理论力学3章

合集下载

理论力学 第3章 拉格朗日方程

理论力学 第3章 拉格朗日方程


3.1 拉格朗日方程
拉格朗日关系
3.1 拉格朗日方程
由拉格朗日关系

3.1 拉格朗日方程
3.1 拉格朗日方程
3.1 拉格朗日方程
(1)动能的显式: 直角坐标 平面极坐标 柱坐标 球坐标
ቤተ መጻሕፍቲ ባይዱ
1 2 T mi r i i 1 2
n
单个质点
x, y , z
r ,
, , z
3.1 拉格朗日方程
[思考2] 滑块作简谐运动
自由度 s 1 ,广义坐标为 :
X x0 cos t l sin
X l cos
Y l cos Y l sin 约束力 T T sin i T cos j
约束力的虚功
3.2 运动积分 诺特定理
3.2 运动积分 诺特定理
讨论:质点在有心力场中的动能和势能
1 2 2 r 2 T m r 2


k 2m V r
2 1 k m 2 2 2 r L T V m r 2 r


广义坐标:r,
L 0
对应一个循环积分:
3.1 拉格朗日方程
(2)系统势能:(以弹簧原长为弹性势能零点,滑块A所在 平面为重力势能零点)
1 2 V kx m2 gl cos 2
(3)拉格朗日函数:
L T V 1 1 1 2 2 2 2 m 2 l m 2 xl cos kx m 2 gl cos ( m1 m 2 ) x 2 2 2
r Fi i q
n
3.1 拉格朗日方程
3.1 拉格朗日方程

理论力学第三章

理论力学第三章

M
F'
F
二、空间力偶等效定理
空间力偶的等效条件是:作用在同一刚体上的两个力偶, 如果力偶矩矢相等,则两力偶等效。
理论力学 中南大学土木工程学院 24
理论力学
中南大学土木工程学院
25
理论力学
中南大学土木工程学院
26
三、空间力偶系的合成与平衡
1、合成
力偶作用面不在同一平面内的力偶系称为空间力偶系。 空间力偶系合成的最后结果为一个合力偶,合力偶 矩矢等于各分力偶矩矢的矢量和。即:
8
[例]图示起重机吊起重物。起重杆的A端用球铰链固定在地面上,B端用 绳CB和DB拉住,两绳分别系在墙上的C点和D点,连线CD平行于x轴。 已知CE=EB=DE,角a =30o ,CDB平面与水平面间的夹角∠EBF= 30o, 重物G=10kN。如不计起重杆的重量,求起重杆所受的力和绳子的拉力。 解:1、取杆AB与重物为研究 对象,受力分析如图。
空间力系向点O简化得到一空间汇交力系和一空间 力偶系,如图。
z O
F1 y F2 z M2 z F'1 Mn F'2 y
Fn x

M1 x
O F'n

MO
F'R
O y
x
( i 1,, 2 ,n )
Fi Fi M i M O ( Fi ) ri Fi
M M cos( M,k ) z M
27
理论力学
中南大学土木工程学院
[例]工件如图所示,它的四个面上同时钻五个孔,每个孔所受的切削力偶 矩均为80N· m。求工件所受合力偶的矩在x,y,z轴上的投影Mx,My,Mz, 并求合力偶矩矢的大小和方向。

第三章理论力学

第三章理论力学

因此,其平衡的解析条件为:
F
x
0
x
F
y
0
y
F
z
0
z
M
0
M
0
M
0
------ 平衡方程
共六个方程,可以求解空间任意力系中的六个未知约束力. 3、空间任意力系的两种特殊情况: 1)空间平行力系的平衡方程
Fy F cos

方向:+、-号;
Fz F cos
2)间接投影法(二次投影法) 如果只已知与一根轴的夹 角 ,则通常的做法是:先将 该力向z 轴及其垂面分解(与 垂面的夹角为 90 ),而位于 垂面内的分力,其平面几何关
系比空间几何关系要容易寻找得多,因此只要在该垂面内
找出其与该平面内的两根轴之一的夹角(与另一根轴的夹

第三章
空间力系
注意:本章不作为重点,主要介绍一些基本概念、基本原理 和一些基本方法的应用,但不作为重点练习;个别需 要掌握的内容设有标注,望大家掌握.

一、空间力系:当力系中各分力的作用线分布于 三维空间时,该力系称为空间力 系. 二、空间力系又可根据力系中各分力的作用线的 分布情况划分为:空间汇交力系、空间力偶 系、空间平行力系和空间 任意力系. 三、本章研究的主要问题:力系的简化、合成及 平衡问题.
M x ( F ) M x ( Fx ) M x ( Fy ) M x ( Fz ) Fz y Fy z M y ( F ) M y ( Fx ) M y ( Fy ) M y ( Fz ) Fx z Fz x M z (F ) M z (Fx ) M z (Fy ) M z (Fz ) Fy x Fx y

理论力学周衍柏第三章

理论力学周衍柏第三章
一、基础知识 1. 力系:作用于刚体上里的集合. 平衡系:使静止刚体不产生任何运动的力系. 等效系:二力系对刚体产生的运动效果相同. 二、公理: 1)二力平衡原理:自由刚体在等大、反向、共线二力作 用下必呈平衡。 2)加减平衡力学原理:任意力系加减平衡体系,不改变原 力系的运动效应。 3)力的可传性原理:力沿作用线滑移,幵不改变其作用 效果,F与F’等效。 注:1)以上公理适用于刚体, 2) 力的作用线不可随便平移
(e) dT Fi dri
(e) 若 Fi dri dV 则 T V E
为辅助方程,可代替上述6个方程中任何一个
§3.5 转动惯量
一、刚体的动量矩 1. 某时刻刚体绕瞬轴OO’转动,则pi点的速度为
vi rii
动量矩为 2. 坐标表示
R Fi Fi 0 M M i ri Fi 0
2. 几种特例 1)汇交力系(力的作用线汇交于一点):取汇交点为 简化中心,则
Fix 0 R Fi 0 Fiy 0 Fiz 0
三、力偶力偶矩 1. 力偶:等大、反向、不共线的两个力组成的利系。
力 偶 所在平面角力偶面. 2. 力偶矩: 对任意一点O M rA F rB F (rA rB ) F r F M Fd
方向 : 右手法则 上式表明:
J z x mi zi xi y mi zi yi z mi ( xi2 yi2 )
I yy mi ( zi2 源自xi2 ) I zy mi zi yi I yz mi yi zi I xz mi xi zi
I zz mi ( xi2 yi2 )

理论力学第三章力矩与平面力偶理论(H)

理论力学第三章力矩与平面力偶理论(H)

理论⼒学第三章⼒矩与平⾯⼒偶理论(H)第3章⼒矩与平⾯⼒偶理论※平⾯⼒对点之矩的概念及计算※⼒偶及其性质※平⾯⼒偶系的合成与平衡※结论与讨论§3-1 平⾯⼒对点之矩的概念及计算1.⼒对点之矩AFBhhF M O ?±=)(F h ——⼒臂O ——矩⼼OABM O Δ±=2)(F M O (F ) ——代数量(标量)“+”——使物体逆时针转时⼒矩为正;“-”——使物体顺时针转时⼒矩为负。

2. 合⼒之矩定理平⾯汇交⼒系合⼒对于平⾯内⼀点之矩等于所有各分⼒对于该点之矩的代数和。

3. ⼒矩与合⼒矩的解析表达式xA FF xF yOαyx yx y y O x O O yF xF M M M ?=+=)()()(F F F )()()()()(21i O n O O O R O M M M M M F F F F F ∑=+++=")()(ix i iy i R O F y F x M ?∑=FF nαOrF rF 已知:F n ,α,r求:⼒F n 块对轮⼼O 的⼒矩。

h解:(1)直接计算αcos )(r F h F M n n n O ==F (2)利⽤合⼒之矩定理计算αcos )()()()(r F M M M M n O O r O n O ==+=F F F F 例题1§3-2 ⼒偶及其性质1.⼒偶与⼒偶矩⼒偶——两个⼤⼩相等、⽅向相反且不共线的平⾏⼒组成的⼒系。

⼒偶臂——⼒偶的两⼒之间的垂直⼒偶的作⽤⾯——⼒偶所在的平⾯。

(1)⼒偶不能合成为⼀个⼒,也不能⽤⼀个⼒来平衡。

⼒和⼒偶是静⼒学的两个基本要素。

(2)⼒偶矩是度量⼒偶对刚体的转动效果;它有两个要素:⼒偶矩的⼤⼩和⼒偶矩的转向。

F′FABOdx FdFxxdFMMMOOO=+′=′+=′)()()(),(FFFF⼒偶矩±=FdM2.平⾯⼒偶的等效定理1F ′F ′2F ′0F ′F 00F ′F 0ABDCdF F 1F 2★在同平⾯内的两个⼒偶,如果⼒偶矩相等,则两⼒偶彼此等效。

理论力学3

理论力学3

第3章 力系的平衡
3.4 例 题 分 析
Theoretical Mechanics
返回首页
第3章 力系的平衡
3.4 例 题 分 析
例3-1 外伸梁ABC上作用有均布载荷q=10 kN/m,集中力 F=20 kN,力偶矩m=10 kNm,求A、B支座的约束力。
解:画受力图
m A F 0 FNB 4 q 4 2 m F sin 6 0
m = 0
三力平衡汇交定理 刚体受不平行的三个力作用而平衡时,此三力的作用线 必共面,且汇交于一点。
Theoretical Mechanics
返回首页
第3章 力系的平衡
3.1.5 静定问题与超静定问题
3.1 主要内容
•物体系统:由若干个物体通过适当的约束相互连 接而成的系统 。 •静定问题:单个物体或物体系未知量的数目正好 等于它的独立的平衡方程的数目。
M y F 0
Fx 0, Fy 0, Fz 0
结论:各力在三个坐标轴上投影的代数和以及 各力对此三轴之矩的代数和都必须同时等于零。
Theoretical Mechanics
返回首页
第3章 力系的平衡
1. 空间汇交力系 如果使坐标轴的原点与各力的汇交点重合,则有 Mx≡My≡Mz≡0,即空间汇交力系平衡方程为
F
F
选刚架为研究对象 画受力图
FA FD
Theoretical Mechanics
返回首页
第3章 力系的平衡
解:几何法
F
3.4 例 题 分 析
选刚架为研究对象 画受力图
FA FD FA
作力多边形,求未知量
选力比例尺F=5 kN/cm作封

理论力学第三章冯维明主编

理论力学第三章冯维明主编

返回首页
3.2 点的速度合成定理 由合成定理有
例 题
式中三个矢量具有六个要素,已知四个,可作速度平行四边 形,如图所示,则求得
vA va ve cot v cot 30 3v

v θ v θ
v
其方向铅直向上。
v
Theoretical Mechanics
返回首页
3.2 点的速度合成定理
v
由正弦定理
ve vr sin sin 60
v

与 v r 间的夹角为 va
v
Theoretical Mechanics
2
返回首页
第三章 点的合成运动
§3.3 牵连运动为平动时 点的加速度合成定理
Theoretical Mechanics
返回首页
3.3 牵连运动为平动时点的加速度合成定理
Theoretical Mechanics
返回首页
3.2 点的速度合成定理
3.2.1 绝对速度、相对速度和牵连速度
牵连点:在任意瞬时,与动点相重合的动坐标 系上的点。
讨 论
动坐标系是一个包含与之固连的刚体在内的运动 空间,除动坐标系作平移外,动坐标系上各点的运 动状态是不相同的。在任意瞬时,只有牵连点的运 动能够给动点以直接的影响。为此,定义某瞬时, 与动点相重合的动坐标系上的点(牵连点)相对于 静坐标系运动的速度称为动点的牵连速度 。
返回首页
3.2 点的速度合成定理
3.2.1 绝对速度、相对速度和牵连速度 3.2.2 速度合成定理
Theoretical Mechanics
返回首页
3.2 点的速度合成定理
3.2.1 绝对速度、相对速度和牵连速度

理论力学3章

理论力学3章

习 题3-1 台阶形鼓轮装在水平轴上,小头重量为2Q ,大头重量为1Q ,半径分别为2r 和1r ,分别挂一重物,物体A 重为2P ,物体重B 为1P ,且12P P >。

如3-1题图所示,求鼓轮的角加速度。

解:本题有明显的转轴o ,因而可以用角动量定理求解。

系统只有一个转轴,求运动而不求内力,所以取质心为研究对象。

因重力12,P P对轴o 的力矩不为零,可得:01122()L PQ PQ k =-质心系的动量距为:21202OQ OP OP k J J J J =+++2212121212211()22Q Q p p r r v v r k g g g gωωω=+++ 另外还有运动学补充方程:1122v r v r ωω==所以22220112211221(22)2J Q r Q r Pr P r k gω=+++应用角动量定理由 0i d J L dt =∑得 222211*********(22)2d Q r Q r Pr P r Pr g dtω+++=+11Pr 又 d dt ωε= 则有 11222222112211222()22Pr P r g Q r Q r Pr P r ε-=⋅+++答案:()12112222221122122d d 22Pr -P r g t Q r +Q r +Pr +P r ω=。

3-2 如图所示,两根等长等重的均匀细杆AC 和BC ,在C 点用光滑铰链连接,铅直放在光滑水平面上,设两杆由初速度为零开始运动。

试求C 点着地时的速度。

解: 系统在水平方向上受力为零,角动量守恒有2211222h mv m ω+⨯2(I )=2g其中 002/2vv l l ω==0v 为C 点着地时A 点速度002c v v v ===答案:c v =3-3 半径为a ,质量为M 的薄圆片,绕垂直于圆片并通过圆心的竖直轴以匀角速度ω转动,求绕此轴的角动量。

3-2题图3-1题图解 由题意作图 如图所示由某一质点组对某个固定轴的动量矩1ni i i i J r m v==⨯∑20adm rd dr rdr d πρθρθ==⎰⎰其中2Ma ρπ=故 223001()2a J r dmv d r dr Ma πθρωω=⨯==⎰⎰⎰⎰答案:212J Ma ω=3-4 一半径为r ,重量为P 的水平台,以初角速度0ω绕一通过中心o 的铅直轴旋转;一重量为Q 的人A 沿半径B o 行走,在开始时,A 在平台中心。

理论力学__第3章__力偶理论

理论力学__第3章__力偶理论


3.3
3.1 力对点之矩

M O ( F R ) = rA o × F R = rA o × ( ∑ Fi )
∑ (r =∑ M
=
Ao O
× Fi ) ( Fi )
(3.5)
可见,汇交力系的合力对任一点之矩矢等于各分力对 汇交力系的合力对任一点之矩矢等于各分力对 同一点之矩矢的矢量和,称为汇交力系合力矩定理 汇交力系合力矩定理。 同一点之矩矢的矢量和 汇交力系合力矩定理
3.2 力对轴之矩
设有通过坐标原点O 的任一轴 ζ,其单位矢量ζ0,ζ轴在坐标 系Oxyz中的方向余弦为 l 、m、 n,如图3.7所示。应用力矩关系 定理求得力F 对于ζ轴的矩为
3.1 力对点之矩
1.平面力系中力对点之矩 1.平面力系中力对点之矩 人们从实践中知道力除了 能使物体移动外,还能使物体 转动。而力矩的概念是人们在 使用杠杆、滑轮、绞盘等简单 机械搬运或提升重物时逐渐形 成的。下面以用扳手拧螺帽为 例说明力矩的概念(图3.1)。

3.1
3.1 力对点之矩
实践表明,作用在扳手上 A 点的力 F 能使扳手 绕O 点(即绕通过 O 点并垂直于图面的轴)发生转动。 而这种转动效应不仅与力 F 的大小成正比,而且与力 的作用线到 O 点的垂直距离 h 成正比,亦即与乘积 成正比。另外,力 F 使扳手绕 O 点转动的方向不同, F ⋅h 作用效果也不同。因此,规定 冠以适当的正负 F ⋅h 号作为力 F 使物体绕 O 点发生转动效应的度量,称 点之矩。用符号MO(F)表示,即 为力 F 对 O 点之矩 力
M z ( F ) = M O ( Fxy ) = ± Fxy h
(3.7)
3.2 力对轴之矩

理论力学第三章 任意力系的简化与平衡条件

理论力学第三章 任意力系的简化与平衡条件

例3-2 已知:涡轮发动机叶片轴向力F=2kN,力偶矩
M=1kN.M, 斜齿的压力角=20 ,螺旋角 。 =10 ,齿轮节圆半径 r=10cm。不计发动 机自重。 O1O2=L1=50cm, O2A=L2=10cm. 求: FN, O1,O2处的约束力。

第三章 力系的简化与平衡条件
§3-5 力系的平衡条件
3
F2 F3
1
F'
F1
1 O 200 1
x
2
1 3 1 FRy F1 F2 F3 = -161.6(N) 2 10 5
第三章 任意力系的简化与平衡条件
§3-4 力系简化计算
解:(1)先将力系向O点简化,求主矢和主矩。 FRx FRy =466.5(N) 2 2 FR
Xi 0 F x F2x Fr 0 1
F y F2y F 0 1
Zi 0
F z Fa F 0 1
第三章 力系的简化与平衡条件
§3-5 力系的平衡条件
例3-2 解: 3、列平衡方程
Mx (F) 0
F2 y L1 F (L1 L2 ) 0
y
100 1
F
80
3
Байду номын сангаас
F2 F3
1
F'
F1
1 O 200 1
x
2
第三章 任意力系的简化与平衡条件
§3-4 力系简化计算
例3-1 (1)先将力系向O点简 解: 化,求主矢和主矩。 1 1 F2 FRx F1 10 2 2 F3 5 = -437 .6(N)
y
100 1
F

理论力学 第3章

理论力学 第3章

• 作业: • 习题 3-6,3-12
§ 3-5 空间任意力系的平衡方程
1. 空间任意力系的平衡方程 空间任意力系平衡的必要和充分条件:
该力系的主矢r 和对于r 任一点的主矩都为零 FR 0, MO 0
Fx 0 Fy 0 Fz 0
Mx 0 My 0 Mz 0
所有各力在三个坐标轴中每一个轴上的投影的 代数和等于零,以及这些力对于每一个坐标轴的 矩的代数和也等于零。
解析法表示:
M M xi M y j M zk
Mx 0 My 0 Mz 0
——空间力偶系的平衡方程
例3-5 已知:在工件四个面上同时钻5个孔,每个 孔所受切削力偶矩均为80N·m.
求:工件所受合力偶矩在 x, y轴, z上的投影.
解:
把力偶用力偶矩 矢表示,平行移到 点A .
Mx Mix M3 M4 cos45 M5 cos45 193.1N m
力螺旋 由一力和一力偶组成的力系,其中
的力垂直于力偶的作用面
(1)FR 0, M O 0, FR // M O
中心轴过简化中心的力螺旋
钻头钻孔时施加的力螺旋
r r rr (2)FR 0, MO 0,既FR不, M平O行也不垂直,成任意夹

力螺旋中心轴距简化中心为 d M O sin
FR
F1 F2 3.54kN FA 8.66kN
§ 3-2 力对点的矩和力对轴的矩
1. 力对点的矩以矢量表示——力矩矢
力对点之矩 在平面力系中——代数量 在空间力系中——矢量
MO (F) Fh 2ΔOAB
r MO
r (F
)
rr
r F
三要素:
(1)大小:力 F与力臂的乘积

理论力学第三章 空间力系汇总

理论力学第三章  空间力系汇总

Pxy Pcos45
Px Pcos45sin60 Py Pcos45cos60
P 6 Pi 2 P j 2 Pk
4
4
2
r 0.05 i 0.06 j 0 k
MO(F) r F
i
j
k
0.05 0.06 0
6P 2P 2P
4
4
2
84.8 i 70.7 j 38.2 k
称为空间汇交力系的平衡方程. 空间汇交力系平衡的充要条件:该力系中所有各力在三个坐 标轴上的投影的代数和分别为零.
[例]三角支架由三杆AB、AC、AD用球铰A连接而成,并用球铰支座B、C、
D固定在地面上,如图所示。设A铰上悬挂一重物,已知其重量W=500N。
结构尺寸为a=2m,b=3m,c=1.5m,h=2.5m。若杆的自重均忽略不计,求
(2)何时MZ (F) 0
Mz (F) Mo(Fxy ) Fxy h
z
F
Fz
Fxy o
h
P
力与轴相交或与轴平行(力与轴在同一平面内),力对该轴 的矩为零.
(3) 解析表达式
M Z (F) MO (F xy ) MO (F x ) MO (F y )
xFy yFx
M x (F) yFz zFy
空间力偶的三要素
(1) 力偶矩大小:力与力偶臂的乘积; (2) 力偶矩方向:右手螺旋; (3) 作用面:力偶作用面。
转向:右手螺旋;
2、力偶的性质
(1)力偶中两力在任意坐标轴上投影的代数和为零 . (2)力偶对任意点的矩都等于力偶矩矢,不因矩心的改变而 改变。
M x (P) 84.8(N.m) M y (P) 70.7(N.m) M x (P) 38.2(N.m)

理论力学第3章力系平衡方程及应用

理论力学第3章力系平衡方程及应用

a
分布力(均布载荷) 合力作用线位于AB
中点。
3.1 平面力系平衡方程
a
【解】
y M=qa2 a
2qa
F3
C
FAx
A
aFAy
45
B
D
x
2a FB a
F3 2qa
MA 0
q 2 2 a q a a F B 2 a 2 q sa 4 i 3 n a 5 0
FB 2qa
Fx 0 FAx2qcao4s50 FAx qa
C
【解】 F2
构件CGB( 图b)
F2
构件AED
(图c)
C
R
D
45
FC
FD
D
G
45
F1
E
a
F1
E
a
A
B
G 图b
FBy
图c A FAx
MA
FAy
构件CD(图a )
3个未知量 B FBx
4个未知量
F'C
3个独立方程
3个独立方程
【基本思路】
C R
杆CGB受力图计算FCAED受力图
计算A处的反力(偶);CGB受力图计算
3.2 平面物体系平衡问题
q
C
B
30
FC FBy
l
l
【解】 杆CB
FBx
MB 0
FCco3s0l qll/2 0
FC
3 ql 30.5kN/m 2m 0.577kN
3
3
3.2 平面物体系平衡问题
【解】整体
FAy
l
l
l
Fx 0
MA
A
FAx

《理论力学》第三章点的合成运动(三)

《理论力学》第三章点的合成运动(三)
求:摆杆O1B角速度1
解:A-动点,O1B-动系,基座-静系。
绝对速度va = r
相对速度vr = ? 牵连速度ve = ?
由速度合成定理 va= vr+ ve
sin
r
r 2 l
2
,ve
va
sin

r 2
r2 l2
又ve
O1
A1
,1

ve O1 A

1 r 2 l2
A
cR

O

u
x

r 2
r 2 l2

r
r
2
2
l
2


[例] 圆盘凸轮机构
已知:OC=e , R 3e , (匀角速度)
图示瞬时, OCCA 且 O,A,B三点共线。 求:从动杆AB的速度。
解:动点A,动系-圆盘, 静系-基座。 绝对速度 va = ? 待求,方向//AB 相对速度 vr = ? 未知,方向CA
例图示平面机构,已知:OA=r,0为常数,BC=DE, BD=CE=L,求:图示位置,杆BD的角速度和角加速度。
解: 动点:A点(OA杆)
动系:BC杆
va ve vr
D
E
大小: 方向:
??
B
600 A
vr
300 C
0 O
根据速度合成定理 va ve vr va
ve
做出速度平行四边形, 如图示
E
投至y轴:
0 O aa
aa ae
si
n (
300 ae n aa aen ) sin
sin 60 0
sin 30 0

理论力学第三章 刚体力学-3

理论力学第三章 刚体力学-3

3、求 a1 (转动加速度 ) d总 a1 r dt d总 d di 其中, (ctgi ) ctg
dt
h h 2 ctg cos 2k ctg sin 2i cos cos 2h (cos2k sin 2i ) sin
1
1 I mR 2 2
平行轴定理
I I c md
2
叙述:刚体对某一轴线的转动惯量,等于对通过质 心的平行轴的转动惯量加上刚体的质量与两 轴间垂直距离平方的乘积。
2、对定点转动惯性的大小,由于转轴的方向不断变 化,要用一个张量才能描述。 z
I xx 1 惯量张量: I yx I zx I xy I yy I zy I xz I yz I zz


N
O
y

x
§3.7 转动惯量
一、定点转动刚体的动量矩 动坐标系oxyz
z
i
设 Pi 为刚体上任一质点,该质点对定点 o的动量矩为

i
ri mii
整个刚体对同一点o的动量矩为
n J ri mii
i 1 n
o
x
ri
y
mi ri ri
2
h 2 h 2 2 大小: a1 ( ) [cos 2 sin 2 ] sin sin
2 2
2h 所以: a1 sin
3、求 a2(向轴加速度 )
a2 总 (总 r )
h h 其中,总 r ctgi ( cos 2i sin 2k ) cos cos h ctg sin 2j cos cos h 2 sin cosj sin cos 2h cosj a2 总 (总 r ) (ctgi ) (2h cosj ) 2 2 cos 2 h k sin 2 cos 2 所以: a2 a2 2 h sin

理论力学 第三章 平面力偶系

理论力学 第三章 平面力偶系

M O2 F , F F d x2 F x2 F 'd Fd
力矩的符号 M O F
力偶矩的符号 M
13
性质3:平面力偶等效定理 作用在同一平面内的两个力偶,只要它的力偶矩的大小相等, 转向相同,则该两个力偶彼此等效。 [证] 设物体的某一平面 FR F’R
B
A
m2 m1 FA
m3
B FB
解:1 以梁为研究对象,受力如图。
(力偶只能与力偶平衡)
m 0 : FAl m1 m2 m3 0
解之得:
m1 m2 m3 FA FB l
20
[例2] 在一钻床上水平放置工件,在工件上同时钻四个等直径
的孔,每个钻头的力偶矩为
动的效果或效应,就称为
力对点的矩,简称力矩。 矩心:在力矩作用面,O称为矩心。 力臂:O到力的作用线的垂直距离h
1.大小:力F与力臂的乘积 两个要素: 2.方向:转动方向
3
大小和转向:
M O ( F ) F d
+
-
说明: ① M O ( F )是代数量。
② M O ( F )是影响转动的独立因素。 ③单位Nm,工程单位kgfm。 ④ M O ( F ) =2⊿AOB=Fd ,2倍⊿形面积。 力矩的性质: 1)力矩取决于力F的大小,也取决于矩心的位置。 2)力矩不因力沿其作用线移动改变。 3)力矩的力F=0或力F过矩心时,力矩为零。
FR
由上述证明可得下列两个推论: ②只要保持力偶矩大小和转向 ①力偶可以在其作用面内任 意移动,而不影响它对刚体 的作用效应。
不变,可以任意改变力偶中力
的大小和相应力偶臂的长短, 而不改变它对刚体的作用效应。

理论力学第三章刚体力学

理论力学第三章刚体力学
理论力学
电子科技大学物理电子学院 付传技
Em以看作是一种特殊 的质点组,这个质点组中任何两个质点之间的距离不 变,这使得问题大为简化,使我们能更详细地研究它 的运动性质,得到的结果对实际问题很有用。
我们先研究刚体运动的描述,在建立动力学方程 后,着重研究平面平行运动和定点运动。
1. 描写刚体位置的独立变量
质点3个变量
质点组3n个变量
确定刚体在空间的位置,需要几个变量?
B A
C 6个变量可以确定刚体位置
2. 刚体运动的分类 1)平动
平动的独立变量为三个
2)定轴转动
定轴转动的独立变量只有一个
世界最大的摩天轮——“伦敦眼”
3)平面平行运动
平面平行运动的独立变量有三个
4)定点转动
此时,有
3
e= a e (=1, 2,3) =1
可以省去求和符号,默认对重复指标自动求和,
e=a e 这种约定称为爱因斯坦约定。
用任意点的位矢点乘上式两端,得
x a x (=1,2,3)
上式即是从空间系到本体系的坐标变换,可以
将它表示成矩阵形式:
x1 a11 a12 a13 x1
rˆ Aˆ rˆ Aˆ Aˆrˆ 因为rˆ是任意的,所以 Aˆ Aˆ=1ˆ 1ˆ为单位阵,对调空间系和本体系的地位,可知上式 中Aˆ与Aˆ 的位置也可以交换,所以Aˆ是可逆的,逆阵与 逆变换相对应。
转动不改变位矢的长度,所以
rˆT rˆ ( Aˆ rˆ)T Aˆ rˆ rˆT ( AˆT Aˆ)rˆ rˆT rˆ
由rˆ的任意性可得 AˆT Aˆ=1ˆ
这表明Aˆ的逆矩阵就是其转置。
这个结论还可以写成 Aˆ AˆT=AˆT Aˆ=1ˆ
或a a
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

习 题3-1 台阶形鼓轮装在水平轴上,小头重量为2Q ,大头重量为1Q ,半径分别为2r 和1r ,分别挂一重物,物体A 重为2P ,物体重B 为1P ,且12P P >。

如3-1题图所示,求鼓轮的角加速度。

解:本题有明显的转轴o ,因而可以用角动量定理求解。

系统只有一个转轴,求运动而不求内力,所以取质心为研究对象。

因重力12,P P对轴o 的力矩不为零,可得:01122()L PQ PQ k =-质心系的动量距为:21202OQ OP OP k J J J J =+++2212121212211()22Q Q p p r r v v r k g g g gωωω=+++ 另外还有运动学补充方程:1122v r v r ωω==所以22220112211221(22)2J Q r Q r Pr P r k gω=+++应用角动量定理由 0i d J L dt =∑得 222211*********(22)2d Q r Q r Pr P r Pr g dtω+++=+11Pr 又 d dt ωε= 则有 11222222112211222()22Pr P r g Q r Q r Pr P r ε-=⋅+++答案:()12112222221122122d d 22Pr -P r g t Q r +Q r +Pr +P r ω=。

3-2 如图所示,两根等长等重的均匀细杆AC 和BC ,在C 点用光滑铰链连接,铅直放在光滑水平面上,设两杆由初速度为零开始运动。

试求C 点着地时的速度。

解: 系统在水平方向上受力为零,角动量守恒有2211222h mv m ω+⨯2(I )=2g其中 002/2vv l l ω==0v 为C 点着地时A 点速度002c v v v ===答案:c v =3-3 半径为a ,质量为M 的薄圆片,绕垂直于圆片并通过圆心的竖直轴以匀角速度ω转动,求绕此轴的角动量。

3-2题图3-1题图解 由题意作图 如图所示由某一质点组对某个固定轴的动量矩1ni i i i J r m v==⨯∑20adm rd dr rdr d πρθρθ==⎰⎰其中2Ma ρπ=故 223001()2a J r dmv d r dr Ma πθρωω=⨯==⎰⎰⎰⎰答案:212J Ma ω=3-4 一半径为r ,重量为P 的水平台,以初角速度0ω绕一通过中心o 的铅直轴旋转;一重量为Q 的人A 沿半径B o 行走,在开始时,A 在平台中心。

若平台可视为均质圆盘,求以A x o =的函数表示的平台的角速度ω。

解 由题意作图,如图所示水平台和人组成的系统角动量守恒,则222011()22P P Q r r x g g g ωω=+ 20222Pr Pr Qxωω∴=+ 答案:20222Pr Pr Qx ωω=+。

3-5一光滑的杆在水平面上绕其上的一点o 以等角速度ω转动,一质点被约束在杆上自由运动。

已知0=t 时,质点离o 点的距离为b 并相对于杆静止。

试求质点的运动规律和杆对质点的作用力。

答案:运动规律为 ch r b ωt =;作用力为 22sh N F mb ωωt =。

3-6 证明半径为r ,质量为m 的空心球壳绕直径的转动惯量为232mr 。

解 由题意作图,如图以球心为坐标原点建立直角坐标系O xyz -28cos dm ds r d d σσθψθ==⎰⎰其中24mrσπ=积分22222(c o s )8c o s 3x I x d m r r d d m r θσθψθ===⎰⎰⎰故空心球壳绕直径的转动惯量为232mr3-7 证明底面半径为r ,高为h 的圆锥体,绕对称轴的转动惯量为2310mr ,绕底面任一直径的转动惯量为()2223201h r m +。

解 由题意建立如图3-7所示直角坐标系沿平行于OXY 平面切圆锥体得一切面为圆,则该切面面积为2S R π=圆锥体有22tan dRdV Sdh R dh Rππθ=== 由数学知识得:tan Z r R r R r RZ h h r r θ---=⇒==故积分()()()22222222222203cos tan 203sin tan 201tan 10r r X dm r dRd mr r Y dm r dRd mr r R Z dm dV mhρπϕϕθρπϕϕθρθ⎧==⎪⎪⎪==⎨⎪⎪-⎪==⎩⎰⎰⎰⎰⎰⎰⎰⎰ 故对称轴的转动惯量:()2221310I X Y dm mr =+=⎰ 绕底面任一直径的转动惯量:()222221(32)20I X Z dm m r h =+=+⎰ 得证。

3-8 如椭球方程为2222221x y z a b c ++= 试求此椭圆绕其3个中心主轴转动时的中心主转动惯量,设此椭球质量为m 并且密度ρ是常数。

解 如题3-8图所示,沿y 轴平行于Oxz 平切椭圆得切面为一椭圆,则该椭圆方程为:22222222111x z y y a c b b +=⎛⎫⎛⎫-- ⎪⎪⎝⎭⎝⎭可求该切面的面积()221y y S ac b π⎛⎫=- ⎪⎝⎭故积分()2222324115bby b b y y dm y S dy y ac dy ab c b ρπρπρ--⎛⎫=⋅=-⋅= ⎪⎝⎭⎰⎰⎰同理可求:23415x dm a bc πρ=⎰,23415z dm abc πρ=⎰ 故中心主转动惯量:()()22221415I y z dm abc b c πρ=+=+⎰ ()()22222415I x z dm abc a c πρ=+=+⎰ ()()22223415I x y dm abc a b πρ=+=+⎰ 又由于椭球体积()22413bby b b y V S dy ac dy abc b ππ--⎛⎫==-= ⎪⎝⎭⎰⎰故34m mV abcρπ== 将ρ代入1I ,2I ,3I 得:()22115I m b c =+()22215I m a c =+()22315I m a b =+答案: ()22115I m b c =+,()22215I m a c =+,()22315I m a b =+。

3-9 把分子看作相互间距离不变的质点组,试求以下两种情况下分子的主转动惯量:(1)两原子分子,它们的质量分别为1m 和2m ,间距为l ;(2)形状为等腰三角形的三原子分子,三角形的高为h ,底边长为a ,底边上两质点的质量是1m ,顶点上的是2m 。

解 (1)取二原子的连线为x 轴,而y 轴与z 轴通过质心,则Ox ,Oy ,Oz 轴即为中心惯量主轴。

设1m ,2m 的坐标为()()12,0,0,,0,0l l ,因为O 为质心(如图3-9.1)。

故11220m l m l += (1)且21l l l -= (2) 由(1)(2)得21121212,m l m ll l m m m m =-=++ 所以中心惯量主轴:()2210i i i iI m y z =+=∑()22212212i i i i m m l I m z x m m =+=+∑ ()22212312i i i im m l I m x y m m =+=+∑ (2)如题3-9.2图所示,改原子由A 、B 、C 三个原子构成,C 为三个原子的质心。

由对称性可知,图中Cx 、Cy 、Cz 轴即为中心惯量主轴,设A 、B 、D 三原子的坐标分别为()0,,0,,,0,,,022A B D a a y y y ⎛⎫⎛⎫-⎪ ⎪⎝⎭⎝⎭因为C 为分子质心。

所以2112110A A B B D D A B D C A B D m y m y m y m y m y m y y m m m m m m ++++===++++ (1)又由于 B D y y = (2)A B y y h -= (3)由(1)(2)(3)得:1212122,22A B D m h m hy y y m m m m ===-++该分子的中心主转动惯量()()222121122,,2i i i im m I m y z h i A B D m m =+==+∑()()22212,,2i i i im a I m z x i A B D =+==∑()()22221213122,,22i i i im m m a I m x y h i A B D m m =+=+=+∑答案:(1)01=I ,2122312()m m l I I m m ==+。

(2)坐标轴过质心,则21211222m m h I m m =+,2122m a I =,213I I I +=。

3-10 一个均质的半径为a ,高为b 的圆柱体,取其中心为坐标系的原点,柱轴为z 轴,写出它的惯量椭球的方程。

若使其惯量椭球为圆球,a 与b 之比应为多少?解 由题意作图,如图所示取柱体的质心为坐标原点,建立坐标系沿y 轴平行xoy 平切圆柱体的切面面积 2S a π=222b b dV Sdz V Sdz a b π-=⇒==⎰又 2m mV a bρπ== 故积分2322222212b b b b a b z dm z S dz a z dz πρρπρ--===⎰⎰⎰同理可求得422422(cos )4(sin )4a bx dm r b rdrd a b y dm r b rdrd ρπθρθρπθρθ====⎰⎰⎰⎰⎰⎰故中心惯量2222222122222222222223()()()4343()()()4343()a b b m b I y z dm a a a b b m b I x z dm a a a b m I x y dm a az zπρπρπρ=+=+=+=+=+=+=+==⎰⎰⎰ 123,,A I B I C I ∴===欲使其惯量椭球为球,只需123I I I ==a =即答案:1222=++cz by Ax ,其中⎪⎪⎭⎫ ⎝⎛+==12422b a m B A ,z ma C 2=。

欲使其惯量椭球为球,必有a b =。

3-11 求惯量张量()i k I 的主轴与主惯量,()215000114008i k Ma I ⎛⎫=-⋅-⎝⎭。

解 根据线性代数的知识令150011008λλ---=-,得(15)(11)(8)(((15)(14)(5)0λλλλλλ⎡⎤-----⨯-=---=⎣⎦即12315,5,14λλλ===222112222222233315404081540408714404020Ma Ma I Ma Ma Ma I Ma Ma Ma I Ma λλλ==⨯===⨯===⨯=求出λ所对应的特征向量分别为123(1,1,(0,1,(0,)T T T ααα===又于主轴相互正交,经正交化和单位化之后得124(1,0,0),(0,,T T Tααα'''===123,,e i e j e j ∴===答案:2138I Ma =,2218I Ma =,23720I Ma =, 1e i =,233e j k =+,333e j k =-+ 。

相关文档
最新文档