结构力学中对称性利用 ppt课件

合集下载

结构力学-力法中对称性的利用

结构力学-力法中对称性的利用

对弯矩X1,一对轴力X2和对剪力X3。X1和X2是正
对称的,X3是反对称的。
X2 X1
X3 X1 X2
EI1
对 称

EI2
EI2
(a)
图8-17
X3 (b)基本结构
绘出基本结构的各单位弯矩力(图解-18),可以看出 M1图和M2图是正对称的,而M3是反对称的。
X1=1
X2=1
X3=1
M1图
M2图
M3图
+ 1P=0 22Y2+ 2P=0
当对称结构承爱一般非对称荷载时,我们还可以将荷
载分解为正,反对称的两组,将它们分别作用于结构上求 解,然后将计算叠加(图8-24)。显然,若取对称的基本 结构计算,则在正对称荷载作用下只有正对称的多余未知 力,反对称荷载作用下只有反对称的多余未知力。
P
q
P/2 q/2 P/2
P/2
+ q/2
q/2 P/2
图8-24
转到下一节
是这样的例子。为了使副系数为零,可以采取未知力分组
的方法。
AP
BP
(a)
X1
X2 X1
(b) 基本体系
(c)
(d)
X2
这就是将原有在对称们置上的两个多个未知力X1和X2分 解为新的两组未知力:一组为两个成正对称的未知力Y1, 另一驵为两个成反对称 的未知力Y2(图8-23a)。新的未 知力与原未知力之间具有如下关系:
可知副系数 13 =31=0, 23 =32 =0 于是方程可以简
化为
11X1 12 X 2 1P 0
21X1 22 X 2 2P 0
33 X 3 3P 0

结构力学对称性应用

结构力学对称性应用

对称性应用在工程问题中,有很多结构都具有对称性。

我们对这些结构进行受力分析的时候,常常将结构简化为杆系模型,而结构力学研究的就是结构的杆系模型,因此对称性在结构力学中有着广泛的应用。

现在就对称性在结构力学中的应用做一简单的总结。

结构的对称性是指结构的几何形状和支座形式均对称于某一几何轴线。

而荷载的对称则分为正对称荷载和反对称荷载。

另外需要注意的是杆件截面和材料的性质也要对于此轴对称。

在对称荷载作用下,结构内力呈对称分布。

在反对称荷载作用下,结构内力呈反对称分布。

如下图所示:对称性在求解结构内力中的应用:对称结构在正对称荷载作用下,其对称的内力(弯矩和轴力)和位移是正对称的,其反对称的内力(剪力)是反对称的;在反对称荷载作用下,其对称的内力(弯矩和轴力)和位移是反对称的,其反对称的内力(剪力)是正对称的。

因此,只要我们做出半边结构的内力图,也就知道了整个结构的内力图。

据此,我们在对对称结构进行内力分析时,就可以取半边结构进行分析。

取半边结构进行分析,可以减少超静定次数,减少基本未知量,为解题提供了很大的方便。

在用力法解决超静定问题时,对于对称的结构,可利用对称性简化计算。

简化步骤如下:1、选取对称的基本结构。

2、将未知力及荷载分组。

3、取半结构进行计算。

对于对称结构承受一般非对称荷载时,利用荷载分组,将荷载分解为正、反对称的两组,并将他们分别作用于结构上求解内力,然后将计算结果叠加。

在计算对称结构时,根据对称结构特性,可以选取半个结构计算。

选取半结构的原则:1、在对称轴的截面或位于对称轴的节点处2、按原结构的静力和位移条件设置相应的支撑,使半结构与原结构的内力和变形完全等效偶数跨对称结构: £8-15在用位移法求解超静定结构的时候,同样可以利用对称性简化计算。

分析可 知,在正对称荷载时用位移法求解只有一个基本未知量; 但在反对称荷载时若用 位移法求解将有两个基本未知量, 而用力法求解则只有一个未知量。

结构力学 (1)

结构力学 (1)
X1 3EI 3 l
基本结构已 为何为 0 无支座位移
5. 内力计算(静定结构)
M M1 X1 M P
内力全部由多余未知力引 起
31
§6.6 支座位移、温度变化等作用下时的超静定结构的计算
M M 1 X 1 (
3EI ) x; 0 x l 3 l
3EI 3EI ) 3 2 l l
对于支座位移
A B

1. 超静定结构支座移动、温度改变使结构产生变形,同时产生内力。
C

C
A
B
C’
FyC
静定结构 无内力和支座反力
超静定结构 有内力和支座反力
23
§6.6 支座位移、温度变化等作用下时的超静定结构的计算
对于温度变化
A
t t
B
C
A
t t
B
C
C’
FyC
静定结构 无内力和支座反力
X2
X3
X1
a 0 11 X 1 12 X 2 13 X 3 1C 0 2 C b 0 21 X 1 22 X 2 23 X 3 0 X X X 0 3C 31 1 32 2 33 3 0
1 P 1C 0 11 X 1 12 X 2 13 X 3 P 基本结构由支座 2P X X X 0 位移引起的 21 1 22 2 23 3 22 CP X X X 0 3P i 方向位移 3 P 31 1 32 2 33 3 3 C
29
§6.6 支座位移、温度变化等作用下时的超静定结构的计算
基本结构(II)

结构力学对称性应用

结构力学对称性应用

对称性应用在工程问题中,有很多结构都具有对称性。

我们对这些结构进行受力分析的时候,常常将结构简化为杆系模型,而结构力学研究的就是结构的杆系模型,因此对称性在结构力学中有着广泛的应用。

现在就对称性在结构力学中的应用做一简单的总结。

结构的对称性是指结构的几何形状和支座形式均对称于某一几何轴线。

而荷载的对称则分为正对称荷载和反对称荷载。

另外需要注意的是杆件截面和材料的性质也要对于此轴对称。

在对称荷载作用下,结构内力呈对称分布。

在反对称荷载作用下,结构内力呈反对称分布。

如下图所示:对称性在求解结构内力中的应用:对称结构在正对称荷载作用下,其对称的内力(弯矩和轴力)和位移是正对称的,其反对称的内力(剪力)是反对称的;在反对称荷载作用下,其对称的内力(弯矩和轴力)和位移是反对称的,其反对称的内力(剪力)是正对称的。

因此,只要我们做出半边结构的内力图,也就知道了整个结构的内力图。

据此,我们在对对称结构进行内力分析时,就可以取半边结构进行分析。

取半边结构进行分析,可以减少超静定次数,减少基本未知量,为解题提供了很大的方便。

在用力法解决超静定问题时,对于对称的结构,可利用对称性简化计算。

简化步骤如下:1、选取对称的基本结构。

2、将未知力及荷载分组。

3、取半结构进行计算。

对于对称结构承受一般非对称荷载时,利用荷载分组,将荷载分解为正、反对称的两组,并将他们分别作用于结构上求解内力,然后将计算结果叠加。

反对称正对称在计算对称结构时,根据对称结构特性,可以选取半个结构计算。

选取半结构的原则:1、在对称轴的截面或位于对称轴的节点处2、按原结构的静力和位移条件设置相应的支撑,使半结构与原结构的内力和变形完全等效奇数跨对称结构:偶数跨对称结构:在用位移法求解超静定结构的时候,同样可以利用对称性简化计算。

分析可知,在正对称荷载时用位移法求解只有一个基本未知量;但在反对称荷载时若用位移法求解将有两个基本未知量,而用力法求解则只有一个未知量。

结构力学-力法-对称性应用-去一半计算

结构力学-力法-对称性应用-去一半计算

例8-5 试计算如图示圆环的内力。EI=常数。 P
R
o
取1/4
基本体系
P 解:这是一个三次超静定。有两个对称轴,故取四分之一结构,
则为一次超静定。
M1 =1,
Mp=-PRsin/2
X1=1
P
R
o M1图
R
PR/2
o
Mp图
PR(-2)/2
PR/
P M图
如图示,则系数和自由项为:
11=M12ds/EI=1/EI0/2Rd=R/2EI 1P=M1Mpds/EI=1/EI/2(-PRsin)rd=-PR2/2EI
转到下一节
M图(a)
1
C
K
B
a/4
A
MK图(d)
若取(d)的基本结构则有:
Ky=-1/EI1(a/2a/4)1/23pa/88=-3pa3/1408EI1 综上所述,计算超静定结构的步骤是:
(1) 解算超静定结构,求出最后内力,此为实际状态。 (2) 任选一种基本结构,加上单位力求出虚拟状态的内力。 (3) 按位移计算公式或图乘法计算所求位移。
Ky

1 EI1
1 2
a 2
a 2
5 3 Pa 6 88
1 2EI1
1 2


3 88
Pa
15 Paa 88
a 2
1 2
Pa a 4
a 2
3Pa3 1408EI1
3pa/88
B
C I1
p
15pa/88
2I1
A
于是得:
X1=- 1P/11=PR/
最后弯矩为:M=M1X1+MP=PR/-Prsin=PR(1/-sin/2)

结构力学课件09-2

结构力学课件09-2

O
x’
x Rsin j y y a Rcos j
a
y EI
ds
ds EI
5.39 m
M 1 1 M 2 y a y
EI 11
M
2 1
ds
1.855
R
EI 22
M
2 2
ds
0
.027
R
3
22
M
P
q 2
x
2
EI1P M1M Pds 0.224qR3
X1
1P
0.121qR 2
1)取对称的基本体系(荷载任意,仅用于力法)
13 31 23 32 0
X1
P
X1=1
11X1 12 X 2 1P 0 21X1 22 X 2 2P 0
33 X 3 3P 0
X2
X2
X3
P2
M1
力法方程降阶
一般荷载
如果荷载对称,MP对称,
X2=1 X2
Δ3P=0,X3=0;
H*=1
X1=1
N1 M1
11
M
2 1
ds
EI
N12 ds EA
1P
M 1M P ds EI
H 1P
11
H*
*1P
* 11
H=1≠
N1 M1
* 11
M
2 1
ds
EI
N12 EA
ds
l E1 A1
* 11
11
l E1 A1
*1P
M1M P EI
ds
1P
H*
*1P
*
1711
P/2 27
P/2 M图
0EA027代结构

结构力学_力法(二)对称性的利用

结构力学_力法(二)对称性的利用
P P
荷载?还是一般性荷载?
P
对称荷载
l l l
M
l
P
P
P
反对称荷载
l l l l
M
EI=C
EI=C
Strucural Analysis
School of Civil Engineering, Tongji Univ.
§6-5 对称性的利用—力法简化计算
对称性的概念
对称结构:几何形状、支承情况、刚度分布均对称的结构。 对称荷载:作用在对称结构对称轴两侧,大小相等,方向和作用点对称的荷载。 反对称荷载:作用在对称结构对称轴两侧,大小相等,作用点对称,方向 反对称的荷载。 任意荷载均可分解为对称荷载和反对称荷载的叠加,且对称荷载和反对 称荷载均为原荷载值的一半。
Strucural Analysis School of Civil Engineering, Tongji Univ.
§6-5 对称性的利用—力法简化计算
对称性的概念
对称结构:几何形状、支承情况、刚度分布均对称的结构。 对称荷载:作用在对称结构对称轴两侧,大小相等,方向和作用点对称的荷载。 反对称荷载:作用在对称结构对称轴两侧,大小相等,作用点对称,方向 反对称的荷载。 下面这些荷载是对称?反对称
M 1图
M 2图
M 3图
进一步考虑荷载的对称、反对称性
⑴对称荷载作用下 ⑵反对称荷载作用下
P/2
Mp对称
P/2
P/2
Mp反对称
1 p 0 X 1 0 2 p 0 X 2 0
P/2
对称结构在对称荷载作用 下,只产生对称的内力、 变形和位移,反对称的内 力、变形和位移为零。 对称结构在反对称荷载作 用下,只产生反称的内力 、变形和位移,对称的内 力、变形和位移为零。

结构力学力法PPT_图文

结构力学力法PPT_图文
q EI 1次超静定
一个无铰封闭圈有三个多余联系
q
q
q
q
第8章
2、去掉多余联系的方法
(1)去掉支座的一根支杆或切断一根链杆相当于去掉一个联系。 (2)去掉一个铰支座或一个简单铰相当于去掉两个联系。 (3)去掉一个固定支座或将刚性联结切断相当于去掉三个联系。 (4)将固定支座改为铰支座或将刚性联结改为铰联结相当于 去掉一个联系。
1、解题思路
q
2
1
l
原结构
q
x1 基本结构
位移条件: 1P+ 11=0 因为 11= 11X1 ( 右下图) 所以 11X1 +1P =0 X1= -1P/ 11
q 1P
11 x1
11 x1=1
第8章
2、解题步骤
(1)选取力法基本结构; (2)列力法基本方程; (3)绘单位弯矩图、荷载弯矩图; (4)求力法方程各系数,解力法方程; (5)绘内力图。
X1
X2
基本结构(1)
第8章
对应不同的基本结构有不同的力法方程:
A
B
C
D
C1
C2
l A X1
l
l
原结构
B
C
D
C1
C2
X2
解:力法方程:
基本结构(2)
第8章
对应不同的基本结构有不同的力法方程:
A
B
C
D
C1
C2
l
l
原结构
A
B
C
l D
C1
X1
X2
解:力法方程:
基本结构(3)
第8章
四、如何求
A
以基本结构(2)为例:

结构力学课件位移法对称性

结构力学课件位移法对称性
31Z1 32Z2 33 X 3 3P 0
rij由第 j个附加约束的单位位移引起的第 i个附加约束上的约束反力影 响系数(i,j = 1,2); r13 和 r23 表示单位多余未知力引起的第 1,2 个附加约束上的约束反 力影响系数。
3j由第 j个附加约束的单位位移引起的第 3个多余未知力的位移影响
静定结构
超静定结构
仅某一几何不变部分承受一平 仅某一几何不变部分承受一平 衡力系时,其它部分仍将产生 衡力系时,其它部分不受力。 内力(由于多余约束要限制其
变形)。
仅基本部分承受荷载时,附属 部分不受力。

作业(16)
习题集:5-25、26、37、45、51
谢 谢!
2010.8
由一端固定、一端铰支梁的形常数可画出各柱子的弯矩图。
启示
2 3 2 5 2
M
3EI 2h2
tl
M 3M 5M
★离对称轴越远的柱子,温度影响越大。 ★结构上通过设置温度缝,减小温度影响。 ★斜撑尽量设置在结构中部,减小斜撑温度应力。
第六章 位移法
6.6 位移法与力法的比较
The comparison of the displacement method to force
6.5 支座移动、温度变化 作用时的位移法
Effects of support settlement and temperature change
1. 支座移动
例:作M 图,EI=常数。
l
l
l
解: r11Z1+R1C=0
Z1
4i r11 8i
Z1=1 3i
i
M1
2i
3i / 2l
15i / 8l M

课件:力法-解对称结构

课件:力法-解对称结构

南京工业大学 力学部
结构力学教研室
二、非对称结构的简化计算
对于非对称结构,为简化计算,应尽量使 M 图
及MP图局部化,以简化方程系数的计算。所以, 取基本结构时应考虑这一因素。
q
A
X1
X2
X3
B
C
D
连续梁基本体系
南京工业大学 力学部
结构力学教研室
X7
X3 X5
X8 X9
X1 X2
X6
X4
X1 EA→ ∞
降阶为两组,一组只含
M2
M3
有对称未知力,一组只 对称未知力产生的弯矩图和变形曲 含有反对称未知力。 线是对称的,反对称未知力产生的
弯矩图和变形曲线是反对称的。
南京工业大学 力学部
结构力学教研室
11 X1 12 X 2 1P 0
21 X1 22 X 2 2P 0
33 X 3 3P 0
反对称荷载——绕对称轴对 折后,对称轴两边的荷载等值、 作用点重合、反向。
南京工业大学 力学部
q
FP
↓↓↓↓↓↓↓↓↓
FP1
FP1
对称轴 对称荷载
结构力学教研室
对称结构的计算
任何荷载都可以分解成对称荷载+反对称荷载。
FP a
FP/2 a a FP/2
FP/2 a a FP/2
FP1
FP2 F
FW
W
➢位于对称轴上的截面的位移 vC 0 , 内力 FNC=0,MC=0
C
FNC MC
FNC
EI
FP EI
FP EI
FP
FP FQC
EI C FP EI
等代结构
南京工业大学 力学部

对称性在结构力学中的应用

对称性在结构力学中的应用

对称性在结构力学中的应用一、对称结构对称结构是几何形状、支承和刚度都关于某轴对称的结构二、荷载的对称性对称荷载是指绕对称轴对折后,对称轴两边的荷载作用点、值相等、方向相同。

所以,在大小相等、作用点对称的前提下,与对称轴垂直反向布置的荷载、与对称轴平行同向布置的荷载、与对称轴重合的荷载都是对称荷载。

反对称荷载是指绕对称轴对折后,对称轴两边的荷载作用点、值相等、方向相反。

所以,在大小相等、作用点对称的前提下,与对称轴垂直同向布置的荷载、与对称轴平行反向布置的荷载、位于对称轴上的集中力偶都是反对称荷载。

三、重要结论对称结构在对称荷载作用下:1)对称结构在对称荷载作用下,内力、反力和变形都成对称分布,弯矩图和轴力图是对称的,剪力图是反对称的;2)对称轴上的剪力为零;与对称轴重合的杆弯矩、剪力为零;3)对称轴上的截面不能沿垂直对称轴的方向移动,也不能转动。

对称结构在反对称荷载作用下:1)对称结构在反对称荷载作用下,内力、反力和变形都成反对称分布,弯矩图和轴力图是反对称的,剪力图是对称的;2)对称轴上的弯矩、剪力为零;与对称轴重合的杆轴力为零;3)对称轴上的截面不能沿对称轴方向移动。

qPNN F 对称 反对称NN F 对称四、对称性在桁架结构中的利用1) 对称结构在对称荷载作用下,对称轴上的K 形结点无外力作用时,两斜杆为零杆。

2) 对称结构在反对称荷载作用下,与对称轴重合的杆轴力为零。

3) 对称结构在反对称荷载作用下,与对称轴垂直贯穿的杆轴力为零。

五、对称性在超静定结构的应用——半结构的选取 例题一.图所示桁架中零杆的根数二.图示桁架中1,2杆的轴力。

将原结构荷载分解成对称和反对称两组情况,利用对称性分别计算1,2杆的轴力,然后将之叠加即可。

三.作图示结构的弯矩图q2。

结构力学第七章

结构力学第七章

结构力学课件
第七章 位移法
章目录 第一节
第1节
7.1 基本概念
基本概念
第二节 第三节 第四节 第五节 第六节
• 为了说明位移法的基本概念,我们来分析图 ( d )所示刚架的位移.它在 均布荷载 q 作用下将发生虚线所示的变形,在刚结点 C 处两杆的杆端 均发生相同的转角 c (这个位移本章统一用 Z1 来表示).我们用位移
本章目录
7.1 基本概念 7.2 等截面直杆的转角位移方程 7.3 基本未知量数目的确定和基本结构 7.4 位移法典型方程及计算步骤 7.5 直接由平衡条件建立位移法基本方程 7.6 对称性的利用
基本要求
1.了解结构含义及结构的分类 2. 了解荷载的各种分类 3 .掌握结构计算的三个方面 4 .了解结构力学研究的具体内 容和任务
法分析内力时可略去各杆的轴向变形,即认为两杆长度不变,因而结点
C 没有线位移.下面就来讨论根据 C 点的位移 Z1 来确定各杆内力.
结构力学课件
第七章 位移法
章目录 第一节
第1节
7.1 基本概念
基本概念
第二节 第三节 第四节 第五节 第六节 结构力学课件
第七章 位移法
章目录 第一节 第二节 第三节 第四节 第五节 第六节 结构力学课件
第七章 位移法
章目录 第一节 第二节 第三节 第四节 第五节 第六节 结构力学课件
第 2 节 等截面直杆的转角位移方程
7.2.3 一端固定、另一端定向支撑的单跨超静定梁
第七章 位移法
章目录 第一节 第二节 第三节 第四节 第五节 第六节 桥梁支座 结构力学课件
第 3 节 基本未知量数目的确定和基本结构
7.2 等截面直杆的转角位移方程

结构力学第20次课 结构的对称性 2012- 5-17

结构力学第20次课 结构的对称性 2012- 5-17

结构力学第20次课 力法6-5 位移法7-6结构的对称性 foxscarlet12012-5-17 《结构力学》第20次课 第6章力法6-5P225与第7章位移法7-6P302内容6-5 7-6 对称性利用1 对称性(1)结构的对称性:对称结构是指几何形状、支座情况、刚度都关于某轴对称。

(2)荷载的对称性: 对称荷载 反对称荷载 任何荷载都可以分解成对称荷载+反对称荷载两部分。

2 取对称的基本体系计算: 不论在何种外因作用下,对称结构应考虑采用对称的基本体系计算。

沿对称轴将梁切开,三对多余未知力中,弯矩X 1和轴力X 2是 未知力,剪力X 3是 未知力。

对称未知力产生的单位弯矩图和变形图是对称的;反对称未知力产生的单位弯矩图和变形图是反对称的。

如果荷载对称,M P 对称,Δ3P =0,X 3=0, 未知力为零;如果荷载反对称,M P 反对称,Δ1P =0, Δ2P =0, X 1= X 2 =0, 未知力为零。

3 取等代结构计算对称结构的变形特点,针对切开对称轴处是刚结点。

注意,如果对称轴上是铰结点有所不同。

(1)对称结构在对称荷载作用下位于对称轴上的截面,水平位移和转角为零,只有竖向位移。

(2)对称结构在反对称荷载作用下位于对称轴上的截面,竖向位移为零,水平位移和转角不为零。

① 奇数跨(无中柱)对称结构在对称荷载作用下的等代结构 §7-6 对称结构的计算奇数跨刚架受对称荷载A. 奇数跨结构(无中柱对称结构)F PF P(1) 对称荷载F P半边结构对称轴截面内力结构与荷载3 取等代结构计算1扩展练习 奇数跨结构受对称荷载作用llqllAB例2. 图示结构EI = 常数。

对称性只有竖向荷载作用1X 3=3X 2X 1X 2=【例题】利用对称性计算图示结构,绘制弯矩图。

(EI=常l↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓ql/2l/2l/2l/2(a )ldbFPFP4 无弯矩状态判定对称结构正对称荷载。

对称性原理PPT课件

对称性原理PPT课件

x
右手坐

z′ y′··y z
反射面
反射面
(b)
(c)
只左右对称 坐标系反射
根据镜象反射的性质可将物理学中的矢量
分成两类: 极矢量 和 轴矢量 4 第4页/共24页
极矢量:镜象反射中垂直反射面的分量反向,
平行反射面的分量不变向。
如:r,v,a,E ,

v′
v′ v
v
v′ v
v′
v
v′ v
反射面
5
第5页/共24页
22
第22页/共24页
参考书目
▲ 新概念物理教程《力学》赵凯华、罗蔚茵 ▲《对称》 H. Weyl 商务印书馆 1986 ▲《大学物理学》(第一册) 张三慧 主编 ▲ “Lecture on Physics” R.Feynman.
Vol.1
—完—
23
第23页/共24页
感谢您的观看!
24
第24页/共24页
南山长生松生长山南 南山长生松生长山南 8 第8页/共24页
④空间反演:
r
r
的操作称为对原点O
的空间反演。
x x
直角坐标系中的空间反演 y y
z z
空间反演不变的系统具有对O的点对称性。
例如,立方体对其中心具有点对称性。
反映空间反演对称性的物理量叫宇称 (parity)。
y′
x

镜面反射
z′ ·o
I = I1 +(I I1)
节点 C → D 的电流为:
I1 (I I1)= 2 I1 I
17
第17页/共24页
A I
I1
RC
(1)
R

力法对称性

力法对称性

结构对称性的概念
(1)对称结构:几何尺寸、支承情况、刚度分布对称的结构。

(2)荷载的对称性,如图1
正对称荷载:作用在对称结构对称轴两侧,大小相等,方向和作用点对称的荷载。

反对称荷载:作用在对称结构对称轴两侧,大小相等,作用点对称,方向反对称的荷载。

(3)对称结构在正对称、反对称荷载作用下的内力和变形,如图2
基本受力特点:
正对称荷载作用下,结构的内力和变形都是正对称的;
反对称荷载作用下,结构的内力和变形都是反对称的。

(4)特殊截面——对称轴通过的截面,如图3
对称结构,正对称荷载下,对称轴处切开,反对称的剪力为0,内力与位移分布均正对称;
对称结构,反对称荷载下,对称轴处切开,正对称的弯矩与轴力为0,内力与位移分布均反对称。

要使半结构能等效代替原结构的受力和变形状态。

关键在于被截开处应按原结构上的位移条件及相应的静力条件设置相应合适的支撑
例:用力法计算图示结构。

EI=常数。

图1
图2
图3。

对称性在结构力学中的应用

对称性在结构力学中的应用

对称性在结构力学中的应用一、对称结构对称结构是几何形状、支承和刚度都关于某轴对称的结构 二、荷载的对称性对称荷载是指绕对称轴对折后,对称轴两边的荷载作用点、值相等、方向相同。

所以,在大小相等、作用点对称的前提下,与对称轴垂直反向布置的荷载、与对称轴平行同向布置的荷载、与对称轴重合的荷载都是对称荷载。

反对称荷载是指绕对称轴对折后,对称轴两边的荷载作用点、值相等、方向相反。

所以,在大小相等、作用点对称的前提下,与对称轴垂直同向布置的荷载、与对称轴平行反向布置的荷载、位于对称轴上的集中力偶都是反对称荷载。

三、重要结论对称结构在对称荷载作用下:1) 对称结构在对称荷载作用下,内力、反力和变形都成对称分布,弯矩图和轴力图是对称的,剪力图是反对称的;2) 对称轴上的剪力为零;与对称轴重合的杆弯矩、剪力为零; 3) 对称轴上的截面不能沿垂直对称轴的方向移动,也不能转动。

对称结构在反对称荷载作用下:1) 对称结构在反对称荷载作用下,内力、反力和变形都成反对称分布,弯矩图和轴力图是反对称的,剪力图是对称的;2) 对称轴上的弯矩、剪力为零;与对称轴重合的杆轴力为零; 3) 对称轴上的截面不能沿对称轴方向移动。

qPNN F S 对称 反对称NN F 对称四、对称性在桁架结构中的利用1) 对称结构在对称荷载作用下,对称轴上的K 形结点无外力作用时,两斜杆为零杆。

2) 对称结构在反对称荷载作用下,与对称轴重合的杆轴力为零。

3) 对称结构在反对称荷载作用下,与对称轴垂直贯穿的杆轴力为零。

五、对称性在超静定结构的应用——半结构的选取 例题一.图所示桁架中零杆的根数二.图示桁架中1,2杆的轴力。

将原结构荷载分解成对称和反对称两组情况,利用对称性分别计算1,2杆的轴力,然后将之叠加即可。

三.作图示结构的弯矩图q2。

结构力学力法对称性的利用优选课堂

结构力学力法对称性的利用优选课堂

5
X1 1
M1
X3 1
X2 1
M2
M3
12 21 0
13 31 0
11 X1 Δ1P 0 22 X 2 23 X 3 Δ2P 0 32 X 2 33 X 3 Δ3P 0
基本方程分为两组:
一组只含反对称未知量 一组只含正对称未知量
简易辅导
6
3. 对称性利用之荷载分组
简易辅导
10
1.奇数跨对称刚架
① 正对称荷载作用下的半刚架
q
q
C
C
q
q
C C
简易辅导
11
②反对称荷载作用下的半刚架
P
C
P
P
C
P
C
P
P
C
简易辅导
12
2.偶数跨对称刚架
① 正对称荷载作用下的半刚架
P
P
C
P
C
P
P
P
C
C
简易辅导
P
C
13
② 反对称荷载作用下的半刚架
FP
FP
FP
FP
FP
A EI
EI EI
1. 结构对称性的概念
(1)对称结构:几何尺寸、支承情况、刚度分布对称的结构。
几何对称 支承对称 刚度对称
简易辅导
1
(2)荷载的对称性
正对称荷载:作用在对称结构对称轴两侧,大小相等,方向和 作用点对称的荷载。
反对称荷载:作用在对称结构对称轴两侧,大小相等,作用点 对称,方向反对称的荷载。
P
P
P
P
对称荷载
56
56
4
8
8
8
4
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

对称结构选取
结构力学中对称性利用
主讲人:
静定对称结构
静定结构的对称性是指结构的几何形状和支座形式均对 称于某一几何轴线。
特点:对称荷载作用下,结构内力呈对称分布 反对称荷载作用下,结构内力呈反对称分布
静定对称结构
静定对称结构
对称桁架的受力特征
当对称桁架承受对称荷载时,轴力呈对称分布 当对称桁架承受反对称荷载时,轴力呈反对称分布
对称结构的求解:

(1)选取对称的基本结构 力法典型方程:
由于正反对称图形的相乘结果为零,故有关副系数为零。力法典型方程简化为两组: 即:
典型方程简化为:
正对称及反对称荷载:
正对称部分 反对称部分
如果作用于结构的荷载是正对称,如: 如果作用于结构的荷载是反对称的:
结论:对称结构在正对称荷载作用下,其内 力和位移都是正对称的,在反对称荷载作用 下,其内力和位移都是反对称的。
利用对称性判定零杆
超静定结构的对称性利用
在力法计算超静定结构时,结构的超静定次数愈 高,计算工作量也愈大,而其中大量工作是用于 系数和自由项的计算,由于副系数及自由项可能 为正也可能为负或零,因此在选取基本结构时, 就应选择能使尽可能多的副系数及自由项为零的 静定结构作为基本结构(其中副系数可以全部为零, 但自由项决不会全部为零),以达到简化计算的目 的。
工程结构中有很多结构是对称的,利用其对称性 可简化计算。
超静定对称结构
所谓的超静定对称结构,就是指:
(1)结构的几何形式和支撑情况对某轴对称。 (2)杆件截面和材料性质也对此轴对称。
超静定结构的对称性利用
EI
EI
EI
EI
EI
EI
EI
EI
2EI
(a)
对称结构
(b)
非对称结构
(c)
注意:结构的几何形状,支承情况以及杆 件的刚度(EI)三者之一有任何一个不满足 对称条件时,就不能称之为对称结构。
相关文档
最新文档