微型机继电保护基础_课本

合集下载

微机继电保护基本原理教材课程

微机继电保护基本原理教材课程
中央处理单元(CPU)
用于数据采集、计算、逻辑判断和输出控制。
输入输出接口
实现与外部电路的信号传输和控制。
存储器
用于存储程序、数据和故障信息。
电源
为微机继电保护提供稳定的电源。
微机继电保护的硬件选型
01
02
03
04
根据系统要求选择合适的中央 处理单元(CPU)型号,确保
数据处理能力和实时性。
根据需要选择适当的存储器容 量,确保能够存储足够的程序
硬件部分
包括中央处理器(CPU)、存储器、 输入/输出(I/O)接口、电源等,负 责数据采集、处理和执行。
软件部分
包括系统软件和应用软件,系统软件 负责管理硬件资源和应用软件,应用 软件根据继电保护要求实现特定的功 能。
微机继电保护的算法
傅里叶变换算法
用于检测电气量的频率 特性变化,常用于变压 器和发电机的匝间短路
20世纪80年代末至90年代初,集成电路保 护的推出进一步推动了微机继电保护技术 的发展。
成熟阶段
未来展望
自20世纪90年代中期以来,随着计算机技 术的飞速发展,微机继电保护技术逐渐成 熟并广泛应用于电力系统。
随着人工智能、大数据等新技术的应用, 微机继电保护将朝着更加智能化、自动化 的方向发展。
02 微机继电保护的基本原理
案例二:低压配电系统的微机继电保护
总结词
低压配电系统是电力系统的末端环节,其运行状况直接关 系到电力用户的用电安全和稳定。
详细描述
01 微机继电保护概述
CHAPTER
01 微机继电保护概述
CHAPTER
定义与特点
定义
微机继电保护是指利用微型计算 机技术来实现电力系统继电保护 功能的系统。

分享微机继电保护装置基础知识PPT

分享微机继电保护装置基础知识PPT

某智能建筑
03
采用微机继电保护装置实现对楼宇自动化系统的保护和控制,
提高了建筑的能源利用效率和安全性故障与处理方法
常见故障类型
采样故障
模拟量输入回路故 障,导致采样数据 异常。
软件故障
程序运行错误或死 机。
电源故障
电源模块故障,导 致装置无法正常工 作。
算法处理
微处理器根据预设的保护算法对采集 到的数据进行处理,判断是否发生故 障或异常。
输出执行
根据算法处理结果,通过输出接口发 出跳闸或合闸等控制信号,实现对一 次设备的保护。
人机交互
通过人机界面显示装置的运行状态和 故障信息,方便用户进行监控和维护 。
PART 03
微机继电保护装置的应用 场景与优势
通信故障
与外部设备或控制 系统的通信中断。
硬件故障
装置内部硬件损坏 。
故障处理方法
采样故障处理
检查模拟量输入回路,确保采 样数据准确。
软件故障处理
重启装置或重新下载程序。
电源故障处理
检查电源模块,确保正常供电 。
通信故障处理
检查通信接口和线路,确保通 信正常。
硬件故障处理
更换损坏的硬件模块。
故障预防措施
WENKU DESIGN
WENKU DESIGN
WENKU
KEEP VIEW
分享微机继电保护装 置基础知识
REPORTING
ONE
2023-2026
WENKU DESIGN
WENKU DESIGN
CATALOGUE
目 录
• 微机继电保护装置概述 • 微机继电保护装置的组成与原理 • 微机继电保护装置的应用场景与优势 • 微机继电保护装置的常见故障与处理方法 • 微机继电保护装置的未来发展趋势与挑战

电力系统继电保护原理-微型机继电保护基础 PPT精品课件

电力系统继电保护原理-微型机继电保护基础 PPT精品课件

EPROM、 EEPROM、 F并L行AS接H口、:RAM
输 入
并行接口 连接开入开出系
统。
数据采集系统
微机主系统
10.1 微机继电保护的硬件构成
一、概述
2.单CPU微机保护硬件结构示意图★★

CPU

TA
电压形成 LF S/H
EPROM
TV
二 次 侧
.
M
EEPROM
.
P AD
FLASH
的 模
.
X
10.1 微机继电保护的硬件构成
二、数据采集系统
1.电压形成★ (2)输出电气量
一般都是电压信号。
根据模数转换器的不同,范围有0~5V,0~10V,2.5V~+2.5V,-5V~+5V,-10V~+10V等。
2.单CPU微机保护硬件结构示意图★★
CPU:

CPU 中央处理单元。

TA
电压形成 LF S/H
TV
EPROM 存储器:
二 次 侧 的 模 拟 量
.
M
.
P AD
.
X
电压形成 LF S/H
EEPROM FLASH RAM 定时器
EPROM、 EEPROM、 F定L时AS器H:、RAM
输 入
完成计时、采样
RAM
拟 量
电压形成 LF S/H
定时器 光
输 入
并行接口
电出
隔 离
口 电 路
人机对话 打印机 开关量输入
开关量输出
数据采集系统
微机主系统
开入/开出系统
10.1 微机继电保护的硬件构成
一、概述

第三章 微机继电保护基础

第三章 微机继电保护基础

跟随器的输入阻抗很高(达 1010 ), 输出阻抗很低(最大 ),因而A1对输入 6 u sr 来说是高阻抗;而在采样状态时,对 信号 C h 为低阻抗充电,故可快速采样。又 电容器 由于A2的缓冲和隔离作用,使电路有较好的 保持性能。
SA为场效应晶体管模拟开关,由运算放大器A3 驱动。A3的逻辑输入端 S / H 由外部电路(通常可 C h 处于 由定时器)按一定时序控制,进而控制着 采样或保持状态。符号 表示该端子有双重功 S/H 能,即 S/H S / H =“1”电平为采样(Sample)功能, =“0”电平为保持(Hold)功能。某个符号 上面带一横,表示该功能为低电平有效,这是数字 电路的习惯表示法。
A1和A2的接法实质相同,在采样状态(SA接通时),A1 的反相输入端从A2输出端经电阻器R获得负反馈,使输出跟 踪输入电压。在SA断开后的保持阶段,虽然模拟量输入仍 在变化,但A2的输出电压却不再变化,这样A1不再从A2的 输出端获得负反馈,为此在A1的输出端和反相输入端之间跨 接了两个反向并联的二极管,直接从A1的输出端经过二极 管获得负反馈,以防止A1进入饱和区,同时配合电阻器R起 到隔离第二级输出与第一级 fmax
目前大多数的微机保护原理都是反映工频量的,在这种 情况下,可以在采样前用一个低通模拟滤波器(Low Pass Fliter, LPF)将高频分量滤掉,这样就可以降低 f S 。实际 上,由于数字滤波器有许多优点,因而通常并不要求图3-1中 的模拟低通滤波器滤掉所有的高频分量,而仅用它滤掉 f S / 2 以上的分量,以消除频率混叠,防止高频分量混叠到工频附 近来。低于 f S / 2 的其他暂态频率分量,可以通过数字滤波 来滤除。
由于Z g 很小,所以共模干扰信号对变 换器二次侧的影响得到了极大的抑制。这 样中间变换器还起到屏蔽和隔离共模干扰 信号的作用,可提高交流回路的可靠性。

微型机继电保护原理课件

微型机继电保护原理课件

第一章 概述一、绘出微型机继电保护的构成原理图。

二、简要说明微型机继电保护的特点。

1、 逻辑判断清楚、正确。

微型机继电保护中主要是由程序实现逻辑判断。

复杂保护功能之间的复杂逻辑关系都编制在一个程序之中,不易出错,并且程序被正确地复制在成批生产的微型继电保护装置中。

所以与常规继电保护装置相比较,微型机继电保护的应用,使复杂的继电保护原理,在实现的手段得到了简化,继电保护的正确动作率得到了显著的提高。

2、 微型机继电保护可以实现常规模拟式继电保护无法实现的优良保护性能。

3、 调试维护方便。

对微型机继电保护装置的检验和调试的主要内容是检验各个模拟输入和开关输入输出电路是否完好,确认各项保护功能是否达到设计要求。

这些检验调试项目和内容与常规保护装置相比可大大的简化,检验周期可以延长。

4、 在线运行的可靠性高。

微型机继电保护装置可以利用软件实现在线自检,极大地提高了其在线运行工作的可靠性。

5、 能够提供更多的系统运行的信息量。

借助于人机联系的微型机系统,可以将有关的系统运行信息,通过打印机输出,为事故分析和故障点的快速恢复提供所需的数据,此外,还可向电网调度输送信息,接受命令。

所有这些,常规继电保护装置是无法做到的。

第二章 离散控制系统一、设采样周期为T=0.5S ,求x(t)采样后,采样信号的Z 变换。

1、x(t)= 1 (0≤t ≤T)0 (t ≥T,t ≤0) 解:令 t=KT 当 0≤t ≤T X(KT)=1 Z[X(KT)]=∑-k z *1 (k=0,1,2…)=+++--211z z…此幂级数为一等比级数且公比为1-z ,当1-z <1时()[]()111--==z z X KT x z当t ≥T,t ≤0时 , X(z)=0te 2- (t ≥T)2、x(t)=0 (t <0)解:当t ≥T 时,令t=KT ,则函数aKTe -在各采样时刻的采样值为()aKTeKT x -= (k=0,1,2…)()[]()aT aT e z z z e z X KT x ----=-==111其中a=2 T=0.5()[]()1--==e z z z X KT x当t <0时 X(z)=0 二、求下列函数的Z 变换。

微机继电保护PPT课件

微机继电保护PPT课件
继电保护概述 • 微机继电保护的基本原理 • 微机继电保护的分类与应用 • 微机继电保护的优缺点与展望 • 微机继电保护的实际应用案例
01 微机继电保护概述
CHAPTER
定义与特点
定义
微机继电保护是指利用微型计算 机技术来实现电力系统继电保护 功能的系统。
微机继电保护装置具有灵活的配置和编程 能力,可以根据需要进行定制和扩展,适 应不同系统的需求。
微机继电保护装置具有自我诊断和修复功 能,能够检测和修复潜在的故障,提高系 统的可靠性和稳定性。
微机继电保护的缺点
对硬件和软件要求高
01
微机继电保护装置需要高性能的硬件和软件支持,增加了系统
的复杂性和成本。
对数据传输和处理能力要求高
02
微机继电保护装置需要实时传输和处理大量数据,对数据传输
和处理能力要求较高。
对外部环境因素敏感
03
微机继电保护装置对外部环境因素较为敏感,如温度、湿度、
电磁干扰等,需要采取相应的防护措施。
微机继电保护的展望
智能化发展
随着人工智能技术的发展,微机继电保护装置将更加智能化,能 够自适应地学习和优化保护策略。
应用效果
该系统的应用显著提高了发电厂的安全性和可靠性,减少了设备 损坏和事故发生。
技术特点
该系统采用了基于数字信号处理技术的继电保护算法,具有高灵 敏度和快速响应的特点。
某变电站的微机继电保护系统
案例概述
某变电站的微机继电保护系统采用了先进的微机继电保护装置,实 现了对变电站的全面保护。
应用效果
该系统的应用显著提高了变电站的安全性和可靠性,减少了设备损 坏和事故发生。
04 微机继电保护的优缺点与展望
CHAPTER

电力系统继电保护第 3章 微机保护基础知识ppt课件

电力系统继电保护第 3章 微机保护基础知识ppt课件

对脉冲计数,从而完 成对电压的测量
10
:
2021/5/30
3.2.1基于逐次逼近式A/D转换的模拟
量输入系统 (1〕电压形成回路
类型 电流变换器〔UA) 电压变换器〔UV) 电抗变换器〔UR)
作用
TA、TV二次侧电流电压较大,变化范 围也较大,为适应模数转换器的转 换要求将交流模拟量适当值,以满 足精度要求。
意义,需要了解。
2
:
2021/5/30
学习方法
掌握基本原理 用计算机方法实现电
流保护,在实践中提 高对微机保护的认识 要将保护的基本算法 与具体继电保护原理 结合
• 要分清楚哪些是基本原理。
• 要利用微机来实现基本算 法。
• 理论联系实践,要既动脑 也动手。
3
:
2021/5/30
微机保护优点
• 需要强调的是,存储器包括
• EPROM-用于存放保护程序,即 软件
• RAM-用于存放运算的中间结果。
• EEPROM-用于存放保护定值, 也可采用FLASH来存放。
7
:
2021/5/30
3.2 数据采集系统
基于逐次逼近型A/D转换的采集系统 基于电压/频率变换〔VFC〕原理进行A/D变换
• AD转换结果直接存入内存
33
:
2021/5/30
3.3 开关量输入输出回路原理
不带电位的接点〔QF位置、跳闸等)、逻辑电平〔键盘、信号)。
开关量输入回路 • 电平接点直接接入并行口
5V • 外部接点要采取抗干扰措施,
如光耦的隔5V离
R
PA0
S
R1
R3
+24V
PA0
8255

微机继电保护精品课件教材课程

微机继电保护精品课件教材课程

大数据技术在微机继电保护中的应用
大数据技术可以对大量的电力系统运 行数据进行分析和处理,提取出有用 的信息,用于优化保护装置的配置和 整定值。
大数据技术还可以用于对历史故障数 据进行挖掘和分析,找出故障发生的 规律和原因,为预防和解决故障提供 科学依据。
大数据技术还可以用于对电力系统的 运行状态进行实时监测和预警,及时 发现潜在的故障风险,提高电力系统 的安全性和稳定性。
详细描述
通信故障通常表现为通信指示灯不亮、通信数据异常等。这 可能是由于通信接口接触不良、通信线缆损坏或通信协议不 匹配等原因造成的。处理通信故障需要检查通信接口和线缆 是否正常,同时确保通信协议的一致性。
通信故障
总结词
通信故障是指微机继电保护装置与其他设备或系统之间的通 信出现问题,导致信息传输受阻或数据错误。
物联网技术在微机继电保护中的应用
物联网技术可以实现电力设备和 保护装置之间的信息交互和远程 控制,提高保护装置的自动化和
智能化水平。
物联网技术还可以用于对电力设 备的运行状态进行实时监测和预 警,及时发现设备的异常情况,
提高设备的可靠性和安全性。
物联网技术还可以用于实现电力 系统的远程管理和控制,提高电 力系统的运行效率和可靠性。
靠性。
距离保护
距离保护通过测量故障点到保护装 置的距离,判断故障位置,实现选 择性保护。
方向保护
方向保护通过比较故障电流的方向, 判断故障是否发生在被保护线路的 内部,实现选择性保护。
微机继电保护的软件算法
电流差动保护
电流差动保护通过比较线路两侧 电流的大小和相位来判断故障是 否发生,具有较高的灵敏度和可
大数据技术在微机继电保护中的应用
大数据技术可以对大量的电力系统运 行数据进行分析和处理,提取出有用 的信息,用于优化保护装置的配置和 整定值。

电气系统继电保护第10章微机保护基础.ppt

电气系统继电保护第10章微机保护基础.ppt

图10.1 传统继电保护装置的原理结构图
2021/9/15
6
各基本部分的作用是: (l)测量部分是测量与被保护设备工作状态(正常状态、 故障状态或不正常工作状态)相关的电气量,并与给定的整定 值比较,从而判断保护是否应该起动。 (2)逻辑部分是根据各测量元件输出量的大小、性质、组 合方式、出现的顺序,来判断被保护设备的工作状态,以决定 保护是否应该动作。 (3)执行部分是根据逻辑部分传送的信号,执行保护装置 所承担的任务。如内部故障时动作于跳闸;不正常运行时发出 报警信号;正常运行时不动作等。
16
n
如果记为 D ai 2i ,式(10.1)可以写成:
i 1
V AkD
(1 0 .2 )
式中,与VA成比例的二进制数D,就是直流模拟电压VA的A/D 转 换结果。完成A/D转换所需要的一组标准电压,由D/A转换网络
产生。常用的D/A 转换网络有T塑网络和权电阻网络,图10.7是
T型网络(又称R—2R网络)的原理图。
储器中的保护程序,对由数据采集系统输入至随机存取存储器
中的数据进行分析处理,以完成各种继电保护的功能;
(3)开关量输入/输出接口。由若干并行接口、光电隔离
器及中间继电器等组成,以完成各种保护的出口跳闸、信号警
报、外部接点输入及人机对话等功能;
(4)通信接口。包括通信接口电路及接口以实现多机通信
或联网;
如,保护的动作顺序记录,故障谐波分析,故障测距,低频
减载等。 2021/9/15
2
(4)保护性能易于改善 对于相同的硬件,可以通过算法的不同,实现不同的保 护。这样,也就可以通过改善算法来不断完善保护性能,而 不需要改动硬件。通过软件算法的改善,可以较好地解决原 有模拟继电保护装置无法解决的一些问题。

微型机继电保护基础-杨奇逊

微型机继电保护基础-杨奇逊

绪论一、计算机在继电保护领域中的应用和发展概况电子计算机特别是微型计算机(以下简称微型机)技术发展很快,其应用已广泛而深入地影响着科学技术、生产和生活等各个领域。

它使各行业的面貌发生了巨大的,往往是质的变化,继电保护技术也不例外。

在继电保护技术领域,除了离线地应用计算机作故障分析和继电保护装置的整定计算、动作行为分析外,60 年代末期已提出用计算机构成保护装置的倡议。

最早的两篇几乎同时发表的关于计算机保护的研究报告[1,2] ,揭示了它的巨大潜力,引起了世界各国继电保护工作者的兴趣。

在70 年代,掀起了研究热潮,仅公开发表的有关论文就有200 余篇[3] ,在此期间提出了各种不同的算法原理和分析方法。

但是限于计算机硬件的制造水平以及价格过高,故当时还不具备商业性地生产这类保护装置的条件。

早期的研究工作是以小型计算机为基础的,出于经济上的考虑,曾试图用一台小型计算机来实现多个电气设备或整个变电站的保护功能。

这种想法使可靠性难以得到保证,因为一旦当该台计算机出现故障,所有的被保护设备都将失去保护,同时,按照当时计算机的接口条件和内部资源来说,也无法实现这种设想。

到了70 年代末期,出现了一批功能足够强的微型机,价格也大幅度降低,因而无论在技术上还是经济上,已具备用一台微型机来完成一个电气设备保护功能的条件。

甚至为了增加可靠性,还可以设置多重化的硬件,用几台微型机互为备用地构成一个电气设备的保护装置,从而大大提高了可靠性。

美国电气和电子工程师学会(IEEE)的教育委员会在1979 年曾组织过一次世界性的计算机保护研究班(其讲义有中译本[4])。

这个研究班之后,世界各大继电器制造商都先后推出了各种定型的商业性微机保护装置产品。

由于微机保护装置具有一系列独特的优点,这些产品问世后很快受到用户的欢迎。

国内在微型机保护方面的研究工作起步较晚,但进展却很快。

1984 年国内第一套微机距离保护样机在经过试运行后,通过了科研鉴定[5]。

第一讲微机保护

第一讲微机保护

开关量输入回路接线图
开关量输出主要包括保护的跳闸出口以及本地 和中央信号输出等。 和中央信号输出等。
开关量输出回路接线图
4、VFC型数据采集系统 VFC型数据采集系统
(VFC---Voltage (VFC---Voltage Frequency Converter.)
电压、电流信号经电压形成回路后, 电压、电流信号经电压形成回路后,均变换 成与输入信号成比例的电压量,经过VFC, 成与输入信号成比例的电压量,经过VFC,将模 VFC 拟电压量变换为脉冲信号, 拟电压量变换为脉冲信号,该脉冲信号的频率与 输入电压成正比,经快速光电耦合器隔离后,由 输入电压成正比,经快速光电耦合器隔离后, 计数器对脉冲进行计数,随后, 计数器对脉冲进行计数,随后,微型机在采样间 隔Ts内读取的计数值就与输入模拟量在Ts内的积 分成正比,达到了将模拟量转换为数字量的目的, 分成正比,达到了将模拟量转换为数字量的目的, 实现了数据采集系统的功能。 实现了数据采集系统的功能。
⑤模数转换器(A/D) 模数转换(A/D)
模数转换器A/D是数据采集系统的核心, 模数转换器A/D是数据采集系统的核心,它的 A/D是数据采集系统的核心 任务是将连续变化的模拟信号转换为数字信号,以 任务是将连续变化的模拟信号转换为数字信号, 便计算机进行处理、存储、控制和显示。A/D转换 便计算机进行处理、存储、控制和显示。A/D转换 器主要有以下各种类型。逐位比较(逐位逼近)型 器主要有以下各种类型。逐位比较(逐位逼近) 、积分型以及计数型、并行比较型、电压频率(即 积分型以及计数型、并行比较型、电压频率( V/F)型等。 V/F)型等。
CPU 开关量输出 (跳闸、信号) 开关量输入 (断路器、 隔离开关 状态) 键盘 人 机 对 话 接 口 部 件
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章
1、微机保护的硬件:①数据采集系统②微型机主系统③开关量输入/输出系统④电源系统
2、采样保护电路的作用:在一个极短的时间内测量模拟输入量在该时刻的瞬时值,并在模拟—数字转换器进行转换的时间内保持其输出不变
3、采样频率的选择原则:采样定理fs>2fmax,如果被采样信号中所含最高频率成分的频率为fmax,则采样频率fs必须大于fmax的2倍
4、模拟低通滤波器的应用:将高频分量滤掉,这样就可以降低fs,从而降低对硬件的要求
5、模数转换器的评价指标:①转换时间②数字输出的位数
6、开关量输出类型:①保护的跳闸出口②本地和中央信号③通信接口④打印机接口
7、光电耦合器的作用:可以实现两侧电路之间的电气隔离,可以用来传递模拟信号,也可以作为开关器件使用
第二章
1、数字滤波器:将输入模拟信号X(t)经过采样和模数转换变成数字量后,进行某种数字处理以去掉信号中的无用成分,然后再经过数模转换得到模拟量输出Y(t)
2、时不变系统:满足T[x(t-t1)]=y(t-t1)即如果输入信号推迟一个时间t1,则输出也将推迟同一个时间t1,但波形不变
3、因果系统:是指输出变化不会发生在输入变化之前的系统
4、P50
5、频率特性是冲激响应的傅氏变换
6、滤波器的响应时间:一个滤波器的输入从一个稳态变到另一个稳态时,其输出要经过一个过渡过程的延时才能达到新的稳态输出,这种延时称为滤波器的响应时间
7、离散时间信号的傅氏变换定义式:P56
8、Z变换定义式:P59
9、非递归型数字滤波器是将输入信号和滤波器的单位冲激响应作卷积而实现的一类滤波器。

是无限冲激响应滤波器(FIR):对单位冲激的输入信号的响应为无限长序列的数字滤波器
递归型滤波器是用前几次的输出值作为输入来求下一次的输出。

是有限冲激响应滤波器:对单位冲激的输入信号的响应为有限长序列的数字滤波器
10、计算:P69
第三章
1、评价算法的标准:精度、速度
速度包括:①数据窗的长度Dw②运算工作量(乘除法的次数)
2、导数法的优缺点:优①需要的数据窗短②算式和乘积法相似,不复杂
缺①要求数字滤波器有良好的滤去高频分量的能力
②要求有较高的采样率
3、半周积分算法的依据:一个正弦量在任意半个周期内绝对值的积分为一常数S,即S= 半周积分算法需要的数据窗长度为10ms
4、突变电流算法计算公式P80
5、为什么要进行故障选相:①可以用于选相跳闸②可以在阻抗继电器中做到仅投入故障特征最明显的阻抗测量元件
6、傅里叶级数算法:P87
7、傅氏算法的滤波特性:它假定被采样信号是周期性的,符合这一假定时,它可以准确地求出基频分量,不仅能完全滤掉各种整次谐波和纯直流分量,对非整次高频分量和按指数衰减的非周期分量包含的低频分量也有一定的抑制能力
8、R-L模型算法仅用于计算线路阻抗
9、傅氏算法和两点乘积算法的比较:两点乘积法要求用一个50Hz带通滤波器获得基波正弦量,然后利用滤波器相隔5ms的两点输出,计算有效值及相位,因此它的总延时是滤波器的延时再加5ms。

傅氏算法则是同时利用两个对基频信号的相移相差90°的数字滤波器,故a1(t)超前b1(t)为90°,同两点乘积法相比,b1(t)相当于两点乘积法中第一点i1或u1,a1(t)相当于第二点i2或u2,只是它不要再等5ms,它的数据窗长度就等于滤波器数据窗的长度20ms,因此说傅氏算法和两点乘积算法的本质是统一的。

10、算法的动态特性:在n=0-9的时间内,计算用的电压和电流中,一部分是故障前的信号,另一部分是故障后的信号,因而计算得到的阻抗值介于负荷阻抗和短路阻抗之间,部分利用故障前的数据,部分利用故障后的数据计算得到的阻抗值跟随负荷阻抗单调下降,则在n=5时,计算值已低于整定值,就可以立即跳闸,反之,如果算法的动态特性不是单调下降的,在n=0-9期间的计算值中,有可能比实际的短路阻抗还要低,则在有一次计算值低于整定值时就跳闸,这将导致误动作。

理想的动态特性是单调下降的
第四章
1、干扰分为共模干扰和差模干扰
2、干扰源主要是通过保护装置端子从外界引入的浪涌
3、干扰对微机保护造成的后果,主要表现在“读”或“写”出错,最严重的错误是程序出错
4、常用抗干扰措施:①对输入采样值的抗干扰纠错②运算过程的校核纠错③出口的闭锁(防误动)a、不允许一条指令就出口b、中间加入核对程序④程序出格的自恢复(防拒动)
5、看门狗电路P124
6、为什么微机保护具有较高的抗干扰性:可靠性对微机保护而言主要有两个问题:一是微机保护的抗干扰问题,二是装置内部元件出现损坏时的对策,在抗干扰方面,微机保护有它独到之处,由于读或写出错导致保护误动作的可能性很小,并且一般的出错都会有相应的一系列措施,予以自动纠正
第五章
1、引起中断的原因,或能发出中断申请的来源,称为中断源
2、中断源分为:定时器中断、通信中断、异常中断
3、提高电流保护灵敏度的方法:保护的设计跳出“单个继电器”的概念和范畴,同时,利用微机的优势和故障的特点,在相同模拟量输入的情况下,考虑电流保护整定值随故障类型的不同而自动调整,从而有效的提高电流保护的灵敏度。

相关文档
最新文档