中考数学几何模型5:角含半角模型
中考数学复习:几何模型-半角旋转 导学案
![中考数学复习:几何模型-半角旋转 导学案](https://img.taocdn.com/s3/m/8644c56ea8114431b90dd8b8.png)
中考中常用几何模型--半角旋转一、角含半角模型(旋转) (1)角含半角模型90°---1【条件】:①正方形ABCD ;②∠EAF =45°;【结论】:① ;② ; 也可以这样:【条件】:①正方形ABCD ;②EF =DF +BE ;【结论】:①∠EAF =45°;ABCDEF AB CDEFG(2)角含半角模型90°---2(E 、F 在延长线上) 【条件】:①正方形ABCD ;②∠EAF =45°;【结论】:① ;(3)角含半角模型90°---3【条件】:①Rt △ABC ;②∠DAE =45°;【结论】: (如图1)若∠DAE 旋转到△ABC 外部时,结论 仍然成立(如图2)ABCDEFABCDEFABCDEFAB C D EABCD EF(4)角含半角模型90°(变形)【条件】:①正方形ABCD ;②∠EAF =45°;【结论】: ;【例题讲解】例1.如图,在平面直角坐标系中,边长为2的正方形OABC 的两顶点A 、C 分别在y 轴、x 轴的正半轴上,顶点O 在原点(如图1).现将正方形OABC 绕O 点顺时针旋转一定角度,当A 点第一次落在直线y =x 上时停止旋转。
旋转过程中,AB 边交直线y =x 于点M ,BC 边交x 轴于点N .(1)当点A 第一次落在直线y =x 上时停止旋转,此时图形旋转了___度; (2)旋转过程中,当MN 和AC 平行时(如图2),求旋转角∠NOC 的度数;(3)设△MBN 的周长为P ,在旋转正方形OABC 的过程中(如图3),P 值是否变化?请判断并证明你的结论。
例2.如图,△ABC 是边长为3的等边三角形,△BDC 是等腰三角形,且∠BDC =120°,以D 为顶A B C DG H F EA B CD GHFE点作一个60°角,使其两边分别交AB于M交AC于点N,连接MN,则△AMN的周长为.例3.如图,将Rt△ABC沿斜边翻折得到△ADC,点E,F分别为DC,BC边上的点,且∠DAB=2∠EAF.试猜想DE,BF,EF之间有何数量关系,并证明你的猜想。
中考数学模型--旋转综合之角含半角模型
![中考数学模型--旋转综合之角含半角模型](https://img.taocdn.com/s3/m/38e8dcab31126edb6e1a107c.png)
旋转综合之角含半角模型初三中考复习在即,在数学中考中,几何变换往往是中考中最令人头痛的题型,其辅助线的添加非常灵活,和其他几何知识的综合性也非常强。
在几何变换中,旋转是最为常见、也是最为重要的变换,本周我们集中讲解旋转综合中常见的模型、题型,这部分是本期内容的第三讲:旋转综合之角含半角模型,希望各位同学能从中收益。
基本图形1、如图所示,在等腰Rt △ABC 中,点 D , E 在斜边上,∠DAE = 45︒ ,将连接 EF .则△ADE ≌△AFE , DE 2 = BD 2 + CE 2△ABD 旋转至△ACF ,2、如图所示,在正方形 ABCD 中,点 E , F 分别在边 BC , CD 上,∠EAF = 45︒ ,将△ABE 旋转至△ADG ,则△AEF ≌△AGF , EF = BE + DF角含半角模型的解题步骤1、找旋转点(含半角的角的顶点),构造旋转;2、证全等;3、利用全等、相似得到边角的关系.例 1 如图,已知等边△ABC 的边长为1 , D 是△ABC 外一点且∠BDC =120︒ , BD = CD , ∠MDN = 60︒ .求△AMN 的周长.解 延长 AC 到 E ,使CE = BM ,连接 DE .易证所以可得所以从而所以△AMN 周长为△BMD ≌ △CED (SAS).∠BDM = ∠CDE ,DM = DE . ∠NDE = ∠NDM = 60︒, △MDN ≌△EDN (SAS). MN = EN = CN + CE = CN + BM , C △AMN = AB + AC = 2.例 2 如图,正方形 ABCD 的边长为 a , BM , DN 分别平分正方形的两个外角,且满足 ∠MAN = 45︒ ,连接 MC , NC , MN .(1) 填空:与△ABM相似的三角形是, ;(用含a 的代数式表示)(2) 求∠MCN 的度数;(3) 猜想线段 BM , DN 和 MN 之间的等量关系并证明你的结论.解 (1) △NDA , a 2(2) 由(1)可得 BM =AB ,AD ND 所以而易证∠CBM = ∠NDC = 45︒ ,所以则所以 BM = DC . BC ND△BCM ∽△DNC . ∠BCM = ∠DNC .∠MCN = 360︒ - ∠BCD - ∠BCM - ∠DCN= 270︒ - (∠DNC + DCN )= 270︒ - (180︒ - ∠CDN )= 135︒.(3) 线段 BM , DN 和 MN 之间的等量关系是 BM 2 + DN 2 = MN 2 .证明如下:如图,将△ADN 旋转至△ABE ,连接EM . 易得AE = AN ,∠MAE = ∠MAN = 45︒,∠EBM = 90︒.所以则在Rt BME 中,△AME ≌△AMN (SAS).ME =MN.BM 2+BE2=EM 2 ,所以BM 2+DN 2=MN 2.例 3 在平面直角坐标系中,边长为2 的正方形OABC 的两顶点A ,C 分别在y 轴、x 轴的正半轴上,点O 在原点.现将正方形OABC 绕O 点顺时针旋转,当A 点第一次落在直线y =x 上时停止旋转,旋转过程中,AB 边交直线y=x于点M,BC边交x轴于点N,(如图).设△MBN 的周长为p ,在正方形OABC 旋转的过程中,p 值是否有变化?请证明你的结论.解在旋转正方形OABC 的过程中,p 值无变化.证明如下:延长BA 交y 轴于D 点,则而∠OAD = 90︒=∠OCN ,所以所以易证∠AOD =∠CON = 45︒-∠AOM.△OAD △OCN (ASA). ≌OD =ON ,AD =CN.△OMD ≌△OMN (SAS).所以MN =MD =AM +AD=AD +CN.所以p =MN +BN +BM=AB +BC= 4.旋转变换是中考中非常重要的题型,本节课我们重点讲解了角含半角模型,希望各位同学多加体会、总结,平时遇到类似题目注意应用和练习,下一节我们将重点讲解手拉手模型。
最新中考数学教材全册知识点梳理复习 专题7.角含半角模型 课件PPT
![最新中考数学教材全册知识点梳理复习 专题7.角含半角模型 课件PPT](https://img.taocdn.com/s3/m/148d1ec2690203d8ce2f0066f5335a8102d266e4.png)
第2题图
(3)你还能用其他的方法证明(2)吗?
证明:(3)如图.
∵∠ECF=45°,
∴∠ACE+∠BCF=∠ECF=45°.
又∵AC=BC,
∴可将△ACE沿CE折叠,同理将△BCF沿CF折叠,
则折叠后的CA与CB重合于CA',
可证∠EA'F=90°,∴EF2=A'E2+A'F2,
△ADE≌△ADF,BD2+CE2=DE2.
2.如图,在△ABC中,AC=BC,∠ACB=90°,点E,F是边AB上的两点,且∠ECF=
45°.
(1)若CE'⊥CE,CE'=CE.求证:△CAE≌△CBE'.
证明:(1)∵CE'⊥CE,∠ACB=90°,
∴∠ACE=∠BCE'.
又∵CA=CB,CE=CE',
∵∠ABC=90°,∴∠GBF=90°.
∵EF=AF+CE,AF=CG,∴EF=CG+CE=EG.
∵BE=BE,BF=BG,∴△BEF≌△BEG(SSS),
∴∠EBF=∠EBG,∴∠EBF= ∠GBF=45°.
(2)将△EDF沿EF翻折,若点D的对应点恰好落在BF上,求EF的长.
解:(2)如图,由折叠的性质,可知∠DFE=∠BFE.
由(2),可知∠AFB=∠CGB=∠BFE,
∴∠AFB=∠BFE=∠DFE=60°,∴∠FED=30°.
设DF=x,则EF=2x,ED= x.
∵AD=1,∴AF=1-x.
∵AF+CE=EF,∴CE=3x-1,
∴DE=CD-CE=1- − =2-3x,
∴2-3x=
第5讲角含半角模型(解析版)
![第5讲角含半角模型(解析版)](https://img.taocdn.com/s3/m/71a0b2bc580216fc700afdad.png)
中考数学几何模型5:角含半角模型TH 名师点睛拨开云雾开门见山角含半角模型,顾名思义即一个角包含着它的一半大小的角。
它主要包含:等腰直角三角形角含半角模型;正方形中角含半角模型两种类型。
解决类似问题的常见办法主要有两种:旋转目标三角形法和翻折目标三角形法。
类型一:等腰直角三角形角含半角模型(1)如图,在△ABC中,AB=AC,∠BAC=90°,点D,E在BC上,且∠DAE=45°,则:BD2+CE2=DE2.图示(1)作法1:将△ABD旋转90°作法2:分别翻折△ABD,△ACE(2)如图,在△ABC中,AB=AC,∠BAC=90°,点D在BC上,点E在BC延长线上,且∠DAE=45°,则:BD2+CE2=DE2.图示(2)(3)如图,将等腰直角三角形变成任意等腰三角形时,亦可以进行两种方法的操作处理..任意等腰三角形类型二:正方形中角含半角模型(1)如图,在正方形ABCD中,点E,F分别在边BC,CD上,∠EAF=45°,连接EF,过点A作AG⊥于EF于点G,则:EF=BE+DF,AG=AD.图示(1)作法:将△ABE绕点A逆时针旋转90°(2)如图,在正方形ABCD中,点E,F分别在边CB,DC的延长线上,∠EAF=45°,连接EF,则:EF=DF-BE.图示(2)作法:将△ABE绕点A逆时针旋转90°(3)如图,将正方形变成一组邻边相等,对角互补的四边形,在四方形ABCD中,AB=AD,∠BAD+∠C=180°,点E,F分别在边BC,CD上,∠EAF=12∠BAD,连接EF,则:EF=BE+DF.图示(3)作法:将△ABE绕点A逆时针旋转∠BAD的大小典题探究启迪思维探究重点例题1. 如图,正方形ABCD的边长为4,点E,F分别在AB,AD上,若CE=5,且∠ECF=45°,则CF 的长为4.【解答】解:如图,延长FD到G,使DG=BE;连接CG、EF;∵四边形ABCD为正方形,在△BCE与△DCG中,,∴△BCE≌△DCG(SAS),∴CG=CE,∠DCG=∠BCE,∴∠GCF=45°,在△GCF与△ECF中,,∴△GCF≌△ECF(SAS),∴GF=EF,∵CE=5,CB=4,∴BE=3,∴AE=1,设AF=x,则DF=4﹣x,GF=1+(4﹣x)=5﹣x,∴EF==,∴(5﹣x)2=1+x2,∴x=,即AF=,∴DF=4﹣=,∴CF===4,故答案为:4.变式练习>>>1.如图四边形ABCD中,AD∥BC,∠BCD=90°,AB=BC+AD,∠DAC=45°,E为CD上一点,且∠BAE=45°.若CD=4,则△ABE的面积为()A.B.C.D.【解答】解法一:作AF⊥CB交CB的延长线于F,在CF的延长线上取一点G,使得FG=DE.∵AD∥BC,∴∠BCD+∠ADC=180°,∴∠ADC=∠BCD=∠AFC=90°,∴四边形ADCF是矩形,∵∠CAD=45°,∴AD=CD,∴四边形ADCF是正方形,∴AF=AD,∠AFG=∠ADF=90°,∴△AFG≌△ADE,∴AG=AE,∠F AG=∠DAE,∴∠F AG+∠F AB=∠EAD+∠F AB=45°=∠BAE,∴△BAE≌△BAG,∴BE=BG=BF+GF=BF+DE,设BC=a,则AB=4+a,BF=4﹣a,在Rt△ABF中,42+(4﹣a)2=(4+a)2,解得a=1,∴BC=1,BF=3,设BE=b,则DE=b﹣3,CE=4﹣(b﹣3)=7﹣b.在Rt△BCE中,12+(7﹣b)2=b2,解得b=,∴BG=BE=,∴S△ABE=S△ABG=××4=.例题2. 在正方形ABCD中,连接BD.(1)如图1,AE⊥BD于E.直接写出∠BAE的度数.(2)如图1,在(1)的条件下,将△AEB以A旋转中心,沿逆时针方向旋转30°后得到△AB′E′,AB′与BD交于M,AE′的延长线与BD交于N.①依题意补全图1;②用等式表示线段BM、DN和MN之间的数量关系,并证明.(3)如图2,E、F是边BC、CD上的点,△CEF周长是正方形ABCD周长的一半,AE、AF分别与BD 交于M、N,写出判断线段BM、DN、MN之间数量关系的思路.(不必写出完整推理过程)【解答】解:(1)∵BD是正方形ABCD的对角线,∴∠ABD=∠ADB=45°,∵AE⊥BD,∴∠ABE=∠BAE=45°,(2)①依题意补全图形,如图1所示,②BM、DN和MN之间的数量关系是BM2+MD2=MN2,将△AND绕点D顺时针旋转90°,得到△AFB,∴∠ADB=∠FBA,∠BAF=∠DAN,DN=BF,AF=AN,∵在正方形ABCD中,AE⊥BD,∴∠ADB=∠ABD=45°,∴∠FBM=∠FBA+∠ABD=∠ADB+∠ABD=90°,在Rt△BFM中,根据勾股定理得,FB2+BM2=FM2,∵旋转△ANE得到AB1E1,∴∠E1AB1=45°,∴∠BAB1+∠DAN=90°﹣45°=45°,∵∠BAF=DAN,∴∠BAB1+∠BAF=45°,∴∠F AM=45°,∴∠F AM=∠E1AB1,∵AM=AM,AF=AN,∴△AFM≌△ANM,∴FM=MN,∵FB2+BM2=FM2,∴DN2+BM2=MN2,变式练习>>>2. (1)【探索发现】如图1,正方形ABCD中,点M、N分别是边BC、CD上的点,∠MAN=45°,若将△DAN绕点A顺时针旋转90°到△BAG位置,可得△MAN≌△MAG,若△MCN的周长为6,则正方形ABCD的边长为3.(2)【类比延伸】如图(2),四边形ABCD中,AB=AD,∠BAD=120°,∠B+∠D=180°,点M、N分别在边BC、CD 上的点,∠MAN=60°,请判断线段BM,DN,MN之间的数量关系,并说明理由.(3)【拓展应用】如图3,四边形ABCD中,AB=AD=10,∠ADC=120°,点M,N分别在边BC,CD上,连接AM,MN,△ABM是等边三角形,AM⊥AD,DN=5(﹣1),请直接写出MN的长.【解答】解:(1)如图1中,∵△MAN≌△MAG,∴MN=GM,∵DN=BG,GM=BG+BM,∴MN=BM+DN,∵△CMN的周长为:MN+CM+CN=6,∴BM+CM+CN+DN=6,∴BC+CD=6,∴BC=CD=3,故答案为3.(2)如图2中,结论:MN=NM+DN.延长CB至E,使BE=DN,连接AE,∵∠ABC+∠D=180°,∠ABC+∠ABE=180°,∴∠D=∠ABE,在△ABE和△ADN中,,∴△ABE≌△ADN,∴AN=AE,∠DAN=∠BAE,∵∠BAD=2∠MAN,∴∠DAN+∠BAM=∠MAN,∴∠MAN=∠EAM,在△MAN和△MAE中,,∴△MAN≌△MAE,∴MN=EM=BE+BM=BM+DN,即MN=BM+DN;(3)解:如图3,把△ABM绕点A逆时针旋转150°至△ADG,连接AN.作NH⊥AD于H,在AH上取一点K,使得∠NKH=30°在Rt△DHN中,∵∠NDH=60°DN=5(﹣1),∴DH=DN=,HN=DH=,在Rt△KNH中,KN=2HN=15﹣5,HK=HN=,∴AK=AH﹣HK=15﹣5,∴AK=KN,∴∠KAN=∠KNA,∵∠NKH=∠KAN+∠KNA,∴∠NAK=15°,∴∠MAN=75°=∠BAD,由(2)得,MN=BM+DN=10+5(﹣1)=5+5.例题3. 如图,在四边形ABCD中,AB=BC,∠A=∠C=90°,∠B=135°,K,N分别是AB,BC上的点,若△BKN的周长为AB的2倍,求∠KDN的度数.变式练习>>>3. 如图,正方形被两条与边平行的线段EF,GH分割成四个小矩形,P是EF与GH的交点,若矩形PFCH 的面积恰是矩形AGPE面积的2倍,试确定∠HAF的大小并证明你的结论.例题4. 如图,在四边形ABCD中,AB=AD,BC=CD,∠ABC=∠ADC=90°,∠MAN=∠BAD.(1)如图1,将∠MAN绕着A点旋转,它的两边分别交边BC、CD于M、N,试判断这一过程中线段BM、DN和MN之间有怎样的数量关系?直接写出结论,不用证明;(2)如图2,将∠MAN绕着A点旋转,它的两边分别交边BC、CD的延长线于M、N,试判断这一过程中线段BM、DN和MN之间有怎样的数量关系?并证明你的结论;(3)如图3,将∠MAN绕着A点旋转,它的两边分别交边BC、CD的反向延长线于M、N,试判断这一过程中线段BM、DN和MN之间有怎样的数量关系?直接写出结论,不用证明.【解答】解:(1)证明:延长MB到G,使BG=DN,连接AG.∵∠ABG=∠ABC=∠ADC=90°,AB=AD,∴△ABG≌△ADN.∴AG=AN,BG=DN,∠1=∠4.∴∠1+∠2=∠4+∠2=∠MAN=∠BAD.∴∠GAM=∠MAN.又AM=AM,∴△AMG≌△AMN.∴MG=MN.∵MG=BM+BG.∴MN=BM+DN.(2)MN=BM﹣DN.证明:在BM上截取BG,使BG=DN,连接AG.∵∠ABC=∠ADC=90°,AD=AB,∴△ADN≌△ABG,∴AN=AG,∠NAD=∠GAB,∴∠MAN=∠NAD+∠BAM=∠DAB,∴∠MAG=∠BAD,∴∠MAN=∠MAG,∴△MAN≌△MAG,∴MN=MG,∴MN=BM﹣DN.(3)MN=DN﹣BM.达标检测领悟提升强化落实1. 请阅读下列材料:问题:正方形ABCD中,M,N分别是直线CB、DC上的动点,∠MAN=45°,当∠MAN交边CB、DC 于点M、N(如图①)时,线段BM、DN和MN之间有怎样的数量关系?小聪同学的思路是:延长CB至E使BE=DN,并连接AE,构造全等三角形经过推理使问题得到解决.请你参考小聪同学的思路,探究并解决下列问题:(1)直接写出上面问题中,线段BM,DN和MN之间的数量关系;(2)当∠MAN分别交边CB,DC的延长线于点M/N时(如图②),线段BM,DN和MN之间的又有怎样的数量关系?请写出你的猜想,并加以证明;(3)在图①中,若正方形的边长为16cm,DN=4cm,请利用(1)中的结论,试求MN的长.【解答】解:(1)BM+DN=MN;(2)DN﹣BM=MN.理由如下:如图,在DC上截取DF=BM,连接AF.∵AB=AD,∠ABM=∠ADF=90°,∴△ABM≌△ADF(SAS)∴AM=AF,∠MAB=∠F AD.∴∠MAB+∠BAF=∠F AD+∠BAF=90°,即∠MAF=∠BAD=90°.又∠MAN=45°,∴∠NAF=∠MAN=45°.∵AN=AN,∴△MAN≌△F AN.∴MN=FN,即MN=DN﹣DF=DN﹣BM;(3)∵正方形的边长为16,DN=4,∴CN=12.根据(1)可知,BM+DN=MN,设MN=x,则BM=x﹣4,∴CM=16﹣(x﹣4)=20﹣x.在Rt△CMN中,∵MN2=CM2+CN2,∴x2=(20﹣x)2+122.解得x=13.6.∴MN=13.6cm.2. (1)如图1,在四边形ABCD中,AB=AD,∠B=∠D=90°,E、F分别是边BC、CD上的点,且∠EAF=∠BAD.试探究图中线段BE、EF、FD之间的数量关系.(1)小王同学探究此问题的方法是:延长EB到点G,使BG=DF,连结AG,先证明△ABG≌△ADF,再证明△AEG≌△AEF,可得出结论,他的结论应是EF=BE+FD.(2)如图2,在四边形ABCD中,AB=AD,∠B+∠D=180°,E、F分别是边BC、CD上的点,且∠EAF=∠BAD,上述结论是否仍然成立,并说明理由.(3)如图3,在四边形ABCD中,AB=AD,∠B+∠ADC=180°,E、F分别是边BC、CD延长线上的点,且∠EAF=∠BAD,(1)中的结论是否仍然成立?若成立,请证明;若不成立,请写出它们之间的数量关系,并证明.【解答】解:(1)由△ABG≌△ADF,△AEG≌△AEF可知,BG=DF,EF=EG=BG+EF=DF+EF,故答案为EF=BE+FD.(2)(1)中的结论EF=BE+FD仍然成立.理由:延长EB到点G,使BG=DF,连结AG.∵∠ABD+∠D=180°,∠ABD+∠ABG=180°,∴∠ABG=∠D,∴AB=AD,BG=DF,∴△ABG≌△ADF,∴∠BAG=∠DAF,AG=AF,∵∠EAF=∠BAD,∴∠BAE+∠DAF=∠BAD=∠BAE+∠BAG,∴∠EAG=∠EAF,∵AE=AE,AG=AF,∴△EAG≌△EAF,∴EG=EF,∵EG=BG+BE=DF+BE,∴EF=BE+DF.3. 小曼和他的同学组成了“爱琢磨”学习小组,有一次,他们碰到这样一道题:“已知正方形ABCD,点E、F、G、H分别在边AB、BC、CD、DA上,若EG⊥FH,则EG=FH.”为了解决这个问题,经过思考,大家给出了以下两个方案:方案一:过点A作AM∥HF交BC于点M,过点B作BN∥EG交CD于点N;方案二:过点A作AM∥HF交BC于点M,过点A作AN∥EG交CD于点N.…(1)对小曼遇到的问题,请在甲、乙两个方案中任选一个加以证明(如图(1)).(2)如果把条件中的“正方形”改为“长方形”,并设AB=2,BC=3(如图(2)),是探究EG、FH之间有怎样的数量关系,并证明你的结论.(3)如果把条件中的“EG⊥FH”改为“EG与FH的夹角为45°”,并假设正方形ABCD的边长为1,FH的长为(如图(3)),试求EG的长度.【解答】解:(1)证明:过点A作AM∥HF交BC于点M,作AN∥EG交CD的延长线于点N,∴AM=HF,AN=BC,在正方形ABCD中,AB=AD,∠ABM=∠BAD=∠ADN=90°∵EG⊥FH,∴∠NAM=90°,∴∠BAM=∠DAN,在△ABM和△ADN中,∠BAM=∠DAN,AB=AD,∠ABM=∠ADN∴△ABM≌△ADN∴AM=AN,即EG=FH(2)结论:EG:FH=3:2证明:过点A作AM∥HF交BC于点M,作AN∥EC交CD的延长线于点N,∴AM=HF,AN=EC,在长方形ABCD中,BC=AD,∠ABM=∠BAD=∠ADN=90°,∵EG⊥FH,∴∠NAM=90°,∴∠BAM=∠DAN.∴△ABM∽△ADN.,∵AB=2,BC=AD=3,∴.(3)解:过点A作AM∥HF交BC于点M,过点A作AN∥EG交CD于点N,∵.∴在Rt△ABM中,BM=.将△AND绕点A顺时针旋转90°到△APB.∵EG与FH的夹角为45°,∴∠MAN=45°,∴∠DAN+∠MAB=45°,即∠P AM=∠MAN=45°,从而△APM≌△ANM,∴PM=NM.设DN=x,则NC=1﹣x,MN=PM=.在Rt△CMN中,解得.∴.4. 已知:如图,正方形ABCD的边长为a,BM,DN分别平分正方形的两个外角,且满足∠MAN=45°,连接MC,NC,MN.(1)填空:与△ABM相似的三角形是_________,BM•DN=_________;(用含a的代数式表示)(2)求∠MCN的度数;(3)猜想线段BM,DN和MN之间的等量关系并证明你的结论.。
角含半角模型(完整版)
![角含半角模型(完整版)](https://img.taocdn.com/s3/m/58515b7bc5da50e2524d7f69.png)
第九章 半角模型模型1 已知如图: ② ∠2=12∠AOB ;②OA=OB 。
连接F ′B ,将△FOB 绕点O 旋转 至△FOA 的位置,连接F ′E 、FE , 可得△OEF ′≌△OEF 。
模型分析(1)半角模型的命名:存在两个角度是一半关系,并且这两个角共顶点; (2)通过先旋转全等再轴对称全等,一般结论是证明线段和差关系; (3)常见的半角模型是90°含45°,120°含60°。
【模型图解】模型必备条件:AD=DC,对角互补,角含半角; 结论:短边之和=长边1.M点在线段AB上原图旋转全等结论:AM+NC=MN2.M点在线段AB延长线上,N在BC延长线上原图旋转全等结论:AM-CN=MN注意:旋转对象=△ADM(同M的位置无关)旋转终止条件=两个相等的边重合特例_1 直角三角形角含半角——点在AB上原图结论:旋转全等特例_1 直角三角形角含半角——点在AB延长线上原图旋转全等特例_2 正方形角含半角——点在AB上原图旋转全等特例_2 正方形角含半角——点在AB延长线上原图旋转全等AFEBCD模型实例 【模型分析】例1. 如图,在四边形ABCD 中,∠B+∠ADC=180°,AB=AD,E 、F 分别是BC 、CD 延长 线上的点,且∠EAF=12∠BAD 。
求证:EF=BE-FD 。
图2AMBDCN 1图BACDMN 例2.在等边△ABC 的两边AB 、AC 上分别有两点M 、N ,D 为△ABC 外一点, 且∠MDN=60°,∠BDC=120°,BD=DC 。
探究:当M 、N 分别在线段AB 、AC上移动时,BM 、NC 、MN 之间的数量关系。
(1)如图①,当DM=DN 时,BM 、NC 、MN 之间的数量关系是 ; (2)如图②,当DM ≠DN 时,猜想(1)问的结论还成立吗?写出你的猜想 并加以证明。
A MCNOB A BMOCN图32图图1ACBOMN例3.已知,在等边△ABC中,点O是边AC、BC 的垂直平分线的交点,M、N 分别在直线AC、BC上,且∠MON=60°。
第5讲角含半角模型(原卷版) 2020年中考数学几何模型能力提升篇(全国通用)
![第5讲角含半角模型(原卷版) 2020年中考数学几何模型能力提升篇(全国通用)](https://img.taocdn.com/s3/m/d702ef2931b765ce05081466.png)
中考数学几何模型5:角含半角模型st●模型1:截长补短模型●模型2:共顶点模型●模型3:对角互补模型●模型:4:中点模型●模型5:角含半角模型●模型6:弦图模型●模型7:轴对称最值模型●模型8:费马点最值模型●模型9:隐圆模型●模型10:胡不归最值模型●模型11:阿氏圆最值模型●模型12:主从联动模型名师点睛拨开云雾开门见山角含半角模型,顾名思义即一个角包含着它的一半大小的角。
它主要包含:等腰直角三角形角含半角模型;正方形中角含半角模型两种类型。
解决类似问题的常见办法主要有两种:旋转目标三角形法和翻折目标三角形法。
类型一:等腰直角三角形角含半角模型(1)如图,在△ABC中,AB=AC,∠BAC=90°,点D,E在BC上,且∠DAE=45°,则:BD2+CE2=DE2.图示(1)作法1:将△ABD旋转90°作法2:分别翻折△ABD,△ACE(2)如图,在△ABC中,AB=AC,∠BAC=90°,点D在BC上,点E在BC延长线上,且∠DAE=45°,则:BD2+CE2=DE2.图示(2)(3)如图,将等腰直角三角形变成任意等腰三角形时,亦可以进行两种方法的操作处理..任意等腰三角形类型二:正方形中角含半角模型(1)如图,在正方形ABCD中,点E,F分别在边BC,CD上,∠EAF=45°,连接EF,过点A作AG⊥于EF于点G,则:EF=BE+DF,AG=AD.图示(1)作法:将△ABE绕点A逆时针旋转90°(2)如图,在正方形ABCD中,点E,F分别在边CB,DC的延长线上,∠EAF=45°,连接EF,则:EF=DF-BE.图示(2)作法:将△ABE绕点A逆时针旋转90°(3)如图,将正方形变成一组邻边相等,对角互补的四边形,在四方形ABCD中,AB=AD,∠BAD+∠C=180°,点E,F分别在边BC,CD上,∠EAF=12∠BAD,连接EF,则:EF=BE+DF.图示(3)作法:将△ABE绕点A逆时针旋转∠BAD的大小典题探究启迪思维探究重点例题1. 如图,正方形ABCD的边长为4,点E,F分别在AB,AD上,若CE=5,且∠ECF=45°,则CF 的长为.变式练习>>>1.如图四边形ABCD中,AD∥BC,∠BCD=90°,AB=BC+AD,∠DAC=45°,E为CD上一点,且∠BAE=45°.若CD=4,则△ABE的面积为()A.B.C.D.例题2. 在正方形ABCD中,连接BD.(1)如图1,AE⊥BD于E.直接写出∠BAE的度数.(2)如图1,在(1)的条件下,将△AEB以A旋转中心,沿逆时针方向旋转30°后得到△AB′E′,AB′与BD交于M,AE′的延长线与BD交于N.①依题意补全图1;②用等式表示线段BM、DN和MN之间的数量关系,并证明.(3)如图2,E、F是边BC、CD上的点,△CEF周长是正方形ABCD周长的一半,AE、AF分别与BD 交于M、N,写出判断线段BM、DN、MN之间数量关系的思路.(不必写出完整推理过程)变式练习>>>2. (1)【探索发现】如图1,正方形ABCD中,点M、N分别是边BC、CD上的点,∠MAN=45°,若将△DAN绕点A顺时针旋转90°到△BAG位置,可得△MAN≌△MAG,若△MCN的周长为6,则正方形ABCD的边长为3.(2)【类比延伸】如图(2),四边形ABCD中,AB=AD,∠BAD=120°,∠B+∠D=180°,点M、N分别在边BC、CD 上的点,∠MAN=60°,请判断线段BM,DN,MN之间的数量关系,并说明理由.(3)【拓展应用】如图3,四边形ABCD中,AB=AD=10,∠ADC=120°,点M,N分别在边BC,CD上,连接AM,MN,△ABM是等边三角形,AM⊥AD,DN=5(﹣1),请直接写出MN的长.例题3. 如图,在四边形ABCD中,AB=BC,∠A=∠C=90°,∠B=135°,K,N分别是AB,BC上的点,若△BKN的周长为AB的2倍,求∠KDN的度数.变式练习>>>3. 如图,正方形被两条与边平行的线段EF,GH分割成四个小矩形,P是EF与GH的交点,若矩形PFCH 的面积恰是矩形AGPE面积的2倍,试确定∠HAF的大小并证明你的结论.例题4. 如图,在四边形ABCD中,AB=AD,BC=CD,∠ABC=∠ADC=90°,∠MAN=∠BAD.(1)如图1,将∠MAN绕着A点旋转,它的两边分别交边BC、CD于M、N,试判断这一过程中线段BM、DN和MN之间有怎样的数量关系?直接写出结论,不用证明;(2)如图2,将∠MAN绕着A点旋转,它的两边分别交边BC、CD的延长线于M、N,试判断这一过程中线段BM、DN和MN之间有怎样的数量关系?并证明你的结论;(3)如图3,将∠MAN绕着A点旋转,它的两边分别交边BC、CD的反向延长线于M、N,试判断这一过程中线段BM、DN和MN之间有怎样的数量关系?直接写出结论,不用证明.达标检测领悟提升强化落实1. 请阅读下列材料:问题:正方形ABCD中,M,N分别是直线CB、DC上的动点,∠MAN=45°,当∠MAN交边CB、DC 于点M、N(如图①)时,线段BM、DN和MN之间有怎样的数量关系?小聪同学的思路是:延长CB至E使BE=DN,并连接AE,构造全等三角形经过推理使问题得到解决.请你参考小聪同学的思路,探究并解决下列问题:(1)直接写出上面问题中,线段BM,DN和MN之间的数量关系;(2)当∠MAN分别交边CB,DC的延长线于点M/N时(如图②),线段BM,DN和MN之间的又有怎样的数量关系?请写出你的猜想,并加以证明;(3)在图①中,若正方形的边长为16cm,DN=4cm,请利用(1)中的结论,试求MN的长.2. (1)如图1,在四边形ABCD中,AB=AD,∠B=∠D=90°,E、F分别是边BC、CD上的点,且∠EAF=∠BAD.试探究图中线段BE、EF、FD之间的数量关系.(1)小王同学探究此问题的方法是:延长EB到点G,使BG=DF,连结AG,先证明△ABG≌△ADF,再证明△AEG≌△AEF,可得出结论,他的结论应是.(2)如图2,在四边形ABCD中,AB=AD,∠B+∠D=180°,E、F分别是边BC、CD上的点,且∠EAF=∠BAD,上述结论是否仍然成立,并说明理由.(3)如图3,在四边形ABCD中,AB=AD,∠B+∠ADC=180°,E、F分别是边BC、CD延长线上的点,且∠EAF=∠BAD,(1)中的结论是否仍然成立?若成立,请证明;若不成立,请写出它们之间的数量关系,并证明.3. 小曼和他的同学组成了“爱琢磨”学习小组,有一次,他们碰到这样一道题:“已知正方形ABCD,点E、F、G、H分别在边AB、BC、CD、DA上,若EG⊥FH,则EG=FH.”为了解决这个问题,经过思考,大家给出了以下两个方案:方案一:过点A作AM∥HF交BC于点M,过点B作BN∥EG交CD于点N;方案二:过点A作AM∥HF交BC于点M,过点A作AN∥EG交CD于点N.…(1)对小曼遇到的问题,请在甲、乙两个方案中任选一个加以证明(如图(1)).(2)如果把条件中的“正方形”改为“长方形”,并设AB=2,BC=3(如图(2)),是探究EG、FH之间有怎样的数量关系,并证明你的结论.(3)如果把条件中的“EG⊥FH”改为“EG与FH的夹角为45°”,并假设正方形ABCD的边长为1,FH的长为(如图(3)),试求EG的长度.4. 已知:如图,正方形ABCD的边长为a,BM,DN分别平分正方形的两个外角,且满足∠MAN=45°,连接MC,NC,MN.(1)填空:与△ABM相似的三角形是_________,BM•DN=_________;(用含a的代数式表示)(2)求∠MCN的度数;(3)猜想线段BM,DN和MN之间的等量关系并证明你的结论.。
中考数学几何专题——半角模型(几何压轴)
![中考数学几何专题——半角模型(几何压轴)](https://img.taocdn.com/s3/m/f52333fa58fafab069dc02d4.png)
半角模型1、角含半角模型条件:(1)正方形ABCD (2)结论:(1)EF=DF+BE(2)D CEF周长为正方形ABCD周长的一半也可以这样:条件:(1)正方形ABCD (2)EF=DF+BE结论:条件:(1)正方形ABCD (2)结论:(1)EF=DF-BE条件:(1)结论:D AHE为等腰直角三角形证明:连接AC\ÐDAH=ÐCAE\D ADH相似于D ACE\DAAH=ACAE\D AHE相似于D ADC条件:(1)等腰直角D ABC(2)结论:BD2+CE2=DE2若ÐDAE旋转到D ABC外部时结论:BD2+CE2=DE2经典例题1.如图,正方形ABCD中,E、F分别在BC、DC上,且∠EAF=45°.求证:BE+DF=EF.2.如图,在正方形ABCD中,E和F分别是BC和CD上的点,AG⊥EF,∠EAF=45°,求证:AG=AD.3、已知:正方形ABCD中,∠MAN=45°,∠MAN绕点A顺时针旋转,它的两边分别交CB、DC(或它们的延长线)于点M、N,AH⊥MN于点H.(1)如图①,当∠MAN绕点A旋转到BM=DN时,请你直接写出AH与AB的数量关系:;(2)如图②,当∠MAN绕点A旋转到BM≠DN时,(1)中发现的AH与AB的数量关系还成立吗?如果不成立请写出理由,如果成立请证明;(3)如图③,已知∠MAN=45°,AH⊥MN于点H,且MH=2,NH=3,求AH的长.(可利用(2)得到的结论)4、如图①△ABC是正三角形,△BDC是等腰三角形,BD=CD,∠BDC=120°,以D为顶点作一个60°角,角的两边分别交AB、AC边于M、N,连接MN.(1)探究BM、MN、NC之间的关系,并说明理由.(2)若△ABC的边长为2,求△AMN的周长.(3)若点M、N分别是AB、CA延长线上的点,其它条件不变,在图②中画出图形,并说出BM、MN、NC之间的关系.5.(2014秋•安阳校级期中)在△ABC中,∠BAC=90°,AB=AC,点D和点E均在边BC 上,且∠DAE=45°,试猜想BD.DE.EC应满足的数量关系,并写出推理过程.6.在△ABC中,∠BAC=90°,AB=AC,D、E在直线BC上,∠DAE=45°,(1)写出图中的相似三角形;(2)求证:BE•CD=2S△ABC,并探究BD、DE、CE之间的数量关系,给以证明.7.已知在△ABC中,AB=AC,点D、E在边BC上,将△ABD绕着点A旋转,得到△ACD′,接连D′E交AC于点O.(1)如图1,当△BAC=120°,△DAE=60°时,求证:DE=D′E;(2)如图2,当△DAE=45°,△BAC=90°,BD=DE时,在不舔加任何辅助线的情况下,请直接写出图2中的所有的全等三角形.8.(2014秋•通山县期中)如图1,在Rt△ABC中,∠BAC=90°,AB=AC,点D、E是BC 边上的任意两点,且∠DAE=45°.(1)将△ABD绕点A逆时针旋转90°,得到△ACF,请在图(1)中画出△ACF.(2)在(1)中,连接EF,探究线段BD,EC和DE之间有怎样的数量关系?写出猜想,并说明理由.(3)如图2,M、N分别是正方形ABCD的边BC、CD上一点,且BM+DN=MN,试求△MAN 的大小.9.△ABC的边BC在直线l上,点D,E是直线l上的两点,且BA=BD,CA=CE(1)如图1,若AB=AC,△BAC=90°,求△CAE的度数;(2)如图2,若△BAC=90°,求△CAE的度数;(3)如图3,设△BAC=α,△DAE=β,请直接写出α与β的关系式.10.(2011秋•朝阳区期末)已知,在△ABC中,∠BAC=90°,AB=AC,BC=,点D、E在BC边上(均不与点B、C重合,点D始终在点E左侧),且∠DAE=45°.(1)请在图△中找出两对相似但不全等的三角形,写在横线上,;(2)设BE=m,CD=n,求m与n的函数关系式,并写出自变量n的取值范围;(3)如图△,当BE=CD时,求DE的长;(4)求证:无论BE与CD是否相等,都有DE2=BD2+CE2.11.(2014•平谷区一模)(1)如图1,点E、F分别是正方形ABCD的边BC、CD上的点,∠EAF=45°,连接EF,则EF、BE、FD之间的数量关系是:EF=BE+FD.连结BD,交AE、AF于点M、N,且MN、BM、DN满足MN2=BM2+DN2,请证明这个等量关系;(2)在△ABC中,AB=AC,点D、E分别为BC边上的两点.△如图2,当△BAC=60°,△DAE=30°时,BD、DE、EC应满足的等量关系是;△如图3,当△BAC=α,(0°<α<90°),△DAE=时,BD、DE、EC应满足的等量关系是.[参考:sin2α+cos2α=1]12.(2015•海宁市模拟)(1)探究:如图1和2,四边形ABCD中,已知AB=AD,∠BAD=90°,点E、F分别在BC、CD上,∠EAF=45°.△如图1,若△B、△ADC都是直角,把△ABE绕点A逆时针旋转90°至△ADG,使AB与AD重合,则能证得EF=BE+DF,请写出推理过程;△如图2,若△B、△D都不是直角,则当△B与△D满足数量关系时,仍有EF=BE+DF;(2)拓展:如图3,在△ABC中,△BAC=90°,AB=AC=2,点D、E均在边BC上,且△DAE=45°.若BD=1,求DE的长.13.(2015•滑县一模)(1)问题发现如图1,点E、F分别在正方形ABCD的边BC、CD上,△EAF=45°,连接EF、则EF=BE+DF,试说明理由;(2)类比引申如图2,在四边形ABCD中,AB=AD,△BAD=90°,点E、F分别在边BC、CD上,△EAF=45°,若△B,△D都不是直角,则当△B与△D满足等量关系时,仍有EF=BE+DF;(3)联想拓展如图3,在△ABC中,△BAC=90°,AB=AC,点D、E均在边BC上,且△DAE=45°,猜想BD、DE、EC满足的等量关系,并写出推理过程.14.(2014•山西校级模拟)已知△ABC中,AB=AC,D、E是BC边上的点,将△ABD绕点A旋转,得到△ACD′,连结D′E.(1)如图1,当△BAC=120°,△DAE=60°时,求证:DE=D′E;(2)如图2,当DE=D′E时,△DAE与△BAC有怎样的数量关系?请写出,并说明理由.(3)如图3,在(2)的结论下,当△BAC=90°,BD与DE满足怎样的数量关系时,△D′EC 是等腰直角三角形?(直接写出结论,不必说明理由)。
2024年九年级中考数学专项复习 半角模型1课件
![2024年九年级中考数学专项复习 半角模型1课件](https://img.taocdn.com/s3/m/3eba429d9fc3d5bbfd0a79563c1ec5da51e2d64a.png)
【数学思考】(2)如图②,在△ABC中,∠CAB=90°,AB=AC,D,E为BC上两点,
且∠DAE=45°.求证:BD2+CE2=DE2.
证明:如图①,把△ACE绕点A顺时针旋转90°,得到△ABG,连接DG,则
△ACE≌△ABG,∴AG=AE,BG=CE,∠ABG=∠ACE=45°.
∵∠BAC=90°,∠GAE=90°,∴∠GAD=∠DAE=45°.
正方形ABCD中,∠EAF=45°,此为“正方形内半角模型”
Hale Waihona Puke 在底角为30°的等腰△ABC中,∠DAE=60°,此为“60°半角模型”
2.“半角模型”的破解策略:半角模型,必旋转.
3.注意:
(1)旋转角度通常为大角的角度;
(2)旋转后,往往涉及三点共线问题(需简单证明);
(3)旋转后,一般需要再证一对共旋转点的三角形全等.
模型解读
1.“半角模型”的基本类型
题目中出现了两个角,小角等于大角的一半,故称为“半角模型”.常见的半角关系
有“30°与60°”“45°与90°(此类模型又称之为‘正方形内半角模型’)”“60°与
120°”.
等边△ABC中,∠DAE=30°,此为“30°半角模型”
等腰Rt△ABC中,∠DAE=45°,此为“45°半角模型”
1.(2023·新泰模拟)如图,在等边△ABC中,在BC边上取两点D,E,使∠DAE=
30°.若BD=x,DE=y,CE=z,则以x,y,z为边长的三角形的形状为( C )
A.锐角三角形
B.直角三角形
C.钝角三角形
D.随x,y,z的值而定
第1题图
2.(2023·潍坊模拟)如图,正方形ABCD的边长为a,点E在边AB上运动(不与点
第5讲角含半角模型(解析版)
![第5讲角含半角模型(解析版)](https://img.taocdn.com/s3/m/d80e073100f69e3143323968011ca300a6c3f61b.png)
第5讲角含半角模型(解析版)第5讲角含半角模型(解析版)在数学中,角的概念是一个重要的基础知识点。
角不仅在几何学中有广泛的应用,还在物理学、工程学等领域中扮演着重要的角色。
本文将对角的含义以及半角模型进行解析,帮助读者更好地理解和应用这一概念。
一、角的含义角是由两条射线共享一个起点而形成的图形。
起点称为角的顶点,两条射线称为角的边。
角常用英文字母表示,如∠ABC,其中B为角的顶点,A、C为角的边。
角根据其大小可以分为多种类型,包括锐角、直角、钝角等。
锐角指角的度数小于90°,直角指角的度数等于90°,钝角指角的度数大于90°。
例如,∠ABC为钝角的条件是∠ABC的度数大于90°。
二、半角模型半角模型是指将一个给定的角等分为两个角的模型。
在实际问题中,我们常常需要将一个角等分为两个相等的部分,这时候就可以使用半角模型进行求解。
具体来说,我们可以根据半角模型得到以下结论:角的两个半角的度数之和等于原角的度数,两个半角的度数相等。
三、角含半角模型的应用举例1. 三角形内角和问题在三角形中,角的度数之和为180°。
我们可以利用角含半角模型来解决与三角形内角和有关的问题。
例如,已知一个三角形的一个角为80°,另一个角的度数是第一个角的半角。
我们可以先利用半角模型得到第二个角的度数为40°(80°/2 = 40°),然后利用角的度数之和为180°的关系求得第三个角的度数为60°(180° - 80° - 40° = 60°)。
2. 平行线与交角问题在平行线与交角的问题中,我们可以利用角含半角模型来推导出一些几何关系。
例如,已知一对平行线与一条横截线相交,求交角的度数。
我们可以首先利用半角模型将交角等分为两个相等的角,然后利用平行线的性质得到这两个角相等,最后根据角的度数之和为180°的关系求得交角的度数。
中考必会几何模型:半角模型
![中考必会几何模型:半角模型](https://img.taocdn.com/s3/m/e7ccd215b9d528ea80c7791d.png)
3.已知,在等边△ABC 中,点 O 是边 AC、BC 的垂直平分线的交点,M、N 分别在直线 AC、BC 上,且∠MON=60°. (1)如图①,当 CM=CN 时,M、N 分别在边 AC、BC 上时,请写出 AM、CN、MN 三 者之间的数量关系; (2)如图②,当 CM≠CN 时,M、N 分别在边 AC、BC 上时,(1)中的结论是否仍然 成立?若成立,请你加以证明;若不成立,请说明理由; (3)如图③,当点 M 在边 AC 上,点 N 在 BC 的延长线上时,请直接写出线段 AM、
图①
图②
【答案】 解答:(1)猜想:DE2=BD2+EC2. 证明:将△AEC 绕点 A 顺时针旋转 90°得到△ABE′,如图①
∴△ACE≌△ABE′. ∴BE′=EC,AE′=AE,∠C=∠ABE′,∠EAC=∠E′AB. 在 Rt△ABC 中, ∵AB=AC, ∴∠ABC=∠ACB=45°. ∴∠ABC+∠ABE′=90°,即∠E′BD=90°. ∴E′B2+BD2=E′D2. 又∵∠DAE=45°, ∴∠BAD+∠EAC=45°. ∴∠E′AB+∠BAD=45°,即∠E′AD=45°.
5
∴△ABM≌△ADE. ∴MN=EN. ∵DN-DE=EN. ∴DN-BM=MN.
WANG
2.已知,如图①在 Rt△ABC 中,∠BAC=90°,AB=AC,点 D、E 分别为线段 BC 上两动 点,若∠DAE=45°,探究线段 BD、DE、EC 三条线段之间的数量关系. 小明的思路是:把△AEC 绕点 A 顺时针旋转 90°,得到△ABE′,连接 E′D 使问题得到解 决.请你参考小明的思路探究并解决以下问题: (1)猜想 BD、DE、EC 三条线段之间的数量关系式,并对你的猜想给予证明; (2)当动点 E 在线段 BC 上,动点 D 运动到线段 CB 延长线上时,如图②,其他条件不 变,(1)中探究的结论是否发生改变?请说明你的猜想并给予证明.
几何模型:半角模型
![几何模型:半角模型](https://img.taocdn.com/s3/m/9b3f4f00227916888586d705.png)
半 角 模 型一、90°夹45°定义:过正方形的一个顶点作一个45°角可形成90°夹45°的夹半角模型。
(1) 角含半角模型90°-1条件:①;②或者②;(2) 角含半角模型90°-2 ➢ 条件:①;②;(1)(2) (3)角含半角模型90°-3条件:①;②;(4)角含半角模型90°变形 ➢ 条件:①正方形;②;(3) (4)二、120°夹60°(1)内夹(120°角完全包含60°角) (2)外夹:(120°角不完全包含60°角) ➢ 条件:①∠CAB=120°;②∠EAF=120°;C(1)(2)核心思想:(1)内夹角补短,外夹用截长;(2)先证小全等,再证大全等。
一、内嵌45°如图,在正方形ABCD中,点E、F分别为边BC、CD上一点.并且∠EAF=45°,AE、AF分别交对角线于M、N.(1)求证:求证:EF=BE+DF;(或△EFC周长为定值)F (2)求证:∠AEB=∠AEF=∠ANM,∠AFD=∠AFE=∠AMN;F (3)求证:MN 2=BM 2+DN 2;F (4)求证:2AM 2=BM 2+DM 2,2AN 2=BN 2+DN 2;F (5)连接NE,求证:AN=AE,AN⊥NE;F (6)连接MF,求证:AM=MF,AM⊥MF;F(7=BA+BE=DA+DF;FF(9)求证:EF;F(10)过点E作EG⊥BC交BD于点G,求证:N是DG中点;F (11)过点F作FH⊥DC交BD于H,求证:M是BH中点;F(12)过点E作EP⊥BD交BD于点P,求证:NP=12BD;F(13)过点F 作FQ ⊥BD 交BD 于点Q ,求证:MQ =12BD ;F(14)求证:S △AMN =12S △AEF (或S △AMN = S 四边形MEFN )F二、外嵌45°如图,在正方形ABCD 中,若∠BEC =45°,连接AE ,DE.E(1)求证:∠AEC =∠BED =90°;(2)求证:∠AEB=∠CED=45°;E (3)求证:EB平分∠AEC,EC平分∠BED;(4)求证:EB+ED EC;(5)求证:EA+ECEB;(6)求证:S四边形ABCE=12EB 2.正方形.gsp(1)内夹(120°角完全包含60°角)已知:∠BAC=120°,AB=AC,∠D=60°∠EAF=60°,证明:BE+CF=EF变式:已知:∠BAC=120°,AB=AC,∠D=60°,BE+CF=EF,证明:∠EAF=60°B(2)外夹:(120°角不完全包含60°角)已知:∠BAC=120°,AB=AC,∠BDC=60°,CF-BE=EF,证明:∠EAF=60°变式:已知:∠BAC=120°,AB=AC,∠BDC=60°,∠EAF=60°,证明:CF-BE=EF ArrayCE4.在等腰直角三角形ABC的斜边上取两点M,N,使∠MCN=45°,若AM=3,BN=4,求△ABC的面积5、在正方形ABCD中,点E,F分别在边BC,CD上,且∠EAF=∠CEF=45°.(1)将△ADF绕着点A顺时针旋转90°,得到△ABG(如图①),求证:△AEG≌△AEF;(2)若直线EF与AB,AD的延长线分别交于点M,N(如图②),求证:EF2=ME2+NF2;(3)将正方形改为长与宽不相等的矩形,若其余条件不变(如图③),请你直接写出线段EF,BE,DF之间的数量关系.6、如图1,四边形ABCD是由两个全等的等腰直角三角形斜边重合在一起组成的平面图形.如图2,点P是边BC上一点,PH⊥BC交BD于点H,连接AP交BD于点E,点F为DH中点,连接AF.(1)求证:四边形ABCD为正方形;(2)当点P在线段BC上运动时,∠PAF的大小是否会发生变化?若不变,请求出∠PAF的值;若变化,请说明理由;(3)求证:BE2+DF2=EF2.7.如图,△AEF中,∠EAF=45°,AG⊥EF于点G,现将△AEG沿AE折叠得到△AEB,将△AFG沿AF折叠得到△AFD,延长BE和DF相交于点C.(1)求证:四边形ABCD是正方形;(2)连接BD分别交AE、AF于点M、N,将△ABM绕点A逆时针旋转,使AB与AD重合,得到△ADH,试判断线段MN、ND、DH之间的数量关系,并说明理由.(3)若EG=4,GF=6,BM=38.如图,⊙O中AB是直径,C是⊙O上一点,∠ABC=450,等腰直角三角形DCE中∠DCE是直角,点D 在线段AC上。
中考数学必会几何模型-半角模型
![中考数学必会几何模型-半角模型](https://img.taocdn.com/s3/m/365d69edab00b52acfc789eb172ded630b1c98ec.png)
半角模型已知如图:①∠2=12∠AOB;②OA=OB.OABEF123连接FB,将△FOB绕点O旋转至△FOA的位置,连接F′E,FE,可得△OEF≌△OEF′4321F'FE BAO模型分析∵△OBF≌△OAF′,∴∠3=∠4,OF=OF′.∴∠2=12∠AOB,∴∠1+∠3=∠2∴∠1+∠4=∠2又∵OE是公共边,∴△OEF≌△OEF′.(1)半角模型的命名:存在两个角度是一半关系,并且这两个角共顶点;(2)通过先旋转全等再轴对称全等,一般结论是证明线段和差关系;(3)常见的半角模型是90°含45°,120°含60°.模型实例例1 已知,正方形ABCD中,∠MAN=45°,它的两边分别交线段CB、DC于点M、N.(1)求证:BM+DN=MN.(2)作AH⊥MN于点H,求证:AH=AB.证明:(1)延长ND 到E ,使DE=BM ,∵四边形ABCD 是正方形,∴AD=AB . 在△ADE 和△ABM 中, ⎪⎩⎪⎨⎧=∠=∠=BM DE B ADE AB AD∴△ADE ≌△ABM .∴AE=AM ,∠DAE=∠BAM ∵∠MAN=45°,∴∠BAM+∠NAD=45°. ∴ ∠MAN=∠EAN=45°. 在△AMN 和△AEN 中, ⎪⎩⎪⎨⎧=∠=∠=AN AN EAN M AN EA M A∴△AMN ≌△AEN . ∴MN=EN .∴BM+DN=DE+DN=EN=MN .(2)由(1)知,△AMN ≌△AEN . ∴S △AMN =S △AEN .即EN AD 21MN AH 21⋅=⋅.又∵MN=EN , ∴AH=AD . 即AH=AB .例2 在等边△ABC的两边AB、AC上分别有两点M、N,D为△ABC外一点,且∠MDN=60°,∠BDC=120°,BD=DC.探究:当M、N分别在线段AB、AC上移动时,BM、NC、MN之间的数量关系.(1)如图①,当DM=DN时,BM、NC、MN之间的数量关系是_______________;(2)如图②,当DM≠DN时,猜想(1)问的结论还成立吗?写出你的猜想并加以证明.图①图②解答(1)BM、NC、MN之间的数量关系是BM+NC=MN.(2)猜想:BM+NC=MN.证明:如图③,延长AC至E,使CE=BM,连接DE.∵BD=CD,且∠BDC=120°,∴∠DBC=∠DCB=30°.又∵△ABC是等边三角形,∴∠ABC=∠ACB=60°.∴∠MBD=∠NCD=90°.在△MBD与△ECD中,∵DB=DC,∠DBM=∠DCE=90°,BM=CE,∴△MBD≌△ECD(SAS).∴DM=DE,∠BDM=∠CDE.∴∠EDN=∠BDC-∠MDN=60°.在△MDN和△EDN中,∵MD=ED,∠MDN=∠EDN=60°,DN=DN,∴△MDN≌△EDN(SAS).∴MN=NE=NC+CE=NC+BM.图③例3 如图,在四边形ABCD 中,∠B+∠ADC=180°,AB=AD ,E 、F 分别是BC 、CD 延 长线上的点,且∠EAF=21∠BAD .求证:EF=BE-FD .证明:在BE 上截取BG ,使BG=DF ,连接AG . ∵∠B+∠ADC=180°,∠ADF+∠ADC=180°, ∴∠B=∠ADF .在△ABG 和△ADF 中, ⎪⎩⎪⎨⎧=∠=∠=DF BG ADF B AD AB∴△ABG ≌△ADF (SAS ). ∴∠BAG=∠DAF ,AG=AF . ∴∠GAF=∠BAD .∴∠EAF=21∠BAD=21∠GAF . ∴∠GAE=∠EAF . 在△AEG 和△AEF 中, ⎪⎩⎪⎨⎧=∠=∠=AE AE FAE GAE AF AG∴△AEG ≌△AEF (SAS ). ∴EG=EF .∵EG=BE-BG , ∴EF=BE-FD .跟踪练习:1.已知,正方形ABCD ,M 在CB 延长线上,N 在DC 延长线上,∠MAN=45°. 求证:MN=DN-BM .【答案】证明:如图,在DN 上截取DE=MB ,连接AE , ∵四边形ABCD 是正方形, ∴AD=AB ,∠D=∠ABC=90°. 在△ABM 和△ADE 中, ⎪⎩⎪⎨⎧=∠=∠=DE BM ABM D AB AD∴△ABM ≌△ADE .∴AM=AE , ∠MAB=∠EAD . ∵∠MAN=45°=∠MAB+∠BAN , ∴∠DAE+∠BAN=45°. ∴∠EAN=90°-45°=45°=∠MAN . 在△AMN 和△AEN 中, ⎪⎩⎪⎨⎧=∠=∠=AN AN EAN M AN AE AM∴MN=EN.∵DN-DE=EN.∴DN-BM=MN.2.已知,如图①在Rt△ABC中,∠BAC=90°,AB=AC,点D、E分别为线段BC上两动点,若∠DAE=45°,探究线段BD、DE、EC三条线段之间的数量关系.小明的思路是:把△AEC绕点A顺时针旋转90°,得到△ABE′,连接E′D使问题得到解决.请你参考小明的思路探究并解决以下问题:(1)猜想BD、DE、EC三条线段之间的数量关系式,并对你的猜想给予证明;(2)当动点E在线段BC上,动点D运动到线段CB延长线上时,如图②,其他条件不变,(1)中探究的结论是否发生改变?请说明你的猜想并给予证明.图①图②【答案】解答:(1)猜想:DE2=BD2+EC2.证明:将△AEC绕点A顺时针旋转90°得到△ABE′,如图①∴△ACE≌△ABE′.∴BE′=EC,AE′=AE,∠C=∠ABE′,∠EAC=∠E′AB.在Rt△ABC中,∵AB=AC,∴∠ABC=∠ACB=45°.∴∠ABC+∠ABE′=90°,即∠E′BD=90°.∴E′B2+BD2=E′D2.又∵∠DAE=45°,∴∠BAD+∠EAC=45°.∴∠E′AB+∠BAD=45°,即∠E′AD=45°.∴DE=D E′.∴DE2=BD2+EC2.图①(2)结论:关系式DE2=BD2+EC2仍然成立.证明:作∠FAD=∠BAD,且截取AF=AB,连接DF,连接FE,如图②∴△AFD≌△ABD.∴FD=DB,∠AFD=∠ABD.又∵AB=AC,∴AF=AC.∵∠FAE=∠FAD+∠DAE=∠FAD+45°,∠EAC=∠BAC-∠BAE=90°-(∠DAE-∠DAB )=90°-(45°-∠DAB)=45°+∠DAB,∴∠FAE=∠CAE.又∵AE=AE,∴△AFE≌△ACE.∴FE=EC,∠AFE=∠ACE=45°.∠AFD=∠ABD=180°-∠ABC=135°.∴∠DFE=∠AFD-∠AFE=135°-45°=90°.在Rt△DFE中,DF2+FE2=DE2.即DE2=BD2+EC2.图②3.已知,在等边△ABC中,点O是边AC、BC的垂直平分线的交点,M、N分别在直线AC、BC上,且∠MON=60°.(1)如图①,当CM=CN时,M、N分别在边AC、BC上时,请写出AM、CN、MN三者之间的数量关系;(2)如图②,当CM≠CN时,M、N分别在边AC、BC上时,(1)中的结论是否仍然成立?若成立,请你加以证明;若不成立,请说明理由;(3)如图③,当点M在边AC上,点N在BC的延长线上时,请直接写出线段AM、CN、MN三者之间的数量关系.图①图②图③【答案】结论:(1)AM=CN+MN;如图①图①(2)成立;证明:如图②,在AC上截取AE=CN,连接OE、OA、OC.∵O是边AC、BC垂直平分线的交点,且△ABC为等边三角形,∴OA=OC,∠OAE=∠OCN=30°,∠AOC=120°.又∵AE=CN,∴△OAE≌△OCN.∴OE=ON,∠AOE=∠CON.∴∠EON=∠AOC=120°.∵∠MON=60°,∴∠MOE=∠MON=60°.∴△MOE≌△MON.∴ME=MN.∴AM=AE+ME=CN+MN.图②(3)如图③,AM=MN-CN.图③4.如图,在四边形ABCD 中,∠B+∠D=180°,AB=AD ,E 、F 分别是线段BC 、CD 上的 点,且BE+FD=EF .求证:∠EAF=21∠BAD .【答案】证明:如图,把△ADF 绕点A 顺时针旋转∠DAB 的度数得到△ABG ,AD 旋转到AB ,AF 旋转到AG ,∴AG=AF ,BG=DF ,∠ABG=∠D ,∠BAG=∠DAF . ∵∠ABC+∠D=180°, ∴∠ABC+∠ABG=180°. ∴点G 、B 、C 共线. ∵BE+FD=EF , ∴BE+BG=GE=EF . 在△AEG 和△AEF 中, ⎪⎩⎪⎨⎧===EF EG AE AE AF AG ∴△AEG ≌△AEF . ∴∠EAG=∠EAF .∴∠EAB+∠BAG=∠EAF . 又∵∠BAG=∠DAF ,∴∠EAB+∠DAF=∠EAF . ∴∠EAF=21∠BAD .5.如图①,已知四边形ABCD ,∠EAF 的两边分别与DC 的延长线交于点F ,与CB 的延长线交于点E ,连接EF . (1)若四边形ABCD 为正方形,当∠EAF =45°时,EF 与DF 、BE 之间有怎样的数量关系?(只需直接写出结论)(2)如图②,如果四边形ABCD 中,AB =AD ,∠ABC 与∠ADC 互补,当∠EAF =12∠BAD 时,EF 与DF 、BE 之间有怎样的数量关系?请写出结论并证明.(3)在(2)中,若BC =4,DC =7,CF =2,求△CEF 的周长(直接写出结论)解答:(1)EF=DF-BE (2)EF=DF-BE证明:如图,在DF 上截取DM=BE ,连接AM , ∵∠D+∠ABC=∠ABE+∠ABC=180° ∵D=ABE ∵AD=AB在△ADM 和△ABE 中,DM BE D ABE AD AB =⎧⎪∠=∠⎨⎪=⎩∴△ADM ≌△ABE∴AM=AE ,∠DAM=∠BAE ∵∠EAF=∠BAE+∠BAF=12∠BAD ,11∴∠DAM+∠BAF=12∠BAD ∴∠MAF=12∠BAD ∴∠EAF=∠MAF在△EAF 和△MAF 中AE AM EAF MAF AF AF =⎧⎪∠=∠⎨⎪=⎩∴△EAF ≌△MAF∴EF=MF∵MF=DF-DM=DF-BE ,∴EF=DF-BE(3)∵EF=DF-BE∴△CEF 的周长=CE+EF+FC=BC+BE+DC+CF-BE+CF =BC+CD+2CF=15。
微专题 全等三角形的六种基本模型-2024年中考数学复习
![微专题 全等三角形的六种基本模型-2024年中考数学复习](https://img.taocdn.com/s3/m/b7703e257f21af45b307e87101f69e314332fad5.png)
21
全等三角形的六种基本模型
模型应用
8.如图17, △ 是边长为1的等边三角形, = ,
∠ = 120∘ ,点 , 分别在 , 上,且
∠ = 60∘ .求 △ 的周长.
提示:如图16,延长 至点 ,使 = ,连接 .
图6
= ,
在 △ 和 △ 中, ቐ∠ = ∠, ∴ △≌△ SAS .
= ,
∠ = ∠ = 50∘ .
7
全等三角形的六种基本模型
模型三 旋转型
模型剖析
如图7,将三角形绕着公共顶
点旋转一定角度后,两个三角形能
够完全重合,这两个三角形称为旋
图3
在 △ 和△ 中, ∵ ∠ = ∠ , ∠ = ∠ , = ,
∴ △ ≌ △ AAS .
∴ = .
4
全等三角形的六种基本模型
模型二 对称型
模型剖析
如图4、图5,将所给图形沿某一条直线折叠后,直线两旁的部分能
够完全重合,这两个三角形称为对称型全等三角形,其中重合的顶点就
= , ∴ △ ≌ △ SAS . ∴ = ,
图17
图16
22
全等三角形的六种基本模型
∠ = ∠. ∵ ∠ = 120∘ , ∠ = 60∘ , ∴ ∠ +
∠ = 60∘ . ∴ ∠ + ∠ = 60∘ . ∴ ∠ = ∠ =
∴ ∠ = ∠ + ∠ = 110∘ .
∴ ∠ = ∠ .
= ,
图9
在 △ 和 △ 中, ቐ∠ = ∠ , ∴ △ ≌ △ .
= ,
∴ = .
11
全等三角形的六种基本模型
初三数学几何专题 旋转--“对角互补 角含半角”模型
![初三数学几何专题 旋转--“对角互补 角含半角”模型](https://img.taocdn.com/s3/m/04980c02998fcc22bdd10da7.png)
“对角互补+角含半角”旋转模型知识点:1. 旋转的定义及其性质;2. 旋转对称图形和中心对称图形;3. 旋转的对角互补模型;4. 旋转的角含半角模型.教学目标:1. 理解旋转的定义和性质;2. 熟记旋转的模型;3. 知道旋转对角互补模型和角含半角模型的特点;4. 会根据旋转的对角互补模型和角含半角模型解决几何问题.教学重点:1. 会根据旋转的对角互补模型和角含半角模型解决几何问题.教学难点:1. 会根据旋转的对角互补模型和角含半角模型解决几何问题.难度 ★1、如图,在等腰直角三角形ABC 中,∠ABC=90°,D 为AC 边上的中点,过点D 作DE ⊥DF ,交AB 于点D ,交BC 于点F ,若AE=4,FC=3,则EF 的长为 .【思路点拨】连接BD ,根据的等腰直角三角形的性质证明△BED ≌△CFD (ASA ),得出AE=BF 、BE=CF ,由AE=BF=4,FC=BE=3,由勾股定理就可以求得EF 的长. 【解析】解:连接BD .∵D 是AC 中点,∴∠ABD=∠CBD=45°,BD=AD=CD ,BD ⊥AC ∵∠EDB+∠FDB=90°,∠FDB+∠CDF=90°,∴∠EDB=∠CDF ,在△BED 和△CFD 中,⎪⎩⎪⎨⎧∠∠CDF =EDB ∠CD =BD C=EBD ∠,∴△BED ≌△CFD (ASA ),∴BE=CF ;∵AB=BC ,BE=CF=3,∴AE=BF=4,在Rt △BEF 中,EF=22BF BE +=2243+=5; 故答案为:5.难度 ★2、如图,正方形ABCD 的边长为1,AB 、AD 上各存一点P 、Q ,若△APQ 的周长为2,求∠PCQ 的度数.【思路点拨】角含半角模型的倒推,需要旋转,将△APQ 的周长转化成正方形两边长之和,可得∠PCQ的度数.【解析】解:如图所示,△APQ 的周长为2,即AP+AQ+PQ=2①,正方形ABCD 的边长是1,即AQ+QD=1,AP+PB=1, ∴AP+AQ+QD+PB=2②, ①-②得,PQ -QD -PB=0, ∴PQ=PB+QD .延长AB 至M ,使BM=DQ .连接CM ,△CBM ≌△CDQ (SAS ), ∴∠BCM=∠DCQ ,CM=CQ ,∵∠DCQ+∠QCB=90°,∴∠BCM+∠QCB=90°,即∠QCM=90°, PM=PB+BM=PB+DQ=PQ .在△CPQ 与△CPM 中,CP=CP ,PQ=PM ,CQ=CM , ∴△CPQ ≌△CPM (SSS ), ∴∠PCQ=∠PCM=12∠QCM=45°.“图形的旋转”是近几年中考的必考内容,也是中考的热点和重点.运用旋转的全等变换,证明线段与角相等或和、差、倍、分关系,以及在旋转中探索图形的变化,进行图案中心对称选择是近几年中考的常见题型,研究图形旋转变换的变化规律,证明线段之间的数量关系是中考的重点题型,对Q PDCBA角互补和角含半角的旋转模型相对手拉手模型虽少些,但也是旋转模型的考查方向,所以要关注.知识点一 旋转(1)定义:在平面内,一个图形绕着一个定点旋转一定的角度得到另一个图形的变化叫作旋转,定点叫作旋转中心,旋转的角度叫作旋转角,如果一个图形上的点A 经过旋转变为A ’,那么这两个点叫做旋转的对应点.(2)性质:①对应点到旋转中心的距离相等; ②旋转前后图形的大小和形状没有改变;③两组对应点分别与旋转中心的连线所成的角相等,都等于旋转角; ④旋转中心是唯一不动的点. (3)旋转三要素:①定点﹣﹣﹣﹣旋转中心 ②旋转方向 ③旋转角度(4)旋转对称图形:在平面内,一个图形绕着一个定点旋转一定的角度后,能够与原图形重合,这样的图形叫旋转对称图形.中心对称图形:在平面内,一个图形绕某一定点旋转180°,能够和原来的图形完全重合,那么这个图形叫作中心对称图形,这个定点叫作对称中心.中心对称:把一个图形绕某一个点旋转180°。
2023年中考数学重难点复习:角含半角模型(附答案解析)
![2023年中考数学重难点复习:角含半角模型(附答案解析)](https://img.taocdn.com/s3/m/cc4e5d362bf90242a8956bec0975f46527d3a70d.png)
=270°-(180°-∠DNC)
=135°.
(3) ,证明如下:
如图,将△ADN绕点A顺时针旋转90°,得到△ABE,连结EM.
易得AE=AN.∠MAE=∠MAN=45°,∠EBM=90°,
所以△A ME≌△AMN.(SAS).
则ME=MN.
在Rt△BME中,
所以 .
DH= AD=40m,AH= AD=40 m.
而DF=40( -1)m.
所以∠EAF=∠GAF=45°.
可得△EAF≌△GAF(SAS).
所以EF=GF=80m+40( -l)m≈109. 2m.
例2如图,正方形ABCD的边长为a,BM、DN分别平分正方形的两个外角,且满足∠MAN=45°.连结MC、NC、MN.
所以△AEF∽△AIF(SAS),
所以EF=IF=DI+DF=BE+DF.
(2)因为△AEF∽△AIF,AG⊥EF,AD⊥IF,
所以AG=AD.
(3)由∠HAF=∠HDF=45°可得A,D,F,H四点共圆,
从而∠AHF=-∠ADF=90°,
即FH⊥AE.
【拓展】①如图,在正方形ABCD中,点E,F分别在边CB,DC的延长线上,∠EAF=45°,连结EF,则EF=DF-BE.
可以通过旋转、翻折的方法来证明,如图:
②将等腰直角三角形变成任意的等腰三角形:如图,在△ABC中,AB=AC,点D,E在BC上,且∠DAE= ∠BAC,则以BD,DE,EC为三边长的三角形有一个内角度数为180°-∠BAC.
可以通过旋转、翻折的方法将BD,DE,EC转移到一个三角形中,如图:
2. 正方形角含半角
(2)方法一(旋转法):如图1,将△ABD绕点A逆时针旋转90°得到△ACF,连结EF.
相似三角形中的基本模型-半角模型(解析版)
![相似三角形中的基本模型-半角模型(解析版)](https://img.taocdn.com/s3/m/9bc7b21ebf23482fb4daa58da0116c175f0e1e32.png)
相似三角形中的基本模型--半角模型相似三角形在中考数学几何模块中占据着重要地位。
相似三角形与其它知识点结合以综合题的形式呈现,其变化很多,难度大,是中考的常考题型。
如果大家平时注重解题方法,熟练掌握基本解题模型,再遇到该类问题就信心更足了。
本专题就半角模型进行梳理及对应试题分析,方便掌握。
模型1.半角模型(相似模型)【常见模型及结论】1)半角模型(正方形中的半角相似模型)条件:已知,如图,在正方形ABCD中,∠EAF的两边分别交BC、CD边于M、N两点,且∠EAF=45°结论:如图1,△AMN∽△AFE且AFAM=AEAN=EFMN=2.(思路提示:∠ANM=∠AEF,∠AMN=∠AFE);图1图2结论:如图2,△MAN∽△MDA,△NAM∽△NBA;结论:如图3,连接AC,则△AMB∽△AFC,△AND∽△AEC.且AFAM=ACAB=2;图3图4结论:如图4,△BME∽△AMN∽△DFN.2)半角模型(特殊三角形中的半角相似模型)(1)含45°半角模型图1图2条件:如图1,已知∠BAC=90°,∠ABC=∠ACB=∠DAE=45°;结论:①△ABE∽△DAE∽△DCA;②ABBE=ADAE=CDAC;③AB⋅AC=BE⋅CD(AB2=BE⋅CD)(2)含60°半角模型条件:如图1,已知∠BAC=120°,∠ADE=∠DAE=60°;结论:①△ABD∽△CAE∽△CBA;②ADBD=CEAE=ACAB;③AD⋅AE=BD⋅CE(DE2=BD⋅CE)1(2023·山东济南·九年级期中)如图,在正方形ABCD中,点E、F分别是BC、DC边上的两点,且∠EAF=45°,AE、AF分别交BD于M,N.下列结论:①AB2=BN⋅DM;②AF平分∠DFE;③AM⋅AE=AN⋅AF;④BE+DF=2MN.其中正确的结论是()A.①②③④B.①②③C.①③D.①②【答案】A【分析】①转证AB:BN=DM:AB,因为AB=AD,所以即证AB:BN=DM:AD.证明△ABN∽△MDA;②把△ABE绕点A逆时针旋转90°,得△ADH证明△AFH≌△AFE(SAS);③即证AM:AN=AF:AE,证明△AMN∽△AFE(两角相等);④由②得BE十DF=EF,当E点与B点重合、F与C重合时,根据正方形的性质,结论成立.【详解】①∵∠BAN=∠BAM+∠MAN=∠BAM+45°,∠AMD=∠ABM+∠BAM=45°+∠BAM,∴∠BAN=∠AMD.又∠ABN=∠ADM=45°,∴△ABN∽△MDA,∴AB:BN=DM:AD,∵AD=AB,∴AB2=BN⋅DM.故①正确;②如图,把△ABE绕点A逆时针旋转90°,得到△ADH,∵∠BAD=90°,∠EAF=45°,∴∠BAE+∠DAF=45°.∴∠EAF=∠HAF,∵AE=AH,AF=AF,∴△AEF≌△AHF,∴∠AFH =∠AFE ,即AF 平分∠DFE ,故②正确;③∵AB ∥CD ,∴∠DFA =∠BAN ,∵∠AFE =∠AFD ,∠BAN =∠AMD ,∴∠AFE =∠AMN ,又∠MAN =∠FAE ,∴△AMN ∽△AFE ,∴AM :AF =AN :AE ,即AM ·AE =AN ·AF ,故③正确;④由②得BE +DF =DH +DF =FH =FE ,过A 作AO ⊥BD ,作AG ⊥EF ,则△AFE 与△AMN 的相似比就是AG :AO ,易证△ADF ≌△AGF (AAS ),则可知AG =AD =2AO ,从而得证,故④正确,故选:A .【点睛】此题考查了正方形的性质、相似(包括全等)三角形的判定和性质、旋转的性质等知识点,综合性极强,难度较大.2(2023·山东滨州·统考中考模拟)如图,在矩形ABCD 中,AB =2,BC =4,点E 、F 分别在BC 、CD 上,若AE =5,∠EAF =45°,则AF 的长为.【答案】4103【分析】取AB 的中点M ,连接ME ,在AD 上截取ND =DF ,设DF =DN =x ,则NF =2x ,再利用矩形的性质和已知条件证明△AME ∽△FNA ,利用相似三角形的性质:对应边的比值相等可求出x 的值,在直角三角形ADF 中利用勾股定理即可求出AF 的长.【详解】解:取AB 的中点M ,连接ME ,在AD 上截取ND =DF ,设DF =DN =x ,∵四边形ABCD 是矩形,∴∠D =∠BAD =∠B =90°,AD =BC =4,∴NF =2x ,AN =4-x ,∵AB =2,∴AM =BM =1,∵AE =5,AB =2,∴BE =1,∴ME =BM 2+BE 2=2,∵∠EAF =45°,∴∠MAE +∠NAF =45°,∵∠MAE +∠AEM =45°,∴∠MEA =∠NAF ,∴△AME ∽△FNA ,∴AM FN =ME AN ,∴12x=24-x ,解得:x =43∴AF =AD 2+DF 2=4103故答案为4103.【点睛】本题考查了矩形的性质、相似三角形的判断和性质以及勾股定理的运用,正确添加辅助线构造相似三角形是解题的关键.3(2023·福建龙岩·统考一模)如图,∠ACB =90°,AC =BC ,∠DCE =45°,如果AD =3,BE =4,则BC 的长是( ).A.5B.52C.62D.7【答案】C【详解】分析:由于△ABC中,AC=BC,∠ACB=90°,设DE=x,则AB=7+x,可以得出△ACE∽△CDE∽△BDC,根据相似三角形的性质,列出关于x方程,解出x,再计算BC的长.详解:设DE=x,则AB=7+x.∵∠ACB=90°,AC=BC,∴∠DCE=∠CAE=∠DBC=45°∴△ACE∽△CDE∽△BDC,设CD=a,CE=b,则有以下等式:x:b=b:3+x,x:a=a:4+x,x:a=b:AC,整理得:b2=x(x+3),a2=x(x+4),x•AC=ab,x2(x+3)(x+4)=a2b2=x2•AC2=x2(x+7)22,解得:x=5;∴AB=12,∴AC=BC=62.故选C.点睛:本题主要考查了三角形相似的性质和判定、等腰直角三角形的性质,以及列方程求解的能力.4(2023·广东·九年级专题练习)如图,ΔABC中,∠BAC=120°,AB=AC,点D为BC边上的点,点E为线段CD上一点,且CE=1,AB=23,∠DAE=60°,则DE的长为.【答案】7 3【分析】利用含30°角的直角三角形的性质及图形的相似可求DE的长.【详解】解:如图,作AF⊥BC于F,作EG⊥AC于G.∵ΔABC中,∠BAC=120°,AB=AC.∴∠B=∠C=30°.在R tΔCEG中,∠C=30°.∴EG=12CE=12,CG=32.∴AG=23-32=332.∵AF⊥BC.∴∠AFC=90°.∴AF=12AC=3.∵∠DAE=60°=∠FAC.∴∠DAF=∠EAG.∵∠AFD=∠AGE=90°.∴ΔADF∽ΔAGE.∴AF AG =DFEG,即3332=DF12.∴DF=13.由勾股定理得:AE2=AG2+EG2=AF2+EF2.∴EF2=3322+12 2-(3)2=4.∴EF=2.DE=2+13=73故答案为:73【点睛】本题考查含30°角的直角三角形的性质及相似三角形的判定,作辅助线构造直角三角形是求解本题的关键.5(2023·辽宁沈阳·统考二模)在菱形ABCD中,∠B=60°.点E,F分别在边BC,CD上,且BE= CF.连接AE,AF.(1)如图1,连接EF ,求证:△AEF 是等边三角形;(2)AG 平分∠EAF 交BC 于点G .①如图2,AG 交EF 于点M ,点N 是BC 的中点,当BE =4时,求MN 的长.②如图3,O 是AC 的中点,点H 是线段AG 上一动点(点H 与点A ,点G 不重合).当AB =12,BE =4时,是否存在直线OH 将△ACE 分成三角形和四边形两部分,其中三角形的面积与四边形的面积比为1∶3.若存在,请直接写出AH AG 的值;若不存在,请说明理由.【答案】(1)见解析;(2)①MN =23;②12或57【分析】(1)证△ABE ≌△ACF ,根据有一个角是60°的等腰三角形是等边三角形证明即可;(2)①连接AN ,证△NAM ∽△BAE ,列出比例式,根据相似比即可求解;②分点H 为AG 中点和点N 为EC 中点两种情况,根据相似比,求出比值即可.【详解】解:(1)∵四边形ABCD 是菱形,∴AB =BC ,∵∠B =60°,∴△ABC 是等边三角形,∴AB =AC ,∠ACB =∠ACD =∠BAC =60°,∵BE =CF ,∴△ABE ≌△ACF ;∴AE =AF ,∴∠BAE =∠CAF ,∴∠EAF =60°,∴△AEF 是等边三角形;(2)①连接AN ,∵点N 是BC 的中点,∴∠ANB =90°,∵∠B =60°,∴∠BAN =30°,∴cos ∠BAN =AN AB=32,由(1)知,△AEF 是等边三角形,∠EAF =60°,AG 平分∠EAF∴∠AME =90°,∠EAM =30°,∴cos ∠EAM =AM AE=32,∠BAN -∠EAN =∠EAM -∠EAN ,即∠BAE =∠NAM ,∴△NAM ∽△BAE∴MN BE =AM AE,∴MN 4=32,∴MN =23②如图,当点H 为AG 中点时,即AH AG=12;∵O 是AC 的中点,∴OH ∥EC ,∴△AMO ∽△AEC ,∵AO AC =12,∴S △AMO S △AEC =14,即S △AMO S 四边形MECO=13;同理,如图所示,当点N 为EC 中点时,ON ∥AE ,S △CON S 四边形NEAO=13;连接FG ,作FP ⊥BC ,交BC 延长线与点P ,∵BE =CF =4,AB =BC =12,∴CE =8,∵CD ∥AB ,∴∠B =∠DCP =60°,∴∠CFP =30°,∴CP =2,FP =CF 2-CP 2=23,∵AE =AF ,AG =AG ,∠EAG =∠FAG ,∴△EAG ≌△FAG ,∴EG =FG ,设EG =x ,CG =8-x ,PG =10-x ,(10-x )2+(23)2=x 2,解得,x =5.6,∵EN =CN =4,AH AG =EN EG =45.6=57;综上,AH AG的值为:12或57.【点睛】本题考查了菱形的性质,等边三角形的判定与性质,解直角三角形,相似三角形的判定与性质,解题关键是熟练运用相关几何知识,构建几何模型证明相似或全等.6(2023山东九年级期中)如图,正方形ABCD 的对角线相交于点O ,点M ,N 分别是边BC ,CD 上的动点(不与点B ,C ,D 重合),AM ,AN 分别交BD 于点E ,F ,且∠MAN 始终保持45°不变.(1)求证:AF AM=22;(2)求证:AF ⊥FM ;(3)请探索:在∠MAN 的旋转过程中,当∠BAM 等于多少度时,∠FMN =∠BAM ?写出你的探索结论,并加以证明.【答案】(1)证明见解析;(2)证明见解析;(3)∠BAM =22.5.【分析】(1)先证明A 、B 、M 、F 四点共圆,根据圆内接四边形对角互补即可证明∠AFM =90°,根据等腰直角三角形性质即可解决问题.(2)由(1)的结论即可证明.(3)由:A .B 、M 、F 四点共圆,推出∠BAM =∠EFM ,因为∠BAM =∠FMN ,所以∠EFM =∠FMN ,推出MN ∥BD ,得到CMCB =CN CD,推出BM =DN ,再证明△ABM ≌△ADN 即可解决问题.【详解】解:(1)∵四边形ABCD 是正方形,∴∠ABD =∠CBD =45°,∠ABC =90°,∵∠MAN =45°,∴∠MAF =∠MBE ,∴A 、B 、M 、F 四点共圆,∴∠ABM +∠AFM =180°,∴∠AFM =90°,∴∠FAM =∠FMA =45°,∴AM =2AF ,∴AF AM=22.(2)由(1)可知∠AFM =90°,∴AF ⊥FM .(3)结论:∠BAM =22.5时,∠FMN =∠BAM理由:∵A 、B 、M 、F 四点共圆,∴∠BAM =∠EFM ,∵∠BAM =∠FMN ,∴∠EFM =∠FMN ,∴MN ∥BD ,∴CM CB =CN CD,∵CB =DC ,∴CM =CN ,∴MB =DN ,在△ABM 和△ADN 中,∵AB =AD ,∠ABM =∠ADN ,BM =DN ,∴△ABM ≌△ADN ,∴∠BAM =∠DAN ,∵∠MAN =45°,∴∠BAM +∠DAN =45°,∴∠BAM =22.5°.7(2022·广东深圳·统考二模)【教材呈现】(1)如图1,在同一平面内,将两个全等的等腰直角三角形ABC 和AFG 摆放在一起,点A 为公共顶点,∠BAC =∠G =90°,若△ABC 固定不动,将△AFG 绕点A 旋转,边AF ,AG 与边BC 分别交于点D ,E (点D 不与点B 重合,点E 不与点C 重合),则结论BE ⋅CD =AB 2是否成立(填“成立”或“不成立”);【类比引申】(2)如图2,在正方形ABCD 中,∠EAF 为∠BAD 内的一个动角,两边分别与BD ,BC 交于点E ,F ,且满足∠EAF =∠ADB ,求证:△ADE ∽△ACF ;【拓展延伸】(3)如图3,菱形ABCD 的边长为12cm ,∠BAD =120°,∠EAF 的两边分别与BD ,BC 相交于点E ,F ,且满足∠EAF =∠ADB ,若BF =9cm ,则线段DE 的长为cm .【答案】(1)成立;(2)证明见解析;(3)53cm .【分析】(1)根据等腰三角形性质得出∠DAC =∠AEB ,再证△BEA ∽△CAD 即可;(2)根据正方形性质得出∠CAF =∠DAE 即可;(3)如图3,在DE 上取一点M ,使∠MAD =30°,过M 作MN ⊥AD 于N ,根据四边形ABCD 为菱形,且∠BAD =120°,证出∠MAD =∠MDA =30°,再证△ACF ∽△AME ,求出AC =3AM ,利用菱形ABCD 的边长为12cm ,求出CF =3ME =3cm 即可.【详解】解:(1)结论BE ⋅CD =AB 2成立理由:如图1,∵△ABC 和△AFG 都是等腰直角三角形,∴∠B =∠C =∠FAG =45°∵∠DAC =∠CAE +45°,∠AEB =∠CAE +45°,∴∠DAC =∠AEB又∵∠B =∠C ,∴△BEA ∽△CAD ,∴BE AC =AB CD ,∵AC =AB ,∴BE ⋅CD =AB 2,故答案为:成立(2)证明:如图2,∵四边形ABCD 是正方形,∴∠CAD =∠ACB =∠ADB =45°,∵∠EAF =∠ADB ,∴∠EAF =∠CAD =45°,∴∠ACF +∠CAE =∠DAE +∠CAE ,∴∠CAF =∠DAE ,又∵∠ACB =∠ADB ,∴△ADE ∽△ACF ;(3)线段DE 的长为53cm理由:如图3,在DE 上取一点M ,使∠MAD =30°,过M 作MN ⊥AD 于N ,又∵四边形ABCD 为菱形,且∠BAD =120°,∴∠CAD =∠ACB =∠ADC =60°,∴∠MDA =12∠ADC =30°∴∠MAD =∠MDA =30°,∴∠AME =60°,∴∠AME =∠ACB =60°,∵∠CAD =60°,∠MAD =30°,∴∠CAM =30°,∵∠EAF =∠ADB ,∴∠EAF =∠CAM =30°,∴∠CAF =∠MAE ,∴△ACF ∽△AME ,∴CF ME =AC AM,∵AN =12AD ,AN =AM cos30°=32AM ,∴2AN =3AM ,2AN =AD ,∴MA =MD =33AD ,∵AD =AC ,∴AC =3AM ,∴CF ME =ACAM=3,∵菱形ABCD的边长为12cm,∴BC=AD=12cm,∵BF=9cm,∴CF=3ME=3cm,∴ME=3cm,∵MD=33AD,∴MD=33×12=43cm ,∴DE=ME+MD=43+3=53cm,∴线段DE的长为53cm.故答案为53.【点睛】本题考查等腰直角三角形性质,正方形性质,三角形相似判定与性质,菱形性质,锐角三角形函数,掌握等腰直角三角形性质,正方形性质,三角形相似判定与性质,菱形性质,锐角三角形函数是解题关键.课后专项训练1(2023·广东深圳·九年级校考阶段练习)如图,在正方形ABCD中,点E,F分别在边BC,DC上,AE、AF分别交BD于点M,N,连接CN、EN,且CN=EN.下列结论:①AN=EN,AN⊥EN;②BE+DF=EF;③∠DFE=2∠AMN;④EF2=2BM2+2DN2.其中正确结论的个数是()A.4B.3C.2D.1【答案】A【分析】将△ABE绕点A逆时针旋转90°,得到△ADH,则∠1=∠4,AE=AH,BE=DH,可证得△BNA ≌△BNC,从而得到AN=CN,∠NCE=∠BAN,进而得到∠NEC=∠NCE=∠BAN,再由四边形内角和定理可得AN=NE,AN⊥NE,故①正确;再证明△AFE≌△AFH,可得EF=FH=DF+DH=DF+ BE,∠AFH=∠AFE,故②正确;再由∠MAN=∠NDF=45°,∠ANM=∠DNF,可得∠AMN=∠AFD=∠AFE,从而得到∠DFE=2∠AMN,故③正确;再证明△AMN∽△AFE,△AEN是等腰直角三角形,可得AE=2AN,从而得到EF=2MN,将△ABM绕点A逆时针旋转90°,得到△ADG,则∠DAG=∠BAM,AM=AG,∠ADG=∠ABM=45°,证明△ANG≌△ANM,可得MN=GN,再由勾股定理,可得故④正确,即可求解.【详解】解:如图,将△ABE绕点A逆时针旋转90°,得到△ADH,则∠1=∠4,AE=AH,BE=DH,∵四边形ABCD是正方形,∴AB=BC=AD,∠BAD=∠ABC=90°,∠ABD=∠CBD=45°,在△BNA和△BNC中,BN=BN ∠NBA=∠BA=BCNBC∴△BNA≌△BNC,∴AN=CN,∠NCE=∠BAN,∵CN=EN,∴∠NEC=∠NCE=∠BAN,∵∠NEC+∠BEN=180°,∴∠BAN+∠BEN=180°,∴∠ABC+∠ANE=180°,∴∠ANE=90°,∴AN=NE,AN⊥NE,故①正确;∴∠3=∠AEN=45°,∵∠1=∠4,∴∠2+∠4=∠2+∠1=45°,∴∠3=∠FAH=45°,∵AF=AF,AE=AH,∴△AFE≌△AFH,∴EF=FH=DF+DH=DF+BE,∠AFH=∠AFE,故②正确;∵∠MAN=∠NDF=45°,∠ANM=∠DNF,∴∠AMN=∠AFD=∠AFE,又∵∠AFE=∠AFD,∠DFE=∠AFE+∠AFD,∴∠DFE=2∠AMN,故③正确;∵∠MAN=∠EAF,∠AMN=∠AFE,∴△AMN∽△AFE,∴NMEF =ANAE,∵AN=NE,AN⊥NE,∴△AEN是等腰直角三角形,∴AE=2AN,∴NMEF =ANAE=12,∴EF=2MN,如图,将△ABM绕点A逆时针旋转90°,得到△ADG,则∠DAG=∠BAM,AM=AG,∠ADG=∠ABM=45°,∴∠NDG=90°,即△GDN是直角三角形,∵∠MAN=45°,∴∠BAM+∠DAN=∠DAG+∠DAN=∠GAN=45°=∠MAN,∵AN=AN,∴△ANG≌△ANM,∴MN=GN,∴MN2=DN2+DG2=DN2+BM2,∴EF2=2MN2=2DN2+2BM2,故④正确;故选A.【点睛】本题考查正方形的性质、全等三角形的判定和性质、勾股定理、相似三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,学会利用旋转法,添加辅助线构造全等三角形解决问题.2(2022·广东深圳·统考一模)如图,正方形ABCD中,E是BC的中点,F在CD上,CF=2DF,连接AE,AF与对角线BD交于点M,N,连接MF,EN.给出结论:①∠EAF=45°;②AN⊥EN;③tan∠AMN=3;④DN:MN:BM=2:5:3.其中正确的是()A.①②③B.①②④C.①③④D.②③④【答案】A【分析】将△ABE顺时针旋转,使得AB与AD重合,此时得△ADG,将△AFD逆时针旋转,使得AD与AB 重合,此时得△ABH,根据∠HAF=∠GAE=90°,即可求得∠HAE=∠FAE=45°,①正确;根据∠HAE=∠FAE=45°可得△AMN∼△DFN,即可求tan∠AMN=tan∠DFN=ADDF =63=3,即可得③正确;根据如图正方形构造直角坐标系,求出直线AE、AF、BD的解析式,再联立解析式,即可求得M、N两点的坐标,再根据坐标求出DN、MN、BM、AN、NE,即可知AN=NE=3102,则有∠EAN=∠AEN=45°,则有∠ANE=90°,AN⊥NE,②正确;根据DN、MN、BM长度可知DN:MN:BM=3:5:4,④错误.【详解】将△ABE顺时针旋转,使得AB与AD重合,此时得△ADG,将△AFD逆时针旋转,使得AD与AB 重合,此时得△ABH,链接EF,如图所示:为了方便计算,设正方形的边长为6,则有AB=BC=CD=AD=6,则有BE=EC=3=DG,CF=4,DF=2=BH,∠BAE=∠DAG,则有:HE=5=FG,利用勾股定理,易求得:AH=AF=210,AE=AG=35,EF=5,BD=62,根据图形的旋转,可知∠HAB=∠FAD,∠BAE=∠DAG,∴∠HAF=∠GAE=90°,∵AH=AF,HE=5=FG,AE=AE,∴△AHE≅△AFE,同理可证得△AEF≅△AGF,∴∠HAE=∠FAE,又∵∠HAF=∠GAE=90°,∴∠HAE=∠FAE=45°,故①正确;∵∠HAE=∠FAE=45°,∠ANM=∠DNF,∴△AMN∼△DFN,同理可证△AMN∼△BME,∴∠AMN=∠DFN,∴tan∠AMN=tan∠DFN=ADDF =62=3,故③正确;以B为坐标原点O,AB所在的直线为y轴,以BC所在的直线为x轴,构建直角坐标系,则有A点坐标为(0,6),B点坐标为(0,0),C点坐标为(6,0),D点坐标为(6,6),F点坐标为(6,4),E点坐标为(3,0),则直线AF的解析式为:y=-13x+6,BD的解析式为y=x,AE的解析式为y=-2x+6,联立:y=-13x+6 y=x,得到N点坐标为:92,9 2,同理的M点坐标为(2,2),过M点作MP垂直于BC,交BC于P点,过N点作NQ垂直于DC,交DC于Q点,则有MP=2,DQ=DC-QC=6-92=32,则有BM=(2-0)2+(2-0)2=22,DN=6-9 22+6-922=322,则有MN=BD-BM-DN=62-22-322=522,则有:DN:MN:BM=322:522:22=3:5:4,故④错误;根据N点坐标为:92 ,92,A点坐标为:(0,6),E点坐标为:(3,0),可得AN=0-9 22+6-922=NE=3-922+0-922=3102,则在△AEN中,∠EAN=∠AEN=45°,∴∠ANE=90°,∴AN⊥NE,故②正确;故选:A.【点睛】本题考查了直角坐标系的构建、相似三角形以及坐标系中求解两点间距离等知识.准确作出辅助线并构建直角坐标系是解答本题的关键.3如图,正方形ABCD中,△ABC绕点A逆时针旋转到△AB C ,AB 、AC 分别交对角线BD于点E、F,若AE=4,则EF⋅ED的值为()A.4B.6C.8D.16【答案】D【分析】先根据正方形的性质、旋转的性质可得∠EAF=∠EDA=45°,再根据相似三角形的判定与性质即可得.【详解】∵四边形ABCD是正方形,∴∠BAC=∠EDA=45°,由旋转的性质得:∠B AC =∠BAC,∴∠B AC =∠EDA,即∠EAF=∠EDA,在△AEF和△DEA中,∠EAF=∠EDA ∠AEF=∠DEA,∴△AEF∼△DEA,∴EF AE =AEDE,即EF4=4DE,∴EF⋅DE=16,故选:D.【点拨】本题考查了正方形的性质、旋转的性质、相似三角形的判定与性质,熟练掌握相似三角形的判定与性质是解题关键.4如图,菱形ABCD的边长为4,E,F分别是AB,AD边上的动点,BE=AF,∠BAD=120°,则下列结论:①ΔBEC≌ΔAFC;②ΔECF为等边三角形;③∠AGE=∠AFC;④若AF=1,则GFGE=12.其中正确个数为()A.4B.3C.2D.1【答案】B【分析】由SAS证明△BEC≌△AFC,①正确;由全等三角形的形状得CE=CF,∠BCE=∠ACF,再由∠BCE+∠ECA=∠BCA=60°,得∠ACF+∠ECA=60°,得△CEF是等边三角形,②正确;由∠AGE=∠CAF+∠AFG=60°+∠AFG,∠AFC=∠CFG+∠AFG=60°+∠AFG,得∠AGE=∠AFC,故③正确;④过点E 作EM ∥BC 交AC 下点M 点,易证△AEM 是等边三角形,则EM =AE ,由AF ∥EM ,则△AFG ∽△MEG ,得④错误.【详解】解:①∵四边形ABCD 是菱形,∴AB =AD =4,∠BAC =∠CAD .∵∠BAD =120°,∴∠BAC =∠CAD =60°,∴ΔABC 和ΔACD 都是等边三角形,∴∠B =∠CAD =60°,BC =AC .∵BE =AF ,∴ΔBEC ≌ΔAFC SAS ,故①正确.②∵ΔBEC ≌ΔAFC ,∴CE =CF ,∠BCE =∠ACF .∵∠BCE +∠ECA =∠BCA =60°,∴∠ACF +∠ECA =60°,∴ΔCEF 是等边三角形,故②正确.③∵∠AGE =∠CAF +∠AFG =60°+∠AFG ,∠AFC =∠CFG +∠AFG =60°+∠AFG ,∴∠AGE =∠AFC ,故③正确.④过点E 作EM ∥BC 交AC 于点M ,∴∠AEM =∠B =60°,∠AME =∠ACB =60°,∴ΔAEM 是等边三角形,∴EM =AE .∵BE =AF =1,∴AE =AB -BE =4-1=3,∴EM =AE =3.∵AF ∥EM ,∴ΔAFG ~ΔMEG ,∴GF GE=AF EM =13﹐故④错误,正确个数为3.故选B .【点拨】本题考查了菱形的性质、等边三角形性质、全等三角形的判定与性质、相似三角形的判定与性质等知识;熟练掌握菱形的性质、全等三角形的判定与性质、相似三角形的判定与性质是解题的关键.5(2023·浙江绍兴·校联考三模)矩形ABCD 中,AB =6,AD =12,连接BD ,E ,F 分别在边BC ,CD 上,连接AE ,AF 分别交BD 于点M ,N ,若∠EAF =45°,BE =3,则DN 的长为.【答案】1255【分析】根据矩形的性质,由勾股定理得出BD ,延长AB 至P ,使PB =AB =6,过P 作BC 的平行线交DC 的延长线于Q ,得正方形APQD ,延长AE 交PQ 于H ,连接HF ,将△ADF 绕点A 顺时针旋转90°,点D 与点P 重合,得到△APG ,由旋转的性质可得PG =PF ,∠APG =∠ADF =90°,AG =AF ,∠PAG =∠DAF ,证出∠GAF =90°,得出∠GAH =∠FAH =45°,可证△AGH ≌△AFH ,得出GH =FH ,证出FH =DF +PH ,设DF =x ,则FQ =12-x ,利用勾股定理列出方程求出x =4,然后由DF ∥AB ,得△DFN ∽△BAN ,所以DF AB=DN BN =23,即可求出DN 的长.【详解】解:在矩形ABCD 中,∵∠BAD =90°,AB =6,AD =12,∴BD =AB 2+AD 2=62+122=65,如图,延长AB 至P ,使PB =AB =6,过P 作BC 的平行线交DC 的延长线于Q ,得正方形APQD ,延长AE交PQ于H,连接HF,将△ADF绕点A顺时针旋转90°,点D与点P重合,得到△APG,∵四边形APQD是正方形,∴AP=PQ=DQ=AD,∠PAD=∠APH=∠Q=∠ADQ=90°,由旋转得:△APG≌△ADF,∴PG=DF,∠APG=∠ADF=90°,AG=AF,∠PAG=∠DAF,∴∠PAG+∠PAF=∠PAF+∠DAF=90°,即∠GAF=90°,C ,P,H三点共线,∵∠HAF=45°,∴∠GAH=90°-45°=45°,∴∠GAH=∠FAH=45°,在△AGH和△AFH中,AG=AF∠GAH=∠FAH AH=AH,∴△AGH≌△AFH SAS ,∴GH=FH,∵GH=PG+PH=DF+PH,∴FH=DF+PH,设DF=x,则FQ=DQ-DF=12-x,∵AB=BP=6,BE∥PQ,∴AEEH =ABBP=1,∴AE=EH,∴PH=2BE=2×3=6,∴FH=DF+PH=6+x,HQ=12-6=6,在Rt△QFH中,由勾股定理得:FQ2+HQ2=FH2,∴(12-x2+62=x+62,解得:x=4,∴DF=4,∵DF∥AB,∴△DFN∽△BAN,∴DFAB =DN BN=23,∴DN=25BD=25×65=1255.故答案为:1255.【点睛】本题考查了正方形的性质,全等三角形的判定与性质,勾股定理,相似三角形的判定与性质等知识;证明三角形全等和由勾股定理得出方程是解题的关键.6(2023·成都市·九年级专题练习)如图,在Rt△ABC中,AB=AC,D、E是斜边BC上两点,且∠DAE=45°,将△ADC绕点A顺时针旋转90°后,得到△AFB,连接EF,下列结论:①△AED≌△AEF;②AEBE=ADCD;③△ABC的面积等于四边形AFBD的面积;④BE2+DC2=DE2;⑤BE=EF-DC;其中正确的选项是(填序号)【答案】①③④【分析】①根据旋转的性质知∠CAD=∠BAF,AD=AF,因为∠BAC=90°,∠DAE=45°,所以∠CAD+∠BAE=45°,可得∠EAF=45°=∠DAE,由此即可证明△AEF≌△AED;②当△ABE∽△ACD时,该比例式成立;③根据旋转的性质,△ADC ≌△ABF ,进而得出△ABC 的面积等于四边形AFBD 的面积;④据①知BF =CD ,EF =DE ,∠FBE =90°,根据勾股定理判断.⑤根据①知道△AEF ≌△AED ,得CD =BF ,DE =EF ;由此即可确定该说法是否正确.【详解】解:①根据旋转的性质知∠CAD =∠BAF ,AD =AF .∵∠BAC =90°,∠DAE =45°,∴∠CAD +∠BAE =45°,∴∠EAF =45°,∴△AED ≌△AEF ;故本选项正确;②∵AB =AC ,∴∠ABE =∠ACD ;∴当∠BAE =∠CAD 时,△ABE ∽△ACD ,∴AE BE =AD CD ;当∠BAE ≠∠CAD 时,△ABE 与△ACD 不相似,即AE BE ≠AD CD;∴此比例式不一定成立,故本选项错误;③根据旋转的性质知△ADC ≌△AFB ,∴S △ABC =S △ABD +S △ABF =S 四边形AFBD ,即三角形ABC 的面积等于四边形AFBD 的面积,故本选项正确;④∵∠FBE =45°+45°=90°,∴BE 2+BF 2=EF 2.∵△ADC 绕点A 顺时针旋转90°后,得到△AFB ,∴△AFB ≌△ADC ,∴BF =CD .又∵EF =DE ,∴BE 2+DC 2=DE 2,故本选项正确;⑤根据①知道△AEF ≌△AED ,得CD =BF ,DE =EF ,∴BE +DC =BE +BF >DE =EF ,即BE +DC >FE ,故本选项错误.综上所述:正确的说法是①③④.故答案为:①③④.【点睛】本题考查了图形的旋转变换以及全等三角形的判定等知识,三角形三边的关系,相似三角形的性质与判定,解题时注意旋转前后对应的相等关系.7(2023·上海宝山·校考一模)如图,在△ABC 中,AB =AC ,点D 、E 在边BC 上,∠DAE =∠B =30°,且AD AE=32,那么DE BC 的值是.【答案】13318-1.【分析】由已知可得△ABE ∼△DAE ,从而可知AB BE =AD AE=32,AE 2=BE ∙DE ,设AB =3x ,则BE =2x ,再利用勾股定理和等腰三角形性质用x 表示DE 和BC ,从而解答【详解】解:∵∠BAE =∠DAE +∠BAD ,∠ADE =∠B +∠BAD ,又∵∠DAE =∠B =30°,∴∠BAE =∠ADE ,∴△ABE ∼△DAE ,∴AB BE =AD AE =32,AE 2=BE ∙DE ,过A 点作AH ⊥BC ,垂足为H ,设AB =3x ,则BE =2x ,∵∠B =30°,∴AH =12AB =32x ,BH =332AB =332x ,∴EH =BH -BE =332-2 x ,在Rt △AHE 中,AE 2=AH 2+EH 2=32x 2+332x -2x 2=13-63 x 2,又∵AE 2=BE ∙DE ,∴13-63 x 2=2x ∙DE ,∴DE =13-632x ,∵AB =AC ,AH ⊥BC ,∴BC =2BH =33x ,∴DE BC=13-632x 33x =13318-1,故答案为:DE BC =13-632x 33x=13318-1 .【点睛】本题考查了相似三角形的判定和性质、等腰三角形的性质以及勾股定理,利用三角形相似得到AB 与BE 的关系是解题的关键.8(2023春·辽宁沈阳·八年级统考期中)通过类比联想、引申拓展研究典型题目,可达到解一题知一类的目的.下面是一个案例,请补充完整.原题:如图1,点E ,F 分别在正方形ABCD 的边BC ,CD 上,∠EAF =45°,连接EF ,则EF =BE +DF ,试说明理由.(1)思路梳理∵AB =CD ,∴把△ABE 绕点A 逆时针旋转90°至△ADG ,可使AB 与AD 重合.∵∠ADC =∠B =90°,∠FDG =180°,∴点F ,D ,G 共线.根据(从“SSS ,ASA ,AAS ,SAS ”中选择填写),易证△AFG ≌,得EF =BE +DF .(2)类比引申如图2,四边形ABCD 中,AB =AD ,∠BAD =90°,点E ,F 分别在边BC ,CD 上,∠EAF =45°.若∠B ,∠D 都不是直角,则当∠B 与∠D 满足等量关系时,仍有EF =BE +DF .(3)联想拓展如图3,在△ABC 中,∠BAC =90°,AB =AC ,点D ,E 均在边BC 上,且∠DAE =45°.猜想BD ,DE ,EC 应满足的等量关系,并写出推理过程.(4)思维深化如图4,在△ABC 中,∠BAC =60°,AB =AC ,点D ,E 均在直线BC 上,点D 在点E 的左边,且∠DAE =30°,当AB =4,BD =1时,直接写出CE 的长.【答案】(1)SAS,△AFE(2)∠B+∠D=180°(3)DE2=BD2+EC2,理由见解析(4)CE的长为87或83【分析】(1)把△ABE绕点A逆时针旋转90°至△ADG,可使AB与AD重合,再证明△AFE≌△AFG进而得到EF=FG,即可证明结论;(2)∠B+∠D=180°时,EF=BE+DF与(1)的证法类同;(3)把△AEC绕点A顺时针旋转90°得到△ABE ,连接DE ,根据旋转的性质,可知△AEC≌△ABE 得到BE =EC、AE =AE、∠C=∠ABE 、∠EAC=∠E AB,,根据Rt△ABC中的,AB=AC得到∠E BD=90°,所以E B2+BD2=E D2,证△AE D≌△AED,利用DE =DE 得到DE2=BD2+EC2;(4)分两种情况:点D在BC边上或点D在BC的延长线上,①当点D在BC边上时,过点A作AF⊥BC于点F,过点D作DG⊥AB于点G,利用三角函数求出BG,DG,AF,再证明△AFE∽△AGD,运用相似三角形性质即可求出EF,再由CE=CF-EF可求得CE;②当点D在CB的延长线上时,过点A作AF⊥BC于点F,过点D作DG⊥AB于点G,与①同理可求得EF,再由CE=CF+EF求出CE即可.【详解】(1)解:∵AB=AD,∴把△ABE绕点A逆时针旋转90°至△ADG,可使AB与AD重合.∴∠BAE=∠DAG,∵∠BAD=90°,∠EAF=45°,∴∠BAE+∠DAF=45°,∴∠EAF=∠FAG,∵∠ADC=∠B=90°,∴∠FDG=180°,点F、D、G共线,在△AFE和△AFG中,AE=AG∠EAF=∠FAG AF=AF,∴△AFE≌△AFG SAS ,∴EF=FG,即:EF=BE+DF.故答案为:SAS,△AFE;(2)解:∠B+∠D=180°时,EF=BE+DF,理由如下:∵AB=AD,∴如图2:把△ABE绕点A逆时针旋转90°至△ADG,可使AB与AD重合,∴∠BAE=∠DAG,∵∠BAD=90°,∠EAF=45°,∴∠BAE+∠DAF=45°,∴∠EAF=∠FAG,∵∠ADC+∠B=180°,∴∠FDG=180°,点F、D、G共线,在△AFE和△AFG中,AE=AG∠FAE=∠FAG AF=AF,∴△AFE≌△AFG SAS ,∴EF=FG,即:EF=BE+DF.故答案为:∠B+∠D=180°;(3)解:猜想:DE2=BD2+EC2.理由如下:如图3:把△AEC绕点A顺时针旋转90°得到△ABE ,连接DE ,∴△AEC≌△ABE ,∴BE =EC,AE =AE,∠C=∠ABE ,∠EAC=∠E AB,在Rt△ABC中,AB=AC,∴∠ABC=∠ACB=45°,∴∠ABC+∠ABE'=90°,即∠E BD=90°,∴E B2+BD2=E D2,又∵∠DAE=45°,∴∠BAD+∠EAC=45°,∴∠E AB+∠BAD=45°,即∠E AD=45°,在△AE D和△AED中,AE =AE∠E AD=∠DAE AD=AD,∴△AE D≌△AED SAS ,∴DE=DE ,∴DE2=BD2+EC2;(4)解:点D,E均在直线BC上,点D在点E的左侧,BD=1,∴分两种情况:点D在BC边上或点D在CB的延长线上,①当点D在BC边上时,如图4-1,过点A作AF⊥BC于点F,过点D作DG⊥AB于点G,∵AB=AC=4,∠BAC=60°,∴BF=CF=2,∠BAF=∠CAF=30°,AF=3BF=23,∵∠AGD=90°,∠B=60°,BD=1,∴BG=12BD=12,DG=3BG=32,∴AG=AB-BG=4-12=72,∵∠DAE=30°,∴∠DAF+∠BAD=∠DAF+∠FAE=30°,∴∠BAD=∠FAE,∵∠AFE=∠AGD=90°,∴△AFE∽△AGD,∴EFDG =AFAG,∴EF32=2372,∴EF=67,∴CE=CF-EF=2-67=87;②当点D在CB的延长线上时,如图4-2,过点A作AF⊥BC于点F,过点D作DG⊥AB于点G,由①知,BF=CF=2,∠BAF=∠CAF=30°,∵∠DGB=90°,∠DBG=∠ABC=60°,∴BG=12BD=12,DG=3BG=32,∴AG=AB+BG=4+12=92,∵∠DAE=∠BAF=30°,∴∠DAG+∠BAE=∠BAE+∠EAF,∴∠DAG=∠EAF,∴△DAG∽△EAF,∴EFDG =AF AG,∴EF32=2392,∴EF=23,∴CE=CF+EF=2+23=83.综上所述,CE的长为87或83.【点睛】本题主要考查了全等三角形的判定和性质、相似三角形的判定和性质、旋转变换的性质、三角函数定义、勾股定理的应用等知识点,掌握全等三角形的判定定理和性质定理、相似三角形的判定和性质,合理添加辅助线并灵活运用分类讨论思想是解题的关键.9(2023·陕西西安·九年级校考期中)问题研究,如图,在等腰△ABC中,AB=AC,点D、E为底边BC 上的两个动点(不与B、C重合),且∠DAE=∠B.(1)请在图中找出一个与△ABE相似的三角形,这个三角形是;(2)若∠BAC=90°,分别过点D、E作AB、AC的垂线,垂足分别为F、G,且DF、EG的反向延长线交于点M,若AB=1,求四边形AFMG的面积;问题解决(3)如图所示,有一个矩形仓库ABCD,其中AB=40米,AD=30米,现计划在仓库的内部的E、F两处分别安装监控摄像头,其中点E在边BC上,点F在边DC上.设计要求∠EAF=45°且CE=CF,则CE的长应为多少米?【答案】(1)ΔDAE;(2)四边形的面积为12;(3)CE的长为70+45385米.【分析】(1)根据已知条件及相似三角形的判定可直接得出;(2)把ΔABD绕点A逆时针旋转90°得到ΔACH,连接EH,根据旋转可得ΔABD≅ΔACH,利用三角形全等的性质得出BD=CH,AD=AH,∠ACH=∠B,利用角和边之间的关系可得:ΔCEH为直角三角形,根据勾股定理及等量代换得出CE2+BD2=EH2,根据全等三角形的判定得出ΔHAE≅ΔDAE,得EH=DE,再求出各三角形的面积确定SΔCGE+SΔBDF=SΔDEM,再根据图形中三角形的关系得出S四边形AFMG=SΔABC,即可求得四边形面积;(3)根据(2)中思路,作图:延长AD到S,延长BC到G,使AS=BG=AB,连接SG,延长AF交SG于点H,连接EH,延长GS到T,使ST=BE,连接AT,则四边形ABGS为正方形,根据全等三角形的判定定理得出ΔATH≅ΔAEH,根据全等三角形的性质及等量代换得出∠HAT=∠HAE,再利用三角形全等的判定证明ΔATH≅ΔAEH,设CE=CF=x,可得出ST=30-x,GE=x+10,DF=40-x,在根据相似三角形的判定和性质得出ADAS=DFSH,将各边代入得出SH,HE,GH,在RtΔADF中,利用勾股定理得出方程求解即可.【详解】解:(1)∵∠AEB=∠DEA,∠B=∠DAE,∴ΔDAE~ΔABE,故答案为:ΔDAE;(2)如图所示:把ΔABD绕点A逆时针旋转90°得到ΔACH,连接EH,∴ΔABD≅ΔACH,∠DAH=90°,∴BD=CH,AD=AH,∠ACH=∠B,∵∠BAC=90°,AB=AC,∴∠B=∠ACB=45°,∴∠ACH=45°,∴∠ECH=∠ACB+∠ACH=90°,∴CE2+CH2=EH2,∴CE2+BD2=EH2,∵∠DAE=∠B,∴∠DAE=45°,∵∠DAH=90°,∴∠HAE=∠DAE=45°,在ΔHAE和ΔDAE中,AH=AD∠HAE=∠DAE AE=AE,∴ΔHAE≅ΔDAE,∴EH=DE,∴CE2+BD2=DE2,∵MG⊥AC于点G,∠ACB=45°,∴∠DEM=∠CEG=∠ACB=45°,∴CG=EG,∴CE2=2CG2,∵SΔCGE=12×CG×CE=CG22,∴SΔCGE=CE24,同理可得:SΔBDF =BD24,在ΔDEM中,∠DEM=∠EDM=45°,∴∠M=90°,同理可得:SΔDEM=DE2 4,∵CE2+BD2=DE2,∴SΔCGE+SΔBDF=SΔDEM,∴S四边形AFMG =S五边形AFDEG+SΔCGE+SΔBDF,即S四边形AFMG=SΔABC,∵SΔABC=12×AB×AC=12,∴S四边形AFMG=12,即四边形的面积为12;(3)如图,延长AD到S,延长BC到G,使AS=BG=AB,连接SG,延长AF交SG于点H,连接EH,延长GS到T,使ST=BE,连接AT,则四边形ABGS为正方形,∴BG=GS=AS=AB=40,DS=CG=40-30=10,在ΔABE和ΔAST中,AB=AS∠ABE=∠ASTBE=ST,∴∠BAE=∠SAT,AB=AT,∴∠HAT=∠HAS+∠SAT=∠HAS+∠BAE=45°,,∴∠HAT=∠HAE,在ΔATH和ΔAEH中,AT=AE∠HAT=∠HAEAH=AH,∴ΔATH≅ΔAEH,∴HT=HE,设CE=CF=x,则ST=BE=BC-CE=30-x,GE=x+10,DF=40-x,∵DF∥SH,∴ΔADF~ΔASH,∴ADAS=DFSH,即:3040=40-xSH,解得:SH=160-4x3,∴HE=HT=HS+ST=160-4x3+30-x=250-7x3,GH=GS-SH=40-160-4x3=4x-403,∴在Rt ΔADF 中,x +10 2+4x -4032=250-7x 3 2,解得:x 1=70+45385,x 2=70-45385(舍去),即CE 的长为70+45385米.【点睛】题目主要考查相似三角形的判定和性质、全等三角形的判定和性质、勾股定理、一元二次方程的运用求解等,根据题意作出相应辅助线,融会贯通综合运用这些知识点是解题关键.10(2023·陕西汉中·九年级统考期末)如图,△ABC 中,∠BAC =120°,AB =AC ,点D 为BC 边上一点.(1)如图1,若AD =AM ,∠DAM =120°.①求证:BD =CM ;②若∠CMD =90°,求BD CD的值.(2)如图2,点E 为线段CD 上一点,且CE =4,AB =63,∠DAE =60°,求DE 的长.【答案】(1)①见解析,②BD CD=12(2)6.5【分析】(1)①通过证明△ABD ≌△ACM ,即可求证;②由①可得BD =CM ,再根据等边对等角求出∠ACM 和∠ACB 的度数,即可得出∠MCD =60°,最后根据直角三角形中30°角所对的边是斜边的一半即可求证;(2)过点E 作EG ⊥AC 于G ,过A 作AF ⊥BC 于F ,证明△ADF ∽△AEG ,可以求出DF ,利用勾股定理可以求出EF 的长,从而可以求解.【详解】(1)证明:①∵∠BAC =120°,∠DAM =120°,∴∠BAC -∠CAD =∠DAM -∠CAD ,即∠BAD =∠MAC ,在△ABD 和△ACM 中,AB =AC∠BAD =∠MAC AD =AM,∴△ABD ≌△ACM SAS ,∴BD =CM ;②∵∠BAC =120°,AB =AC ,∴∠ACB =12180°-120° =30°,由①可得:△ABD ≌△ACM ,∴∠ACM =∠ACB =30°,∴∠DCM =∠ACM +∠ACB =60°,∵∠CMD =90°,∴在△CDM 中,∠CDM =180°-90°-60°=30°,∴CM =12CD ,整理得:CM CD =12,由①可得BD =CM ,∴BD CD=12.(2)过点A 作AF ⊥BC 于点F ,过点E 作EG ⊥AC 于点G ,∵AB =AC ,∠BAC =120°,∴∠C =12180°-120° =30°,∵EG ⊥AC ,AB =AC =63,∴AF =12AC =33,在Rt △ACF 中,根据勾股定理可得:CF =AB 2-AF 2=9,∵CE =4,∴EF =CF -CE =9-4=5,∵EG ⊥AC ,∠C =30°,∴EG =12EC =2,在Rt △CEG 中,根据勾股定理可得:CG =CE 2-EG 2=23,∴AG =AC -CG =63-23=43,∵AB =AC ,∠BAC =120°,AF ⊥BC ,∴∠CAF =12∠BAC =60°,∵∠DAE =60°,∴∠DAE -∠EAF =∠CAF -∠EAF ,即∠DAF =∠EAG ,∵∠AFD =∠AGE =90°,∴△ADF ∽△AEG ,∴DF EG =AF AG ,即DF 2=3343,解得:DF =32,∴DE =DF +EF =32+5=6.5.【点睛】本题主要考查了全等三角形的性质与判定,等腰三角形的性质,含30度角的直角三角形的性质,勾股定理等等,解题的关键在于能够熟练掌握相关知识进行求解.11(2023·辽宁沈阳·九年级统考期末)【教材呈现】(1)如图1,在同一平面内,将两个全等的等腰直角三角形ABC 和AFG 摆放在一起,A 为公共顶点,∠BAC =∠G =90°,BC =6,若△ABC 固定不动,将△AFG 绕点A 旋转,边AF 、AG 与边BC 分别交于点D ,E (点D 不与点B 重合,点E 不与点C 重合)①求证:AE 2=DE •BE ;②求BE •CD 的值;【拓展探究】(2)如图2,在△ABC 中,∠C =90°,点D ,E 在边BC 上,∠B =∠DAE =30°,且AD =34AE ,请直接写出DE BC 的值.【答案】(1)①证明见解析;②18;(2)25318-2【分析】(1)①只需要证明△ABE ∽△DAE ,得到AE DE =BE AE,即可推出AE 2=DE ∙BE ;②先证明∠AEB =∠DAC ,则可证△AEB ∽△DAC ,推出BE ∙CD =AB ∙CA ,然后利用勾股定理求出AB =AC =32,即可得到BE ∙CD =AB ∙CA =18;(2)设AD =3x ,AE =4x ,先证明△ADE ∽△BDA ,推出BD AB =AD AE =34,设BD =3y ,AB =4y ,得到DE =AE ⋅AD AB=3x 2y ,求出AC =2y ,BC =23y ,则CD =BC -BD 23-3 y 在直角△ACD 中,AD 2=CD 2+AC 2,则9x 2=23-3 2y 2+4y 2,即可推出x 2y2=25-1239,由此求解即可.【详解】解:(1)①∵△ABC 和△AGF 都是等腰直角三角形,∠BAC =∠G =90°,∴∠B =∠C =∠GAF =。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中考数学几何模型5:角含半角模型名师点睛拨开云雾开门见山角含半角模型,顾名思义即一个角包含着它的一半大小的角。
它主要包含:等腰直角三角形角含半角模型;正方形中角含半角模型两种类型。
解决类似问题的常见办法主要有两种:旋转目标三角形法和翻折目标三角形法。
类型一:等腰直角三角形角含半角模型(1)如图,在△ABC中,AB=AC,∠BAC=90°,点D,E在BC上,且∠DAE=45°,则:BD2+CE2=DE2.图示(1)作法1:将△ABD旋转90°作法2:分别翻折△ABD,△ACE(2)如图,在△ABC中,AB=AC,∠BAC=90°,点D在BC上,点E在BC延长线上,且∠DAE=45°,则:BD2+CE2=DE2.图示(2)(3)如图,将等腰直角三角形变成任意等腰三角形时,亦可以进行两种方法的操作处理..任意等腰三角形类型二:正方形中角含半角模型(1)如图,在正方形ABCD中,点E,F分别在边BC,CD上,∠EAF=45°,连接EF,过点A作AG⊥于EF于点G,则:EF=BE+DF,AG=AD.图示(1)作法:将△ABE绕点A逆时针旋转90°(2)如图,在正方形ABCD中,点E,F分别在边CB,DC的延长线上,∠EAF=45°,连接EF,则:EF=DF-BE.图示(2)作法:将△ABE绕点A逆时针旋转90°(3)如图,将正方形变成一组邻边相等,对角互补的四边形,在四方形ABCD中,AB=AD,∠BAD+∠C=180°,点E,F分别在边BC,CD上,∠EAF=12∠BAD,连接EF,则:EF=BE+DF.图示(3)作法:将△ABE绕点A逆时针旋转∠BAD的大小典题探究启迪思维探究重点例题1. 如图,正方形ABCD的边长为4,点E,F分别在AB,AD上,若CE=5,且∠ECF=45°,则CF 的长为.变式练习>>>1.如图四边形ABCD中,AD∥BC,∠BCD=90°,AB=BC+AD,∠DAC=45°,E为CD上一点,且∠BAE=45°.若CD=4,则△ABE的面积为()A.B.C.D.例题2. 在正方形ABCD中,连接BD.(1)如图1,AE⊥BD于E.直接写出∠BAE的度数.(2)如图1,在(1)的条件下,将△AEB以A旋转中心,沿逆时针方向旋转30°后得到△AB′E′,AB′与BD交于M,AE′的延长线与BD交于N.①依题意补全图1;②用等式表示线段BM、DN和MN之间的数量关系,并证明.(3)如图2,E、F是边BC、CD上的点,△CEF周长是正方形ABCD周长的一半,AE、AF分别与BD 交于M、N,写出判断线段BM、DN、MN之间数量关系的思路.(不必写出完整推理过程)变式练习>>>2. (1)【探索发现】如图1,正方形ABCD中,点M、N分别是边BC、CD上的点,∠MAN=45°,若将△DAN绕点A顺时针旋转90°到△BAG位置,可得△MAN≌△MAG,若△MCN的周长为6,则正方形ABCD的边长为3.(2)【类比延伸】如图(2),四边形ABCD中,AB=AD,∠BAD=120°,∠B+∠D=180°,点M、N分别在边BC、CD 上的点,∠MAN=60°,请判断线段BM,DN,MN之间的数量关系,并说明理由.(3)【拓展应用】如图3,四边形ABCD中,AB=AD=10,∠ADC=120°,点M,N分别在边BC,CD上,连接AM,MN,△ABM是等边三角形,AM⊥AD,DN=5(﹣1),请直接写出MN的长.例题3. 如图,在四边形ABCD中,AB=BC,∠A=∠C=90°,∠B=135°,K,N分别是AB,BC上的点,若△BKN的周长为AB的2倍,求∠KDN的度数.变式练习>>>3. 如图,正方形被两条与边平行的线段EF,GH分割成四个小矩形,P是EF与GH的交点,若矩形PFCH 的面积恰是矩形AGPE面积的2倍,试确定∠HAF的大小并证明你的结论.例题4. 如图,在四边形ABCD中,AB=AD,BC=CD,∠ABC=∠ADC=90°,∠MAN=∠BAD.(1)如图1,将∠MAN绕着A点旋转,它的两边分别交边BC、CD于M、N,试判断这一过程中线段BM、DN和MN之间有怎样的数量关系?直接写出结论,不用证明;(2)如图2,将∠MAN绕着A点旋转,它的两边分别交边BC、CD的延长线于M、N,试判断这一过程中线段BM、DN和MN之间有怎样的数量关系?并证明你的结论;(3)如图3,将∠MAN绕着A点旋转,它的两边分别交边BC、CD的反向延长线于M、N,试判断这一过程中线段BM、DN和MN之间有怎样的数量关系?直接写出结论,不用证明.达标检测领悟提升强化落实1. 请阅读下列材料:问题:正方形ABCD中,M,N分别是直线CB、DC上的动点,∠MAN=45°,当∠MAN交边CB、DC 于点M、N(如图①)时,线段BM、DN和MN之间有怎样的数量关系?小聪同学的思路是:延长CB至E使BE=DN,并连接AE,构造全等三角形经过推理使问题得到解决.请你参考小聪同学的思路,探究并解决下列问题:(1)直接写出上面问题中,线段BM,DN和MN之间的数量关系;(2)当∠MAN分别交边CB,DC的延长线于点M/N时(如图②),线段BM,DN和MN之间的又有怎样的数量关系?请写出你的猜想,并加以证明;(3)在图①中,若正方形的边长为16cm,DN=4cm,请利用(1)中的结论,试求MN的长.2. (1)如图1,在四边形ABCD中,AB=AD,∠B=∠D=90°,E、F分别是边BC、CD上的点,且∠EAF=∠BAD.试探究图中线段BE、EF、FD之间的数量关系.(1)小王同学探究此问题的方法是:延长EB到点G,使BG=DF,连结AG,先证明△ABG≌△ADF,再证明△AEG≌△AEF,可得出结论,他的结论应是.(2)如图2,在四边形ABCD中,AB=AD,∠B+∠D=180°,E、F分别是边BC、CD上的点,且∠EAF=∠BAD,上述结论是否仍然成立,并说明理由.(3)如图3,在四边形ABCD中,AB=AD,∠B+∠ADC=180°,E、F分别是边BC、CD延长线上的点,且∠EAF=∠BAD,(1)中的结论是否仍然成立?若成立,请证明;若不成立,请写出它们之间的数量关系,并证明.3. 小曼和他的同学组成了“爱琢磨”学习小组,有一次,他们碰到这样一道题:“已知正方形ABCD,点E、F、G、H分别在边AB、BC、CD、DA上,若EG⊥FH,则EG=FH.”为了解决这个问题,经过思考,大家给出了以下两个方案:方案一:过点A作AM∥HF交BC于点M,过点B作BN∥EG交CD于点N;方案二:过点A作AM∥HF交BC于点M,过点A作AN∥EG交CD于点N.…(1)对小曼遇到的问题,请在甲、乙两个方案中任选一个加以证明(如图(1)).(2)如果把条件中的“正方形”改为“长方形”,并设AB=2,BC=3(如图(2)),是探究EG、FH之间有怎样的数量关系,并证明你的结论.(3)如果把条件中的“EG⊥FH”改为“EG与FH的夹角为45°”,并假设正方形ABCD的边长为1,FH的长为(如图(3)),试求EG的长度.4. 已知:如图,正方形ABCD的边长为a,BM,DN分别平分正方形的两个外角,且满足∠MAN=45°,连接MC,NC,MN.(1)填空:与△ABM相似的三角形是_________,BM•DN=_________;(用含a的代数式表示)(2)求∠MCN的度数;(3)猜想线段BM,DN和MN之间的等量关系并证明你的结论.中考数学几何模型5:角含半角模型TH 名师点睛拨开云雾开门见山角含半角模型,顾名思义即一个角包含着它的一半大小的角。
它主要包含:等腰直角三角形角含半角模型;正方形中角含半角模型两种类型。
解决类似问题的常见办法主要有两种:旋转目标三角形法和翻折目标三角形法。
类型一:等腰直角三角形角含半角模型(1)如图,在△ABC中,AB=AC,∠BAC=90°,点D,E在BC上,且∠DAE=45°,则:BD2+CE2=DE2.图示(1)作法1:将△ABD旋转90°作法2:分别翻折△ABD,△ACE(2)如图,在△ABC中,AB=AC,∠BAC=90°,点D在BC上,点E在BC延长线上,且∠DAE=45°,则:BD2+CE2=DE2.图示(2)(3)如图,将等腰直角三角形变成任意等腰三角形时,亦可以进行两种方法的操作处理..任意等腰三角形类型二:正方形中角含半角模型(1)如图,在正方形ABCD中,点E,F分别在边BC,CD上,∠EAF=45°,连接EF,过点A作AG⊥于EF于点G,则:EF=BE+DF,AG=AD.图示(1)作法:将△ABE绕点A逆时针旋转90°(2)如图,在正方形ABCD中,点E,F分别在边CB,DC的延长线上,∠EAF=45°,连接EF,则:EF=DF-BE.图示(2)作法:将△ABE绕点A逆时针旋转90°(3)如图,将正方形变成一组邻边相等,对角互补的四边形,在四方形ABCD中,AB=AD,∠BAD+∠C=180°,点E,F分别在边BC,CD上,∠EAF=12∠BAD,连接EF,则:EF=BE+DF.图示(3)作法:将△ABE绕点A逆时针旋转∠BAD的大小典题探究启迪思维探究重点例题1. 如图,正方形ABCD的边长为4,点E,F分别在AB,AD上,若CE=5,且∠ECF=45°,则CF 的长为4.【解答】解:如图,延长FD到G,使DG=BE;连接CG、EF;∵四边形ABCD为正方形,在△BCE与△DCG中,,∴△BCE≌△DCG(SAS),∴CG=CE,∠DCG=∠BCE,∴∠GCF=45°,在△GCF与△ECF中,,∴△GCF≌△ECF(SAS),∴GF=EF,∵CE=5,CB=4,∴BE=3,∴AE=1,设AF=x,则DF=4﹣x,GF=1+(4﹣x)=5﹣x,∴EF==,∴(5﹣x)2=1+x2,∴x=,即AF=,∴DF=4﹣=,∴CF===4,故答案为:4.变式练习>>>1.如图四边形ABCD中,AD∥BC,∠BCD=90°,AB=BC+AD,∠DAC=45°,E为CD上一点,且∠BAE=45°.若CD=4,则△ABE的面积为()A.B.C.D.【解答】解法一:作AF⊥CB交CB的延长线于F,在CF的延长线上取一点G,使得FG=DE.∵AD∥BC,∴∠BCD+∠ADC=180°,∴∠ADC=∠BCD=∠AFC=90°,∴四边形ADCF是矩形,∵∠CAD=45°,∴AD=CD,∴四边形ADCF是正方形,∴AF=AD,∠AFG=∠ADF=90°,∴△AFG≌△ADE,∴AG=AE,∠F AG=∠DAE,∴∠F AG+∠F AB=∠EAD+∠F AB=45°=∠BAE,∴△BAE≌△BAG,∴BE=BG=BF+GF=BF+DE,设BC=a,则AB=4+a,BF=4﹣a,在Rt△ABF中,42+(4﹣a)2=(4+a)2,解得a=1,∴BC=1,BF=3,设BE=b,则DE=b﹣3,CE=4﹣(b﹣3)=7﹣b.在Rt△BCE中,12+(7﹣b)2=b2,解得b=,∴BG=BE=,∴S△ABE=S△ABG=××4=.例题2. 在正方形ABCD中,连接BD.(1)如图1,AE⊥BD于E.直接写出∠BAE的度数.(2)如图1,在(1)的条件下,将△AEB以A旋转中心,沿逆时针方向旋转30°后得到△AB′E′,AB′与BD交于M,AE′的延长线与BD交于N.①依题意补全图1;②用等式表示线段BM、DN和MN之间的数量关系,并证明.(3)如图2,E、F是边BC、CD上的点,△CEF周长是正方形ABCD周长的一半,AE、AF分别与BD 交于M、N,写出判断线段BM、DN、MN之间数量关系的思路.(不必写出完整推理过程)【解答】解:(1)∵BD是正方形ABCD的对角线,∴∠ABD=∠ADB=45°,∵AE⊥BD,∴∠ABE=∠BAE=45°,(2)①依题意补全图形,如图1所示,②BM、DN和MN之间的数量关系是BM2+MD2=MN2,将△AND绕点D顺时针旋转90°,得到△AFB,∴∠ADB=∠FBA,∠BAF=∠DAN,DN=BF,AF=AN,∵在正方形ABCD中,AE⊥BD,∴∠ADB=∠ABD=45°,∴∠FBM=∠FBA+∠ABD=∠ADB+∠ABD=90°,在Rt△BFM中,根据勾股定理得,FB2+BM2=FM2,∵旋转△ANE得到AB1E1,∴∠E1AB1=45°,∴∠BAB1+∠DAN=90°﹣45°=45°,∵∠BAF=DAN,∴∠BAB1+∠BAF=45°,∴∠F AM=45°,∴∠F AM=∠E1AB1,∵AM=AM,AF=AN,∴△AFM≌△ANM,∴FM=MN,∵FB2+BM2=FM2,∴DN2+BM2=MN2,变式练习>>>2. (1)【探索发现】如图1,正方形ABCD中,点M、N分别是边BC、CD上的点,∠MAN=45°,若将△DAN绕点A顺时针旋转90°到△BAG位置,可得△MAN≌△MAG,若△MCN的周长为6,则正方形ABCD的边长为3.(2)【类比延伸】如图(2),四边形ABCD中,AB=AD,∠BAD=120°,∠B+∠D=180°,点M、N分别在边BC、CD上的点,∠MAN=60°,请判断线段BM,DN,MN之间的数量关系,并说明理由.(3)【拓展应用】如图3,四边形ABCD中,AB=AD=10,∠ADC=120°,点M,N分别在边BC,CD上,连接AM,MN,△ABM是等边三角形,AM⊥AD,DN=5(﹣1),请直接写出MN的长.【解答】解:(1)如图1中,∵△MAN≌△MAG,∴MN=GM,∵DN=BG,GM=BG+BM,∴MN=BM+DN,∵△CMN的周长为:MN+CM+CN=6,∴BM+CM+CN+DN=6,∴BC+CD=6,∴BC=CD=3,故答案为3.(2)如图2中,结论:MN=NM+DN.延长CB至E,使BE=DN,连接AE,∵∠ABC+∠D=180°,∠ABC+∠ABE=180°,∴∠D=∠ABE,在△ABE和△ADN中,,∴△ABE≌△ADN,∴AN=AE,∠DAN=∠BAE,∵∠BAD=2∠MAN,∴∠DAN+∠BAM=∠MAN,∴∠MAN=∠EAM,在△MAN和△MAE中,,∴△MAN≌△MAE,∴MN=EM=BE+BM=BM+DN,即MN=BM+DN;(3)解:如图3,把△ABM绕点A逆时针旋转150°至△ADG,连接AN.作NH⊥AD于H,在AH上取一点K,使得∠NKH=30°在Rt△DHN中,∵∠NDH=60°DN=5(﹣1),∴DH=DN=,HN=DH=,在Rt△KNH中,KN=2HN=15﹣5,HK=HN=,∴AK=AH﹣HK=15﹣5,∴AK=KN,∴∠KAN=∠KNA,∵∠NKH=∠KAN+∠KNA,∴∠NAK=15°,∴∠MAN=75°=∠BAD,由(2)得,MN=BM+DN=10+5(﹣1)=5+5.例题3. 如图,在四边形ABCD中,AB=BC,∠A=∠C=90°,∠B=135°,K,N分别是AB,BC上的点,若△BKN的周长为AB的2倍,求∠KDN的度数.变式练习>>>3. 如图,正方形被两条与边平行的线段EF,GH分割成四个小矩形,P是EF与GH的交点,若矩形PFCH 的面积恰是矩形AGPE面积的2倍,试确定∠HAF的大小并证明你的结论.例题4. 如图,在四边形ABCD中,AB=AD,BC=CD,∠ABC=∠ADC=90°,∠MAN=∠BAD.(1)如图1,将∠MAN绕着A点旋转,它的两边分别交边BC、CD于M、N,试判断这一过程中线段BM、DN和MN之间有怎样的数量关系?直接写出结论,不用证明;(2)如图2,将∠MAN绕着A点旋转,它的两边分别交边BC、CD的延长线于M、N,试判断这一过程中线段BM、DN和MN之间有怎样的数量关系?并证明你的结论;(3)如图3,将∠MAN绕着A点旋转,它的两边分别交边BC、CD的反向延长线于M、N,试判断这一过程中线段BM、DN和MN之间有怎样的数量关系?直接写出结论,不用证明.【解答】解:(1)证明:延长MB到G,使BG=DN,连接AG.∵∠ABG=∠ABC=∠ADC=90°,AB=AD,∴△ABG≌△ADN.∴AG=AN,BG=DN,∠1=∠4.∴∠1+∠2=∠4+∠2=∠MAN=∠BAD.∴∠GAM=∠MAN.又AM=AM,∴△AMG≌△AMN.∴MG=MN.∵MG=BM+BG.∴MN=BM+DN.(2)MN=BM﹣DN.证明:在BM上截取BG,使BG=DN,连接AG.∵∠ABC=∠ADC=90°,AD=AB,∴△ADN≌△ABG,∴AN=AG,∠NAD=∠GAB,∴∠MAN=∠NAD+∠BAM=∠DAB,∴∠MAG=∠BAD,∴∠MAN=∠MAG,∴△MAN≌△MAG,∴MN=MG,∴MN=BM﹣DN.(3)MN=DN﹣BM.达标检测领悟提升强化落实1. 请阅读下列材料:问题:正方形ABCD中,M,N分别是直线CB、DC上的动点,∠MAN=45°,当∠MAN交边CB、DC 于点M、N(如图①)时,线段BM、DN和MN之间有怎样的数量关系?小聪同学的思路是:延长CB至E使BE=DN,并连接AE,构造全等三角形经过推理使问题得到解决.请你参考小聪同学的思路,探究并解决下列问题:(1)直接写出上面问题中,线段BM,DN和MN之间的数量关系;(2)当∠MAN分别交边CB,DC的延长线于点M/N时(如图②),线段BM,DN和MN之间的又有怎样的数量关系?请写出你的猜想,并加以证明;(3)在图①中,若正方形的边长为16cm,DN=4cm,请利用(1)中的结论,试求MN的长.【解答】解:(1)BM+DN=MN;(2)DN﹣BM=MN.理由如下:如图,在DC上截取DF=BM,连接AF.∵AB=AD,∠ABM=∠ADF=90°,∴△ABM≌△ADF(SAS)∴AM=AF,∠MAB=∠F AD.∴∠MAB+∠BAF=∠F AD+∠BAF=90°,即∠MAF=∠BAD=90°.又∠MAN=45°,∴∠NAF=∠MAN=45°.∵AN=AN,∴△MAN≌△F AN.∴MN=FN,即MN=DN﹣DF=DN﹣BM;(3)∵正方形的边长为16,DN=4,∴CN=12.根据(1)可知,BM+DN=MN,设MN=x,则BM=x﹣4,∴CM=16﹣(x﹣4)=20﹣x.在Rt△CMN中,∵MN2=CM2+CN2,∴x2=(20﹣x)2+122.解得x=13.6.∴MN=13.6cm.2. (1)如图1,在四边形ABCD中,AB=AD,∠B=∠D=90°,E、F分别是边BC、CD上的点,且∠EAF=∠BAD.试探究图中线段BE、EF、FD之间的数量关系.(1)小王同学探究此问题的方法是:延长EB到点G,使BG=DF,连结AG,先证明△ABG≌△ADF,再证明△AEG≌△AEF,可得出结论,他的结论应是EF=BE+FD.(2)如图2,在四边形ABCD中,AB=AD,∠B+∠D=180°,E、F分别是边BC、CD上的点,且∠EAF=∠BAD,上述结论是否仍然成立,并说明理由.(3)如图3,在四边形ABCD中,AB=AD,∠B+∠ADC=180°,E、F分别是边BC、CD延长线上的点,且∠EAF=∠BAD,(1)中的结论是否仍然成立?若成立,请证明;若不成立,请写出它们之间的数量关系,并证明.【解答】解:(1)由△ABG≌△ADF,△AEG≌△AEF可知,BG=DF,EF=EG=BG+EF=DF+EF,故答案为EF=BE+FD.(2)(1)中的结论EF=BE+FD仍然成立.理由:延长EB到点G,使BG=DF,连结AG.∵∠ABD+∠D=180°,∠ABD+∠ABG=180°,∴∠ABG=∠D,∴AB=AD,BG=DF,∴△ABG≌△ADF,∴∠BAG=∠DAF,AG=AF,∵∠EAF=∠BAD,∴∠BAE+∠DAF=∠BAD=∠BAE+∠BAG,∴∠EAG=∠EAF,∵AE=AE,AG=AF,∴△EAG≌△EAF,∴EG=EF,∵EG=BG+BE=DF+BE,∴EF=BE+DF.3. 小曼和他的同学组成了“爱琢磨”学习小组,有一次,他们碰到这样一道题:“已知正方形ABCD,点E、F、G、H分别在边AB、BC、CD、DA上,若EG⊥FH,则EG=FH.”为了解决这个问题,经过思考,大家给出了以下两个方案:方案一:过点A作AM∥HF交BC于点M,过点B作BN∥EG交CD于点N;方案二:过点A作AM∥HF交BC于点M,过点A作AN∥EG交CD于点N.…(1)对小曼遇到的问题,请在甲、乙两个方案中任选一个加以证明(如图(1)).(2)如果把条件中的“正方形”改为“长方形”,并设AB=2,BC=3(如图(2)),是探究EG、FH之间有怎样的数量关系,并证明你的结论.(3)如果把条件中的“EG⊥FH”改为“EG与FH的夹角为45°”,并假设正方形ABCD的边长为1,FH的长为(如图(3)),试求EG的长度.【解答】解:(1)证明:过点A作AM∥HF交BC于点M,作AN∥EG交CD的延长线于点N,∴AM=HF,AN=BC,在正方形ABCD中,AB=AD,∠ABM=∠BAD=∠ADN=90°∵EG⊥FH,∴∠NAM=90°,∴∠BAM=∠DAN,在△ABM和△ADN中,∠BAM=∠DAN,AB=AD,∠ABM=∠ADN∴△ABM≌△ADN∴AM=AN,即EG=FH(2)结论:EG:FH=3:2证明:过点A作AM∥HF交BC于点M,作AN∥EC交CD的延长线于点N,∴AM=HF,AN=EC,在长方形ABCD中,BC=AD,∠ABM=∠BAD=∠ADN=90°,∵EG⊥FH,∴∠NAM=90°,∴∠BAM=∠DAN.∴△ABM∽△ADN.,∵AB=2,BC=AD=3,∴.(3)解:过点A作AM∥HF交BC于点M,过点A作AN∥EG交CD于点N,∵.∴在Rt△ABM中,BM=.将△AND绕点A顺时针旋转90°到△APB.∵EG与FH的夹角为45°,∴∠MAN=45°,∴∠DAN+∠MAB=45°,即∠P AM=∠MAN=45°,从而△APM≌△ANM,∴PM=NM.设DN=x,则NC=1﹣x,MN=PM=.在Rt△CMN中,解得.∴.4. 已知:如图,正方形ABCD的边长为a,BM,DN分别平分正方形的两个外角,且满足∠MAN=45°,连接MC,NC,MN.(1)填空:与△ABM相似的三角形是_________,BM•DN=_________;(用含a的代数式表示)(2)求∠MCN的度数;(3)猜想线段BM,DN和MN之间的等量关系并证明你的结论.。