第1章 传感器基本特性.
第1章 传感器的基本知识
![第1章 传感器的基本知识](https://img.taocdn.com/s3/m/25c699e8700abb68a982fbdc.png)
几何量:
长度、厚度、角度、直径、间距、形状、粗糙度、 硬度、材料 缺陷等
燕山大学电气工程学院
第1章 传感器的基本知识
物体的性质和成分量 :
空气的湿度(绝对、相对)、气体的化学成分、浓度、液体 的粘度、浊度、透明度、物体的颜色
状态量:
工作机械的运动状态(启停等)、生产设备的异常状态(超 温、过载、泄漏、变形、磨损、堵塞、断裂等)
x
△Rmax1正行程的最大重复性偏差, △Rmax2反行程的最大重复性偏差。
重复性误差也常用绝对误差表示。检测时也可选取几个测试点, 对应每一点多次从同一方向趋近,获得输出值系列 yi1 , yi2 , yi3 ,…,yin ,算出最大值与最小值之差或 3σ作为重复性偏差 ΔRi,在几个ΔRi中取出最大值ΔRmax 作为重复性误差。
燕山大学电气工程学院
传感器依赖其结构参数变化 实现信息转换 传感器依赖其敏感元件物理 特性的变化实现信息转换 传感器直接将被测量的能量 转换为输出量的能量 由外部供给传感器能量,而 由被测量来控制输出的能量 输出为模拟量 输出为数字量
第1章 传感器的基本知识
1.1.3 传感器的物理定律
( 1 )守恒定律(能量、动量、电荷量等守恒定律)
燕山大学电气工程学院
第1章 传感器的基本知识
工业检测中涉及的物理量分类 热工量:
温度t(℃ 、K、℉ ) 3 压力(压强)p(Pa)、压差Δ p 、真空度、流量q(t、m )、 流速v(m/s)、物位、液位h(m)
机械量:
直线位移x(m)、角位移α、速度、加速度a( m/s ) 、转速n (r/min)、应变 ε (m/m )、力矩T(Nm)、振动、噪声、质量 (重量)m(kg、t)
第一章 传感器的一般特性2zz
![第一章 传感器的一般特性2zz](https://img.taocdn.com/s3/m/81468a097cd184254b35355c.png)
7、漂移
漂移是指传感器的被测量不变,而其输出 量却发生了不希望有的改变。
y 灵敏度漂移
零点漂移 灵敏度漂移 时间漂移(时漂) 温度漂移(温漂)
2 1 零点漂移 O x
8 分辨力和阈值
(1)阈值:当传感器的输入从零开始缓慢增加时, 只有在达到了某一值后,输出才发生可观测的变化,这 个值说明了传感器可测出的最小输入量,称为传感器的 阈值。 (2)分辨力:当传感器的输入从非零的任意值缓慢 增加时,只有在超过某一输入增量后,输出才发生可观 测的变化,这个输入增量称为传感器的分辨力。
取较大者为
RMax
ΔRmax2 ΔRmax1
R ( R Max yFS ) 100%
x
6.稳定性 稳定性表示传感器在较长时间内保持 其性能参数的能力,故又称长期稳定性。 稳定性可用相对误差或绝对误差表示。 表示方式如: 个月不超过 %满量程输 出。有时也采用给出标定的有效期来表示。
第一章 传感器的一般特性
在工程应用中,任何测量装置性能的优劣总要 以一系列的指标参数衡量,通过这些参数可以方便地 知道其性能。这些指标又称之为特性指标。 传感器可看作二端口网络,即有两个输入端和 两个输出端,输出输入特性是其基本特性,可用静态 特性和动态特性来描述。
输入
传感器
输出
1. 1 传感器的静特性
九、抗干扰能力
设计、选用、购买
1、量程和范围
传感器所能测量的最大被测量(输入量)的数值称为测量上
限,最小被测量称为测量下限,上限与下限之间的区间,则 称为测量范围。
量程---测量上限与下限的代数差。
测量范围为-20~+20℃,量程为40℃; 测量范围为-5~+10g,量程为15g; 测量范围为100~1000Pa,量程为900Pa;
第1章传感器的一般特性MOOC1_1_06
![第1章传感器的一般特性MOOC1_1_06](https://img.taocdn.com/s3/m/e00269177cd184254b35352b.png)
传感器技术主讲人:吴琼水武汉大学电子信息学院第1章传感器的一般特性1.1 传感器静态特性静态特性指标(1)线性度(2)灵敏度(3)精确度(精度)(4)最小检测量和分辨力(5)迟滞(6)重复性(7)稳定性(8)漂移稳定性(Stability)稳定性表示传感器在较长时间内保持其性能参数的能力,故又称长期稳定性。
稳定性可用相对误差或绝对误差表示。
表示方式如:个月不超过%满量程输出。
有时也采用给出标定的有效期来表示。
1.1 传感器静态特性静态特性指标(1)线性度(2)灵敏度(3)精确度(精度)(4)最小检测量和分辨力(5)迟滞(6)重复性(7)稳定性(8)漂移传感器在输入量不变的情况下,输出量随时间变化的现象。
产生原因:⏹传感器自身结构参数老化⏹测试过程中环境发生变化●漂移包括零点漂移和灵敏度漂移。
零点漂移和灵敏度漂移又可分为时间漂移和温度漂移:◆时间漂移是指在规定的条件下,零点或灵敏度随时间的缓慢变化◆温度漂移为环境温度变化而引起的零点或灵敏度漂移●漂移包括零点漂移和灵敏度漂移。
零点漂移和灵敏度漂移又可分为时间漂移和温度漂移:◆时间漂移是指在规定的条件下,零点或灵敏度随时间的缓慢变化◆温度漂移为环境温度变化而引起的零点或灵敏度漂移%1000⨯∆FS Y Y 零漂=——最大零点偏差——满量程输出%100m ax⨯∆∆TY FS 温漂=Δmax ——输出最大偏差;ΔT ——温度变化范围;Y FS ——满量程输出。
传感器与检测技术ppt课件第一章
![传感器与检测技术ppt课件第一章](https://img.taocdn.com/s3/m/bd7a199fb04e852458fb770bf78a6529647d35a2.png)
2024/2/29
16
1.2检测技术理论基础
1.2.2 测量方法
1) 直接测量、间接测量和组合测量 (又称联立 测量)。经过求解联立方程组,才能得到被测物理量的最后
结果,则称这样的测量为组合测量。
2) 偏差式测量、零位式测量与微差式测量
3) 等精度测量与非等精度测量
4) 静态测量与动态测量
2024/2/29
2024/2/29
23
2024/2/29
3
1.1.3 传感器基本特性
当传感器的输入信号是常量,不随时间变化时,其 输入输出关系特性称为静态特性。
传感器的基本特性是指系统的输入与输出关系特性 ,即传感器系统的输出信号y(t)和输入信号(被测 量)x(t)之间的关系,传感器系统示意图如下图所 示。
2024/2/29
4
1.1.3 传感器基本特性
2.传感器的分类
(1)按照其工作原理,传感器可分为电参数式(如电阻式、 电感式和电容式)传感器、压电式传感器、光电式传感器及 热电式传感器等。
(2)按照其被测量对象,传感器可分为力、位移、速度、 加速度传感器等。常见的被测物理量有机械量、声、磁、温 度和光等。
(3)按照其结构,传感器可分为结构型、物性型和复合型 传感器。物性型传感器是依靠敏感元件材料本身物理性质的 变化来实现信号变换,如:水银温度计。结构型传感器是依 靠传感器结构参数的变化实现信号变换,如:电容式传感器。
敏感元件输出的物理量转换成适于传输或测量电信号 的元件。
测量电路(measuring circuit): 将转换
元件输出的电信号进行进一步转换和处理的部分,如 放大、滤波、线性化、补偿等,以获得更好的品质特 性,便于后续电路实现显示、记录、处理及控制等功 能。
传感器与检测技术基础
![传感器与检测技术基础](https://img.taocdn.com/s3/m/392c3b6d7dd184254b35eefdc8d376eeaeaa17cf.png)
转换元件 它是将敏感元件输出的非电信号直接转换为电信号,或直接将被测非电信号转换为电信号(如应变式压力传感器的电阻应变片,它作为转换元件将弹性敏感元件的输出转换为电阻)。 转换电路 它能把转换元件输出的电信号转换为便于显示、处理和传输的有用信号。
传感器的分类 传感器技术是一门知识密集型技术。
1.2 测量误差与准确度
3)恰为第n位单位数字的0.5,则第n位为偶数或零时就舍去,为奇数时则进1。 (2)参加中间运算的有效数字的处理 1)加法运算:运算结果的有效数字位数应与参与运算的各数中小数点后面的有效位数相同。 2)乘除运算:运算结果的有效数字位数,应与参与运算的各数中有效位数最小的相同。 3)乘方及开方运算:运算结果的有效数字位数比原数据多保留一位。 4)对数运算:取对数前后有效数字位数应相同。 2.测量数据的处理 常用的数据处理方法有列表法、图示法、最小二乘法线性拟合。
列表法 列表法是把被测量的数据列成表格,可以简明地表示有关物理量之间的对应关系,便于随时检查测量结果是否合理,及时发现和分析问题。
01
图示法 图示法是用图形或曲线表示物理量之间的关系,它能更直观地表示物理量之间的变化规律,如递增或递减。
02
最小二乘法线性拟合 图示法虽然能很直观方便地将测量中的各种物理量之间的关系、变化规律用图像表示出来,但是,在图像的绘制上往往会引起一些附加的误差。
1.1 传感器简述
1.1 传感器简述
1)超调量σ:传感器输出超出稳定值而出现的最大偏差,常用相对于最终稳定值的百分比来表示。 2)延滞时间td:阶跃响应达到稳态值的50%所需要的时间。 3)上升时间tr:传感器的输出由稳态值的10%变化到稳态值的90%所需的时间。 4)峰值时间tp:传感器从阶跃输入开始到输出值达到第一个峰值所需的时间。 5)响应时间ts:传感器从阶跃输入开始到输出值进入稳态值所规定的范围内所需的时间。 (2)频率响应法 频率响应法是从传感器的频率特性出发研究传感器的动态特性。
第1章 传感器的特性
![第1章 传感器的特性](https://img.taocdn.com/s3/m/1ad22767f242336c1fb95e0b.png)
3.重复性(Repeatability) 传感器在同一工 作条件下输入量 按同一方向(同为 正行程或同为反 行程)作全量程连 续多次变动时所 得特性曲线的不 一致程度。
重复性误差:
Rmax R 100% YFS
△Rmax:正(反)行程中的最大重复偏差
特性曲线一致性好, 重复性就好,误差就小。
3
传感器的特性:传感器所有性质的总称。 传感器的基本特性:输出/输入特性。
概述
静态特性 : 被测参量基本不随时间变化或变化很缓慢时,传 感器的输出/输入特性。
动态特性 :
被测参量随时间变化时 ,传感器的输出/输入特 性。
5
传感器的特性
1.1 传感器静态特性方程与特性曲线 1.2 传感器的静态特性 1.3 传感器的动态特性
取2σ或3σ值即为传感器静态误差。静态误差也 可用相对误差表示,即:
3 100% y FS
静态误差是一项综合性指标,基本上包含了前面 叙述的非线性误差、迟滞误差、重复性误差、灵敏度 误差等。所以也可以把这几个单项误差综合而得,即:
L H R S
2 2 2
(3-3)
32
1.2 传感器静态特性的主要指标
• 由于受很多因素的影响,会引起灵敏度变化从而产生灵敏 度误差,习惯上用相对误差表示
s
k k
100%
• 灵敏度的量纲: 输出的量纲/输入的量纲。V/℃、mv/g、A/g、mv/mm
• 能量控制型传感器,灵敏度与供给sensor的电源电压有关。 例如:100(mv/mm.V) 某位移传感器,当电源电压为1V时,每1mm位移的变化量 引起输出电压变化100mv。
|
温度稳定性(温漂):传感器在外界温度变化情况下输 出量发生的变化,又称为温度漂移。 抗干扰能力稳定性:传感器对各种外界干扰的抵抗能力。
武汉大学传感器技术课件-传感器一般特性
![武汉大学传感器技术课件-传感器一般特性](https://img.taocdn.com/s3/m/0933b464b7360b4c2f3f6444.png)
主讲人: 吴琼水
武汉大学电子信息学院
第1章 传感器的一般特性
1.1 传感器静态特性
静态特性指标
(1)线性度 (2)灵敏度 (3)精确度(精度) (4)最小检测量和分辨力 (5)迟滞 (6)重复性 (7)稳定性 (8)漂移
线性度(Linearity)
在规定的条件下,传感器静态校准曲线(实际曲线)与拟合直线间最大偏差 与满量程输出值的百分比称为线性度。
传感器技术
主讲人: 吴琼水
武汉大学电子信息学院
第1章 传感器的一般特性
1.1 传感器静态特性
静态特性指标
(1)线性度 (2)灵敏度 (3)精确度(精度) (4)最小检测量和分辨力 (5)迟滞 (6)重复性 (7)稳定性 (8)漂移
迟滞
传感器在输入量由小到大(正行程)及输入量由大到小(反行程)变化期间其输入 输出特性曲线不重合的现象称迟滞。
例:某电子秤: 增加砝码
电桥输出 减砝码输出
0 g —— 50g —— 100g —— 200g 0.5 mv --- 2.0mv -- 4.0mv --- 8.0mv 0.6 mv --- 2.2mv ---4.5mv --- 8.0mv
H
H max
/Y FS
100%
产生这种现象的主要原因是由于传感器敏感元件材 料的物理性质和机械另部件的缺陷所造成的,例如弹 性敏感元件弹性滞后、运动部件摩擦、传动机构的间 隙、紧固件松动等。
准确度
说明传感器输出值与真值的偏离程度。准确度是系统误差大小的标志。
精确度
是精密度与准确度两者的综合优良程度。
低精密度, 低正确度
高精密度, 低正确度
低精密度, 高正确度
第一章传感器技术基础知识
![第一章传感器技术基础知识](https://img.taocdn.com/s3/m/649a4bbcdbef5ef7ba0d4a7302768e9951e76ec9.png)
时间常数:用时间常数τ来表征一阶传感器的动态特性。τ越小, 频带越宽。
固有频率:二阶传感器的固有频率ωn表征了其动态特性。
传感器的选用原则
与测量条件有关的因素 (1)测量的目的 (2)被测试量的选择 (3)测量范围 (4)输入信号的幅值,频带宽度 (5)精度要求 (6)测量所需要的时间
相应的响应曲线 :
传感器存在惯性,它的输出不能立即复现输入信号,而是从零开 始,按指数规律上升,最终达到稳态值。 理论上传感器的响应只在t趋于无穷大时才达到稳态值,但实际上 当t=4τ时其输出达到稳态值的98.2%,可以认为已达到稳态。 τ越小,响应曲线越接近于输入阶跃曲线, 因此,τ值是一阶传感器重要的性能参数。
测量
测量是指人们用实验的方法,借助于一定的仪器或 设备,将被测量与同性质的单位标准量进行比较,
并确定被测量对标准量的倍数,从而获得关于被测
量的定量信息。
xnu或
x——被测量值;
n x u
u——标准量,即测量单位;
n——比值,含有测量误差。
测量过程
传感器从被测对象获取被测量的信息,建立起 测量信号,经过变换、传输、处理,从而获得 被测量量值的过程。
线性传感器
S y x
灵敏度是它的静态特性的斜率,即S为常数。
非线性传感器
它的灵敏度S为一变量,用下式表示。
S dy dx
传感器的灵敏度如图1-3所示。
Y
Y
S y - y0
Yo
x
X O
a)线形传感器
Байду номын сангаас
Y dy
dx S dy dx X
传感器的概述
![传感器的概述](https://img.taocdn.com/s3/m/7c3449bf2cc58bd63186bddd.png)
第一章 传感器的概述1.传感器的定义能感受规定的被测量并按照一定规律转换成可用输出信号的器件或装置叫做传感器。
2.传感器的共性:利用物理定律或物质的物理、化学、生物等特性,将非电量(位移、速度、加速度、力等)转换成 电量(电压、电流、电容、电阻等)输出。
3.传感器的组成:传感器由有敏感元件、转换元件、信号调理电路、辅助电源组成。
传感器基本组成有敏感元件和 转换元件两部分,分别完成检测和转换两个基本功能。
第二章 传感器的基本特性1.传感器的基本特性:静态特性、动态特性。
2.衡量传感器静态特性的主要指标有:线性度 、灵敏度 、分辨率迟滞 、重复性 、漂移。
3.迟滞产生原因:传感器机械部分存在摩擦、间隙、松动、积尘等。
4.产生漂移的原因:①传感器自身结构参数老化;②测试过程中环境发生变化。
5.例题:1.用某一阶环节传感器测量100Hz 的正弦信号,如要求幅值误差限制在±5%以内,时间常数应取多少?如果用该传感器测量50Hz 的正弦信号,其幅值误差和相位误差各为多少? 解:一阶传感器的频率响应特性: 幅频特性:2.在某二阶传感器的频率特性测试中发现,谐振发生在频率为216Hz 处,并得到最大福祉比为1.4比1,试估算该传感器的阻尼比和固有频率的大小。
3.玻璃水银温度计通过玻璃温包将热量传给水银,可用一阶微分方程来表示。
现已知某玻璃水银温度计特性的微分方1)(1)(+=ωτωj j H )(11)(ωτω+=A s rad f n n /135********.014.121)(A )(4)(1)(A n max n 21222=⨯=======⎭⎬⎫⎩⎨⎧+⎥⎦⎤⎢⎣⎡-=-ππωωξξωωωωωξωωω所以,时共振,则当解:二阶系统程是x y dtdy310224-⨯=+ ,y 代表水银柱的高度,x 代表输入温度(℃)。
求该温度计的时间常数及灵敏度。
解:原微分方程等价于:x y dt dy3102-=+所以:时间常数T=2S, 灵敏度Sn=10-3第三章 电阻式传感1.应变式电阻传感器的特点: 1)优点:①结构简单,尺寸小,质量小,使用方便,性能稳定可靠;②分辨力高,能测出极微小的应变;③灵敏度 高,测量范围广,测量速度快,适合静、动态测量;④易于实现测试过程自动化和多点同步测量、远距离 测量和遥测;⑤价格便宜,品种多样,工艺较成熟,便于选择和使用,可以测量多种物理量。
第1章 传感器的一般特性
![第1章 传感器的一般特性](https://img.taocdn.com/s3/m/b86b186c1ed9ad51f01df26d.png)
1.2.1 动态特性的一般数学模型
1、零阶传感器的数学模型
a0Y (t ) b0 X (t )
Y (t )
b0 X (t ) KX (t ) a0
例3 图1-8所示线性电位器是一个 图1-8 线性电位器 零阶传感器。设电位器的阻值 沿长度L是线性分布的,则输出电压和电刷位移之间的关系为
0
1
1 2
1 2 2 1 2
1 d 2T1 2 dT1 T1 T0 2 2 0 dt 0 dt
1.2.2 传递函数
传递函数是输出量和输入量之间关系的数学表示。如 果传递函数已知,那么由任一输入量就可求出相应输出量。 传递函数的定义是输出信号与输入信号之比。 (an Dn an1Dn1 a1D a0 )Y (t )
根据一阶线性微分方程,如果已知T0的变化规律,求出微 分方程式的解,就可以得到热电偶对介质温度的时间响应。
1.2.1 动态特性的一般数学模型
3、二阶传感器的数学模型
( D2
d 2Y (t ) d Y (t ) a2 a1 a0Y (t ) b0 X (t ) 2 dt dt a0 b0 a1 / 2 a0 a2 0 K a2 a0
i 1
n
2
n 1
重复性所反映的是测量结果 偶然误差的大小,而不表示与真值 之间的差别。有时重复性虽然很好, 但可能远离真值。
图1-7 传感器的重复性
1.1.2 静态特性指标
7、零点漂移 传感器无输入(或某一输入值不变)时,每隔一段时间进 行读数,其输出偏离零值(或原指示值),即为零点漂移。 Y0 零漂 100% YFS 8、温漂 温漂表示温度变化时,传感器输出值的偏离程度。一般 以温度变化1 ℃输出最大偏差与满量程的百分比来表示。
第1章-传感器的特性
![第1章-传感器的特性](https://img.taocdn.com/s3/m/07ae35da0875f46527d3240c844769eae009a323.png)
j=1, 2, …, m;
n ——
yji的含义是,若输入值x=xj,则在相同条件下进行n次 重复试验,获得n个输出值yj1~yjn
i —— y j ——算术平均值。
或
S Wn dn
(1.9)
第1章
式中: Wn——极差,是指某一测量点校准数据的最大
dn——极差系数。 极差系数可根据所用数据的数目n由表1.4查得。理 论与实践证明,n不能太大,如n大于12,则计算精度变差, 这时要修正dn 。
第1章 表1.4
第1章
3.
迟滞表明传感器在正(输入量增大)、反(输入
量减小)行程期间,输出-输入曲线不重合的程度。也就 是说,对应于同一大小的输入信号,传感器正、反行程的 输出信号大小不相等。迟滞是传感器的一个性能指标, 它反映了传感器的机械部分和结构材料方面不可避免
的弱点,如轴承摩擦、灰尘积塞、间隙不适当,元件磨蚀、
Δi=yi-(b+kxi)
第1章
n
按 最 小 二 乘 法 原 理 , 应 使 i2 最 小 。 故
n
n
i 1
由 i2 [ yi (kxi b)]2 min ,分别对k和b求一阶
偏导i数1 并令i其1 等于零,即可求得k和b:
n
k
n
xi yi xi2 (
xi xi )2
n b
设ai≥0, a0≥0。
1) 这种情况见图1.2(a)。此时
a0=a2=a3=…=an=0 于是
y=a1x
(1.2)
因为直线上任何点的斜率都相等,所以传感器的灵
敏度为
a1= y =k=常数(1.3 x
第1章
2) 输出这种情况见图1.2(b)。此时,在原点附近相当范 围内曲线基本成线性,式(1.1)只存在奇次项:
传感器原理及其应用考试重点
![传感器原理及其应用考试重点](https://img.taocdn.com/s3/m/88f956164431b90d6c85c7ee.png)
传感器原理及其应用第一章传感器的一般特性1)信息技术包括计算机技术、通信技术和传感器技术,是现代信息产业的三大支柱。
2)传感器又称变换器、探测器或检测器,是获取信息的工具广义:传感器是一种能把特定的信息(物理、化学、生物)按一定规律转换成某种可用信号输出的器件和装置。
狭义:能把外界非电信息转换成电信号输出的器件。
国家标准(GB7665-87):定义:能够感受规定的被测量并按照一定规律转换成可用输出信号的器件或装置。
3)传感器的组成:敏感元件是直接感受被测量,并输出与被测量成确定关系的某一物理量的元件。
转换元件:将敏感元件输出的非电物理量转换成电路参数或电量。
基本转换电路:上述电路参数接入基本转换电路(简称转换电路),便可转换成电量输出。
4)传感器的静态性能指标(1)灵敏度定义: 传感器输出量的变化值与相应的被测量(输入量)的变化值之比,传感器输出曲线的斜率就是其灵敏度。
①纯线性传感器灵敏度为常数,与输入量大小无关;②非线性传感器灵敏度与x有关。
(2)线性度定义:传感器的输入-输出校准曲线与理论拟合直线之间的最大偏离与传感器满量程输出之比,称为传感器的“非线性误差”或“线性度”。
线性度又可分为:①绝对线性度:为传感器的实际平均输出特性曲线与理论直线的最大偏差。
②端基线性度:传感器实际平均输出特性曲线对端基直线的最大偏差。
端基直线定义:实际平均输出特性首、末两端点的连线。
③零基线性度:传感器实际平均输出特性曲线对零基直线的最大偏差。
④独立线性度:以最佳直线作为参考直线的线性度。
⑤最小二乘线性度:用最小二乘法求得校准数据的理论直线。
(3)迟滞定义:对某一输入量,传感器在正行程时的输出量不同于其在反行程时的输出量,这一现象称为迟滞。
即:传感器在正(输入量增大)反(输入量减小)行程中输出输入曲线不重合称为迟滞。
(4)重复性定义:在相同工作条件下,在一段短的时间间隔内,同一输入量值多次测量所得的输出之间相互偏离的程度。
传感器课后答案解析
![传感器课后答案解析](https://img.taocdn.com/s3/m/14a80548ce84b9d528ea81c758f5f61fb73628e5.png)
传感器课后答案解析第1 1 章概述1. 什么是传感器?传感器定义为能够感受规定的被测量并按照一定规律转换成可用输出信号的器件和装置,通常由敏感元件和转换元件组成。
2 1.2 传感器的共性是什么?传感器的共性就是利用物理规律或物质的物理、化学、生物特性,将非电量(如位移、速度、加速度、力等)输入转换成电量(电压、电流、电容、电阻等)输出。
3 1.3 传感器由哪几部分组成的?由敏感元件和转换元件组成基本组成部分,另外还有信号调理电路和辅助电源电路。
4 1.4 传感器如何进行分类?(1 1 )按传感器的输入量分类,分为位移传感器、速度传感器、温度传感器、湿度传感器、压力传感器等。
(2 2 )按传感器的输出量进行分类,分为模拟式和数字式传感器两类。
(3 3 )按传感器工作原理分类,可以分为电阻式传感器、电容式传感器、电感式传感器、压电式传感器、磁敏式传感器、热电式传感器、光电式传感器等。
(4 4 )按传感器的基本效应分类,可分为物理传感器、化学传感器、生物传感器。
(55 )按传感器的能量关系进行分类,分为能量变换型和能量控制型传感器。
(6 6 )按传感器所蕴含的技术特征进行分类,可分为普通型和新型传感器。
5 1.5 传感器技术的发展趋势有哪些?(1 1 )开展基础理论研究(2 2 )传感器的集成化(3 3 )传感器的智能化(4 4 )传感器的网络化(5 5 )传感器的微型化6 1.6 改善传感器性能的技术途径有哪些?(1 1 )差动技术(2 2 )平均技术(3 3 )补偿与修正技术(4) 屏蔽、隔离与干扰抑制(5) 稳定性处理第2 2 章传感器的基本特性1 2.1 什么是传感器的静态特性?描述传感器静态特性的主要指标有哪些?答:传感器的静态特性是指在被测量的各个值处于稳定状态时,输出量和输入量之间的关系。
主要的性能指标主要有线性度、灵敏度、迟滞、重复性、精度、分辨率、零点漂移、温度漂移。
2 2.2 传感器输入- - 输出特性的线性化有什么意义?如何实现其线性化?答:传感器的线性化有助于简化传感器的理论分析、数据处理、制作标定和测试。
传感器原理及其应用(第二版)部分习题答案
![传感器原理及其应用(第二版)部分习题答案](https://img.taocdn.com/s3/m/125d54ae6aec0975f46527d3240c844769eaa00a.png)
第4章 电容式传感器及其应用
当 d <<d0 时,即 d/d0<<1 ,则:
∴ 灵敏度为:
由此可见,与单极式相比,其灵敏度提高了一倍(单极式为 )。
第4章 电容式传感器及其应用
5、为什么高频工作时电容式传感器的连接电缆的长度不能任意 改变?
第3章 电感式传感器及其应用
16、有一只差动电感位移传感器,已知电源电压U 4V,f 400Hz,传感
器线圈电阻与电感分别为R 40 ,L 30mH,用两只匹配电阻设计成四 臂等阻抗电桥,如图所示。试求: (1)匹配电阻 R3和 R4 的值为多少时才能使电压灵敏度达到最大。 (2)当 Z 10 时,分别接成单臂和差动电桥后的输出电压值。
称重传感器的灵敏度
(2) 当传感器输出电压为68mV时,物体的荷重m为
第2章 电阻应变式传感器及其应用
7. 图2.43为应变式力传感器的钢质圆柱体弹性元件,其直径d = 40 mm,
钢的弹性模量E = 2.1×105 N/mm2 ,泊松比μ=0.29 ,在圆柱体表面粘
贴四片阻值均为120Ω、灵敏系数κ=2.1的金属箔式应变片( 不考虑应变
∴ ∴
第3章 电感式传感器及其应用
(2) 接成单臂电桥后的电桥输出电压值为: 接成差动电桥后的电桥输出电压值为:
第4章 电容式传感器及其应用
• 作业:习题2、5、8、14 (P67)
第4章 电容式传感器及其应用
2、推导差动式电容传感器的灵敏度,并与单极式电容传感器相比较 。 答:设在初始状态下,动极板位于两块定极板中间位置,则:
y理论
2.2 4.6875 7.175 9.6625 12.15 14.6375 17.125 19.6125 22.1
传感器的一般特性
![传感器的一般特性](https://img.taocdn.com/s3/m/2408bb8c5ff7ba0d4a7302768e9951e79b8969af.png)
1.1.6 精度(Accuracy)
1.1 传感器的静态特性
03
02
01
传感器的精度是指其测量结果的可靠程度,它由其量程范围内的最大基本误差与满量程之比的百分数表示。基本误差由系统误差和随机误差两部分组成,故
传感器的精度用精度等级a表示,如0.05,0.1,0.2,0.5,1.0,1.5等。
传递函数H(s)与输入x(t)无关,由传感器的结构参数决定,是传感器的固有特性。给系统一个简单激励x(t),测得系统对x(t)的响应y(t),则系统的特性可确定,
对于任意激励x(t) X(s) Y(s)=H(s)X(s) L1[Y(s)]=y(t)。
式中,
••幅频特性
••相频特性
*
1.3 传感器动态特性分析
二阶传感器的频率响应特性:
讨论 : 当1,n>时:
A()/K 1,频率特性平直,
输出与输入为线性关系;
()很小,且 ()与为线
性关系。
一般传感器设计时,必须使
1(=0.6~0.8),n(3~5)
图1-14 二阶传感器的频率特性
*
1.3 传感器动态特性分析
*
单击此处添加文本具体内容,简明扼要地阐述你的观点
202X
第1章 传感器的一般特性
传感器的基本特性即输出—输入关系特性,即系统输出信号y(t)与输入信号x(t)之间的关系。 静态特性:y=f(x); 动态特性:y(t)=fx(t) 。 图1-1 传感器系统 研究传感器的基本特性的意义: 测量 传感器作为测量系统,由输出y推求输入x; 传感器的研究、设计与系统建立。 传感器的基本特性是外特性,但由其内部结构参数决定。
*
1.1 传感器的静态特性
第1章 传感器的一般特性-2
![第1章 传感器的一般特性-2](https://img.taocdn.com/s3/m/f5715740767f5acfa1c7cd73.png)
31
(3) 传感器的时域动态性能指标 :
①上升时间tr ②峰值时间tp ③调节时间ts ④超调量σ%
32
tr-上升时间,系统输出响应从零开始第一次上升到稳态值时间。 tp-峰值时间,系统输出响应从零开始第一次到达峰值时间。 ts-调节时间,系统输出响应达到并保持在稳态值±5%(±2%)误差 33
yt y20 t
6
静态测量不确定度
又称静态误差,指传感器在其全量程内任 一点的输出值与其理论值的可能偏离程度。 常用标准差σ计算
1 n 2 (yi ) n 1 i 1
(2 ~ 3) 100% YFS
7
例子:
• 测控技术与仪器专业——“量子”科技创 新团队研制了一台称重传感器的样机,对 该传感器进行校准实验后获得下表所列的 数据。 • 试根据表中的数据确定该传感器的线性度 、灵敏度、迟滞等静态特性参数指标。
Lmax L 100% YFS
2
• 线性度计算时拟合直线常用的拟合方法有:
– – – – –
y YF S
理论拟合 过零旋转拟合 端点连线拟合 端点平移拟合 最小二乘拟合
Lm ax
y y
y YF S
Lm ax
L1 = Lm ax
YF S
YF S
L3 = Lm ax
28
(2) 二阶传感器的单位阶跃响应
二阶传感器的微分方程为
d 2 y (t ) dy(t ) 2 2 2 y ( t ) 0 0 0 kx(t ) 2 dt dt
设传感器的静态灵敏度k=1,其二阶传感器的传递函数为
2 0 H ( s) 2 2 s 20 s 0
9
例子:热电偶测温
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(1-4)
最小二乘法拟合直线的原理就是使
n i 1 2 i
为最小值,即
n 2 i 1
Δ yi (kxi b) min
也就是使 2i 对k和b一阶偏导数等于零,即
i2 2 yi kxi b xi 0 k i2 2 yi kxi b 1 0 b
xFS xmax xmin xmax ——测量范围的上限值;
xmin ——测量范围的下限值。
通过测量范围,可以知道传感器的测量上限和测量下限,以便正确 使用传感器。
传感器的静态特性
以一个力传感器为例说明测量范围
和量程。 测量范围为0~+10N,量程为10N; (单向) 测量范围为-10~+10N,量程为20N ;(双向对称) 测量范围为-3~+10N,量程为13N; (双向不对称) 测量范围为+2~+10N,量程为8N。 (无零值)
xi —在第i个测量点上传感器的输入变化量;
i
——
在第i个测量点上由 xi 引起的传感器的输出变化量。
传感器的静态特性
线性传感器的灵敏度为一常数,计算公式为
max min xmax xmin
s
灵敏度是一个有量纲的量,其量纲取决于传感器输出量的量纲和输入量的 量纲之比。线性传感器的灵敏度就是拟合直线的斜率,非线性传感器的灵敏度 不是常数,应以 dy/dx 表示。 由于某种误差,会引起灵敏度变化,产生灵敏度误差。灵敏度误差用相对 误差表示,即
图(1-6) 测量范围和量程的例图
传感器的静态特性
1.1.5 测量范围和量程
满量程输出又称校准满量程输出,为工作特性所决定的最大输出和最小输出 的代数差。满量程输出的计算公式为
FS max min
max ——工作特性所决定的最大输出值; min ——工作特性所决定的最小输出值。
0
图1-5 传感器的重复性
x
度,如图1-5所示。
各条特性曲线越靠近,重复性越好。
重复性??迟滞??
传感器的静态特性
1.1.3 重复性
传感器的重复性是其偶然误差的极限值。传感器在某校准点处的重复性可计算 为在该校准点处的一组测量值的样本标准偏差在一定置信度下的极限值,并以其满 量程输出的百分比来表示,而传感器的重复性则取为各校准点处重复性的最大者。 计算公式如下:
过传感器本身的改善来加以抑制,有时也可
以对外界条件加以限制。图中的误差因素就 是衡量传感器特性的主要技术指标。
图1-1 传感器的输出-输入作用图
传感器的静态特性
特性曲线:表征传感器输出—输入特性关系的曲线。 参比直线:用以评定传感器静态特性的某一理想直线。
线性:传感器输出—输入特性曲线接近或偏离参比直线的性质。
合;⑤ 最小二乘拟合;⑥ 最小包容拟合等。
(a) 理论拟合; (b) 过零旋转拟合; (c) 端点连线拟合; (d) 端点平移拟合
传感器的静态特性
最小二乘拟合方法
设拟合直线方程为
y kx b
(1-3)
若实际校准测试点有n个,则第i个校准数据与拟合直线上 响应值之间的残差为
i yi (kxi b)
第1章
传感器基本特性
Contents
1
传感器的静态特性
2
传感器的动态特性
传感器基本特性
传感器的输出-输入关系特性是其基本特性。
传感器所测量的物理量基本上有两种形式,一种是稳态 (静态或准静态)的形式,这种信号不随时间变化(或变 化很缓慢);另一种是动态(周期变化或瞬态)的形式, 这种信号是随时间变化而变化的。由于输入物理量状态不 同,传感器所表现出来的输出-输入特性也不同,因此存 在所谓静态特性和动态特性。
—— 零点输出;
a2,a3,...an
—— 非线性项系数。
各项系数不同,决定了特性曲线的具体形式不同。
传感器的静态特性
1.1.1 线性度和非线性误差
在采用直线拟合线性化时,输出输入的校正曲线与其拟合曲线之间的
最大偏差,就称为非线性误差或线性度,通常用相对误差 L 来表示,
即
L Lmax / yFS 100%
输出-输入曲线的不重合程度的指标叫做迟滞。通常用正反行程输出的最大 差值计算,并以相对值表示。
y
迟滞特性如图所示。
0
H
A
x
H为最大迟滞量A为输出最大幅值
传感器的静态特性
迟滞误差的另一名称叫回程误差。回程误差常用绝对误 差表示。检测回程误差时,可选择几个测试点。对应于 每一输入信号,传感器正行程及反行程中输出信号差值 的最大者即为回程误差。迟滞的影响因素包括传感器机
凡是经过传感器输出-输入拟合而得到的输出值用 表示,而实测的输出值用
y 表示。对于线性传感器和具有单调特性的非线性传感器,满量程输出可以用
FS xmax xmin 计算;而在要求不高的场合,实际满量程输出 FS ymax ymin
传感器的静态特性
1.1.6 分辨力和阈值
人们总是希望传感器的输出与输入具有确定的对应关系,
而且最好呈线性关系。
传感器的静态特性
但一般情况下,输出输入不会符合所要 求的线性关系,同时由于存在着迟滞、蠕变 、磨擦、间隙和松动等各种因素的影响,以 及外界条件的影响,使输出输入对应关系的 唯一确定性也不能实现。 考虑了这些情况之后,传感器的输出输 入作用大致如图1-1所示。图中的外界影响不 可忽视,影响程度取决于传感器本身,可通
传感器的静态特性
阈值是能使传感器的输出端产生可测变化量的最小被测输入量值,即
零点附近的分辨能力。有的传感器在零位附近非线性严重,形成所谓
“死区”,则将死区的大小作为阈值;更多情况下阈值主要取决于传 感器噪声的大小,因而有的传感器只给出噪声电平。
传感器能检测出的被测量的最小变化值一般相当于噪声电平的若干倍
使它通过零点。某些量程下限不为零的传感器,也应将量程下限
作为零点处理。
传感器的静态特性
1.1.2 迟滞(回差)
由于传感器的机械部分存在磨擦和间隙、敏感元件结构材料的缺陷,传感 器内部具有弹性元件、电感、电容等储能元件,在输入量作满量程变化时,
对于同一输入量,传感器的正(输入量增大)反(输入量减小)传感器的静态特性
传感器的静态特性是指对静态的输入信号,传感器的输出
量与输入量之间所具有相互关系。因为这时输入量和输出量都
和时间无关,所以它们之间的关系,即传感器的静态特性可用 一个不含时间变量的代数方程,或以输入量作横坐标,把与其 对应的输出量作纵坐标而画出的特性曲线来描述。表征传感器 静态特性的主要参数有:线性度、灵敏度、分辨力和迟滞等
传感器的静态特性
从而求出k和b 的表达式为
k n xi yi xi yi n xi2 xi
2 i i i 2 i 2
x y x x y b n x x
i 2 i
i
在获得k和b 之值后入式(1-3)即可得到拟合直线,然后按式
(1-4)求出残差的最大值即为非线性误差。 大多数传感器的输出曲线是通过零点的,或者使用“零点调节”
传感器的灵敏度是输出变化量与相应的输入变化量之比,或者说是单 位输入变化下所得到的输出变化。 这里所说的输入量的变化必须很慢且不致引起输出量的动态响应。如 果有动态响应则必须采用达到稳态后的输出量。传感器在第i个测量点处
的灵敏度可用下式计算
i d i si lim xi 0 x i dxi
正行程:传感器输入增加的过程。 正行程特性曲线:正行程各校准点上传感器输出—输入特性关系的曲线。
反行程:传感器输入减小的过程。
正、反行程实际平均特性曲线:正、反行程算术平均值描绘成的传感器输 出—输入特性关系曲线,又称实际平均特性曲线。
传感器的静态特性
1.1.1 线性度和非线性误差
传感器的线性度是指传感器的输出与输入之间数量关系的线性程度。
从传感器的性能看,希望具有线性关系,但实际遇到的传感器大多为
非线性,这时传感器的输出与输入关系可用一个多项式表示
y a0 a1x a2 x2 a3 x3 ... an xn
y
a0
—— 输出量;
x
a1
—— 输入量; —— 理论灵敏度;
传感器的静态特性
1.1.5 测量范围和量程
动态范围
传感器所能测量的最大被测量(即输入量)的数值称为测量上限,最小被测 量则称为测量下限。用测量下限和测量上限表示的测量区间则称为测量范围,简 称范围。测量范围有单向的(只有正向或负向)、双向对称的、双向不对称的和 无零值的。测量上限和测量下限的代数差为量程。量程的计算公式为
分辩力是指传感器在规定测量范围内所能检测出被测输入量的最小变化量。有时 用该值相对满量程输入值之百分数表示,则称为分辨率。计算公式如下
Rx max xi , min
xi , min
——在第i个测量点上能产生可观测输出变化的最小输入变化量; ——在整个量程内取最大的 xi, min
max xi , min
,用公式表示为
c k
式中 —— 被测量最小变化值;
c
k
—— 系数(一般取1~5);
—— 噪声电平;
—— 传感器的灵敏度。
传感器的静态特性
1.1.7 稳定性和零漂、温漂
稳定性又称长期稳定性,即传感器在相当长时间内仍保持其原
性能的能力。 稳定性一般以室温条件下经过一规定的时间间隔后,传感器的 输出与起始标定时的输出之间的差异来表示,有时也用标定的有效 期来表示。