工业机器人运动学2运动学方程

合集下载

运动学逆解公式

运动学逆解公式

运动学逆解公式
运动学逆解是指已知机器人末端执行器的位置、姿态和运动学参数,求解机器人各关节的角度。

运动学逆解公式的具体形式取决于机器人的类型和结构,以下是几种常见机器人的运动学逆解公式:
1. 二自由度平面机械臂的运动学逆解公式:
θ1 = atan2(y, x) - acos((l1^2 + l2^2 - r^2)/(2*l1*l2))
θ2 = -acos((x^2 + y^2 - l1^2 - l2^2)/(2*l1*l2))
其中,θ1和θ2分别为机械臂两个关节的角度,x和y为末端执行器的位置坐标,l1和l2为机械臂两个关节的长度,r为末端执行器到机械臂起点的距离。

2. 三自由度空间机械臂的运动学逆解公式:
θ1 = atan2(y, x)
θ3 = acos((x^2 + y^2 + z^2 - l1^2 - l2^2 - l3^2)/(2*l2*l3))
k1 = l2 + l3*cos(θ3)
k2 = l3*sin(θ3)
θ2 = atan2(z, sqrt(x^2 + y^2)) - atan2(k2, k1)
其中,θ1、θ2和θ3分别为机械臂三个关节的角度,x、y和z为末端执行器的位置坐标,l1、l2和l3为机械臂三个关节的长度。

3. 六自由度工业机器人的运动学逆解公式:
由于六自由度工业机器人的运动学逆解公式比较复杂,这里不再给出具体公式。

通常采用数值计算方法求解,如牛顿-拉夫逊法、雅可比逆法等。

需要注意的是,运动学逆解公式只能求解机器人的正解,即机器人末端执行器的位置、姿态和运动学参数必须是合法的。

如果末端执行器的位置、姿态和运动学参数不合法,就无法求解出机器人各关节的角度。

工业机器人运动学

工业机器人运动学

注意:对于旋转关节,绕z 轴的旋转角 ( θ角)是关节变量。对于滑动关节, 沿 z轴的连杆长度d 是关节变量;
3.8 机器人正运动学方程的D-H参数表示法
一.连杆坐标系的建立
本地参考坐标系步骤:
(1)通常关节不一定平行或相交。因此 ,通常z轴是斜线,但总有一条距离最短的 公垂线,它正交于任意两条斜线。通常在 公垂线方向上定义本地参考坐标系的x轴。 所以如果an表示 zn-1与zn之间的公垂线, 则xn的方向将沿an 。同样,在 zn与 zn+1之 间的公垂线为,xn+1的方向将沿an +1。
3T6


S4C5C6

C4 S6

S5C6 0
S4C5S6 C4C6 S5S6 0
S4S5 C5 0
0
0 1
C1 0 S1 0
A1


S1 0
0 1
C1 0
0 0

0
0
0
1
3.8 机器人正运动学方程的D-H参数表示法
nx = C1 [ C2 ( C4C5C6 - S4S6 ) - S2S5C6 ] - S1( S4C5S6 + C4S6 ) ny = S1 [ C2 ( C4C5C6 - S4S6 ) - S2S5C6 ] + C1( S4C5S6+C4S6 ) nz = -S2 ( C4C5C6 - S4S6 ) - C2S5C6 ox = C1 [ -C2 ( C4C5S6 + S4C6 ) + S2S5C6 ] - S1( -S4C5S6 + C4S6 ) oy = S1 [ -C2 ( C4C5C6 + S4C6 ) + S2S5S6 ] + C1( -S4C5S6 + C4S6 ) oz = S2 ( C4C5C6 + S4C6 ) + C2S5S6 ax = C1 ( C2C4S5 + S2C5 ) – S1S4C5 ay = S1 ( C2C4S5 + S2C5 ) + C1S4S5 az = –S2C4S5 + C2C5 px = C1S2d3 – S1d2 py = S1S2d3 + C1d2 pz = C2d3

工业机器人的运动学PPT课件

工业机器人的运动学PPT课件
p=[1 1 1 1]T
手部坐标系X′轴的方向可用单位矢量n
来表示:
α=90°,β=180°,γ=90°
n: n=cosγ=0
同理,手部坐标系 Y′轴与 Z ′轴的方向可分别用单位矢量 o 和 a 来表示,
根据式(2-8)可知,手部位姿可用矩阵表达为
0 -1 0 1
T=[n o a p]= -1 0 0 1
0 0 -1 1
0 精选PPT课件 0 0 1
11
2.2齐次变换及运算
刚体的运动是由转动和平移组成的。为了能用同一矩阵 表示转动和平移,有必要引入(4×4)的齐次坐标变换矩阵。
一、平移的齐次变换
首先,我们介绍点在空间直角坐标系中的平移。
如图所示,空间某一点A ,坐标为( x , y ,z),当它平移至
a=cosα, b=cosβ, c=cosγ 图中矢量v所坐落的点O为坐标原点,可用(4×1)列
精选PPT课件
5
例2-1 用齐次坐标写出图2-3中矢量 u 、v、w 的方向列阵。
解 矢量 u: cosα =0, cosβ =0.7071067, cosγ =0.7071067 u=[0 0.7071067 0.7071067 0] T 矢量 v: cosα =0.7071067, cosβ =0, cosγ =0.7071067 v=[0.7071067 0 0.7071067 0] T 矢量 w: cosα =0.5, cosβ =0.5, cosγ =0.7071067 w=[0.5 0.5 0.7071067 0] T
系{B}的位姿来表示,如图所示。
手部的位姿可用(4×4)矩阵 表示为:
nx ox ax px [ n o a p ]= ny oy ay py

解释机器人运动学方程的正解和逆解

解释机器人运动学方程的正解和逆解

解释机器人运动学方程的正解和逆解
机器人运动学方程是研究机器人运动规律的一种数学工具。

机器人运动由位置、速度和加速度三部分组成,而机器人运动学方程便是描述这三部分关系的方程。

机器人运动学方程分为正解和逆解。

正解是指根据机器人关节角度、长度等参数,推导出机器人末端执行器的位置、速度和加速度等运动学参数的过程。

在机器人运动学分析中,正解一般使用解析法、几何法和向量法等方法。

通常我们会在正解中借助三角函数和向量函数,对机械臂的运动主体进行数学建模,推导出机器人最终执行器的位置和末端的速度、加速度等参数,完成机器人运动学方程的正解。

而逆解则是指在已知机器人末端执行器的位置、速度和加速度等参数的基础上,求出机器人关节角度,这样机器人才能达到需要执行的动作。

逆解是机器人指令控制中的核心技术之一,一般采用数值计算的方法来求解。

逆解方法有直接法和迭代法两种,直接法一般应用于计算复杂的工业机器人,而迭代法则更适用于机场搬运、医疗康复等关节数较少的应用场景。

机器人运动学方程的正解和逆解都涉及高等数学和工程数学的知识,需要对机器人的运动学规律有一定的理解和掌握。

随着人工智能和机器人技术的不断发展,机器人运动学方程的应用将得到更广泛的推广和应用,成为未来机器人研究和应用的重要工具。

工业机器人的运动学

工业机器人的运动学

工业机器人运动学的展望
未来工业机器人运动学将与人工智能、机器视觉等技 术进一步融合,实现更智能化的运动控制和决策。
输入 标题
应用拓展
随着技术的进步,工业机器人运动学的应用领域将进 一步拓展,如微纳操作、深海/空间探索等高精度、高 可靠性要求的领域。
技术融合
理论深化
随着工业机器人运动学的不断发展,对相关领域的人 才需求将进一步增加,未来将需要更多的专业人才进
运动学逆问题
定义
给定机器人末端执行器的 位置和姿态,求解实现该 位置和姿态所需的关节角 度。
计算方法
通过逆向运动学模型,将 末端执行器的笛卡尔坐标 代入机器人结构参数方程, 反解出关节角度。
应用
根据目标位置和姿态,规 划机器人的关节运动轨迹, 实现精确控制。
雅可比矩阵
定义
描述机器人末端执行器速度与关节速 度之间关系的线性映射矩阵。
03 工业机器人运动学原理
运动学正问题
01
02
03
定义
给定机器人的关节角度, 求解机器人末端执行器的 位置和姿态。
计算方法
通过正向运动学模型,将 关节角度代入机器人结构 参数方程,求解末端执行 器的笛卡尔坐标。
应用
根据已知的关节角度,预 测或验证机器人的末端位 置和姿态,为机器人控制 提供基础。
基于运动学的轨迹规划
轨迹规划
基于运动学的轨迹规划是工业机器人运动学优化与控制的 重要环节,它涉及到机器人在空间中运动的路径和速度的 规划。
路径规划
路径规划是轨迹规划的基础,它通过寻找起点和终点之间 的最优路径,确保机器人在移动过程中能够安全、高效地 完成任务。
速度规划
速度规划是在路径规划的基础上,对机器人在各个运动阶 段的速度进行优化,以达到最佳的运动效果和效率。

第03章 机器人的运动学和动力学

第03章 机器人的运动学和动力学

教案首页课程名称农业机器人任课教师李玉柱第3章机器人运动学和动力学计划学时 3教学目的和要求:1.概述,齐次坐标与动系位姿矩阵,了解平移和旋转的齐次变换;2.机器人的运动学方程的建立与求解*;3.机器人的动力学*重点:1.机器人操作机运动学方程的建立及求解;2.工业机器人运动学方程3.机器人动力学难点:1. 机器人动力学方程及雅可比矩阵基本原理思考题:1.简述齐次坐标与动系位姿矩阵基本原理。

2.连杆参数及连杆坐标系如何建立?3.机器人动力学方程及雅可比矩阵基本原理是什么?第3章机器人运动学和动力学教学主要内容:3.2 齐次坐标与动系位姿矩阵3.3 齐次变换3.4 机器操作机运动学方程的建立与求解3.5 机器人运动学方程3.6 机器人动力学本章将主要讨论机器人运动学和动力学基本问题。

先后引入了齐次坐标与动系位姿矩阵、齐次变换,通过对机器人的位姿分析,介绍了机器人运动学方程;在此基础上有对机器人运动学方程进行了较为深入的探讨。

3.1 概述机器人,尤其是关节型机器人最有代表性。

关节型机器人实质上是由一系列关节连接而成的空间连杆开式链机构,要研究关节型机器人,必须对运动学和动力学知识有一个基本的了解。

分析机器人连杆的位置和姿态与关节角之间的关系,理论称为运动学,而研究机器人运动和受力之间的关系的理论则是动力学。

3.2 齐次坐标与动系位姿矩阵3.2.1 点的位置描述在关节型机器人的位姿控制中,首先要精确描述各连杆的位置。

为此,先定义一个固定的坐标系,其原点为机器人处于初始状态的正下方地面上的那个点,如图3-1(a)所示。

记该坐标系为世界坐标系。

在选定的直角坐标系{A}中,空间任一点P的位置可以用3×1的位置向量A P表示,其左上标表示选定的坐标系{A},此时有A P=XYZ P P P ⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦式中:P X、P Y、P Z—点P在坐标系{A}中的三个位置坐标分量,如图3-1(b)。

3.2.2 齐次坐标将一个n维空间的点用n+1维坐标表示,则该n+1维坐标即为n维坐标的齐次坐标....。

工业机器人的运动学及动力学

工业机器人的运动学及动力学
动力的大小通常用力和力矩表示。力是物体受到的推、拉、压、提等作用,单位 是牛顿(N);力矩是力和力的转动半径的乘积,单位是牛顿·米(N·m)。
工业机器人的动力学方程
动力学方程是描述机器人受到的力和力矩与其运动状态之间 关系的数学模型。
动力学方程包括牛顿方程(描述机器人受到的力和加速度之 间的关系)和欧拉方程(描述机器人受到的力矩和角加速度 之间的关系)。
轻量化与模块化设计
为了便于运输和部署,工业机器人将采用更轻的材料和设计,同时采 用模块化设计,便于维护和升级。
工业机器人在工业领域的应用前景
自动化生产线
工业机器人将在自动化生产线中 发挥重要作用,实现生产过程的 自动化和智能化,提高生产效率

质量检测
机器视觉和人工智能技术的引入 ,使得工业机器人能够更精准地 检测产品质量,降低检测成本。
结合位置和力控制,实现 机器人在复杂环境中的适 应性和灵活性。
工业机器人的运动控制器
硬件控制器
使用专门的硬件设备进行 机器人运动控制,具有高 效、稳定的特点。
软件控制器
通过软件实现对机器人的 运动控制,具有灵活、易 升级的特点。
云端控制器
通过网络连接实现远程控 制,方便对机器人进行远 程调试和维护。
运动学是研究物体运动的科学,它涉 及物体的位置、姿态和速度等信息的 描述。
在机器人领域,运动学主要关注机器 人各关节的位置和姿态,以及它们之 间的相互关系。
工业机器人的坐标系
工业机器人通常采用笛卡尔坐标 系(也称为直角坐标系)来描述
其位置和姿态。
笛卡尔坐标系包括x、y、z三个 坐标轴,用于描述物体在空间中
精度
通过优化算法和结构设计,提 高机器人的运动精度。

二自由度平面机器人的运动学方程

二自由度平面机器人的运动学方程

在研究二自由度平面机器人的运动学方程之前,首先我们需要了解什么是二自由度平面机器人。

二自由度平面机器人是指可以在平面上进行两个独立自由度运动的机器人,通常包括平移和旋转两种运动方式。

在工业自动化、医疗器械、航空航天等领域,二自由度平面机器人都有着重要的应用价值。

1. 二自由度平面机器人的结构和运动二自由度平面机器人通常由两个旋转关节和一个末端执行器组成。

这种结构可以让机器人在平面上实现灵活的运动,同时保持结构相对简单。

机器人可以通过控制两个旋转关节的角度来实现平面内的任意位置和姿态的变化,具有较高的灵活性和自由度。

2. 二自由度平面机器人的运动学方程接下来我们将重点讨论二自由度平面机器人的运动学方程。

运动学方程是描述机器人末端执行器位置和姿态随时间变化的数学模型,对于控制机器人的运动具有重要意义。

对于二自由度平面机器人来说,其运动学方程可以通过几何方法和代数方法来推导。

在几何方法中,我们可以利用几何关系和三角学知识来描述机器人末端执行器的位置和姿态。

而在代数方法中,我们可以通过矩阵变换和雅可比矩阵等工具来建立机器人的运动学方程。

3. 个人观点和理解在我看来,二自由度平面机器人的运动学方程是机器人控制和路径规划中的关键问题之一。

通过深入研究并掌握二自由度平面机器人的运动学方程,我们可以更好地设计控制算法、规划运动轨迹,实现机器人的精确操作和灵巧动作。

运动学方程的研究也为机器人的动力学分析和仿真建模提供了重要的基础。

总结回顾:通过本文的讨论,我们深入探讨了二自由度平面机器人的结构和运动特性,重点讨论了其运动学方程的推导方法和意义。

通过对运动学方程的研究,我们可以更好地理解机器人的运动规律和特性,为机器人的控制和路径规划提供重要的理论支持。

在文章中多次提及 "二自由度平面机器人的运动学方程",突出主题。

文章总字数大于3000字,能够充分深入地探讨主题,满足了深度和广度的要求。

并且在总结回顾中共享了自己的观点和理解,使得整篇文章更加有说服力和可信度。

工业机器人运动学

工业机器人运动学

联立上述两式,可知2 60 。又因为 X AC l1 cos1 l2 cos(1 2 ) ,则有
5cos1
5(cos1
cos2
sin1
sin2
)
5 2
3
当2 60 时,解得1 30 或1 90 (舍去),又因1 2 3 30 ,故3 60 。 当2 60 时,同理可得1 90 ,3 0 。机器人可能的姿态如图 2-18 所示。
2 2
50
6 4
2 4
25
6 125 2
2 2
YAC l1 sin1 l2 sin(1 2 ) 100
2 2
50
6 4
2 4
25
6 75 2
2 2
解法二:根据式(2-10)可知,机器人的位姿为
T Rot(ZA ,1) Trans(l1 ,0 ,0) Rot(ZB ,2 ) Trans(l2 ,0 ,0)
2)连杆
连杆的表示同关节一样,连杆 n 1位于关节 n 1与关节 n 之间,连杆 n 位于关节 n 与关节 n 1 之间,以此类推。
3)坐标系
(1) 若关节为旋转副,则 Z 轴为按右手定则规定的旋转方向;若关节 为移动副,则 Z 轴为沿直线运动的方向。在各种情况下,关节 n 处的 Z 轴的
编号为 n 1;对于旋转关节,其关节变量为 ;对于移动关节,其关节变量为 d。
cos 45 sin 45 0 0 1 0 0 100 cos(30) sin(30) 0 0 1 0 0 50
sin 45 0
cos 45
0
0
0
1
0
0 1 00 0 1
0
sin(30)
0 0
cos(30)

第三章-工业机器人运动学-2运动学方程

第三章-工业机器人运动学-2运动学方程

(2.30)
cosθ -sinθ 0 0 1 0 0 a 1 0
00
sinθ cosθ 0 0 0 1 0 0 0 cosα -sinα 0
An = 0
0 1 0 0 0 1 d 0 sinα cosα 0
(2.31)
0
0 01 0001 0 0
01
cosθ -sinθcosα sinθsinα acosθ
对于棱形关节,an = 0,则式(2.32)A矩阵简化为
cosθ -sinθcosα sinθsinα 0
sinθ cosθcosα -cosθsinα 0
An = 0
sinα
cosα d
0
0
0
1
(2.33)
RPY(ø, θ, ψ) =
cosøcosθ cosøsinθsinψ – sinøcosψ cosøsinθcosψ + sinøsinψ 0
sinøcosθ sinøsinθsinψ + cosøcosψ sinøsinθcosψ–cosøsinψ 0
-sinθ
cosθsinψ
cosθcosψ
Sph(α,β,γ) = Rot(z,α)Rot(y,β)Trans(0,0,γ) Rot(y,-β) Rot(z,-α) (2.27)
Sph(α,β,γ) =
1 0 0 γcosαsinβ
0 1 0 γsinαsinβ
0 0 1 γcosβ
000
1
(2.28)
2.7 T6的确定 ( Specification of T6 )
Sph(α,β,γ) = Rot(z,α) Rot(y,β)
Trans(0,0,γ)
(2.23)

工业机器人运动学基础 - 教案

工业机器人运动学基础 - 教案

教案工业运动学基础教案一、引言1.1工业发展背景1.1.1工业革命与自动化需求1.1.2工业的起源与发展1.1.3工业在现代工业中的应用1.1.4工业运动学的重要性1.2工业运动学基础概念1.2.1运动学定义1.2.2工业运动学的研究内容1.2.3运动学在工业中的应用1.2.4运动学对工业性能的影响1.3教学意义与目的1.3.1培养学生对工业运动学的理解1.3.2提高学生的实际操作能力1.3.3激发学生对工业领域的兴趣1.3.4为进一步学习高级技术打下基础二、知识点讲解2.1工业运动学基本原理2.1.1的运动学模型2.1.2运动学方程的建立2.1.3运动学方程的求解方法2.1.4运动学参数对性能的影响2.2工业运动学参数2.2.1的自由度2.2.2的连杆参数2.2.3的关节参数2.2.4的运动范围与工作空间2.3工业运动学应用案例2.3.1工业在汽车制造中的应用2.3.2工业在电子组装中的应用2.3.3工业在物流搬运中的应用2.3.4工业在医疗领域的应用三、教学内容3.1工业运动学基本概念3.1.1的运动学模型3.1.2运动学方程的建立3.1.3运动学方程的求解方法3.1.4运动学参数对性能的影响3.2工业运动学参数3.2.1的自由度3.2.2的连杆参数3.2.3的关节参数3.2.4的运动范围与工作空间3.3工业运动学应用案例3.3.1工业在汽车制造中的应用3.3.2工业在电子组装中的应用3.3.3工业在物流搬运中的应用3.3.4工业在医疗领域的应用四、教学目标4.1知识目标4.1.1了解工业运动学的基本原理4.1.2掌握工业运动学参数的计算方法4.1.3理解工业运动学在实际工程中的应用4.2能力目标4.2.1培养学生的实际操作能力4.2.2提高学生的分析和解决问题的能力4.2.3培养学生的创新思维和团队合作能力4.3情感态度与价值观目标4.3.1激发学生对工业领域的兴趣4.3.2培养学生的科学精神和工匠精神4.3.3增强学生的社会责任感和使命感五、教学难点与重点5.1教学难点5.1.1工业运动学方程的建立与求解5.1.2工业运动学参数的计算方法5.1.3工业运动学在实际工程中的应用5.2教学重点5.2.1工业运动学的基本原理5.2.2工业运动学参数的含义与作用5.2.3工业运动学在实际工程中的应用案例六、教具与学具准备6.1教具准备6.1.1工业模型或实物6.1.2运动学计算软件或工具6.1.3多媒体教学设备6.2学具准备6.2.1笔记本电脑或平板电脑6.2.2学习资料或教材6.2.3计算器或数学工具七、教学过程7.1导入新课7.1.1引入工业运动学的背景7.1.2提出问题7.1.3引导学生思考工业运动学的应用场景7.2知识讲解7.2.1详细讲解工业运动学的基本原理7.2.2深入解析工业运动学参数的计算方法7.2.3通过案例分析工业运动学在实际工程中的应用7.3实践操作7.3.1演示工业运动学的实际操作过程7.3.2引导学生进行工业运动学的模拟操作7.3.3组织学生进行工业运动学的实际操作练习八、板书设计8.1工业运动学基本原理8.1.1运动学模型的建立8.1.2运动学方程的求解方法8.1.3运动学参数对性能的影响8.2工业运动学参数8.2.1自由度的定义与计算8.2.2连杆参数的测量与计算8.2.3关节参数的测量与计算8.2.4运动范围与工作空间的确定8.3工业运动学应用案例8.3.1汽车制造中的应用案例8.3.2电子组装中的应用案例8.3.3物流搬运中的应用案例8.3.4医疗领域的应用案例九、作业设计9.1工业运动学基础理论题9.1.1运动学方程的建立与求解9.1.2运动学参数的计算与分析9.1.3运动学在实际工程中的应用问题9.2工业运动学实践操作题9.2.1工业运动学模拟操作9.2.2工业运动学实际操作练习9.2.3工业运动学创新设计与实验9.3工业运动学拓展阅读与思考题9.3.1工业运动学相关学术论文阅读9.3.2工业运动学在实际工程中的应用案例分析9.3.3工业运动学未来发展趋势与挑战思考十、课后反思及拓展延伸10.1教学效果评估与反思10.1.1学生对工业运动学基本原理的掌握程度10.1.2学生对工业运动学参数计算方法的掌握程度10.1.3学生对工业运动学在实际工程中应用的了解程度10.2教学方法与手段的改进10.2.1引入更多实际工程案例进行教学10.2.2增加实践操作环节的时间与机会10.2.3利用现代教育技术提高教学效果10.3学生学习兴趣与动机的激发10.3.1通过实际工程案例激发学生学习兴趣10.3.2组织学生参加工业运动学相关竞赛或活动10.3.3引导学生进行工业运动学的创新设计与实验重点和难点解析1.工业运动学基本原理的讲解2.工业运动学参数的计算方法3.工业运动学在实际工程中的应用案例4.实践操作环节的设计与实施5.作业设计与课后反思对于这些重点环节,需要进行详细的补充和说明:1.工业运动学基本原理的讲解:这是整个教案的核心部分,需要通过生动的案例和图示,让学生更好地理解运动学的基本概念和原理。

工业机器人运动学与动力学研究

工业机器人运动学与动力学研究

工业机器人运动学与动力学研究随着科技的不断进步,机器人已经不再是科幻电影中的特效,而是成为现实生活中不可或缺的一部分。

机器人技术在各个领域的应用也越来越广泛,其中最重要的之一便是工业机器人。

工业机器人的出现,不仅可以减少人力成本,提高生产效率,同时也能增加生产安全性。

但是,工业机器人的研究要涉及到运动学和动力学两个方面。

一、工业机器人运动学工业机器人的运动学研究主要是研究它的运动轨迹、运动状态和运动控制等方面。

工业机器人的运动学研究主要涉及以下三个方面:1. 运动规划运动规划是工业机器人控制系统设计和开发中重要的一步,其目的是规划机器人端执行器的运动控制路径。

运动规划分为离线规划和在线规划两种类型,离线规划是事先规划好机器人要执行的动作,然后将规划好的路线保存在计算机中,机器人执行时直接调用保存的路线;而在线规划则是在机器人运动过程中不断地对路线进行优化和改进,以达到更加精准的控制。

2. 运动学分析机器人的运动学分析主要研究的是机器人的动作轨迹和基于轨迹控制。

通过动作模型的建立和动作轨迹的分析,可以更好地实现机器人的运动控制,提高运动精度和稳定性。

3. 运动仿真运动仿真是利用计算机对机器人运动学特性进行模拟和分析的过程。

通过建立合理的仿真模型和仿真环境,可以更加有效地进行机器人运动的规划和控制设计,提高生产效率和效益。

二、工业机器人动力学另外一个重要的机器人研究方向则是动力学,也就是研究机器人的力学与动力学性质,以便更好地掌握机器人的运动规律和性能。

工业机器人动力学研究的过程主要包含以下三个方面:1. 机器人控制机器人控制是通过对机器人运动规律的研究和掌握,确定机器人运动状态的过程。

机器人控制的目的就是控制机器人输出的力或扭矩等物理变量,以达到精准控制机器人运动的目的。

2. 动力学分析机器人的动力学分析是研究机器人手臂运动过程中力和运动状态之间关系的过程。

通过建立机器人动力学模型,可以更准确地预测运动状态和力学响应,并对机器人进行优化设计和仿真计算。

scara机器人运动学方程雅可比矩阵

scara机器人运动学方程雅可比矩阵

scara机器人运动学方程雅可比矩阵
Scara机器人是一种广泛应用于工业领域的机器人,它的运动学方程雅可比矩阵是描述其运动学性能的重要工具。

通过雅可比矩阵,我们可以了解到Scara机器人在不同关节位置和速度下的末端执行器的速度和位置关系。

雅可比矩阵是一个2x3的矩阵,其中的元素代表了末端执行器位置和速度相对于关节角度和速度的变化率。

简单来说,雅可比矩阵可以帮助我们理解Scara机器人的动力学特性和运动规律。

通过对雅可比矩阵的分析,我们可以得到一些有用的信息。

首先,我们可以确定Scara机器人的工作空间范围,即机器人可以到达的位置和姿态。

其次,我们可以根据雅可比矩阵来计算机器人在不同关节角速度下的末端执行器速度,从而实现机器人的精确控制。

除此之外,雅可比矩阵还可以用于路径规划和碰撞检测。

通过计算机器人在不同关节位置下的雅可比矩阵,我们可以确定机器人在执行任务过程中是否会发生碰撞,从而避免潜在的安全风险。

Scara机器人的运动学方程雅可比矩阵是研究机器人运动学行为和控制的重要工具。

通过对雅可比矩阵的研究和分析,我们可以深入理解机器人的运动规律,并实现对机器人的精确控制和路径规划。

机器人学-第3章_机器人运动学

机器人学-第3章_机器人运动学
构参数。如果机器人6个关节均为转动关节,18个固定参数可以用6组(ai-1, i-
1, di)表示。
空间机械臂坐标系选择
为了获得机械臂末端执行器在3维空间的位置和姿态,需要在每个连杆上 定义与连杆固连的坐标系来描述相邻连杆之间的位置关系。
根据固连坐标系所在连杆的编号对固连坐标系命名,如在固连在连杆i上 的固连坐标系称为坐标系{i}。
若ai =0,两Z轴相交,则选Xi垂于Zi和Zi+1 ,坐标系{i}的选择不是唯一的。
9
轴i θi
轴 i-1
连杆坐标系中连杆参数确定
θi-1
连杆 i-1
DH参数按以下方法确定:
Zi
ai =沿Xi轴,从Zi移动到Zi+1的距离;
Yi
i =绕Xi轴,从Zi旋转到Zi+1的角度;
di =沿Zi轴,从Xi-1移动到Xi的距离;
系{1}与坐标系{0}重合。
对于坐标系{n},原点位置可以在关节轴
上任意选取, Xn的方向也是任意的。但在选 择时应尽量使更多的连杆参数为1=0 1=-90o d1=0
Y2
a2=L2 2=0 q2=-90o d2=L1
(b)
Z1
X2
Y2
Y1
X1
a1=0 1=90o d1=0
相邻连杆间坐标变换公式
建立 {P}、{Q}和{R}3个中间坐标系, 其中{i}和{i-1}是固定在连杆 i 和 i-1 上的固 连坐标系,如图3-13所示。
连杆 i-1 Zi
ZP
Xi ai
di ZQ XQ
ZR
qi
Zi-1
Xi-1XR ai-1
XP
i-1
1. 绕 Xi-1 轴旋转 i-1角

工业机器人运动学

工业机器人运动学

(2)圆柱坐标
由于这些变换都是相对于全局参考坐标系的坐标轴
的,因此由这三个变换所产生的总变换可以通过依
次左乘每一个矩阵而求得:
RTP Tcyl (r, ,l) Trans(0, 0,l)Rot(z, )Trans(r, 0, 0)
1 0 0 0 C S 0 0 1 0 0 r
动组成,运动顺序为:先沿z轴平移r ,再y轴旋转 β并 绕z轴旋转γ。这三个变换建立了手坐标系与参考坐标
系之间的联系。由于这些变换都是相对于全局参考坐
标系的坐标轴的,因此有这三个变换所产生的总变换
可以通过一次左乘每一个矩阵而求得:
RTP Tsph r, , Rotz, Roty, Trans0,0, r
解: 设定正运动学方程用式(3.31)中的RTP 矩阵表示,根据期望的位置可得知 如下结果:
1 0 0 Px 1 0 0 3
RTP

0 0
0
1 0 0
0 1 0
Py


0
Pz 1

0 0
1 0 0
0 1 0
4 7

或Px

3, Py

4, Pz

7
1
RTP
Tsph

C S S
C
0
S S
rS

S

C
rC

0
0
0
1

3.7 机器人的正逆运动学
例3-15假设要将球坐标机器人手坐标系原点放在3 4,7T 计算机器人的关节变量。
解: 设定正运动学方程用式(3.35)中的Txph 矩阵表示,根据期望的位置可得知 如下结果:

机器人运动学方程

机器人运动学方程

机器人运动学方程一、引言机器人运动学方程是机器人控制中的重要概念,它是描述机器人运动规律的数学模型。

在机器人控制领域中,了解和应用机器人运动学方程对于实现高效准确的机器人控制具有重要意义。

二、机器人基本结构在讨论机器人运动学方程之前,我们需要了解一些基本的机器人结构和术语。

通常,一个典型的工业机器人由以下几个部分组成:1. 机械臂:由多个关节连接而成,用于执行各种任务;2. 控制系统:包括计算机、传感器和执行器等组件;3. 末端执行器:用于完成特定的任务,如夹取物体或喷涂等。

三、坐标系为了描述和控制机械臂的运动,在空间中需要建立坐标系。

通常采用笛卡尔坐标系或极坐标系。

笛卡尔坐标系是三维空间中最常见的坐标系,它由X、Y、Z三个轴线组成。

极坐标系则是通过极径和极角来描述一个点在平面上的位置。

四、关节角度关节角度指每个关节的角度,通常用θ1、θ2、θ3等符号表示。

在机器人运动学中,关节角度是非常重要的参数,因为它决定了机械臂的姿态和位置。

五、正向运动学方程正向运动学方程是描述机器人末端执行器位置和姿态与各个关节角度之间的关系的数学模型。

通常用矩阵形式表示,如下所示:T = T1 * T2 * T3 * ... * Tn其中T表示末端执行器的位姿矩阵,T1~Tn表示每个关节的变换矩阵。

这个公式告诉我们如何通过给定的关节角度来计算机械臂末端执行器的位置和姿态。

六、逆向运动学方程逆向运动学方程是指根据末端执行器所需位置和姿态来计算各个关节角度的数学模型。

由于这种问题具有多解性和非线性特点,因此求解逆向运动学方程是一个复杂而困难的问题。

通常需要采用数值方法来求解。

七、总结机器人运动学方程是描述机械臂运动规律的重要工具,在机器人控制中具有广泛应用。

了解和应用机器人运动学方程可以帮助我们更好地掌握机器人控制的基本原理和方法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

摇摆、俯仰和偏转为另一种旋转。如图2.4所示,就像水中航行的一条小船一 样,绕着它前进的方向(z轴)旋转 ø称为摇摆,绕着它的横向中轴(y轴)旋转 θ 称为俯仰,绕着它甲板的垂直向上的方向(x轴)旋转ψ 称为偏转。借助于这
种旋转来描述机械手的末端执行器如图3.5所示。规定旋转的次序为
RPY(ø,θ,ψ)=Rot(z,ø)Rot(y,θ)Rot(x,ψ)
第三章 工业机器人运动学-2
主要内容
数学基础——齐次坐标变换 机器人运动学方程的建立(正运动学) 机器人逆运动学分析
二、运动学方程的建立(运动学正问题)
2.1 引言 2.2 姿态描述 2.3 欧拉角 2.4 摇摆、俯仰和偏转 2.5 位置的确定 2.6 圆柱坐标 2.7 球坐标
2.8 T6的说明 2.9 各种A矩阵的说明 2.10 根据A矩阵来确定T6 2.11 斯坦福机械手的运动方程 2.12 肘机械手的运动方程 2.13 小结
nz oz az pz 0 001
(2.2)
如图2.1所示,机器人的末 端执行器(手爪)的姿态(方 向)由 n、o、a 三个旋转矢量 描述,其坐标位置由平移矢量 p 描述,这就构成了式(2.2) 中的变换矩阵 T。
由于 n、o、a 三个旋转矢 量是正交矢量,所以有
n = o×a
图2.1 末端执行器的描述
如图示,在圆柱坐标中确定机械手的位置是沿x轴 平移r,接着绕z轴旋转α,最后沿着z轴平移z。
Cyl(z, α,r) = Trans(0,0,z)Rot(z, α) Trans(r,0,0)
cosα -sinα 0 0 1 0 0 r sinα cosα 0 0 0 1 0 0
Cyl(z, α,r) = Trans(0,0,z) 0 0 1 0 0 0 1 0
2.1 引言 ( Introduction )
本章,我们采用齐次变换来描述在各种坐标系中机械手的位置与方向。首先介绍各 种正交坐标系的齐次变换。然后介绍在非正交关节坐标系中描述机械手末端的齐次变换。 注意,对任何数目关节的各种机械手均可以这样进行。
描述一个连杆与下一个连杆之间关系的齐次变换称A矩阵。A矩阵是描述连杆坐标 系之间的相对平移和旋转的齐次变换。
构成与o和a正交的n
n o×a
(2.7)
在o和a形成的平面上旋转o,使得o与n和a正交
单位向量o是
o a×n
o o
|o|
(2.8) (2.9)
根据数学基础给出的一般性的旋转矩阵Rot (k ,θ),它把机械手末端的姿 态规定为绕k轴旋转θ角。
2.3欧拉角 ( Euler Angles )
姿态变更常用绕x,y或z轴的一系列旋转来确定。欧拉角描述方 法是:先绕z轴旋转ø,然后绕新的y(即y/)轴旋转θ,最后绕更新的 z(z//)轴旋转ψ(见图2.2)欧拉变换Euler(ø,θ,ψ)可以通过连乘三个旋 转矩阵来求得
0 0 01 0 0 0 1
(2.17)
Cyl(z, α,r) =
1000 0100
001z
cosα -sinα 0 rcosα sinα cosα 0 rsinα
连续变换的若干A矩阵的积称为T矩阵,对于一个六连杆(六自由度)机械手有
T6 = A1 A2 A3 A4 A5 A6
(2.1)
六连杆的机械手有六个自由度,其中三个自由度用来确定位置,三个自由度用来确 定方向。T6表示机械手在基坐标中的位置与方向。则变换矩阵T6有下列元素
T6 =
nx ox ax px ny oy ay py
0
0
0
1
(2.15)
2.5 位置的确定 ( Specification of Position )
一旦方向被确定之后,用一个相应的p向量的位移变换可得 到机器人末端执行器在基坐标中的位置:
1 0 0 px
旋转
0 1 0 py
变换
T6 = 0 0 1 pz
矩阵
0001
(2.16)
2.6 圆柱坐标 ( Cylindrical Coordinates )
ø
z’’ z’’’ ψ θ
0
y’’’
ψ
y’y’’
øθ
y
ø
x
θψ
x’
x’’’
x’’
图2.2 欧拉角
z z’
ψ
z’’
θ z’’’ ø
0
ø
y’’’
ø y’’
θ y’ ψ
y
θ
ψ
x’
x
θ x’’ ø x’’’
图2.3 基于基坐标的欧拉角
2.4 摇摆、俯仰和偏转 ( Roll, Pitch and Yaw )
2.2 姿态描述 ( Specification of Orientation )
对式(2.2)中16个元素一一赋值就可确定T6。假定机械手可以到达要求 的位置,而单位旋转矢量o和a正交,即
o·o = 1 a·a = 1 o·a = 0
(2.3) (2.4) (2.5)
a形成单位向量
a a
|a|
(2.6)
cosø –sinø 0 0 cosθ sinθsinψ sinθcosψ 0
sinø cosø 0 0
0 cosψ
–sinψ 0
RPY(ø,θ,ψ) = 0 0 1 0 -sinθ cosθsinψ cosθcosψ 0
0 0 01
0
0
0
1
(2.14)
图2.4 摇摆、俯仰和偏 转角
图2.5 机械手的末端执行器 的摇摆、俯仰和偏 转
(2.12)
即,绕x轴旋转ψ,接着绕y轴旋转θ,最后绕z轴旋转ø,这个变换如下
RPY(ø,θ,ψ) = Rot(z,ø)
cosθ 0 sinθ 0 1 0 0 0 0 1 0 0 0 cosψ –sinψ 0
–sinθ 0 cosθ 0 0 sinψ cosψ 0
00 01 00 0 1
(2.13)
RPY(ø,θ,ψ) =
cosøcosθ cosøsinθsinψ – sinøcosψ cosøsinθcosψ + sinøsinψ 0 sinøcosθ sinøsinθsinψ + cosøcosψ sinøsinθcosψ–cosøsinψ 0
-sinθ
cosθsinψ
cosθcosψ
0
Euler(ø,θ,ψ) =Rot(z,ø)Rot(y,θ)Rot(z,ψ) (2.10)
在一系列旋转中,旋转的次序是重要的。应注意,旋转序列 如果按相反的顺序进行,则是绕基坐标中的轴旋转:绕z轴旋转ψ , 接着绕y轴旋转θ,最后再一次绕z轴旋转ø ,结果如图2.3所示,它 与图2.2是一致的。
z z’
相关文档
最新文档