几何公差与尺寸公差的关系-公差原则比较
第四节_形位公差与尺寸公差的关系[17P][545KB]
![第四节_形位公差与尺寸公差的关系[17P][545KB]](https://img.taocdn.com/s3/m/d3ed7b07192e45361066f5f5.png)
0
0.01 0.02 0.03
3.合格条件:用公式表示为 D D D D 孔: a f fe M min
D D D a L max
轴: d dfed d a f M max d d d a L min
式中:f —— 被测要素的形状误差
3. 最大实体实效状态、尺寸
• (1) 最大实体实效状态(MMVC) 在给定长度上,实际要 素处于最大实体状态且其中心要素的形状或位置误差等于 给出的形位公差值时的综合极限状态。
• (2) 最大实体实效尺寸(DMV、dMV) 最大实体实效状态下的体外作用 尺寸。
dMV =dfe=da+f =dM + t =dmax + t DMV=Dfe=Da-f =DM–t =Dmin- t
dfe=da+f Dfe=Da-f
Dfe
Da1
Da2
Da3
da1
da2
da3
dfe
dfi
a) 外表面(轴)
b) 内表面(孔)
图4-5实际尺寸和作用尺寸
Dfi
(2) 体内作用尺寸(dfi、Dfi) 在被测要素的给定长度上,与实际外 表面体内相接的最大理想面或与实际内表面 体内相接的最小理想面的直径或宽度。对于 关联要素,该理想面的轴线或中心平面必须 保持图样给定的几何关系。
• 作用尺寸与实效尺寸的区别: 作用尺寸是由实际尺寸和形位误差综 合形成的,一批零件中各不相同,是一个 变量,但就每个实际的轴或孔而言,作用 尺寸却是唯一的;实效尺寸是由实体尺寸 和形位公差综合形成的,对一批零件而言 是一定量。实效尺寸可以视为作用尺寸的 允许极限值。
5.边界
• (1)边界 由设计给定的具有理想形状的极限包 容面。 • (2)最大实体边界(MMB) 尺寸为最大实体尺 寸的边界。 • (3)最小实体边界(LMB) 尺寸为最小实体尺 寸的边界。 • (4)最大实体实效边界(MMVB) 尺寸为最大 实体实效尺寸的边界。(如下图) • (5)最小实体实效边界(LMVB) 尺寸为最小实 体实效尺寸的边界。
公差原则与公差要求
![公差原则与公差要求](https://img.taocdn.com/s3/m/faddefeb6529647d26285232.png)
31
其标注和动态公差带图见下图(图4.32)。
尺寸 公差
T尺寸 补偿 t几何
合格条件: 对轴 对孔
0
(b)
dfe≤dM , da≥dL Dfe≥DM ,Da≤DL
32
最大实体要求的应用:
最大实体要求用于只要求可装配性的要素。
最大实体要求的检测: 最大实体要求一般用功能量规来检验。 作业 思考题 3, 作业题 4
具有理想形状且边界尺寸(BS)为MMS(最大实体尺寸)的包容面。
(2)最大实体实效边界(MMVB)—
16
具有理想形状且BS为MMVS(最大实体实效尺寸)的包容面。
(a)
(b)
17
(3)最小实体边界( LMB )— 具有理想形状 且 BS 为LMS的包容面。
(4)最小实体实效边界( LMVB )—
38
其公差要求是: 零几何公差的最大实体原则
其合格条件是:
d fe 20 da 19.979
具有实体最小(即材料最少,重量最轻)的状态。
LMC
Dmin Dmax
dmax
dmin
尺寸公
孔
差带
轴
(2) LMS —最小实体尺寸(Least Material Size) 5 是指在最小实体状态LMC下的尺寸为LMS。
LMC
Dmin Dmax
dmax
dmin
孔 对孔 DL= Dmax
轴 对轴 dL= dmin
dMV = dM+t⊥ = Φ 15.95+0. 1 =Φ16. 05
φ0.1
Φ16
A (c)
例 4.1 按图4.28(d) 加工孔得:
21
Da=Φ16 , f⊥=0.2 ,
第三章-3.1.1-4几何公差与尺寸公差的关系
![第三章-3.1.1-4几何公差与尺寸公差的关系](https://img.taocdn.com/s3/m/1f2174e5f605cc1755270722192e453611665b5b.png)
最大实体实效尺寸(MMVS):
尺寸要素的最大实体尺寸与其导出要素的几何公差(形状、方向或 位置)共同作用产生的尺寸。
对于外尺寸要素,MMVS= MMS+几何公差;
对于内尺寸要素,MMVS= MMS−几何公差。
最大时的状态。称为最大实体状态(MMC)。
确定要素最大实体状态下的尺寸。称为最大实体尺寸。
轴即外尺寸要素的上极限尺寸,孔内尺寸要素的下极限尺寸。孔 用DMMS表示,轴用dMMS表示。
2.最小实体状态和最小实体尺寸
假定提取组成要素的局部尺寸处处位于极限尺寸且使其具有实体
最小时的状态。称为最小实体状态(LMC)。
最小实体实效尺寸(LMVS):
尺寸要素的最小实体尺寸与其导出要素的几何公差(形状、方 向或位置)共同作用产生的尺寸。
对于外尺寸要素,LMVS=LMS−几何公差; 对于内尺寸要素,LMVS= LMS+几何公差。
因为被测要素有单一要素和关联要素,所以实效状态和实效尺寸也 有两种情况。
1.单一要素的实效状态和实效尺寸
最小实体实效状态(LMVC)
拟合要素的尺寸为其最小实体实效尺寸(LMVS)时的状态。
最小实体实效状态对应的极限包容面称之为最小实体实效边界
(LMV)。
当几何公差是方向公差时,最小实体实效状态(LMVC)和最 小实体实效边界(LMVB)受其方向所约束;
当几何公差是位置公差时,最小实体实效状态(LMVC)和最 小实体实效边界(LMVB)受其位置所约束。
3.1.3 极限尺寸判断原则(泰勒原则)
孔或轴的作用尺寸不允许超过最大实体尺寸;在任何位置 上的实际(组成)要素不允许超过最小实体尺寸。
几何公差知识介绍
![几何公差知识介绍](https://img.taocdn.com/s3/m/bd87f90e5627a5e9856a561252d380eb629423ac.png)
几何公差知识介绍01什么是几何公差?“几何特性”指的是物体的形状、大小、位置关系等,“公差”则是“容许误差”。
“几何公差”不仅定义尺寸,还会定义形状、位置的容许误差。
(1)尺寸公差与几何公差的区别设计图纸的标注方法,大致可分为“尺寸公差”与“几何公差”这两类。
尺寸公差管控的是各部分的长度。
而几何公差管控的则是形状、平行度、倾斜度、位置、跳动等。
尺寸公差图纸几何公差图纸意为“请进行对示面(A)的‘平行度’不超过‘0.02’的加工”。
(2)几何公差的优点为什么需要标注几何公差呢?举个例子,设计者在订购某板状部件时,通过尺寸公差进行了如下标示。
但是根据上述图纸,生产方可能会交付如下所示的部件。
这样的部件会成为不适合品或不良品。
究其原因,就是没有在图纸上标注平行性。
相应的责任不在于加工业者,在于设计者的公差标示。
用几何公差标注同一部件的图纸,可得到如下所示的设计图。
该图在尺寸信息的基础上,追加了“平行度”、“平面度”等几何公差信息。
这样一来,就能避免因单纯标注尺寸公差而导致的问题。
差标注同一部件的图纸,可得到如下所示的设计图。
该图在尺寸信息的基础上,追加了“平行度”、“平面度”等几何公差信息。
这样一来,就能避免因单纯标注尺寸公差而导致的问题。
综上所述,几何公差的优点,就是能够正确、高效地传达无法通过尺寸公差来体现的设计者意图。
(3)独立原则尺寸公差与几何公差管控的公差不同。
尺寸公差管控的是长度,几何公差管控的则是形状及位置关系。
因此,尺寸公差和几何公差并无优劣之分,结合使用这两种公差,可实现高效的公差标示。
此外,尺寸公差及几何公差分别以不同测量设备及检测方法测量。
例如,尺寸公差会使用游标卡尺、千分尺等测量2点间距离,此时,下图中的尺寸公差全部合格。
但是,几何公差会利用真圆度测量仪、三坐标测量仪检测真圆度及中心轴的位置,根据指定的公差范围,可能会被判定为不合格。
换言之,根据尺寸公差会被判定为合格,根据几何公差则不合格。
公差原则(新)
![公差原则(新)](https://img.taocdn.com/s3/m/18d100a30242a8956aece452.png)
(3)包容要求的应用
仅用于单一尺寸要素,主要用于保证单一要素间的配合性质。 主要用于需要严格保证配合性质的场合。如回转轴的轴径和滑动轴
承、滑动套筒、 滑块和滑块槽等。
二、 相关要求
2.最大实体要求 (MMR) (1)最大实体要求的含义和图样标注
最大实体要求是指被测要素的实际轮廓应遵守其最大 实体实效边界,且当其实际尺寸偏离其最大实体尺寸时 ,允许其形位误差值超出图样上(在最大实体状态下) 给定的形位公差值的一种要求。
最大实体边界(Maximum Material Boundary,MMB): :最大实体状态 的理想形状的极限包容面。
3.4 公差原则
外要ห้องสมุดไป่ตู้的最大实体状 态和最大实体边界
3.4 公差原则
内要素的最大实体状 态和最大实体边界
(2)最小实体状态(LMC)和最小实体尺寸( LMS)
最小实体状态(Least Material Condition,LMC):实际要素在给定长度 上处处位于尺寸极限尺寸之内,并具有实体最小(即材料最少)时的状 态。
当该要求用于被测要素时,应在图样上用符号 标 注在被测要素的几何公差值之后。当应用于基准要素 时,应在图样上用符号 标注在基准字母之后。
1)最大实体要求用于被测要素
当最大实体要求应用于被测要素时,要素的几何 公差值是在该要素处于最大实体状态时给出的。
当被测要素偏离其最大实体状态,即实际尺寸偏 离其最大实体尺寸时,几何误差值可以超出在最大实 体状态下给出的几何公差值,实质上相当于几何公差 值可以得到补偿。
(MMS)和该要素轴线、中心平面的定向或定位形位公差所形成的综 合极限状态。
• 最小实体实效尺寸(DLV,dLV):最小实体实效状态下的体外作用尺寸。 • 最小实体实效边界(LMVB):最小实体实效状态对应的极限包容面
第4章-几何公差及检测分解
![第4章-几何公差及检测分解](https://img.taocdn.com/s3/m/ead8a04c1eb91a37f1115cbf.png)
2、特点 ①尺寸公差仅控制提取要素的局部尺寸,不控制其几何 误差;②给出的几何公差为定值,不随要素的实际尺寸变化而变化; ③采用独立原则时,在图样上不附加任何标注。如下图
0.02
0 20 -0.033
图4-6独立原则应用实例
三、相关要求
相关要求 图样上给定的几何公差与尺寸公差相互有关的公差要 求。可分为包容要求、最大实体要求、最小实体要求和可逆要求
2、作用尺寸
1)体外作用尺寸(dfe、Dfe) 在被测要素的给定长度上,与实际外 表面体外相接的最小理想面或与实际内表面体外相接的最大理想面 的直径或宽度。对于关联要素,该理想面的轴线或中心平面必须与 基准保持图样给定的几何关系
Dfi
2)体内作用尺寸(dfi、Dfi) 在被测要素的给定长度上,与实际外 表面(轴)体内相接的最大理想面或与实际内表面(孔)体内相接 的最小理想面的直径或宽度。对于关联要素,该理想面的轴线或中 心平面必须保持图样给定的几何关系(如图4-5)
一、有关术语及定义
1、提取组成要素局部尺寸(简称提取要素局部尺寸da、Da)
在பைடு நூலகம்际要素的任意截面上,两测量点之间测得的距离(如下图4-5 所示)。对同一要素在不同部位测量,得到的提取要素的局部尺寸 有所不同
Da1
Da2
Da3
Dfe
da1
da2
da3
dfe
dfi
a) 外表面(轴)
b) 内表面(孔)
图4-5 实际尺寸和作用尺寸
1、包容要求
含义 要求实际要素应遵守其最大实体边界(MMB),其局部实际 尺寸不得超出最小实体尺寸的一种公差要求 标注方法 当采用包容要求时,应在被测要素的尺寸极限偏差或 公差带代号后加注“ E ”符号(如图4-7a所示) 合格条件 对孔
公差原则
![公差原则](https://img.taocdn.com/s3/m/6b6a6f1c90c69ec3d5bb75f4.png)
资讯 公差原则
1.有关术语和定义 (18)最小实体实效尺寸(LMVS)
尺寸要素的最小实体尺寸与其导出要素的几何公差共同作用产 生的尺寸。对于外尺寸要素,LMVS=LMS-几何公差;对于内 尺寸要素,LMVS=LMS+几何公差。 (19)最小实体实效状态(LMVC) 拟合要素的尺寸为其最小实体实效尺寸(LMVS)时的状态。 (20)最小实体实效边界(LMVB) 最小实体实效状态对应的极限包容面称之为最小实体实效边界。
资讯 公差原则
4.最大实体要求 是指尺寸要素的非理想要素不得超越最大实体实效边界 (MMVB)的一种尺寸要素要求。 最大实体要求应用于被测要素时,在图样上用符号 M标注在导 出要素的几何公差值之后,当其应用于基准要素时,在图ຫໍສະໝຸດ 上 用符号 M标注在基准字母之后。
资讯 公差原则
资讯 公差原则
5.最小实体要求 是指尺寸要素的非理想要素不得超越最小实体实效边界 (LMVB)的一种尺寸要素要求。 最小实体要求应用于被测要素时,在图样上用符号 L 标注在导 出要素的几何公差值之后,当其应用于基准要素时,在图样上 用符号 L 标注在基准字母之后。
资讯 公差原则
2.独立原则 是指被测要素在图样上给出的尺寸公差与几何公差各自独立, 无相互关系,应分别满足公差要求的原则。
资讯 公差原则
3.包容要求 是指尺寸要素的非理想要素不得违反其最大实体边界(MMB) 的一种尺寸要素要求。即提取圆柱面不得超越其最大实体边界 (MMB),其局部尺寸不得超出最小实体尺寸(LMS)。
资讯 公差原则
1.有关术语和定义
(9)最大实体状态(MMC) 假定提取组成要素的局部尺寸处处位于极限尺寸且使其具有实 体最大时的状态。
(10)最大实体尺寸(MMS) 确定要素最大实体状态的尺寸。即外尺寸要素的上极限尺寸, 内尺寸要素的下极限尺寸。
公差原则概述
![公差原则概述](https://img.taocdn.com/s3/m/3923ad59dd3383c4ba4cd23c.png)
直线度误差的动 态变动范围
三、相关要求
2. 最大实体要求(MMR) (1)定义。最大实体要求是要求被测要素的实际轮廓应 遵守其最大实体实效边界(MMVB),当其实际尺寸偏离最大 实体尺寸时,允许其形位误差值超出在最大实体状态下给出 的公差值的一种公差要求。 (2)标注方法。最大实体要求应用于被测导出要素时, 应在几何公差框格中公差值后标注符号Ⓜ;应用于基准导出 要素时,应在几何公差框格中相应的基准字母代号后标注符 号Ⓜ。
100h7 Ⓔ
40 Ⓔ 0.018 0.002
100h7(00.035 ) Ⓔ
1. 包容要求(ER) (3)图样解释。
轴
da f d fe d M dmax
da d L dmin
孔
Da f D fe DM Dmin
Da DL Dmax
f —— 被用于需要严格保 证配合性质的场合。
独立原则是最基本的公差原则,它的应用范围最广,尺 寸公差、形位公差二者要求都严、一严一松或二者要求都松 的情况下,使用独立原则都能满足要求。。各种组成要素和 导出要素均可采用,主要用来满足功能要求。
三、相关要求
1. 包容要求(ER) (1)定义。包容要求是要求实际要素应遵守其最大实体边 界(MMB),其局部实际尺寸不得超出最小实体尺寸的一种 公差要求。 (2)标注方法。当采用包容要求时,应在被测要素的尺寸 极限偏差或公差带代号后加注“Ⓔ”符号。如
公差原则
处理零件几何公差与尺寸公差之间相互关系应遵循的原则 称为公差原则。
公差原则
独立原则
相关原则
包容要求
最大实体要求 最小实体要求
公差原则
一、有关术语及定义
1. 局部实际尺寸(简称实际尺寸) 在实际要素的任意正截面上,两对应点之间的距离称为局 部实际尺寸。由于误差的存在,实际要素各处的局部实际尺 寸往往是不同的。孔、轴的实际尺寸用Da、da表示。
第4章-几何公差(4、5、6)
![第4章-几何公差(4、5、6)](https://img.taocdn.com/s3/m/7674784ffe4733687e21aa69.png)
`
Wang chenggang
2.方向误差、位置误差及其评定
(1)方向误差 定义:被测提取要素对一具有确定方向的拟合要素的变动量 ,拟合要素的方向由基准确定。 方向误差值用定向最小包容区域(简称定向最小区域)的宽度 或直径表示。 (2)位置误差 定义:被测提取要素对一具有确定位置的拟合要素的变动量 ,拟合要素的位置由基准和理论正确尺寸确定。对于同轴度和对称 度,理论正确尺寸为零。 位置误差值用定位最小包容区域(简称定位最小区域)的宽度 或直径表示。
`
Wang chenggang
4.6几何误差的检测
本节课主要有以下几个方面的内容: 1、几何误差及其评定 (1)形状误差及其评定 (2)方向误差、位置误差及其评定 (3)跳动误差及其评定 2、基准的建立和实现 (1)基准的建立 (2)基准的体现 3、几何误差的检测原则 (1) 与拟合要素比较原则 (2)测量坐标原则 (3)测量特征参数原则 (4)测量跳动原则控制实效边界原则 `
`
Wang chenggang
4.4.1 与公差原则有关的术语和定义
1.作用尺寸(Function Size) 包括体外作用尺寸和体内作用尺寸 (1)体外作用尺寸——在被测要素的给定长度上, 与实际内表面体外相接的最大理想面或与实际外表面 体外相接的最小理想面的直径或宽度。对于相关要素 ,该理想面的轴线或中心平面必须与基准保持图样给 定的几何关系。用Dfe表示内表面体外作用尺寸,用 dfe表示外表面体外作用尺寸。
(a)单一要素的理想边界
(b)关联要素的理想边界
`
Wang chenggang
理想边界分为下列四种:
(1)最大实体边界——尺寸为最大实体尺寸,且 具有正确几何形状的理想包容面。 (2)最小实体边界——尺寸为最小实体尺寸,且 具有正确几何形状的理想包容面。 (3)最大实体实效边界——尺寸为最大实体实效 尺寸,且具有正确几何形状的理想包容面。 (4)最小实体实效边界——尺寸为最小实体实效 尺寸,且具有正确几何形状的理想包容面。
尺寸公差和几何公差之间的关系
![尺寸公差和几何公差之间的关系](https://img.taocdn.com/s3/m/fe64556fbb68a98271fefafb.png)
0 引言 航空发动机设计时,零件的尺寸精度、几何精度、表面 质量等,其能够直接影响到产品的质量。如何正确并合理 的选择尺寸公差和几何公差的公差等级是设计工作中一 项复杂又重要的工作,要做到合理的选择尺寸公差和几何 公差,必须了解尺寸公差与几何公差之间的关系,并掌握 几何公差和尺寸公差的数值关系。 几何公差包括形状公差、定向公差、定位公差和跳动 公差。 1 尺寸公差对几何公差的控制关系 尺寸公差对几何公差的控制关系应根据设计要求按 不同的公差原则确定。 1.1 独立原则 采用独立原则时,几何公差与尺寸公差相互独立,彼 此无关,分别满足各自要求的公差原则,不存在补偿关系, 主要用于尺寸精度与形位精度要求相差比较大或者两者 无联系,保证运动精度、密封性,未注公差等场合。如图 1 和表 1 所示,孔的尺寸公差和轴线的直线度公差遵循独立 原则,两者分别满足各自的公差要求,独立原则是公差原 则的基本原则。 1.2 包容原则 当采用包容原则,即要求实际要素位于理想形状的包 容面内的一种公差原则,而该理想形状的尺寸为要素的最 大实体尺寸。
跳动公差
姨
姨
姨
姨
位置公差
伊
姨
姨
姨
方向公差
伊
伊
姨
姨
形状公差
╳伊╳
╳伊╳
╳伊╳
姨
图 8 素线直线度
图 9 圆柱度
图 10 素线平行度
图 11 同轴度
公差之间的相互控制关系,如表 4 所示。 3 尺寸公差与几何关系的数值关系 本文对国内外主要型号的涡轴、涡桨发动机的盘类、
形位公差和尺寸公差的关系
![形位公差和尺寸公差的关系](https://img.taocdn.com/s3/m/86485d15a9956bec0975f46527d3240c8547a158.png)
形位公差和尺寸公差的关系机械零件几何参数的精度由尺寸误差和形位误差同时决定。
在机械零件的设计图纸上往往同时标注尺寸公差和形位公差,两者之间既有区别又有一定的联系。
根据机械零件的使用条件,几何参数的精度要求决定形位公差和尺寸公差的关系。
1.尺寸公差和形位公差关系的几种公差原则公差原则就是对尺寸公差与形位公差相互可否转化的规定。
尺寸公差与形位公差彼此不允许转化时,则为独立原则;而允许转化时,则为相关原则。
相关原则具体可分为包容要求、最大实体要求、最小实体要求及可逆要求。
2.基本术语1)局部实际尺寸D al , d al在实际要素的任意正截面上,两对应点之间测得的距离。
2)体外作用尺寸D fe , d fe在被测要素的给定长度上,与实际内表面体外相接的最大理想面或与实际外表面体外相接的最小理想面的直径或宽度。
对于关联要素,该理想面的轴线或中心平面,必须与基准保持图样给定的几何关系。
3)体内作用尺寸D fi , d fi在被测要素的给定长度上,与实际内表面体内相接的最小理想面或与实际外表面体内接触的最大理想面的直径或宽度。
4)最大实体实效尺寸MMVS最大实体实效尺寸就是最大实体实效状态下的体外作用尺寸。
对于内表面,最大实体实效尺寸为最大实体尺寸减形位公差值(加注符号○M);对于外表面,最大实体实效尺寸为最大实体尺寸加形位公差值(加注符号○M);MMVS= MMS±t形式中,外表面取“+”号,内表面取“-”号。
5)最小实体实效尺寸LMVS最小实体实效尺寸就是最小实体实效状态下的体内作用尺寸。
对于内表面,最小实体实效尺寸为最小实体尺寸加形位公差值(加注符号○L);对于外表面,最小实体实效尺寸为最小实体尺寸减形位公差值(加注符号○L);LMVS= LMS ±t形式中,内表面取“+”号外表面取“-”号。
3.独立原则独立原则是图样上给定的形位公差和尺寸公差相互独立,彼此无关,形位公差和尺寸公差应分别满足要求的一种公差原则。
精度设计第4章 几何公差
![精度设计第4章 几何公差](https://img.taocdn.com/s3/m/1daec865a417866fb84a8e91.png)
最小条件及最小包容区域
最小条件是提取被测要素对其拟合要素的最大变 动量为最小。
最小包容区域是包容被测提取要素并且有最小宽 度或直径的区域,即满足最小条件的包容区域。 方向位置公差要求的被测提取要素的最小包容区 域,构成要素与基准应保持方向要求。 位置公差要求的被测提取素的最小包容区域,构 成要素与基准既保持方向要求,还应保持理想位 置要求。
• 一、几何误差的评定 • 几何公差带与最小包容区域(包容被测实际要素 并且具有最小宽度或直径的区域)都具有大小、 形状和方位三要素,二者的形状和方位相同,大 小不同。 • 最小包容区域的尺度即为几何误差值; • 零件的几何误差合格条件: • f(几何误差值)<t(几何公差值),即被测要 素的最小包容区域必须被相应的几何公差带所包 容。
平行平 面形状
平行直线形状
四棱柱 形状
同心圆 形状 同轴圆柱面
t
圆柱 形状
形状公差
• 单一要素对其理想要素允许的变动量。其公 差带只有大小和形状,无方向和位置的限制。 • 直线度 _ • 平面度 _ • 圆度 _ • 圆柱度 _
直线度公差
•直 线 度 公 差 用 于 控 制 直线和轴线的形状误差, 根据零件的功能要求, 直线度可以分为在给定 平面内,在给定方向上 和在任意方向上三种情 •在给定平面内的直线度 况。 •在给定方向内的直线度
a)六孔组的图样标注 b)六孔组的几何框图 c)六孔组的位置度公差带
面轮廓度
• 面轮廓度公差带是包 络一系列直径为公差 值t的球的两包络面之 间的区域,诸球的球 心应位于理想轮廓面 上。如图所示。 • 面轮廓度也分无基准 要求的面轮廓度公差、 有基准要求的面轮廓 度公差。
公差带的特点
公差原则(新)
![公差原则(新)](https://img.taocdn.com/s3/m/7c852c7525c52cc58ad6be10.png)
图4-74
图4-75 基准要素本身采用最小实体要求的标注
图4-75
(2)采用最小实体要求要素的合格条件
外表面
LMS d a MMS d fi LMVS
MMS d a LMS D fi LMS
或
内表面
或
d min d a d max d fi d min t 形位
当该孔处于最大实体状态时,其轴线对基准平面的任意方向垂 最大实体实效边界为 50-0.08= 直度公差为0.08,当孔的实际尺寸小于最大实体尺寸时,其轴 49.92 线对基准平面的任意方向垂直度误差可以超出图样给出的公差 值0.08。 实际尺寸控制在50 当Da=50.07mm时,轴线的直线度公差t=0.07+0.08=0.15mm 50.13之间;对 当Da=50.13mm时,轴线的直线度公差t=0.13+0.07=0.21mm 应的垂直度误差允
3.4 公差原则
公差原则:确定几何公差与尺寸公差之间相互关系所遵循 的原则。 独立原则(IP): 图样上给定的几何公差与尺寸公差相互无 关,分别满足要求。 相关要求:图样上给定的几何公差与尺寸公差相互有关的 要求。 • 包容要求(ER):要求实际要素遵循最大实体边界,加注带 圆圈的符号 E • 最大实体要求(MMR):要求其实际轮廓处处不得超越最大 实体实效边界,加注带圆圈的符号 M • 最小实体要求(LMR):要求其实际轮廓处处不得超越最小 实体实效边界,加注带圆圈的符号 L • 可逆要求(RR):可逆要求是一种反补偿要求,在符号(M, L)后加注带圆圈的符号 R
a b c
独立要求 包容要求 独立要求与 包容要求 最大实体要求
无 最大实体边界 最大实体边界 最大实体实效边 界
互换性与技术测量-4.3公差原则.
![互换性与技术测量-4.3公差原则.](https://img.taocdn.com/s3/m/89ec062b8f9951e79b89680203d8ce2f006665ad.png)
Φ0.09 Φ(0.08+0.01)
Φ0.10 Φ(0.08+0.02)
Φ50.020~50.025 Φ0.10
图4.74 几何公差受限的最大实体要求
2、被测实际轮廓遵守的理想边界
最大实体实效边界:尺寸为最大实体实效 尺寸,形状为理想的边界。
最大实体实效尺寸: MMVS = MMS ± t t —— 几何公差值(轴“+”,孔“-”)。
图4.72(a):20+0.01=20.01mm; 图4.72(b):50-0.08=49.92mm; 图4.72(c):50-0=50mm; 图4.72(d): 50-0.08=49.92mm,公差补偿受限。
3、合格条件
被测要素的实际轮廓在给定的长度上处处 不得超出最大实体实效边界。
其局部实际尺寸不得超出上极限尺寸和下 极限尺寸。 轴: dmax≥da≥dmin 孔: Dmin≤Da≤Dmax
② 最小实体实效边界(LMVB) 最小实体实效状态对应的极限包容面。
二、独立原则(IP)
⑴ 含义:实际要素不遵守任何理想边界 图样上给定的尺寸、几何(形状、方向或位
置)要求是独立的,应分别满足要求,无 相互补偿。 ⑵ 标注:彼此独立,单独标注 满足单项功能要求。
1、图样标注
Φ20-00.021
(1)独立原则应用 于单一要素
Φ24.996(dL)
Φ25.009(dM) 0.013
最大实体边界
轴尺寸
Φ55.021 Φ55.016
几何公差
Φ0 Φ0.005
Φ55.011 Φ55.011~55.002
Φ0.010 Φ0.010
最大实体边界是直径为 55.021mm理想形状的内圆柱面
[原创]互换性与公差测量技术基础(计算题部分)
![[原创]互换性与公差测量技术基础(计算题部分)](https://img.taocdn.com/s3/m/7eb9783a43323968011c925e.png)
计算题1.孔轴的配合,计算极限偏差、极限间隙或者过盈、绘制公差带图P38例3-1 1)基本尺寸2)实际尺寸:通过测量所得的尺寸;3)极限尺寸:允许的尺寸变化范围的两个界限值4)(尺寸)偏差:某一尺寸减去它的基本尺寸所得的代数差,包括实际偏差和极限偏差,可以为正,可以为负,也可以为零。
孔的上偏差ES = Dmax ―D 轴的上偏差es = dmax ―d孔的下偏差EI = Dmin ―D 轴的下偏差ei = dmin ―d5)尺寸公差:是指尺寸的允许变动量,孔的用Th表示,轴的用Ts表示。
孔的公差Th = Dmax ―Dmin = ES―EI;轴的公差Ts = dmax ―dmin = es―ei;6)基本偏差是指两个极限偏差中靠近零线的那个偏差。
7)尺寸公差带图解零线+公差带孔的公差带用由右上角向左下角的斜线表示,轴的公差带用由左上角向右下角的斜线表示。
8)配合的种类 间隙配合孔的公差带在轴的公差带之上(X>=0)最大间隙Xmax=Dmax―dmin =ES―ei;最小间隙Xmin =Dmin―dmax =EI―es过盈配合孔的公差带完全在轴公差带的下方(Y<=0)最大过盈Ymax=Dmin -dmax =EI-es;最小过盈Ymin =Dmax -dmin =ES-ei过渡配合孔的公差带与轴的公差带相互交叠最大间隙Xmax =Dmax -dmin =ES-ei;最大过盈Ymax =Dmin -dmax =EI-es9)孔轴的公差带由标准公差决定大小,基本偏差决定位置2.几何公差与尺寸公差的关系——公差原则1)公差原则=独立原则+相关原则相关原则=包容要求+最大实体要求+最小实体要求+可逆要求2)体外作用尺寸:在被测要素的给定长度上,与实际内表面(孔)体外相接的最大理想面,或与实际外表面(轴)体外相接的最小理想面的直径或宽度;体内作用尺寸:在被测要素的给定长度上,与实际内表面(孔)体内相接的最小理想面,或与实际外表面(轴)体内相接的最大理想面的直径或宽度,称为体内作用尺寸。
几何公差与尺寸公差的关系-公差原则比较
![几何公差与尺寸公差的关系-公差原则比较](https://img.taocdn.com/s3/m/72974a7d01f69e3143329498.png)
被测要素处于最大实体状态时,不允许有形状误差
用于被测要素:应用最大实体要求的几何公差是在被测要素处于最大实体状态下给出的,当被测要素的实际轮廓偏离最大实体状态,即其局部尺寸偏离最大实体尺寸时,几何误差值可以超出在最大实体状态下给出的几何公差值。
用于基准要素:基准要素应遵守相应边界,若基准要素实际轮廓偏离其相应边界,则允许基准要素在一定范围内浮动,浮动范围等于基准要Leabharlann 的提取组成要素与其相应边界尺寸之差。
用于被测要素:应用最小实体要求的几何公差是在被测要素处于最小实体状态下给出的,当被测要素的实际轮廓偏离最小实体状态,即其局部尺寸偏离最小实体尺寸时,几何误差值可以超出在最小实体状态下给出的几何公差值。
用于基准要素:基准要素应遵守相应边界,若基准要素实际轮廓偏离其相应边界,则允许基准要素在一定范围内浮动,浮动范围等于基准要素的提取组成要素与其相应边界尺寸之差。
检验
分别检验局部尺寸、提取组成要素和几何误差,单独进行判断
用两点法检验局部尺寸是否超出最大、最小实体尺寸
用综合量规检验提取组成要素是否超出最大实体边界
用两点法检验局部尺寸是否超出最大、最小实体尺寸
用综合量规检验提取组成要素是否超出最大实体实效边界
用两点法检验局部尺寸是否超出最大、最小实体尺寸
用综合量规检验提取组成要素是否超出最小实体实效边界
应用
保证功能要求
保证配合性质
保证可装配性
保证强度和壁厚
轴:dM=dmax
最大实体实效边界
DMV=Dmin-t
dMV=dmax+t
最小实体实效边界
DLV=DL+t=Dmax+t
dLV=dL-t=dmin-t
原则内容
第三章 3.1.1-4几何公差与尺寸公差的关系
![第三章 3.1.1-4几何公差与尺寸公差的关系](https://img.taocdn.com/s3/m/616c2a874693daef5ff73d3e.png)
确定要素最大实体状态下的尺寸。称为最大实体尺寸。
轴即外尺寸要素的上极限尺寸,孔内尺寸要素的下极限尺寸。孔 用DMMS表示,轴用dMMS表示。
2.最小实体状态和最小实寸且使其具有实体
最小时的状态。称为最小实体状态(LMC)。
实效状态是指被测组成要素处于最大实体状态,且其导出要
素的形状误差等于图样上给出的形状公差时的状态。
此状态下的尺寸为实效尺寸,孔用DVS1表示,轴用dVS1表示,
如图3.2所示。
图3.2 单一要素的实效状态及实效尺寸
单一要素的实效尺寸按下式计算:
dDVVSS11
DMMS dMMS t
t
(3.1)
式中,t 为图样上导出要素给出的形状公差值。
2.关联要素的实效状态及实效尺寸
实效状态是指被测组成要素处于最大实体状态,且其导出要
素的定向或定位误差等于图样上给出的定向或定位公差时的状态。
此状态下的尺寸为关联实效尺寸,孔用DVS2表示,轴用dVS2表示,
如图3.3所示。
图3.3 关联要素的实效状态及实效尺寸 关联要素的实效尺寸按下式计算:
最小实体实效状态(LMVC)
拟合要素的尺寸为其最小实体实效尺寸(LMVS)时的状态。
最小实体实效状态对应的极限包容面称之为最小实体实效边界
(LMV)。
当几何公差是方向公差时,最小实体实效状态(LMVC)和最 小实体实效边界(LMVB)受其方向所约束;
当几何公差是位置公差时,最小实体实效状态(LMVC)和最 小实体实效边界(LMVB)受其位置所约束。
当几何公差是位置公差时,最大实体实效状态(MMVC)和最大 实体实效边界(MMVB)受其位置所约束。
几何公差与尺寸公差的关系
![几何公差与尺寸公差的关系](https://img.taocdn.com/s3/m/ede38328a5e9856a561260e9.png)
第6章 几何公差与尺寸公差的关系
6.4.2 最大实体要求
最大实体要求是指被测提取要素的实际轮廓应遵守其最大实体实效边 界(MMVB)的一种公差原则,即当实际尺寸偏离最大实体尺寸时,允许其 几何误差值超出其给定的公差值,而提取组成要素的局部尺寸应在最大实 体尺寸与最小实体尺寸之间。
最大实体要求应用于被测提取要素时,图样上标注的几何公差值是被 测提取要素处于最大实体状态时给定的公差值。当被测提取要素为最小实 体状态时,几何公差获得的补偿量最多,即几何公差最大补偿值等于尺寸 公差,如图6-4所示。
第6章 几何公差与尺寸公差的关系
6.1 公差原则与公差要求
对同一零件既规定尺寸公差,又规定几何公差。从零件的功能考虑, 给出的尺寸公差与几何公差既可能相互有关系,也可能相互无关系,而公 差原则与公差要求就是处理尺寸公差与几何公差之间关系的规定,即图样 上标注的尺寸公差和几何公差是如何控制被测要素的尺寸误差和几何误差 的。公差原则从大的方面可以分为独立原则和相关要求两大类,相关要求 又可以分为包容要求、最大实体要求和最小实体要求,以及可应用于最大 实体要求和最小实体要求的可逆要求。
第6章 几何公差与尺寸公差的关系
4.最大实体状态与最大实体尺寸 5.最小实体状态与最小实体尺寸 6.最大实体实效状态与最大实体实效尺寸 7.最小实体实效状态与最小实体实效尺寸 8.边界
第6章 几何公差与尺寸公差的关系
6.3 独立原则
图6-2为独立原则的应用示例, 标注时,不需要附加任何表示相互关 系的符号。该标注表示轴的提取要素 的局部尺寸应在ϕ21.97~ϕ22mm之间, 不管实际尺寸为何值,中心线的直线 度误差都不允许大于ϕ0.05mm。 独立原则是几何公差与尺寸公差相互 关系遵循的基本原则。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
项目独立原则包容要求最大实体要求最小实体要求
对象/单一要素中心要素中心要素
标注遵循独立原则的尺
寸公差和几何公差在图样上不标注任何附加标记在尺寸公差后标用于被测要素,在几何公差值后标
用于基准要素时,在基准素符号后标
用于被测要素,在几何公差值后标
用于基准要素时,在基准符号后标
边界/ 最大实体边界
孔:D M=D min
轴:d M=d max 最大实体实效边界
D MV=D min-t
d MV=d max+t
最小实体实效边界
D LV=D L+t=D max+t
d LV=d L-t=d min-t
原则内容尺寸公差和几何公
差无关
提取组成要素不得超出最大实体
尺寸,局部尺寸不得超出最小实
体尺寸
D fe≥D min,D min≦D a≦D max
d fe≦d max ,d max≥d a≥d min
提取组成要素不得超出最大实体实效尺寸,局
部尺寸不得超出最小实体尺寸
D fe≥D MV,D min≦D a≦D max
d fe≦d MV ,d max≥d a≥d min
提取组成要素不得超出最小实体实效尺寸,局
部尺寸不得超出最大实体尺寸
D fi≦D L V,D min≦D a≦D max
d fi≥d L V ,d max≥d a≥d min
注解尺寸公差控制尺寸
变动
几何公差控制几何
误差的变动被测要素处于最大实体状态时,
不允许有形状误差
用于被测要素:应用最大实体要求的几何公差
是在被测要素处于最大实体状态下给出的,当
被测要素的实际轮廓偏离最大实体状态,即其
局部尺寸偏离最大实体尺寸时,几何误差值可
以超出在最大实体状态下给出的几何公差值。
用于基准要素:基准要素应遵守相应边界,若
基准要素实际轮廓偏离其相应边界,则允许基
准要素在一定范围内浮动,浮动范围等于基准
要素的提取组成要素与其相应边界尺寸之差。
用于被测要素:应用最小实体要求的几何公差
是在被测要素处于最小实体状态下给出的,当
被测要素的实际轮廓偏离最小实体状态,即其
局部尺寸偏离最小实体尺寸时,几何误差值可
以超出在最小实体状态下给出的几何公差值。
用于基准要素:基准要素应遵守相应边界,若
基准要素实际轮廓偏离其相应边界,则允许基
准要素在一定范围内浮动,浮动范围等于基准
要素的提取组成要素与其相应边界尺寸之差。
检验分别检验局部尺
寸、提取组成要素
和几何误差,单独
进行判断用两点法检验局部尺寸是否超出
最大、最小实体尺寸
用综合量规检验提取组成要素是
否超出最大实体边界
用两点法检验局部尺寸是否超出最大、
最小实体尺寸
用综合量规检验提取组成要素是否超
出最大实体实效边界
用两点法检验局部尺寸是否超出最大、最小实体尺
寸
用综合量规检验提取组成要素是否超出最小实体实
效边界
应用保证功能要求保证配合性质保证可装配性保证强度和壁厚。