浅析通信系统中的多路复用技术

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

浅析通信系统中的多路复用技术

摘要:多路复用是许多通信系统中的一个很重要的部分。而多路复用技术又包括频分多路复用、时分多路复用、波分多路复用、码分多址和空分多址。本文主要就其中的时分多路复用进行简要探讨。

关键词:多路复用技术;时分多路复用。

多路复用实现了两个功能:它允许发射机和接收机之间的现有信道或链路用于同时传递多条消息(增加了容量);它还允许将相关信号聚集到一个整体中,然后由系统作为一个信号加以处理。

多路复用确保了两个信号不会同时占用相同的空间、频率和时间。它的实现方法是:增加新的物理链路(空分)、多个信号共享整个带宽的频谱(频分)、或者使每个用户都有机会依次访问链路(时分)。每种技术都在安装、成本、可靠性、检查维修的容易程度以及可达到的性能级别等方面具有优点和缺点。虽然多路复用可以用于模拟和数字信号,但是时分多路复用适合于数字信号,并且这些数字信号充分利用了数字电路。

1.多路复用简介

电子信号在特定的空间区域、规定的频带以及在已知的时间段内通过通信信道或链路。

当这三个元素(空间、频率和时间)对于两个或者多个信号都相同

时,就会产生干扰和冲突。多路复用(复用)是允许多个信号在信道中共存的一种技术,它开发了共享空间、频率或者时间的机制。使用多路复用技术,许多信号可以共享现有的信道,并更充分地利用信道容量(解多路复用是相反的操作)。

使用多路复用技术有多种原因。通信系统可能会有多个新的单独用户需要在与第一个用户相同的两个端点之间发送消息,并且在它们之间安装另一条物理电线或者建立新的发射机和接收机对通常都是不现实的。这种情况的一个好的示例是电话中心局之间的主干信道,它携带有几十路通话。使用多路复用的另一个原因是它允许将几个不同的信号聚集在一个群中,这样就可以在整个系统中从那个端点开始,作为单个整体来处理它们。

有三种方法可以增加从发送端点传递到接收端点的信息量,或者信号数。按它们发展的历史顺序,它们分别是:

(1)空分多路复用(SDM):通过在现有电线的旁边安装新的电线,建立多个物理通道。

(2)频分多路复用(FDM):每个用户信号调制整个可用带宽中的不同的载波频率。

(3)时分多路复用(TDM):为每个信号分配一个“时间间隔”或者“时间片”,并且每个信有机会(按顺序)使用信道链路和频率。

在这三类多路复用技术中,没有一种技术天生就比其他两种技术好。针对一个应用的最佳选择取决于许多因素:可用带宽、距离、信号数和信号类型、成本和复杂度以及可靠性。实际上,许多应用会在

它从发射机到接收机的链路中多次复用信号,并且从信号源到信号用户的整个信号流路径中,每个阶段所使用的多路复用类型都可能是不同的。

多路复用技术允许其他信号使用信道中没有在使用的容量(通常是可用的潜在带宽),当然会有限制。当将更多的信号多路复用在一起时,会占用越来越多的可用带宽。因此,对可以实现的多路复用数会有限制;例如,可以是一些实际的限制:单个同轴电缆可以携带多少路话音信号,或者宽带UHF频率分配可以支持多少路电视信号。

2.数字和模拟信号多路复用

SDM、FDM和T'DM的基本定义并没有指出被多路复用的用户信号是模拟的还是数字的。可以将多路复用技术应用于任何一类信号(数字信号实际上是一类特殊的模拟信号)。但是,在实现多路复用的实际系统中,被多路复用的信号类型对电路设计有着很大的影响。模拟信号的多路复用电路必须容纳具有整个值范围内的任何一个值的信号,因此需要不会使信号失真的线性电路。数字多路复用系统希望信号只有有限的一组值(在二进制数字情况下,只有两个值),因此可以使用数字逻辑电路。

多路复用和调制(通信中的两个重要元素)是相关的,但是不应该将它们相互混淆。幅度、频率和相位调制(AM、FM、PM)是将承载信息的信号与更高的载波频率联系起来的三种方法,且调制是频分多路复用的关键。但是,可以在空间、频率或者时间上多路复用已调信号;

类似的,已经多路复用的信号通常可以使用AM、FM或者PM技术调制载波。多路复用在一起的调制信号中的每个信号都可以使用不同类型的调制,尽管它们常常具有相同类型的调制。没载波频率的未调制信号称为基带信号,并且那个表示方法也用于描述进行FDM之前的信号。

3.时分多路复用

继频分多路复用(FDM)出现后,为了解决不同的信号在不同的时间内传送的效率问题,人们开发出了时分多路复用技术(TDM)。

TDM就是通过在时间上交叉发送每一路信号的一部分来实现一条电路传送多路信号的。电路上的每一短暂时刻只有一路信号存在。因数字信号是有限个离散值,所以TDM技术广泛应用于包括计算机网络在内的数字通信系统,而模拟通信系统的传输一般采用FDM。

TDM又分为同步时分复用(Synchronous Time Division Multiplexing,STDM)和异步时分复用(Asynchronous Time Division Multiplexing,ATDM)。

(1)同步时分复用

同步时分复用采用固定时间片分配方式,即将传输信号的时间按特定长度连续地划分成特定的时间段(一个周期),再将每一时间段划分成等长度的多个时隙,每个时隙以固定的方式分配给各路数字信号,各路数字信号在每一时间段都顺序分配到一个时隙。

(2)异步时分复用

异步时分复用(ATDM)技术又被称为统计时分复用技术(Stati stical Time Division Multiplexing),它能动态地按需分配时隙,以避免每个时间段中出现空闲时隙。

ATDM就是只有当某一路用户有数据要发送时才把时隙分配给它;当用户暂停发送数据时,则不给它分配时隙。电路的空闲时隙可用于其他用户的数据传输。

另外,在ATDM中,每个用户可以通过多占用时隙来获得更高的传输速率,而且传输速率可以高于平均速率,最高速率可达到电路总的传输能力,即用户占有所有的时隙。

由于在同步时分复用方式中,时隙预先分配且固定不变,无论时隙拥有者是否传输数据都占有一定时隙,这就形成了时隙浪费,其时隙的利用率很低,为了克服STDM的缺点,引入了异步时分复用技术。(3)优缺点

TDM系统具有抗干扰性强、无噪声积累、功放器件全激励功率的利用充分等优点。虽然由于频谱利用率远低于频分多路复用(FDM)系统,工作频带较窄的电缆不能用于大容量系统,但光缆和K波段微波的高载频可提供很大带宽,而多值正交调幅技术在数字微波系统上的应用还可大大提高波道的频谱利用率,使它们均可用于大容量数字传输系统。在电信网必然要过渡到综合业务数字网的趋势下,时分复用系统将居独占地位。

相关文档
最新文档