利用相似三角形测高
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第四章图形的相似
一、利用相似三角形测高
知识点1:利用阳光下的影子来测量旗杆的高度
操作方法:一名学生在直立于旗杆影子的顶端处测出该同学的_________和此时旗杆的_______.(点拨:把太阳的光线看成是平行的.)
∵太阳的光线是_________的,∴________∥_________,∴∠AEB =∠CBD , ∵人与旗杆是________于地面的,∴∠ABE =∠CDB=_____°,
∴△_______∽△_______∴BD
BE CD AB =即CD=BE BD AB ⋅ 因此,只要测量出人的影长BE ,旗杆的影长DB ,再知道人的身高AB ,就可以求出旗杆CD 的高度了.
知识点2:利用标杆测量旗杆的高度
操作方法:选一名学生为观测者,在他和旗杆之间的地面上直立一根高度已知的标杆,观测者前后调整自己的位置,使旗杆顶部、标杆顶部与眼睛恰好在
____________时,分别测出他的脚与旗杆底部,以及标杆底部的距离即可求出旗杆的高度.
如图,过点A 作AN ⊥DC 于N ,交EF 于M . 点拨:∵人、标杆和旗杆都_______于地面,∴∠ABF =∠EFD =∠CDH =_______° ∴人、标杆和旗杆是互相_______的.
∵EF ∥CN ,∴∠_____=∠_____,∵∠3=∠3,
∴△______∽△______,∴CN
EM AN AM = ∵人与标杆的距离、人与旗杆的距离,标杆与人的身高的差EM 都已测量出, ∴能求出CN ,∵∠ABF =∠CDF =∠AND =90°,∴四边形ABND 为________. ∴DN =_______,∴能求出旗杆CD 的长度.
知识点3:利用镜子的反射
操作方法:选一名学生作为观测者.在他与旗杆之间的地面上平放一面镜子,固定镜子的位置,观测者看着镜子来回调整自己的位置,使自己能够通过镜子看到旗杆_______.测出此时他的脚与镜子的距离、旗杆底部与镜子的距离就能求出旗杆的高度.
点拨:入射角=反射角
∵入射角=反射角∴∠________=∠________
∵人、旗杆都_________于地面∴∠B =∠D =_______°
∴△________∽△________,∴DE
BE CD AB 因此,测量出人与镜子的距离BE ,旗杆与镜子的距离DE ,再知道人的身高AB ,就可以求出旗杆CD 的高度.
二、例题精讲
例1:如图,有一路灯杆AB (底部B 不能直接到达),在灯光下,小华在点D 处测得自己的影长DF=3m ,沿BD 方向到达点F 处再测得自己的影长FG=4m ,如果小华的身高为1.5m ,求路灯杆AB 的高度。
例2:如图,小华在晚上由路灯A 走向路灯B ,当他走到点P 时,发现他身后影子的顶部刚好接触到路灯A 的底部,当他向前再步行12m 到达点Q 时,发现他身前影子的顶部刚好接触到路灯B 的底部,已知小华的身高是1.60m ,两个路灯的高度都是9.6m ,设AP=x(m)。
(1)求两路灯之间的距离;
(2)当小华走到路灯B 时,他在路灯下的影子是多少?
例3:如图,数学兴趣小组的小颖想测量教学楼前的一棵树的树高,下午课外活动时她测得一根长为1m 的竹竿的影长是0.8m ,但当她马上测量树高时,发现树的影子
不全落在地面上,有一部分影子落在教学楼的墙壁上(如图),他先测得留在墙壁上的影高为1.2m ,又测得地面的影长为2.6m ,请你帮她算一下,树高是多少
m?
三、巩固练习:
1.在某一时刻,测得一根高为1.8m 的竹竿的影长为3m ,同时测得一栋高楼的影长为90m ,这栋高楼的高度是多少?
2.如图,AB 表示一个窗户的高,AM 和BN 表示射入室内的光线,窗户的下端到地面的距离BC=1m ,已知某一时刻BC 在地面的影长CN=1.5m ,AC 在地面的影长CM=4.5m ,求窗户的高度?
3.如图,王华晚上由路灯A 下的B 处走到C 处时,测得影长CD 的长为1米,继续
往前走3米到达E 处时,测得影子EF 的长为2米,已知王华的身高是1.5米,那么路灯A 的高度AB 为多少米?
4.如图是小明设计用手电来测量某古城墙高度的示意图.点P 处放一水平的平面镜,光线从点A 出发经平面镜反射后刚好射到古城墙CD 的顶端C 处,已知AB ⊥BD ,CD ⊥BD ,且测得AB=1.2米,BP=1.8米,PD=12米,那么该古城墙的高度是多少?
5.晚饭后,小聪和小军在社区广场散步,小聪问小军:“你有多高?”小军一时语塞,小聪思考片刻,提议用广场照明灯下的影长及地砖长来测量小军的身高,于是,两人在灯下沿直线NQ 移动,如图,当小聪正好站在广场的A 点(距N 点5块地砖长)时,其影长AD 恰好为1块地砖长;当小
军正好站在广场的B 点(距N 点9块地砖长)时,其影长BF 恰好为2块地
A
B
C N
M
砖长,已知广场地面由边长为0.8米的正方形地砖铺成,小聪的身高AC为1.6米,MN⊥NQ,AC⊥NQ,BE⊥NQ,请你根据以上信息,求出小军身高BE的长(结果精确到0.01米)
6.某市为了打造森林城市,树立城市新地标,实现绿色、共享发展理念,在城南建起了“望月阁”及环阁公园.小亮、小芳等同学想用一些测量工具和所学的几何知识测量“望月阁”的高度,来检验自己掌握知识和运用知识的能力.他们经过观察发现,观测点与“望月阁”底部间的距离不易测得,因此经过研究需要两次测量,于是他们首先用平面镜进行测量.方法如下:如图,小芳在小亮和“望月阁”之间的直线BM上平放一平面镜,在镜面上做了一个标记,这个标记在直线BM上的对应位置为点C,镜子不动,小亮看着镜面上的标记,他来回走动,走到点D时,看到“望月阁”顶端点A在镜面中的像与镜面上的标记重合,这时,测得小亮眼睛与地面的高度ED=1.5米,CD=2米,然后,在阳光下,他们用测影长的方法进行了第二次测量,方法如下:如图,小亮从D点沿DM方向走了16米,到达“望月阁”影子的末端F点处,此时,测得小亮身高FG的影长FH=2.5米,FG=1.65米.?
如图,已知AB⊥BM,ED⊥BM,GF⊥BM,其中,测量时所使用的平面镜的厚度忽略不计,请你根据题中提供的相关信息,求出“望月阁”的高AB的长度.?
?