加B.逐渐减小C.保持不变且与EF的长度相等D.保持不变且与AB的长度相等2.如图,四边形ABCD是菱形,AC=8,DB=6,DH⊥AB于H,则DH等于()A.B.C.5D.43.如图,在菱形ABCD中,∠BCD=110°,AB的垂直平分线交对角线AC于点F,E为垂足,连接DF,则∠CDF的度数为.4.如图,已知菱形ABCD的对角线AC、BD的长分别是6cm、8cm,AE⊥BC,垂足为点E,则AE的长是cm.5.在菱形ABCD中,若AC=6,BD=8,则菱形ABCD的高为.6.如图,在菱形ABCD中,AC、BD相交于点O,DE⊥BC,垂足为E.若AC=8,BD=6,则DE的长为.7.如图,若菱形ABCD的顶点A,B的坐标分别为(3,0),(﹣2,0),点D在y轴上,则点C的坐标是.8.求证:菱形的一条对角线平分这一组对角.已知:如图,AC是菱形ABCD的一条对角线.求证:.证明:二.菱形的判定9.如图,在四边形ABCD中,对角线AC与BD相交于点O,AC⊥BD,AC平分∠BAD.(1)给出下列四个条件:①AB=AD,②OB=OD,③∠ACB=∠ACD,④AD∥BC,上述四个条件中,选择一个合适的条件,使四边形ABCD是菱形,这个条件是(填写序号);(2)根据所选择的条件,证明四边形ABCD是菱形.10.如图,点E、F分别在▱ABCD的边AB、CD的延长线上,且BE=DF,连接AC、EF、AF、CE,AC与EF交于点O.(1)求证:AC、EF互相平分;(2)若EF平分∠AEC,求证:四边形AECF是菱形.三.菱形的判定与性质11.在平行四边形ABCD中,∠BAD的平分线交直线BC于点E,交直线DC的延长线于点F,以EC、CF为邻边作平行四边形ECFG.(1)如图1,证明平行四边形ECFG为菱形;(2)如图2,若∠ABC=90°,M是EF的中点,求∠BDM的度数;(3)如图3,若∠ABC=120°,请直接写出∠BDG的度数.12.在Rt△ABC中,∠BAC=90°,D是BC的中点,E是AD的中点,过点A作AF∥BC 交BE的延长线于点F.(1)证明:四边形ADCF是菱形;(2)若AC=3,AB=4,求菱形ADCF的面积.四.矩形的性质13.如图,在矩形ABCD中,E是AB的中点,动点F从点B出发,沿BC运动到点C时停止,以EF为边作▱EFGH,且点G、H分别在CD、AD上.在动点F运动的过程中,▱EFGH 的面积()A.逐渐增大B.逐渐减小C.不变D.先增大,再减小14.如图,在矩形ABCD中,AB=1,对角线AC与BD相交于点O,AE⊥BD,垂足为E,若BE=EO,则AD的长是()A.3B.C.3D.15.如图,在矩形ABCD中,AB=4cm,AD=12cm,点P在AD边上以每秒1cm的速度从点A向点D运动,点Q在BC边上,以每秒4cm的速度从点C出发,在CB间往返运动,两个点同时出发,当点P到达点D时停止(同时点Q也停止),在这段时间内,线段PQ 平行于AB的次数是()A.2B.3C.4D.516.如图,在矩形ABCD中,P为矩形ABCD的边BC上任一点,PE⊥AC于点E,PF⊥BD 于点F.若AB=5,BC=12,PE+PF=.17.在矩形ABCD中,AC与BD相交于点O,若OA=2,则BD的长是.18.如图,矩形ABCD中,对角线AC的垂直平分线EF分别交BC,AD于点E,F,若BE =,AF=,则AC的长为.19.在矩形ABCD中,AC、BD相交于点O,若∠OAB=65°,则∠BOC=°.20.如图所示,在矩形ABCD中,DE平分∠ADC,且∠EDO等于15°,∠DOE=°.21.如图,矩形ABCD中,点E在AD上,且EC平分∠BED,若AB=5,DE=2,则△BEC 的面积为.22.如图,在▱ABCD中,将对角线BD分别向两个方向延长至点E、F,且BE=DF.连接AF、CF、CE、AE.(1)求证:四边形AECF是平行四边形;(2)若AD=4,BE=3,∠ADB=∠CBD=90°,当四边形AECF是矩形时,则BD的长为.23.在矩形ABCD中,对角线BD的垂直平分线EF分别交AD、BC于E、F,AE=3,BF =5,求BD的长.五.矩形的判定24.如图,在平行四边形ABCD中,E、F分别是AD、BC的中点,连接AF、BE交于点G,连接CE、DF交于点H.(1)求证:四边形EGFH为平行四边形;(2)当AB与BC满足什么条件时,四边形EGFH为矩形?并说明理由.25.如图,在平行四边形ABCD中,对角线AC、BD交于点O.(1)若DE⊥AC于点E,BF⊥AC于点F,求证:AE=CF;(2)若DO=AC,求证:四边形ABCD为矩形.26.如图,在▱ABCD中,DE⊥AB,垂足为E,点F在CD上,且CF=AE.求证:四边形DEBF是矩形.27.如图,在▱ABCD中,点E、F在AD边上,且BF=CE,AE=DF.(1)求证:△ABF≌△DCE;(2)求证:四边形ABCD是矩形.六.矩形的判定与性质28.如图,在菱形ABCD中,AC=24,BD=10,AC、BD相交于点O,若CE∥BD,BE∥AC,连接OE,则OE的长是.29.如图,在菱形ABCD中,点O是对角线AC的中点,过点O的直线EF与边AD、BC 交于点E、F,∠CAE=∠FEA,连接AF、CE.(1)求证:四边形AFCE是矩形;(2)若AB=5,AC=2,直接写出四边形AFCE的面积.七.正方形的性质30.如图,平面内三点A、B、C,AB=4,AC=3,以BC为对角线作正方形BDCE,连接AD,则AD2的最大值是()A.25B.C.36D.31.如图,在正方形ABCD中,E、F分别是BC、CD上的点,若△AEF是边长为的等边三角形,则正方形的边长是.32.如图,两个正方形Ⅰ、Ⅱ和两个矩形Ⅲ、Ⅳ拼成一个大正方形,已知正方形Ⅰ、Ⅱ的面积分别为10和3,那么大正方形的面积是.33.如图,四边形ABCD是正方形,按如下步骤操作:①分别以点A,D为圆心,以AD长为半径画弧,两弧交于点P,连接AP,DP;②连接BP,CP,则∠BPC=.34.如图,在正方形ABCD中,点M、N为边BC和CD上的动点(不含端点),∠MAN=45°,下列四个结论:①当MN=MC时,则∠BAM=22.5°;②2∠AMN﹣∠MNC=90°;③△MNC的周长不变;④∠AMN﹣∠AMB=60°.其中正确结论的序号是.35.如图,点E在正方形ABCD内,且EC=BC,则∠BED=°.36.如图,四边形ABCD为正方形,点E、F分别是CD、AB的中点,DG⊥CF于点G.(1)求证:AE∥CF;(2)求证:∠AGE=90°;(3)若正方形的边长为2,求线段CG的长度.37.已知:如图,在平行四边形ABCD中,点E、F在对角线AC上,且AE=CF.(1)求证:DE∥BF;(2)若四边形ABCD是正方形,且AD=4,AE=,求四边形DEBF的面积.38.如图,在正方形ABCD中,点E、F、G分别在CD、AD、BC上,且FG⊥BE,垂足为O.(1)求证:BE=FG;(2)若O是BE的中点,且BC=8,EC=3,求AF的长.八.正方形的判定39.下列说法正确的是()A.一组对边平行,另一组对边相等的四边形是平行四边形B.对角线相等的四边形是矩形C.每一条对角线都平分一组对角的四边形是菱形D.对角线互相垂直且相等的四边形是正方形40.下列说法:①对角线互相垂直且相等的四边形是菱形;②矩形的对角线互相垂直;③一组对边平行且相等的四边形是平行四边形;④对角线垂直的矩形是正方形.其中正确的是.(把所有正确结论的序号都填上)九.正方形的判定与性质41.如图,在四边形ABCD中,∠A=∠B=90°,AB=BC=4,AD=3,E是边AB上一点,且∠DCE=45°,则DE的长度是()A.3.2B.3.4C.3.6D.4参考答案一.菱形的性质1.解:连接BD,∵四边形ABCD是菱形,∴AB=AD=CD,∵∠A=60°,∴△ABD是等边三角形,∴AB=BD,∠ABD=60°,∵DC∥AB,∴∠CDB=∠ABD=60°,∴∠A=∠CDB,∵∠EBF=60°,∴∠ABE+∠EBD=∠EBD+∠DBF,∴∠ABE=∠DBF,在△ABE和△DBF中,,∴△ABE≌△DBF(ASA),∴AE=DF,∴AE+CF=DF+CF=CD=AB,故选:D.2.解:设AC交BD于O,∵四边形ABCD是菱形,∴AO=OC,BO=OD,AC⊥BD,∵AC=8,DB=6,∴AO=4,OB=3,∠AOB=90°,由勾股定理得:AB==5,∵S菱形ABCD=,∴,∴DH=,故选:A.3.解:如图,连接BF,∵四边形ABCD是菱形,∴∠BCD=∠BAD=110°,∠BCA=∠ACD=55°=∠BAC=∠CAD,AB=AD,∠ADC =70°,∵EF垂直平分AB,∴AF=BF,在△ABF和△ADF中,,∴△ABF≌△ADF(SAS),∴BF=DF,∴AF=DF,∴∠F AD=∠ADF=55°,∴∠CDF=∠ADC﹣∠ADF=15°,故答案为:15°.4.解:如图,设AC与BD的交点为O,∵四边形ABCD是菱形,∴CO=AC=3cm,BO=BD=4cm,AC⊥BD,∴BC===5cm,∴S菱形ABCD=AC•BD=×6×8=24(cm2),∵S菱形ABCD=BC×AE,∴BC×AE=24,∴AE=(cm),故答案为:.5.解:如图所示:∵菱形ABCD,∴AC⊥BD,∵AC=6,BD=8,∴OB=BD=×8=4,OC=AC=×6=3,由勾股定理得,BC===5,S菱形ABCD=AC•BD=BC•AH,即×6×8=5•AH,解得:AH=,即菱形ABCD的高为:.故答案为:.6.解:∵四边形ABCD是菱形,∴AD=BC,AC⊥BD,AO=OC,DO=BO,∵AC=8,BD=6,∴AO=4,OD=3,由勾股定理得:AD=5,∴BC=5,∴S菱形ABCD=×AC×BD=BC×DE,∴×6×8=5×DE,解得:DE=,故答案为:.7.解:∵菱形ABCD的顶点A,B的坐标分别为(3,0),(﹣2,0),点D在y轴上,∴AB=5,∴AD=5,∴由勾股定理知:OD===4,∴点C的坐标是:(﹣5,4).故答案为:(﹣5,4).8.解:求证:∠DAC=∠BAC,∠DCA=∠BCA;证明:∵四边形ABCD是菱形,∴DA=DC,DA∥BC.∴∠DAC=∠DCA,∵DA∥BC,∴∠DAC=∠BCA,∴∠DCA=∠BCA,同理∠DAC=∠BAC.故答案为:∠DAC=∠BAC,∠DCA=∠BCA.二.菱形的判定9.解:(1)这个条件是④;故答案为:④;(2)∵AC⊥BD,AC平分∠BAD,∴∠BAO=∠DAO,∠AOB=∠AOD=90°,∵AO=AO,∴△ABO≌△ADO,∴AB=AD,∵AD∥BC,∴∠ACB=∠DAC,∴∠BAC=∠ACB,∴AB=BC,∴AD=BC,∴四边形ABCD是菱形;10.证明:(1)∵四边形ABCD是平行四边形,∴AB=DC,AB∥DC,又∵BE=DF,∴AB+BE=DC+DF,即AE=CF,∵AE=CF,AE∥CF,∴四边形AECF是平行四边形.∴AC、EF互相平分;(2)∵AB∥DC,∴∠AEO=∠CFO,∵EF平分∠AEC,∴∠AEO=∠CEO,∴∠CEO=∠CFO∴CE=CF,由(1)可知,四边形AECF是平行四边形,∴平行四边形AECF是菱形.三.菱形的判定与性质11.解:(1)证明:∵AF平分∠BAD,∴∠BAF=∠DAF,∵四边形ABCD是平行四边形,∴AD∥BC,AB∥CD,∴∠DAF=∠CEF,∠BAF=∠CFE,∴∠CEF=∠CFE,∴CE=CF,又∵四边形ECFG是平行四边形,∴四边形ECFG为菱形.(2)如图,连接BM,MC,∵∠ABC=90°,四边形ABCD是平行四边形,∴四边形ABCD是矩形,又由(1)可知四边形ECFG为菱形,∠ECF=90°,∴四边形ECFG为正方形.∵∠BAF=∠DAF,∴BE=AB=DC,∵M为EF中点,∴∠CEM=∠ECM=45°,∴∠BEM=∠DCM=135°,在△BME和△DMC中,∵,∴△BME≌△DMC(SAS),∴MB=MD,∠DMC=∠BME.∴∠BMD=∠BME+∠EMD=∠DMC+∠EMD=90°,∴△BMD是等腰直角三角形,∴∠BDM=45°;(3)∠BDG=60°,延长AB、FG交于H,连接HD.∵AD∥GF,AB∥DF,∴四边形AHFD为平行四边形,∵∠ABC=120°,AF平分∠BAD,∴∠DAF=30°,∠ADC=120°,∠DF A=30°,∴△DAF为等腰三角形,∴AD=DF,∴平行四边形AHFD为菱形,∴△ADH,△DHF为全等的等边三角形,∴DH=DF,∠BHD=∠GFD=60°,∵FG=CE,CE=CF,CF=BH,∴BH=GF,在△BHD与△GFD中,∵,∴△BHD≌△GFD(SAS),∴∠BDH=∠GDF∴∠BDG=∠BDH+∠HDG=∠GDF+∠HDG=60°.12.(1)证明:∵E是AD的中点,∴AE=DE,∵AF∥BC,∴∠AFE=∠DBE,在△AEF和△DEB中,,∴△AEF≌△DEB(AAS);∴AF=DB,又∵AF∥BC,∴四边形ADCF是平行四边形,∵∠BAC=90°,D是BC的中点,∴AD=BC=CD,∴平行四边形ADCF是菱形;(2)解:∵D是BC的中点,∴△ACD的面积=△ABD的面积=△ABC的面积,∵四边形ADCF是菱形,∴菱形ADCF的面积=2△ACD的面积=△ABC的面积=AC×AB=×3×4=6.四.矩形的性质13.解:设AB=a,BC=b,BE=c,BF=x,连接EG,∵四边形EFGH为平行四边形,∴EF=HG,EF∥HG,∴∠FEG=∠HGE,∵四边形ABCD为矩形,∴AB∥CD,∴∠BEG=∠DGE,∴∠BEG﹣∠FEG=∠DGE﹣∠EGH,∴∠BEF=∠HGD∵EF=HG,∠B=∠D,∴Rt△BEF≌Rt△DGH(AAS),同理Rt△AEH≌Rt△CGF,∴S平行四边形EFGH=S矩形ABCD﹣2(S△BEF+S△AEH)=ab﹣2[cx+(a﹣c)(b﹣x)]=ab﹣(cx+ab﹣ax﹣bc+cx)=ab﹣cx﹣ab+ax+bc﹣cx=(a﹣2c)x+bc,∵E是AB的中点,∴a=2c,∴a﹣2c=0,∴S平行四边形EFGH=bc=ab,方法二:连接EG,∵四边形EFGH为平行四边形,∴EF=HG,EF∥HG,∴∠FEG=∠HGE,∵四边形ABCD为矩形,∴AB∥CD,∴∠BEG=∠DGE,∴∠BEG﹣∠FEG=∠DGE﹣∠EGH,∴∠BEF=∠HGD∵EF=HG,∠B=∠D,∴Rt△BEF≌Rt△DGH(AAS),∴DG=BE=CD=AE,∴四边形AEGD为平行四边形,∵∠A=90°,∴▱AEGD为矩形,同理四边形EBCG为矩形,∴S平行四边形EFGH=S△EHG+S△EFG=EG•DG+EG•GC=EG•DG=EG•CD=S矩形ABCD.故选:C.14.解:∵四边形ABCD是矩形,∴∠BAD=90°,OB=OD,OA=OC,AC=BD,∴OA=OB,∵BE=EO,AE⊥BD,∴AB=AO,∴OA=AB=OB=1,∴BD=2,∴AD===,故选:B.15.解:当AP=BQ时,AP∥BQ.∵AP∥BQ,AP=BQ,∴四边形ABQP为平行四边形,∴QP∥AB.∵点P运动的时间=12÷1=12秒,∴点Q运动的路程=4×12=48cm.∴点Q可在BC间往返4次.∴在这段时间内PQ与AB有4次平行.故选:C.16.解:设对角线AC、BD相交于点O,连接PO,∵矩形ABCD的边AB=5,BC=12,∴S矩形ABCD=AB•BC=5×12=60,OA=OC,OB=OD,AC=BD,AC===13,∴S△BOC=S矩形ABCD=15,OB=OC=AC=,∴S△BOC=S△BOP+S△POC=OB•PF+OC•PE=OB(PE+PF)=××(PE+PF)=15,∴PE+PF=,故答案案为:.17.解:因为矩形的对角线相等而且互相平分,所以BD=AC=2OA=4.故答案为:4.18.解:∵EF是AC的垂直平分线,∴AO=CO,∵四边形ABCD是矩形,∴AD∥BC,∴∠OAF=∠OCE,在△AOF和△COE中,,∴△AOF≌△COE(ASA),∴AF=CE=,∵EF是AC的垂直平分线,∴AE=CE=,又∵BE=,∴BC=BE+EC=+=8,在Rt△ABE中,AB====6,在Rt△ABC中,AC===10.故答案为:10.19.解:∵四边形ABCD是矩形,∴OA=OC=AC,OB=OD=BD,AC=BD,∴OA=OB,∴∠OBA=∠OAB=65°,∴∠BOC=∠OAB+∠OBA=65°+65°=130°,故答案为:130.20.解:∵四边形ABCD是矩形,∴∠ADC=∠BAD=90°,AO=CO,BO=DO,AC=BD,∴OA=OD,∵DE平分∠ADC∴∠CDE=∠ADE=45°,∴△ADE是等腰直角三角形,∴AD=AE,又∵∠EDO=15°,∴∠ADO=60°;∴△OAD是等边三角形,∴∠AOD=∠OAD=60°,∴AD=AO=DO,∴AO=AE,∴∠AOE=∠AEO,∵∠OAE=90°﹣∠OAD=30°,∴∠AOE=∠AEO=(180°﹣30°)=75°,∴∠DOE=60°+75°=135°,故答案为:135.21.解:∵四边形ABCD是矩形,∴AD∥BC,∠A=90°,AB=CD=5,∴∠DEC=∠ECB,∵EC平分∠BED,∴∠BEC=∠DEC,∴∠BEC=∠ECB,∴BC=BE,设BC=BE=x,∴AE=x﹣2,∵AB2+AE2=BE2,∴52+(x﹣2)2=x2,∴x=,∴BC=,∴△BEC的面积=×BC×DC=×5=.故答案为:.22.(1)证明:连接AC,∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵BE=DF,∴OE=OF,∴四边形AECF是平行四边形.(2)解:BE=DF=3,∵∠ADB=∠CBD=90°,∴AF==5,方法1:∵AD=4,∴BC=4,设OB=x,则OE=x+3,∵四边形AECF是矩形,∴OE=OC=x+3,∵∠OBC=90°,在Rt△OBC中,OB2+BC2=OC2,∴x2+42=(x+3)2,解得x=,∴OB=,∴BD=.方法2:∵四边形AECF是矩形,∴∠F AE=90°,∴∠F AE=∠ADF,∵∠AFD=∠EF A,∴FE=,∴BD=﹣3﹣3=.故答案为:.23.解:连接BE,设EF与BD交于点O,如图所示:∵EF垂直平分BD,∴BE=DE,OD=OB,∵四边形ABCD是矩形,∴∠A=90°,AD∥BC,∴∠ODE=∠OBF,在△ODE和△OBF中,,∴△ODE≌△OBF(ASA),∴DE=BF=5,∴BE=DE=5,∴AB===4,∵AD=AE+DE=3+5=8,∴BD===4.五.矩形的判定(24.(1)证明:连接EF,如图所示:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC.∵点E、F分别是AD、BC的中点∴AE=ED=AD,BF=FC=BC,∴AE∥FC,AE=FC.∴四边形AECF是平行四边形.∴GF∥EH.同理可证:ED∥BF且ED=BF.∴四边形BFDE是平行四边形.∴GE∥FH.∴四边形EGFH是平行四边形.(2)解:当BC=2AB时,平行四边形EGFH是矩形.理由如下:由(1)同理易证四边形ABFE是平行四边形,当BC=2AB时,AB=BF,∴四边形ABFE是菱形,∴AF⊥BE,即∠EGF=90°,∴平行四边形EGFH是矩形.25.证明:(1)∵四边形ABCD是平行四边形,∴AD=CB,AD∥BC,∴∠DAE=∠BCF,∵DE⊥AC,BF⊥AC,∴∠DEA=∠BFC=90°,在△DEA与△BFC中,,∴△DEA≌△BFC(AAS),∴AE=CF;(2)∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∴OA=BD,∴OA=OC=OB=OD,∴AC=BD,∴平行四边形ABCD是矩形.26.证明:∵四边形ABCD是平行四边形,∴AB=DC,AB∥DC,∵AE=CF,∴AB﹣AE=DC﹣CF,即DF=EB,又∵AB∥DC,∴四边形DEBF是平行四边形,∵DE⊥AB,∴∠DEB=90°,∴▱DEBF是矩形.27.证明:(1)∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∵AE=FD,∴AE+EF=FD+EF,即AF=DE,在△ABF和△DCE中,,∴△ABF≌△DCE(SSS);(2)由(1)可知:△ABF≌△DCE,∴∠A=∠D,∵AB∥CD,∴∠A+∠D=180°,∴2∠A=180°,∴∠A=90°,∴▱ABCD为矩形.六.矩形的判定与性质28.解:∵CE∥BD,BE∥AC,∴四边形OBEC是平行四边形,∵四边形ABCD是菱形,∴OC=OA=AC=12,OB=OD=BD=5,AC⊥BD,∴∠BOC=90°,∴BC===13,∵四边形OBEC是平行四边形,∴平行四边形OBEC是矩形,∴OE=BC=13,故答案为:13.29.(1)证明:∵∠OAE=∠OEA,∴OA=OE,∵四边形ABCD是菱形,∴AD∥BC,∴∠OCF=∠OAE,∠OFC=∠OEA,∴∠OFC=∠OCF,∵OF=OC,∵O为AC的中点,∴OA=OC,∴OA=OC=OE=OF,∴四边形AFCE是平行四边形,AC=EF,∴四边形AFCE是矩形;(2)解:设CF=x,∵四边形ABCD是菱形,AB=5,∴BC=AB=5,∴BF=5﹣x,∵四边形AFCE是矩形,∴∠AFC=90°=∠AFB,在Rt△AFB和Rt△AFC中,由勾股定理得:AF2=AB2﹣BF2=AC2﹣CF2,即52﹣(5﹣x)2=(2)2﹣x2,解得:x=2,即CF=2,则AF===4,∴四边形AFCE的面积是AF×CF=2×4=8.七.正方形的性质30.解:如图将△BDA绕点D顺时针旋转90°得到△CDM.由旋转不变性可知:AB=CM=4,DA=DM.∠ADM=90°,∴△ADM是等腰直角三角形,∴AD=AM,∴当AM的值最大时,AD的值最大,∵AM≤AC+CM,∴AM≤7,∴AM的最大值为7,∴AD2的最大值为,故选:B.31.解:∵△AEF是边长为的等边三角形,∴∠EAF=60°,AE=AF,∴∠BAE+∠DAF=30°,∵AB=AD,AE=AF,∴Rt△ABE≌Rt△ADF(HL),∴∠BAE=∠DAF=15°,如图,作∠AEH=∠BAE=15°,交AB于H,∴∠BHE=30°,AH=HE,∴HE=2BE=AH,BH=BE,∴AB=(2+)BE,∵AE2=BE2+AB2,∴6=BE2+(2+)2×BE2,∴BE=,∴AB=(2+)BE=,故答案为:.32.解:∵正方形Ⅰ的面积为10,∴正方形Ⅰ的边长为,∵正方形Ⅱ的面积为3,∴正方形Ⅱ的边长为,∴大正方形的边长为+,∴大正方形的面积为()2=13+2,故答案为:13+2.33.解:根据作图过程可知:AD=AP=PD,∴△ADP是等边三角形,∴∠DAP=∠ADP=∠APD=60°,∵四边形ABCD是正方形,∴AB=AD=DC,∠BAD=∠ADC=∠ABC=∠BCD=90°,∴AB=AP,DP=DC,∴∠ABP=∠APB=∠DPC=∠DCP=75°,∴∠BPC=360°﹣60°﹣75°﹣75°=150°.故答案为:150°.34.解:①:∵正方形ABCD中,AB=AD,∠B=∠ADC=∠C=90°∴MN2=MC2+NC2当MN=MC时,MN2=2MC2,∴MC2=NC2,∴MC=NC,∴BM=DN,∴△ABM≌△ADN(SAS)∴∠BAM=∠DAN,∵∠MAN=45°,∴∠BAM=22.5°,故①正确;②:如图,将△ABM绕点A顺时针旋转90°得△ADE,则∠EAN=∠EAM﹣∠MAN=90°﹣45°=45°,则在△EAN和△MAN中,,∴△EAN≌△MAN(SAS)∴∠AMN=∠AED,∴∠AED+∠EAM+∠ENM+∠AMN=360°,∴2∠AMN+90°+(180°﹣∠MNC)=360°,∴2∠AMN﹣∠MNC=90°,故②正确;③:∵△EAN≌△MAN,∴MN=EN=DE+DN=BM+DN,∴△MNC的周长为:MC+NC+MN=(MC+BM)+(NC+DN)=DC+BC,∵DC和BC均为正方形ABCD的边长,故△MNC的周长不变.故③正确;④如图,将△ADN绕点A逆时针旋转90°得△ABF,∴∠MAF=90°﹣∠MAN=45°,∴∠MAN=∠MAF,在△MAN和△MAF中,,∴△MAN≌△MAF(SAS),∴∠AMN=∠AMB,故④错误.综上①②③正确.故答案为:①②③.35.解:∵四边形ABCD为正方形,∴CB=CD,∠BCD=90°,∵CE=CB,∴CD=CE,∴∠CBE=∠CEB,∠CED=∠CDE,∴∠CEB=(180°﹣∠BCE),∠CED=(180°﹣∠DCE),∴∠CEB+∠CED=180°﹣(∠BCE+∠ECE),即∠BED=180°﹣∠BCD,∴∠BED=180°﹣×90°=135°.故答案为135°.36.(1)∵四边形ABCD为正方形,∴AB∥CD,AB=CD,∵点E、F分别是AB、CD的中点,∴AF=AB,CE=CD,∴AF=CE,∴四边形AFCE是平行四边形,∴AE∥CF;(2)证明:如图,取AE和DG交于H,∵CF∥AE,DG⊥CF,∴DG⊥AE于H,∵E是CD的中点,∴EG=ED,∴△DGE是等腰三角形,∴H是DG的中点,∴AG=AD,在△ADE和△AGE中,,∴△ADE≌△AGE(SSS),∴∠AGE=∠ADE=90°;(3)解:∵AG=AD=2,DE=1,∴AE=,又∵GH⊥AE,∴,解得HG=,∴DG=,∴,故答案为.37.(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴∠DAE=∠BCF,在△ADE和△CBF中,,∴△ADE≌△CBF(SAS),∴∠AED=∠CFB,∵∠AED+∠DEF=180°,∠CFD+∠BFE=180°,∴∠DEF=∠BFE,∴DE∥BF;(2)解:连接BD,交AC于点O,∵四边形ABCD是正方形,∴OA=OD,OA⊥OD,AE=,∴OD=OE+AE=OE+,在正方形ABCD中,OB=OD,OA=OC,∵AE=CF,∴OA﹣AE=OC﹣CF,∴OE=OF,∴四边形DEBF是平行四边形,∵OA⊥OD,∴四边形DEBF是菱形,∵AD=4,∴AC=BD==4,∴EF=AC﹣AE﹣CF=4﹣﹣=2,∴四边形DEBF的面积=•BD•EF=×4×2=8,故答案为:8.38.(1)证明:作AM∥FG交BE于N,BC于M.在正方形ABCD中,∴AD∥BC,AB=BC,∠ABC=∠C=90°.∵FG⊥BE,∴∠FOB=90°.∵AM∥FG,∴∠ANB=∠FOB=90°.∴∠ABN+∠EBC=90°∵∠C=90°.∴∠BEC+∠EBC=90°.∴∠ABN=∠BEC.在△ABE和△CDF中,,∴△ABM≌△BCE(AAS),∴AM=BE.∵AD∥BC,∴AF∥MG.∵AM∥FG,∴四边形AMGF为平行四边形.∴AM=FG.∵AM=BE,∴BE=FG.(2)如图,连接BF、EF,∵FG⊥BE,O是BE的中点,∴BF=FE.在正方形ABCD中,∴AD=AB=DC=BC=8.∵EC=3,∴DE=5.设AF=x,则DF=8﹣x,在Rt△ABF中,由勾股定理得:BF2=AB2+AF2=82+x2.在Rt△DEF中,由勾股定理得:EF2=DF2+DE2=52+(8﹣x)2.∵BF=FE,∴BF2=EF2.即82+x2=52+(8﹣x)2,解得:x=.∴AF=.八.正方形的判定39.解:A、一组对边平行,另一组对边相等四边形可能是等腰梯形,故本选项不符合题意;B、对角线相等的平行四边形是矩形,故本选项不符合题意;C、∵在△ADB和△CDB中,∴△ADB≌△CDB(ASA),∴AD=CD,AB=CB,同理△ACD≌△ACB,∴AB=AD,BC=DC,即AB=BC=CD=AD,∴四边形ABCD是菱形,故本选项符合题意;D、对角线相等且垂直的平行四边形是正方形,故本选项不符合题意;故选:C.40.解:①对角线互相垂直且相等的四边形不一定是菱形,说法错误;②矩形的对角线互相垂直,说法错误;③一组对边平行且相等的四边形是平行四边形,说法正确;④对角线垂直的矩形是正方形,说法正确.故答案为:③④.九.正方形的判定与性质41.解:如图,过C作CG⊥AD于G,并延长DG至F,使GF=BE,∵∠A=∠B=∠CGA=90°,AB=BC,∴四边形ABCG为正方形,∴AG=BC=4,∠BCG=90°,BC=CG,∵AD=3,∴DG=4﹣3=1,∵BC=CG,∠B=∠CGF,BE=FG,∴△EBC≌△FGC(SAS),∴CE=CF,∠ECB=∠FCG,∵∠DCE=45°,∴∠BCE+∠DCG=∠DCG+∠FCG=45°,∴∠DCE=∠DCF,∵CE=CF,∠DCF=∠DCE,DC=DC,∴△ECD≌△FCD(SAS),∴ED=DF,设ED=x,则EB=FG=x﹣1,∴AE=4﹣(x﹣1)=5﹣x,Rt△AED中,AE2+AD2=DE2,∴(5﹣x)2+32=x2,解得:x=3.4,∴DE=3.4.故选:B.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
鲁教版八下《特殊四边形》检测题
班级 姓名 分数
一、选择题(每小题5分,共50分)
1、平行四边形两个邻角的角平分线所成的角是( )
A . 锐角 B. 直角 C. 钝角 D. 不能确定
2、下列说法正确的是 ( )
A. 一组对边相等的四边形是平行四边形
B. 一组对边平行,另一组对边相等的四边形是平行四边形
C. 一组对角相等,一组对边平行的四边形是平行四边形
D. 对角线互相垂直的四边形是平行四边形
3、在菱形ABCD 中,∠ABC =60°,AC =4,则BD的长为( )
A. 38
B. 34
C. 32
D. 8
4、 正方形具有而菱形不一定具有的性质( )
A.四条边相等
B. 对角线互相垂直平分
C. 对角线平分一组对角
D. 对角线相等
5、四边形ABCD 的对角线AC ,BD 相交于点O ,能判定它为正方形的题设是( )
(A )AO=CO ,BO=DO; (B )AO=CO=BO=DO;
(C )AO=CO ,BO=DO ,AC ⊥BD; (D )AO=BO=CO=DO ,AC ⊥BD
6、 已知四边形的两条对角线相等,那么顺次连结四边形各边中点得到得四边形是( )
A.梯形
B.矩形
C. 菱形
D. 正方形
7、如果等腰梯形两底之差等于一腰的长,那么这个等腰梯形的锐角等于( )
A. 60°
B. 30°
C. 45°
D. 15°
8、如图(1) ABCD 中,∠C =108°,BE 平分∠ABC ,则∠AEB 等于( )
A. 18°
B. 36°
C. 72°
D. 108°
9、 如图(2),O 为平行四边形ABCD
对角线AC 、BD 的交点,EF 经过点O ,且与边CD 、AB 分别交于点E 、F ,则图中的全等三角形有 ( )
A. 2对
B. 3对
C. 5对
D. 6对
10、如图(3),在梯形ABCD 中A D∥BC,对角线AC ⊥BD,且AC=12,BD=9,则AD+BC= ( )
1、矩形一个角的平分线分矩形一边为1㎝和3㎝两部分,则这个矩形的面积为 。
2、矩形的两条对角线的一个夹角为60°两条对角线的和是8㎝,此矩形较短的边长
是 ,较长边与对角线的夹角是 。
3、一梯形上底为5㎝,过上底一端引一腰的平行线与下底相交,若所得的三角形的周长为
20㎝,则此梯形的周长为 。
4、D 、E 、F 分别是△ABC 三条边的中点,则△DEF 周长:△ABC 周长= , S △DEF :S △ABC = 。
5、已知菱形的两条对角线长分别为12㎝和6㎝,那么这个菱形的面积为
㎝2。
6、已知等腰梯形的底边长分别为2㎝和8㎝,高为4㎝,则一腰长为 ㎝。
三、解答题
1、如图,△ABC 中,AD 是角平分线,DE ∥AC ,DF ∥AB
求证:四边形AEDF 是菱形。
(10分)
2、如图所示,将矩形ABCD 沿着直线
BD 折叠,使点C 落在C ′,BC ′交AD 于E ,AD=8,
AB=4,求△BED 的面积。
(10分)。