2018-2019学年江苏省南京市溧水区七年级(上)期末数学试卷-解析版
2018-2019学年七年级数学上册第一学期期末试卷及答案含有详细解析
2018~2019学年七年级数学上册第一学期期末试卷一、选择题1、若( )﹣(﹣2)=3,则括号内的数是( )A .﹣1B .1C .5D .﹣5 2、下列所有数中,最大的数是( )A .—4B .0C .—1D .3 3、若|m -3|+(n +2) 2=0,则m +2n 的值为( ).A .-4B .- 1C .0D .4 4、雨滴滴下来形成雨丝属于下列哪个选项的实际应用( )A .点动成线B .线动成面C .面动成体D .以上都不对 5、下列各组数中,互为相反数的是( )A .3与B .(﹣1)2与1C .﹣14与(﹣1)2D .2与|﹣2|6、的倒数是( )A .3B .C .-D .﹣3 7、下图中哪个图形经过折叠后可以围成一个棱柱( )A .B .C .D .8、代数式a 2﹣b1的正确解释是( ) A .a 与b 的倒数的差的平方 B .a 的平方与b 的差的倒数 C .a 的平方与b 的倒数的差 D .a 与b 的差的平方的倒数 9、如图所示的立体图形是由几个小正方体组成的一个几何体,这个几何体从上面看到的形状图是( )……○…………○……A.B.C.D.10、下列各组代数式中,是同类项的共有()(1)32与23(2)﹣5mn与(3)﹣2m2n3与3n3m2(4)3x2y3与3x3y2A.1 组B.2 组C.3 组D.4 组二、填空题11、地球上陆地的面积约为149000000平方千米,把数据149000000用科学记数法表示为。
12、小明今年m岁,5年前小明_____岁。
13、中,底数是_____,指数是_____。
14、一个正方体的六个面上分别标有1、2、3、4、5、6,根据图中从各个方向看到的数字,解答下面的问题:“?”处的数字是_____。
三、计算15、计算:(1)(﹣32)﹣(﹣27)﹣(﹣72)﹣87 (2)16、求代数式的值(1)6x+2x2﹣3x+x2+1,其中 x=﹣5;(2)2(a2b+ab2)﹣2(a2b﹣1)﹣2ab2﹣2,其中 a=﹣2,b=2。
2018-2019 学年度第一学期七年级期末质量检测数学试卷参考答案
CED BCM 90 (已知) ∴ CED ACN (同角的余角相等)-----------8 分
∴AC∥DE(内错角相等,两直线平行)-----------9 分 ∵AC⊥BF(已知)
A
B
M
C
E
N
∴∠ACB=90°(垂直定义)---------------------10 分 又∵AC∥DE(已证)
解得:x=4,-----------------------------------------------------------------------------------------12 分
∴点 P 运动 4 秒时,追上点 Q.------------------------------------------------------------ 13 分
三、解答题
17. 解:原式= 4 1 ( 3) --------------------------------------4 分(绝对值计算 2 分,其他 1 分) 6
=2
------------------------------------------6 分
18. 解法一:原式= 2x 2 y 3x 3y 3x 3y 2x 2 y ---4 分(评分点:每去一个括号正确得 1 分)
2018-2019 学年第一学期七年级期末质量检测 数学试卷参考答案与评分说明
一.选择题(每小题 4 分,共 40 分)
题号
1
2
3
4
5
6
【解析版】2018-2019年南京市联合体七年级上期末数学试卷
2018-2019学年江苏省南京市联合体七年级(上)期末数学试卷一、选择题(每小题2分,共16分)1.﹣2的倒数是()A.﹣2 B. 2 C.﹣ D.2.在数﹣32、|﹣2.5|、﹣(﹣2)、(﹣3)3中,负数的个数是()A. 1 B. 2 C. 3 D. 43.一个点从数轴上的﹣3表示的点开始,先向右移动2个单位长度,再向左移动4个单位长度,这时该点所对应的数是()A. 3 B.﹣5 C.﹣1 D.﹣94.下列说法中,正确的是()A.符号不同的两个数互为相反数B.两个有理数和一定大于每一个加数C.有理数分为正数和负数D.所有的有理数都能用数轴上的点来表示5.若2x﹣5y=3,则4x﹣10y﹣3的值是()A.﹣3 B. 0 C. 3 D. 66.直线l外一点P与直线l上两点的连线段长分别为4cm,6cm,则点P到直线l的距离是()A.不超过4cm B. 4cm C. 6cm D.不少于6cm7.某小组计划做一批中国结,如果每人做6个,那么比计划多做了9个,如果每人做4个,那么比计划少7个.设计划做x个“中国结”,可列方程()A.= B.= C.= D.=8.如图,纸板上有10个无阴影的正方形,从中选1个,使得它与图中5个有阴影的正方形一起能折叠成一个正方体的纸盒,选法应该有()A. 4种 B. 5种 C. 6种 D. 7种二、填空题(每小题2分,共20分)9.在﹣5.3和6.2之间所有整数之和为.10.京沪高铁全长约1318公里,将1318公里用科学记数法表示为公里.11.若关于x的方程2x+a=0的解为﹣3,则a的值为.12.已知两个单项式﹣3a2b m与na2b的和为0,则m+n的值是.13.固定一根木条至少需要两根铁钉,这是根据.14.若∠A=68°,则∠A的余角是.15.在数轴上,与﹣3表示的点相距4个单位的点所对应的数是.16.若|a|=3,|b|=2,且a+b>0,那么a﹣b的值是.17.一个长方体的主视图与俯视图如图所示,则这个长方体的表面积是.18.如图,∠BOC与∠AOC互为补角,OD平分∠AOC,∠BOC=n°,则∠DOB= °.(用含n的代数式表示)三、解答题(共64分)19.计算:40÷[(﹣2)4+3×(﹣2)].20.计算:[(﹣1)3+(﹣3)2]﹣[(﹣2)3﹣2×(﹣5)].21.化简:3x+5(x2﹣x+3)﹣2(x2﹣x+3).22.先化简,再求值:3mn﹣[6(mn﹣m2)﹣4(2mn﹣m2)],其中m=﹣2,n=.23.解方程:3(x﹣1)﹣2(1﹣x)+5=0.24.解方程:.25.在如图所示的方格纸中,每一个正方形的面积为1,按要求画图,并回答问题.(1)将线段AB平移,使得点A与点C重合得到线段CD,画出线段CD;(2)连接AD、BC交于点O,并用符号语言描述AD与BC的位置关系;(3)连接AC、BD,并用符号语言描述AC与BD的位置关系.26.如图,将长方形纸片的一角折叠,使顶点A落在点A′处,折痕CB;再将长方形纸片的另一角折叠,使顶点D落在点D′处,D′在BA′的延长线上,折痕EB.(1)若∠ABC=65°,求∠DBE的度数;(2)若将点B沿AD方向滑动(不与A、D重合),∠CBE的大小发生变化吗?并说明理由.27.已知,点A、B、C、D四点在一条直线上,AB=6cm,DB=1cm,点C是线段AD的中点,请画出相应的示意图,并求出此时线段BC的长度.28.如图,为一个无盖长方体盒子的展开图(重叠部分不计),设高为xcm,根据图中数据.(1)该长方体盒子的宽为,长为;(用含x的代数式表示)(2)若长比宽多2cm,求盒子的容积.29.目前节能灯在城市已基本普及,今年南京市面向农村地区推广,为相应号召,某商场计划购进甲、乙两种节能灯共1000只,这两种节能灯的进价、售价如下表:(1)如何进货,进货款恰好为28000元?(2)如何进货,能确保售完这1000只灯后,获得利润为15000元?30.已知点A、B在数轴上,点A表示的数为a,点B表示的数为b.(1)若a=7,b=3,则AB的长度为;若a=4,b=﹣3,则AB的长度为;若a=﹣4,b=﹣7,则AB的长度为.(2)根据(1)的启发,若A在B的右侧,则AB的长度为;(用含a,b的代数式表示),并说明理由.(3)根据以上探究,则AB的长度为(用含a,b的代数式表示).2018-2019学年江苏省南京市联合体七年级(上)期末数学试卷参考答案与试题解析一、选择题(每小题2分,共16分)1.﹣2的倒数是()A.﹣2 B. 2 C.﹣ D.考点:倒数.专题:计算题.分析:根据倒数的定义:乘积是1的两数互为倒数.一般地,a•=1 (a≠0),就说a (a≠0)的倒数是.解答:解:﹣2的倒数是﹣,故选C.点评:此题主要考查倒数的概念及性质.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.2.在数﹣32、|﹣2.5|、﹣(﹣2)、(﹣3)3中,负数的个数是()A. 1 B. 2 C. 3 D. 4考点:正数和负数.分析:根据乘方、相反数及绝对值,可化简各数,根据小于零的数是负数,可得答案.解答:解:﹣32=﹣9<0,|﹣2.5|=2.5>0,﹣(﹣2)=2>0,(﹣3)3=﹣27,故选:B.点评:本题考查了正数和负数,先化简各数,再判断正数和负数.3.一个点从数轴上的﹣3表示的点开始,先向右移动2个单位长度,再向左移动4个单位长度,这时该点所对应的数是()A. 3 B.﹣5 C.﹣1 D.﹣9考点:数轴.分析:根据数轴是以向右为正方向,故数的大小变化和平移变化之间的规律:左减右加,即可求解.解答:解:由题意得:向右移动2个单位长度可表示为+2,再向左移动4个单位长度可表示为﹣4,故该点为:﹣3+2﹣4=﹣5.故选B.点评:本题考查了数轴的知识,属于基础题,难度不大,注意数的大小变化和平移变化之间的规律:左减右加.4.下列说法中,正确的是()A.符号不同的两个数互为相反数B.两个有理数和一定大于每一个加数C.有理数分为正数和负数D.所有的有理数都能用数轴上的点来表示考点:有理数的加法;有理数;数轴;相反数.分析: A、根据有相反数的定义判断.B、利用有理数加法法则推断.C、按照有理数的分类判断:有理数D、根据有理数与数轴上的点的关系判断.解答:解:A、+2与﹣1符号不同,但不是互为相反数,错误;B、两个负有理数的和小于每一个加数,错误;C、有理数分为正有理数、负有理数和0,错误;D、所有的有理数都能用数轴上的点来表示,正确.故选D.点评:本题考查的都是平时做题时出现的易错点,应在做题过程中加深理解和记忆.5.若2x﹣5y=3,则4x﹣10y﹣3的值是()A.﹣3 B. 0 C. 3 D. 6考点:代数式求值.专题:计算题.分析:原式前两项提取2变形后,把已知等式代入计算即可求出值.解答:解:∵2x﹣5y=3,∴原式=2(2x﹣5y)﹣3=6﹣3=3.故选C.点评:此题考查了代数式求值,利用了整体代入的思想,熟练掌握运算法则是解本题的关键.6.直线l外一点P与直线l上两点的连线段长分别为4cm,6cm,则点P到直线l的距离是()A.不超过4cm B. 4cm C. 6cm D.不少于6cm考点:点到直线的距离.分析:根据点到直线的距离是直线外的点与直线上垂足间线段的长度,垂线段最短,可得答案.解答:解:直线l外一点P与直线l上两点的连线段长分别为4cm,6cm,则点P到直线l 的距离是小于或等于4,故选:A.点评:本题考查了点到直线的距离,利用了垂线段最短的性质.7.某小组计划做一批中国结,如果每人做6个,那么比计划多做了9个,如果每人做4个,那么比计划少7个.设计划做x个“中国结”,可列方程()A.= B.= C.= D.=考点:由实际问题抽象出一元一次方程.分析:设计划做x个“中国结”,根据每人做6个,那么比计划多做了9个,每人做4个,那么比计划少7个,列方程即可.解答:解:设计划做x个“中国结”,由题意得,=.故选A.点评:本题考查了由实际问题抽象出一元一次方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程.8.如图,纸板上有10个无阴影的正方形,从中选1个,使得它与图中5个有阴影的正方形一起能折叠成一个正方体的纸盒,选法应该有()A. 4种 B. 5种 C. 6种 D. 7种考点:展开图折叠成几何体.分析:利用正方体的展开图即可解决问题,共四种.解答:解:如图所示:共四种.故选:A.点评:本题主要考查了正方体的展开图.解题时勿忘记四棱柱的特征及正方体展开图的各种情形.二、填空题(每小题2分,共20分)9.在﹣5.3和6.2之间所有整数之和为 6 .考点:有理数的加法;有理数大小比较.专题:计算题.分析:找出在﹣5.3和6.2之间所有整数,求出之和即可.解答:解:在﹣5.3和6.2之间所有整数为﹣5,﹣4,﹣3,﹣2,﹣1,0,1,2,3,4,5,6,之和为﹣5﹣4﹣3﹣2﹣1+0+1+2+3+4+5+6=6,故答案为:6点评:此题考查了有理数的加法,熟练掌握运算法则是解本题的关键.10.京沪高铁全长约1318公里,将1318公里用科学记数法表示为 1.318×103公里.考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:1318=1.318×103,故答案为:1.318×103.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.11.若关于x的方程2x+a=0的解为﹣3,则a的值为 6 .考点:一元一次方程的解.专题:计算题.分析:把x=﹣3代入方程计算即可求出a的值.解答:解:把x=﹣3代入方程得:﹣6+a=0,解得:a=6,故答案为:6点评:此题考查了一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.12.已知两个单项式﹣3a2b m与na2b的和为0,则m+n的值是 4 .考点:合并同类项.分析:根据合并同类项,可得方程组,根据解方程组,kedem、n的值,根据有理数的加法,可得答案.解答:解:由单项式﹣3a2b m与na2b的和为0,得.n+m=3+1=4,故答案为:4.点评:本题考查了合并同类项,合并同类项得出方程组是解题关键.13.固定一根木条至少需要两根铁钉,这是根据两点确定一条直线.考点:直线的性质:两点确定一条直线.分析:根据直线的性质:两点确定一条直线进行解答.解答:解:固定一根木条至少需要两根铁钉,这是根据:两点确定一条直线,故答案为:两点确定一条直线.点评:此题主要考查了直线的性质,关键是掌握两点确定一条直线.14.若∠A=68°,则∠A的余角是22°.考点:余角和补角.分析:∠A的余角为90°﹣∠A.解答:解:根据余角的定义得:∠A的余角=90°﹣∠A=90°﹣68°=22°.故答案为22°.点评:本题考查了余角的定义;熟练掌握两个角的和为90°是关键15.在数轴上,与﹣3表示的点相距4个单位的点所对应的数是1或﹣7 .考点:数轴.分析:根据题意得出两种情况:当点在表示﹣3的点的左边时,当点在表示﹣3的点的右边时,列出算式求出即可.解答:解:分为两种情况:①当点在表示﹣3的点的左边时,数为﹣3﹣4=﹣7;②当点在表示﹣3的点的右边时,数为﹣3+4=1;故答案为:1或﹣7.点评:本题考查了数轴的应用,注意符合条件的有两种情况.16.若|a|=3,|b|=2,且a+b>0,那么a﹣b的值是5,1 .考点:有理数的减法;绝对值.分析:根据绝对值的性质.解答:解:∵|a|=3,|b|=2,且a+b>0,∴a=3,b=2或a=3,b=﹣2;∴a﹣b=1或a﹣b=5.则a﹣b的值是5,1.点评:此题应注意的是:正数和负数的绝对值都是正数.如:|a|=3,则a=±3.17.一个长方体的主视图与俯视图如图所示,则这个长方体的表面积是88 .考点:由三视图判断几何体.分析:根据给出的长方体的主视图和俯视图可得,长方体的长是6,宽是2,高是4,进而可根据长方体的表面积公式求出其表面积.解答:解:由主视图可得长方体的长为6,高为4,由俯视图可得长方体的宽为2,则这个长方体的表面积是(6×2+6×4+4×2)×2=(12+24+8)×2=44×2=88.故这个长方体的表面积是88.故答案为:88.点评:考查由三视图判断几何体,长方体的表面积的求法,根据长方体的主视图和俯视图得到几何体的长、宽和高是解决本题的关键.18.如图,∠BOC与∠AOC互为补角,OD平分∠AOC,∠BOC=n°,则∠DOB= (90+)°.(用含n的代数式表示)考点:余角和补角;角平分线的定义.分析:先求出∠AOC=180°﹣n°,再求出∠COD,即可求出∠DOB.解答:解:∵∠BOC+∠AOD=180°,∴∠AOC=180°﹣n°,∵OD平分∠AOC,∴∠COD=,∴∠DOB=∠BOC+∠COD=n°+90°﹣=(90+)°.故答案为:90+点评:本题考查了补角和角平分线的定义;弄清各个角之间的关系是解决问题的关键.三、解答题(共64分)19.计算:40÷[(﹣2)4+3×(﹣2)].考点:有理数的混合运算.专题:计算题.分析:原式先计算中括号中的乘方及乘法运算,再计算除法运算即可得到结果.解答:解:原式=40÷(16﹣6)=40÷10=4.点评:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.20.计算:[(﹣1)3+(﹣3)2]﹣[(﹣2)3﹣2×(﹣5)].考点:有理数的混合运算.分析:先算乘方和和乘法,再算括号里面的,最后算减法,由此顺序计算即可.解答:解:原式=(﹣1+9)﹣(﹣8+10)=8﹣2=6.点评:此题考查有理数的混合运算,掌握运算顺序,正确判定运算符号计算即可.21.化简:3x+5(x2﹣x+3)﹣2(x2﹣x+3).考点:整式的加减.专题:计算题.分析:原式去括号合并即可得到结果.解答:解:原式=3x+5x2﹣5x+15﹣2x2+2x﹣6=3x2+9.点评:此题考查了整式的加减,熟练掌握运算法则是解本题的关键.22.先化简,再求值:3mn﹣[6(mn﹣m2)﹣4(2mn﹣m2)],其中m=﹣2,n=.考点:整式的加减—化简求值.专题:计算题.分析:原式去括号合并得到最简结果,把m与n的值代入计算即可求出值.解答:解:原式=3mn﹣6mn+6m2+8mn﹣4m2=2m2+5mn,当m=﹣2,n=时,原式=8﹣5=3.点评:此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.23.解方程:3(x﹣1)﹣2(1﹣x)+5=0.考点:解一元一次方程.专题:计算题.分析:方程去括号,移项合并,把x系数化为1,即可求出解.解答:解:去括号得:3x﹣3﹣2+2x+5=0,移项合并得:5x=0,解得:x=0.点评:此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,把x系数化为1,求出解.24.解方程:.考点:解一元一次方程.专题:计算题.分析:先把等式两边的项合并后再去分母得到不含分母的一元一次方程,然后移项求值即可.解答:解:原方程可转化为:=即=去分母得:3(x+1)=2(4﹣x)解得:x=1.点评:本题考查一元一次方程的解法注意在移项、去括号时要注意符号的变化.25.在如图所示的方格纸中,每一个正方形的面积为1,按要求画图,并回答问题.(1)将线段AB平移,使得点A与点C重合得到线段CD,画出线段CD;(2)连接AD、BC交于点O,并用符号语言描述AD与BC的位置关系;(3)连接AC、BD,并用符号语言描述AC与BD的位置关系.考点:作图-平移变换.分析:(1)根据图形平移的性质画出线段CD即可;(2)连接AD、BC交于点O,根据勾股定理即可得出结论;(3)连接AC、BD,根据平移的性质得出四边形ABDC是平形四边形,由此可得出结论.解答:解:(1)如图所示;(2)连接AD、BC交于点O,由图可知,BC⊥AD且OC=OB,OA=OD;(3)∵线段CD由AB平移而成,∴CD∥AB,CD=AB,∴四边形ABDC是平形四边形,∴AC=BD且AC∥BD.点评:本题考查的是作图﹣平移变换,熟知图形平移不变性的性质是解答此题的关键.26.如图,将长方形纸片的一角折叠,使顶点A落在点A′处,折痕CB;再将长方形纸片的另一角折叠,使顶点D落在点D′处,D′在BA′的延长线上,折痕EB.(1)若∠ABC=65°,求∠DBE的度数;(2)若将点B沿AD方向滑动(不与A、D重合),∠CBE的大小发生变化吗?并说明理由.考点:角的计算;翻折变换(折叠问题).分析:(1)由折叠的性质可得∠A′BC=∠ABC=65°,∠DBE=∠D′BE,又因为∠A′BC+∠ABC+∠DBE+∠D′BE=180°从而可求得∠DBE;(2)根据题意,可得∠CBE=∠A′BC+∠D′BE=90°,故不会发生变化.解答:解:(1)由折叠的性质可得∠A′BC=∠ABC=65°,∠DBE=∠D′BE∴∠DBE+∠D′BE=180°﹣65°﹣65°=50°,∴∠DBE=25°;(2)∵∠A′BC=∠ABC,∠DBE=∠D′BE,∠A′BC+∠ABC+∠DBE+∠D′BE=180°,∴∠A′BC+∠D′BE=90°,即∠CBE=90°,故∠CBE的大小不会发生变化.点评:本题主要考查了折叠的性质:折叠前后两图形全等,即对应角相等,对应边相等.也考查了平角的定义.27.已知,点A、B、C、D四点在一条直线上,AB=6cm,DB=1cm,点C是线段AD的中点,请画出相应的示意图,并求出此时线段BC的长度.考点:两点间的距离.分析:分类讨论:点D在线段AB上,点D在线段AB的延长线上,根据线段的和差,可得AD的长,根据线段中点的性质,可得AC的长,再根据线段的和差,可得答案.解答:解:当点D在线段AB上时,如图:,由线段的和差,得AD=AB﹣BD=6﹣1=5cm,由C是线段AD的中点,得AC=AD=×5=cm,由线段的和差,得BC=AB﹣AC=6﹣=cm;当点D在线段AB的延长线上时,如图:,由线段的和差,得AD=AB+BD=6+1=7cm,由C是线段AD的中点,得AC=AD=×7=cm,由线段的和差,得BC=AB﹣AC=6﹣=cm.点评:本题考查了两点间的距离,利用了线段的和差,线段中点的性质,分类讨论是解题关键.28.如图,为一个无盖长方体盒子的展开图(重叠部分不计),设高为xcm,根据图中数据.(1)该长方体盒子的宽为(6﹣x)cm ,长为(4+x)cm ;(用含x的代数式表示)(2)若长比宽多2cm,求盒子的容积.考点:一元一次方程的应用;展开图折叠成几何体.专题:几何图形问题.分析:(1)根据图形即可求出这个长方体盒子的长和宽;(2)根据长方体的体积公式=长×宽×高,列式计算即可.解答:解:(1)长方体的高是xcm,宽是(6﹣x)cm,长是10﹣(6﹣x)=(4+x)cm;(2)由题意得(4+x)﹣(6﹣x)=2,解得x=2,所以长方体的高是2cm,宽是4cm,长是6cm;则盒子的容积为:6×4×2=48(cm3).故答案为(6﹣x)cm,(4+x)cm.点评:本题考查了一元一次方程的应用,正确理解无盖长方体的展开图,与原来长方体的之间的关系是解决本题的关键,长方体的容积=长×宽×高.29.目前节能灯在城市已基本普及,今年南京市面向农村地区推广,为相应号召,某商场计(1)如何进货,进货款恰好为28000元?(2)如何进货,能确保售完这1000只灯后,获得利润为15000元?考点:一元一次方程的应用.分析:(1)设商场购进甲种节能灯x只,则购进乙种节能灯(1000﹣x)只,根据两种节能灯的总价为28000元建立方程求出其解即可;(2)设商场购进甲种节能灯a只,则购进乙种节能灯(1000﹣a)只,根据售完这1000只灯后,获得利润为15000元建立方程求出其解即可.解答:解:(1)设商场购进甲种节能灯x只,则购进乙种节能灯(1000﹣x)只,由题意得20x+40(1000﹣x)=28000,解得:x=600.则购进乙种节能灯1000﹣600=400(只).答:购进甲种节能灯600只,购进乙种节能灯400只,进货款恰好为28000元;(2)设商场购进甲种节能灯a只,则购进乙种节能灯(1000﹣a)只,根据题意得(30﹣20)a+(60﹣40)(1000﹣a)=15000,解得a=500.则购进乙种节能灯1000﹣500=500(只).答:购进甲种节能灯500只,购进乙种节能灯500只,能确保售完这1000只灯后,获得利润为15000元.点评:本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.30.已知点A、B在数轴上,点A表示的数为a,点B表示的数为b.(1)若a=7,b=3,则AB的长度为 4 ;若a=4,b=﹣3,则AB的长度为7 ;若a=﹣4,b=﹣7,则AB的长度为 3 .(2)根据(1)的启发,若A在B的右侧,则AB的长度为a﹣b ;(用含a,b的代数式表示),并说明理由.(3)根据以上探究,则AB的长度为a﹣b或b﹣a (用含a,b的代数式表示).考点:数轴;列代数式;两点间的距离.分析:(1)线段AB的长等于A点表示的数减去B点表示的数;(2)由(1)可知若A在B的右侧,则AB的长度是a﹣b;(3)由(1)(2)可得AB的长度应等于点A表示的数a与点B表示的数b的差表示,应是右边的数减去坐标左边的数,故可得答案.解答:解:(1)AB=7﹣3=4;4﹣(﹣3)=7;﹣4﹣(﹣7)=3;(2)AB=a﹣b(3)当点A在点B的右侧,则AB=a﹣b;当点A在点B的左侧,则AB=b﹣a.故答案为:(1)4,7,3;(2)a﹣b;(3)a﹣b或b﹣a.点评:本题主要考查了数轴及数轴上两点间的距离的计算方法,掌握数轴上两点间的距离的计算方法是关键.。
最新江苏省2018-2019年七年级上期末数学试题含答案解析
七年级上学期期末数学试卷一、填空题(每题2分,共24分)1.﹣8的相反数等于.2.单项式的次数是.3.若(x﹣2)2+|y+1|=0,则x﹣y=.4.已知a﹣3b﹣4=0,则代数式4+2a﹣6b的值为.5.若x=1是关于x的方程x﹣2m+1=0的解,则m的值为.6.如图,线段AB=16,C是AB的中点,点D在CB上,DB=3,则线段CD的长为.7.如图,一个正方体的平面展开图,若折成正方体后,每对相对面上标注的值的和均相等,则x+y=.8.已知∠1与∠2为对顶角,且∠1的补角的度数为80°,则∠2的度数为°.9.一件夹克衫先按成本提高50%后标价,再以8折优惠卖出,获利28元,则这件夹克衫的成本是元.10.在同一平面内,∠BOC=50°,OA⊥OB,OD平分∠AOC,则∠BOD的度数是.11.如图所示的运算程序中,若开始输入的x值为5,我们发现第1次输出的数为2,再将2输入,第2次输出的数为﹣1,如此循环,则第2015次输出的结果为.12.一个正方体的表面涂满了同种颜色,按如图所示将它切成27个大小相等的小立方块.设其中仅有i个面(1,2,3)涂有颜色的小立方块的个数为x i,则x1、x2、x3之间的数量关系为.二、选择题(每题3分,共15分)13.把弯曲的河道改直,能够缩短航程,这样做的道理是()A.两点之间,射线最短B.两点确定一条直线C.两点之间,直线最短D.两点之间,线段最短14.如图几何体的主视图是()A.B.C.D.15.“某幼儿园给小朋友分苹果,若每个小朋友分3个则剩1个;若每个小朋友分4个则少2个,问有多少个小朋友?”若设共有x个小朋友,则列出的方程是()A.3x﹣1=4x+2 B.3x+1=4x﹣2 C.=D.=16.如果∠α和∠β互补,且∠α>∠β,则下列表示∠β的余角的式子中:①90°﹣∠β;②∠α﹣90°;③180°﹣∠α;④(∠α﹣∠β).正确的是:()A.①②③④B.①②④ C.①②③ D.①②17.如图,OC是∠AOB内的一条射线,OD、OE分别平分∠AOB、∠AOC,若∠AOC=m°,∠BOC=n°,则∠DOE的大小为()A.B.C.D.三、解答题18.计算(1)9+5×(﹣3)﹣(﹣2)2÷4(2)(+﹣)×(﹣36)+(﹣1)2015.19.先化简下式,再求值:5(3a2b﹣ab2)﹣4(﹣ab2+3a2b),其中a=﹣2,b=3.20.解方程(1)2x﹣1=15+6x(2).21.如图,网格中所有小正方形的边长都为1,A、B、C都在格点上.(1)利用格点画图(不写作法):①过点C画直线AB的平行线;②过点A画直线BC的垂线,垂足为G;③过点A画直线AB的垂线,交BC于点H.(2)线段AG的长度是点A到直线的距离,线段的长度是点H到直线AB的距离.(3)因为直线外一点到直线上各点连接的所有线段中,垂线段最短,所以线段AG、BH、AH的大小关系为.(用“<”号连接).22.“*”是新规定的这样一种运算法则:a*b=a2﹣2ab,比如3*(﹣2)=32﹣2×3×(﹣2)=21(1)试求(﹣2)*3的值;(2)若(﹣2)*(1*x)=x﹣1,求x的值.23.某校综合实践小分队成一列在野外拓展训练,在队伍中的队长数了一下他前后的人数,发现他前面人数是他后面的三倍,他往前超了5位队友后,发现他前面的人数和他后面的人数一样多.问:(1)这列队伍一共有多少名学生?(2)这列队伍要过一座240米的大桥,为拓展训练和安全需要,相邻两个学生保持相同的间距,队伍行进速度为3米/秒,从第一位学生刚上桥到全体通过大桥用了90秒时间,请问相邻两个学生间距离为多少米(不考虑学生身材的大小)?24.如图,直线AB、CD相交于点O,∠AOC=72°,射线OE在∠BOD的内部,∠DOE=2∠BOE.(1)求∠BOE和∠AOE的度数;(2)若射线OF与OE互相垂直,请直接写出∠DOF的度数.25.十八世纪瑞士数学家欧拉证明了简单多面体中顶点数(V)、面数(F)、棱数(E)之间存在的一个有趣的关系式,被称为欧拉公式请你观察下列几种简单多面体模型,解答下列问题:(1)根据上面多面体的模型,完成表格中的空格:你发现顶点数(V)、面数(F)、棱数(E)之间存在的关系式是;(2)一个多面体的棱数比顶点数大10,且有12个面,则这个多面体的棱数是;(3)某个玻璃饰品的外形是简单的多面体,它的外表面是由三角形和八边形两种多边形拼接而成,每个顶点处都有3条棱,共有棱36条.若该多面体外表面三角形的个数比八边形的个数的2倍多2,求该多面体外表面三角形的个数.26.如图,数轴上有A、B、C、O四点,点O是原点,BC=AB=8,OB比AO的少1.(1)写出数轴上点A表示的数为.(2)动点P、Q分别从A、C同时出发,点P以每秒6个单位长度的速度沿数轴向右匀速运动,点Q以每秒3个单位长度的速度沿数轴向左匀速运动,M为线段AP的中点,点N在线段CQ上,且CN=CQ.设运动时间为t(t>0)秒.①写出数轴上点M表示的数为,点N表示的数为(用含t的式子表示).②当t=时,原点O恰为线段MN的中点.③若动点R从点A出发,以每秒9个单位长度的速度沿数轴向右匀速运动,若P、Q、R三动点同时出发,当点R遇到点Q后,立即返回以原速度向点P运动,当点R遇到点P后,又立即返回以原速度向点Q运动,并不停地以原速度往返于点P与点Q之间,当点P与点Q重合时,点R停止运动.问点R从开始运动到停止运动,行驶的总路程是多少个单位长度?江苏省镇江市句容市2014~2015学年度七年级上学期期末数学试卷参考答案与试题解析一、填空题(每题2分,共24分)1.﹣8的相反数等于8.【考点】相反数.【分析】根据只有符号不同的两个数互为相反数,可得答案.【解答】解:﹣8的相反数等于8,故答案为:8.【点评】本题考查了相反数,在一个数的前面加上符号就是这个数的相反数.2.单项式的次数是5.【考点】单项式.【分析】根据单项式的次数是字母指数和,可得答案.【解答】解:的次数是5,故答案为:5.【点评】本题考查了单项式,单项式的次数是字母指数和,系数是数字因数.3.若(x﹣2)2+|y+1|=0,则x﹣y=3.【考点】非负数的性质:偶次方;非负数的性质:绝对值.【分析】根据非负数的性质列式求出x、y的值,然后相减计算即可得解.【解答】解:由题意得,x﹣2=0,y+1=0,解得x=2,y=﹣1,所以,x﹣y=2﹣(﹣1)=2+1=3.故答案为:3.【点评】本题考查了非负数的性质:有限个非负数的和为零,那么每一个加数也必为零.4.已知a﹣3b﹣4=0,则代数式4+2a﹣6b的值为12.【考点】代数式求值.【专题】计算题;推理填空题.【分析】首先把4+2a﹣6b化为2(a﹣3b﹣4)+12,然后把a﹣3b﹣4=0代入2(a﹣3b﹣4)+12,求出算式的值是多少即可.【解答】解:∵a﹣3b﹣4=0,∴4+2a﹣6b=2(a﹣3b﹣4)+12=2×0+12=0+12=12故答案为:12.【点评】此题主要考查了代数式求值问题,要熟练掌握,求代数式的值可以直接代入、计算.如果给出的代数式可以化简,要先化简再求值.题型简单总结以下三种:①已知条件不化简,所给代数式化简;②已知条件化简,所给代数式不化简;③已知条件和所给代数式都要化简.5.若x=1是关于x的方程x﹣2m+1=0的解,则m的值为1.【考点】一元一次方程的解.【专题】计算题;一次方程(组)及应用.【分析】把x=1代入方程计算即可求出m的值.【解答】解:把x=1代入方程得:1﹣2m+1=0,解得:m=1,故答案为:1【点评】此题考查了一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.6.如图,线段AB=16,C是AB的中点,点D在CB上,DB=3,则线段CD的长为5.【考点】两点间的距离.【分析】由线段中点的定义可知CB==8,然后根据CD=BC﹣BD求解即可.【解答】解:∵C是AB的中点,∴CB==8.∴CD=BC﹣BD=8﹣3=5.故答案为:5.【点评】本题主要考查的是两点间的距离,由线段中点的定义求得BC的长是解题的关键.7.如图,一个正方体的平面展开图,若折成正方体后,每对相对面上标注的值的和均相等,则x+y= 10.【考点】专题:正方体相对两个面上的文字.【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点找出相对面,然后求解即可得到x、y的值,也可得出x+y的值.【解答】解:根据正方体的表面展开图,可得:x与2相对,y与4相对,∵正方体相对的面上标注的值的和均相等,∴2+x=3+5,y+4=3+5,解得x=6,y=4,则x+y=10.故答案为:10.【点评】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.8.已知∠1与∠2为对顶角,且∠1的补角的度数为80°,则∠2的度数为100°.【考点】余角和补角;对顶角、邻补角.【分析】根据对顶角、补角的性质,可得∠1=∠2,∠1=180°﹣80°=100°,依此即可求解.【解答】解:∵∠1与∠2是对顶角,∴∠1=∠2,又∵∠1的补角的度数为80°,∴∠1=180°﹣80°=100°,∴∠2=100°.故答案为:100.【点评】本题主要考查对顶角的性质以及补角的定义,是需要熟记的内容.9.一件夹克衫先按成本提高50%后标价,再以8折优惠卖出,获利28元,则这件夹克衫的成本是140元.【考点】一元一次方程的应用.【分析】设这件夹克衫的成本是x元,则标价就为1.5x元,售价就为1.5x×0.8元,由利润=售价﹣进价建立方程求出其解即可.【解答】解:设这件夹克衫的成本是x元,由题意得x(1+50%)×80%﹣x=28解得:x=140答:这件夹克衫的成本是140元.故答案为:140.【点评】此题考查一元一次方程的实际运用,掌握销售问题的数量关系利润=售价﹣进价是解决问题的关键.10.在同一平面内,∠BOC=50°,OA⊥OB,OD平分∠AOC,则∠BOD的度数是20°或70°.【考点】垂线.【分析】首先根据题意画出图形,要分两种情况,一种为OC在∠AOB内,一种为OC在∠AOB外,再由垂直定义可得∠AOB=90°,根据角平分线定义可得∠COD=∠COA,然后再计算出∠BOD的度数即可.【解答】解:∵OA⊥OB∴∠AOB=90°,如图1,∵∠BOC=50°,∴∠AOC=90°﹣∠BOC=40°,∵OD平分∠AOC,∴∠COD=∠COA=20°,∴∠BOD=50°+20°=70°,如图2,∵∠BOC=50°,∴∠AOC=90°+∠BOC=140°,∵OD平分∠AOC,∴∠COD=∠COA=70°,∴∠BOD=70°﹣50°=20°.故答案为:20°或70°.【点评】此题主要考查了垂线,以及角的计算,关键是正确画出图形,考虑全面,进行分情况讨论.11.如图所示的运算程序中,若开始输入的x值为5,我们发现第1次输出的数为2,再将2输入,第2次输出的数为﹣1,如此循环,则第2015次输出的结果为﹣1.【考点】代数式求值.【专题】图表型;规律型.【分析】首先分别求出第1次、第2次、第3次、第4次、第5次、第6次输出的数分别为2、﹣1、﹣4、2、﹣1、﹣4,进而判断出从第1次开始,输出的数分别为:2、﹣1、﹣4、2、﹣1、﹣4、…,每3个数一个循环;然后用2015除以3,根据商和余数的情况,判断出第2015次输出的结果为多少即可.【解答】解:∵第1次输出的数为:5﹣3=2,第2次输出的数为:﹣×2=﹣1,第3次输出的数为:﹣1﹣3=﹣4,第4次输出的数为:﹣×(﹣4)=2,第5次输出的数为:﹣×2=﹣1,第6次输出的数为:﹣1﹣3=﹣4,…,∴从第1次开始,输出的数分别为:2、﹣1、﹣4、2、﹣1、﹣4、…,每3个数一个循环;∵2015÷3=671…2,∴第2015次输出的结果为﹣1.故答案为:﹣1.【点评】此题主要考查了代数式求值问题,要熟练掌握,求代数式的值可以直接代入、计算.如果给出的代数式可以化简,要先化简再求值.题型简单总结以下三种:①已知条件不化简,所给代数式化简;②已知条件化简,所给代数式不化简;③已知条件和所给代数式都要化简.12.一个正方体的表面涂满了同种颜色,按如图所示将它切成27个大小相等的小立方块.设其中仅有i个面(1,2,3)涂有颜色的小立方块的个数为x i,则x1、x2、x3之间的数量关系为x1﹣x2+x3=2.【考点】认识立体图形.【分析】根据图示:在原正方体的8个顶点处的8个小正方体上,有3个面涂有颜色;2个面涂有颜色的小正方体有12个,1个面涂有颜色的小正方体有6个.【解答】解:根据以上分析可知x1+x3﹣x2=6+8﹣12=2.故答案为:x1﹣x2+x3=2.【点评】此题主要考查了立体图形的性质,根据已知得出涂有颜色不同的小立方体的个数是解题关键.二、选择题(每题3分,共15分)13.把弯曲的河道改直,能够缩短航程,这样做的道理是()A.两点之间,射线最短B.两点确定一条直线C.两点之间,直线最短D.两点之间,线段最短【考点】线段的性质:两点之间线段最短.【分析】根据两点之间线段最短即可得出答案.【解答】解:由两点之间线段最短可知,把弯曲的河道改直,能够缩短航程,这样做根据的道理是两点之间线段最短,故选:D.【点评】本题考查了线段的性质,关键是掌握两点之间线段最短.14.如图几何体的主视图是()A.B.C.D.【考点】简单组合体的三视图.【专题】压轴题.【分析】找到从正面看所得到的图形即可【解答】解:从正面可看到从左往右三列小正方形的个数为:2,1,1,故选C.【点评】本题考查了三视图的知识,主视图是从物体的正面看得到的视图.15.“某幼儿园给小朋友分苹果,若每个小朋友分3个则剩1个;若每个小朋友分4个则少2个,问有多少个小朋友?”若设共有x个小朋友,则列出的方程是()A.3x﹣1=4x+2 B.3x+1=4x﹣2 C.=D.=【考点】由实际问题抽象出一元一次方程.【分析】设共有x个小朋友,根据“若每个小朋友分3个则剩1个;若每个小朋友分4个则少2个”以及苹果的个数不变列出方程即可.【解答】解:设共有x个小朋友,根据题意得3x+1=4x﹣2.故选B.【点评】此题主要考查了由实际问题抽象出一元一次方程,解题的关键是找出题目中的相等关系,此题充分体现了数学与实际生活的密切联系.16.如果∠α和∠β互补,且∠α>∠β,则下列表示∠β的余角的式子中:①90°﹣∠β;②∠α﹣90°;③180°﹣∠α;④(∠α﹣∠β).正确的是:()A.①②③④B.①②④ C.①②③ D.①②【考点】余角和补角.【专题】推理填空题.【分析】根据∠α与∠β互补,得出∠β=180°﹣∠α,∠α=180°﹣∠β,求出∠β的余角是90°﹣∠β,90°﹣∠β表示∠β的余角;∠α﹣90°=90°﹣∠β,即可判断②;180°﹣∠α=∠β,根据余角的定义即可判断③;求出(∠α﹣∠β)=90°﹣∠β,即可判断④.【解答】解:∵∠α与∠β互补,∴∠β=180°﹣∠α,∠α=180°﹣∠β,∴90°﹣∠β表示∠β的余角,∴①正确;∠α﹣90°=180°﹣∠β﹣90°=90°﹣∠β,∴②正确;180°﹣∠α=∠β,∴③错误;(∠α﹣∠β)=(180°﹣∠β﹣∠β)=90°﹣∠β,∴④正确;故选B.【点评】本题考查了对余角和补角的理解和运用,注意:∠α与∠β互补,得出∠β=180°﹣∠α,∠α=180°﹣∠β;∠β的余角是90°﹣∠β,题目较好,难度不大.17.如图,OC是∠AOB内的一条射线,OD、OE分别平分∠AOB、∠AOC,若∠AOC=m°,∠BOC=n°,则∠DOE的大小为()A.B.C.D.【考点】角平分线的定义.【分析】根据角平分线定义得出∠DOA=∠AOB,∠EOA=∠AOC,求出∠DOE=∠DOA﹣∠EOA=∠BOC,代入求出即可.【解答】解:∵OD、OE分别平分∠AOB、∠AOC,∠AOC=m°,∠BOC=n°,∴∠DOA=∠AOB,∠EOA=∠AOC,∴∠DOE=∠DOA﹣∠EOA=∠AOB﹣∠AOC=(∠AOB﹣∠AOC)=∠BOC=,故选B.【点评】本题考查了角平分线定义和角的有关计算的应用,主要考查学生的推理能力,数形结合思想的运用.三、解答题18.计算(1)9+5×(﹣3)﹣(﹣2)2÷4(2)(+﹣)×(﹣36)+(﹣1)2015.【考点】有理数的混合运算.【专题】计算题;实数.【分析】(1)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果;(2)原式第一项利用乘法分配律计算,第二项利用乘方的意义计算即可得到结果.【解答】解:(1)原式=9﹣15﹣1=﹣7;(2)原式=﹣18﹣30+21﹣1=﹣28.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.19.先化简下式,再求值:5(3a2b﹣ab2)﹣4(﹣ab2+3a2b),其中a=﹣2,b=3.【考点】整式的加减—化简求值.【分析】本题应对方程去括号,合并同类项,将整式化为最简式,然后把a、b的值代入即可.注意去括号时,如果括号前是负号,那么括号中的每一项都要变号;合并同类项时,只把系数相加减,字母与字母的指数不变.【解答】解:5(3a2b﹣ab2)﹣4(﹣ab2+3a2b),=15a2b﹣5ab2+4ab2﹣12a2b=3a2b﹣ab2,当a=﹣2,b=3时,原式=3×(﹣2)2×3﹣(﹣2)×32=36+18=54.【点评】本题考查了整式的化简.整式的加减运算实际上就是去括号、合并同类项,这是各地2016届中考的常考点.20.解方程(1)2x﹣1=15+6x(2).【考点】解一元一次方程.【专题】计算题;一次方程(组)及应用.【分析】(1)方程移项合并,把x系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:(1)移项得:2x﹣6x=15+1,合并得:﹣4x=16,解得:x=﹣4;(2)去分母得:2(2x﹣3)=3(x+2)﹣12,去括号得:4x﹣6=3x+6﹣12,移项合并得:x=0.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.21.如图,网格中所有小正方形的边长都为1,A、B、C都在格点上.(1)利用格点画图(不写作法):①过点C画直线AB的平行线;②过点A画直线BC的垂线,垂足为G;③过点A画直线AB的垂线,交BC于点H.(2)线段AG的长度是点A到直线BC的距离,线段HA的长度是点H到直线AB的距离.(3)因为直线外一点到直线上各点连接的所有线段中,垂线段最短,所以线段AG、BH、AH的大小关系为AG<AH<BH.(用“<”号连接).【考点】作图—复杂作图;垂线段最短;点到直线的距离.【专题】作图题.【分析】(1)①画小方格的对角线得到CD∥AB;②利用格线作AG⊥BC于点G;③过点A作AH⊥AB交BC于H;(2)根据点到直线的距离的定义求解;(3)由(2)得到AG<AH,AH<BH,于是得到AG<AH<BH.【解答】解:(1)①直线CD为所作;②线段AG为所作;③线段HA为所作;(2)线段AG的长度是点A到直线BC的距离,线段HA的长度是点H到直线AB的距离;(3)∵AG<AH,AH<BH,∴AG<AH<BH.故答案为BC,BC AH,AG<AH<BH.【点评】本题考查了作图﹣复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.22.“*”是新规定的这样一种运算法则:a*b=a2﹣2ab,比如3*(﹣2)=32﹣2×3×(﹣2)=21(1)试求(﹣2)*3的值;(2)若(﹣2)*(1*x)=x﹣1,求x的值.【考点】解一元一次方程;有理数的混合运算.【专题】新定义;一次方程(组)及应用.【分析】(1)原式利用题中的新定义化简,计算即可得到结果;(2)已知等式利用已知的新定义化简,求出解即可得到x的值.【解答】解:(1)根据题中的新定义得:原式=4+12=16;(2)已知等式利用题中的新定义化简得:(﹣2)*(1﹣2x)=x﹣1,即4+4(1﹣2x)=x﹣1,去括号得:4+4﹣8x=x﹣1,移项合并得:9x=9,解得:x=1.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.23.某校综合实践小分队成一列在野外拓展训练,在队伍中的队长数了一下他前后的人数,发现他前面人数是他后面的三倍,他往前超了5位队友后,发现他前面的人数和他后面的人数一样多.问:(1)这列队伍一共有多少名学生?(2)这列队伍要过一座240米的大桥,为拓展训练和安全需要,相邻两个学生保持相同的间距,队伍行进速度为3米/秒,从第一位学生刚上桥到全体通过大桥用了90秒时间,请问相邻两个学生间距离为多少米(不考虑学生身材的大小)?【考点】一元一次方程的应用.【分析】(1)设开始队长后面有x名学生,由“他前面人数是他后面的三倍,他往前超了5位队友后,发现他前面的人数和他后面的人数一样多”列出方程并解答.(2)设相邻两个学生间距离为y米,根据“队伍全部通过所经过的路程为米,根据“队伍行进速度为3米/秒,用时90秒”,列方程求解即可.【解答】解:(1)设开始队长后面有x名学生,由题意得x+5=3x﹣5,解得x=5,共有学生4x+1=21(名)答:这列队伍一共有21名学生;(2)设相邻两个学生间距离为y米,由题意得20y+240=3×90,解得y=1.5答:相邻两个学生间距离为1.5米.【点评】本题考查一元一次方程的实际应用,解决问题的关键是读懂题意,找到所求的量的等量关系,难度一般.24.如图,直线AB、CD相交于点O,∠AOC=72°,射线OE在∠BOD的内部,∠DOE=2∠BOE.(1)求∠BOE和∠AOE的度数;(2)若射线OF与OE互相垂直,请直接写出∠DOF的度数.【考点】对顶角、邻补角;垂线.【分析】(1)设∠BOE=x,根据题意列出方程,解方程即可;(2)分射线OF在∠AOD的内部和射线OF在∠BOC的内部两种情况,根据垂直的定义计算即可.【解答】解:(1)∵∠AOC=72°,∴∠BOD=72°,∠AOD=108°,设∠BOE=x,则∠DOE=2x,由题意得,x+2x=72°,解得,x=24°,∴∠BOE=24°,∠DOE=48°,∴∠AOE=156°;(2)若射线OF在∠BOC的内部,∠DOF=90°+48°=138°,若射线OF在∠AOD的内部,∠DOF=90°﹣48°=42°,∴∠DOF的度数是138°或42°.【点评】本题考查的是对顶角和邻补角的概念和性质以及垂直的定义,掌握对顶角相等、邻补角的和是180°是解题的关键.25.十八世纪瑞士数学家欧拉证明了简单多面体中顶点数(V)、面数(F)、棱数(E)之间存在的一个有趣的关系式,被称为欧拉公式请你观察下列几种简单多面体模型,解答下列问题:(1)根据上面多面体的模型,完成表格中的空格:你发现顶点数(V)、面数(F)、棱数(E)之间存在的关系式是V+F﹣E=2;(2)一个多面体的棱数比顶点数大10,且有12个面,则这个多面体的棱数是30;(3)某个玻璃饰品的外形是简单的多面体,它的外表面是由三角形和八边形两种多边形拼接而成,每个顶点处都有3条棱,共有棱36条.若该多面体外表面三角形的个数比八边形的个数的2倍多2,求该多面体外表面三角形的个数.【考点】一元一次方程的应用;规律型:图形的变化类.【分析】(1)观察表格可以看出:顶点数+面数﹣棱数=2,关系式为:V+F﹣E=2;(2)根据题意得出是十二面体,得出顶点数,即可得到面数;(3)设八边形的个数个,则三角形的个数为2y+2个,由题意可得y+2y+2=14,解方程求出y的值即可.【解答】解:(1)根据题意得:四面体的棱数为6,正八面体顶点数为6,∵4+4﹣6=2,8+6﹣12=2,6+8﹣12=2,∴顶点数(V)、面数(F)、棱数(E)之间存在的关系式是V+F﹣E=2;故答案为:6,6,V+F﹣E=2;(2)∵一个多面体的棱数比顶点数大10,且有12个面,∴这个多面体是十二面体,∴顶点数为20,∵V+F﹣E=2,∴棱数E=20+10=30;故答案为:30;(3)∵=36=E,V=24,V+F﹣E=2,∴F=14,设八边形的个数为y个,则三角形的个数为2y+2个,由题意得y+2y+2=14,解得:y=4,∴2y+2=10,答:该多面体外表面三角形的个数为10个.【点评】本题考查了多面体的顶点数,面数,棱数之间的关系及灵活运用,得出欧拉公式是解题关键.26.如图,数轴上有A、B、C、O四点,点O是原点,BC=AB=8,OB比AO的少1.(1)写出数轴上点A表示的数为﹣20.(2)动点P、Q分别从A、C同时出发,点P以每秒6个单位长度的速度沿数轴向右匀速运动,点Q以每秒3个单位长度的速度沿数轴向左匀速运动,M为线段AP的中点,点N在线段CQ上,且CN=CQ.设运动时间为t(t>0)秒.①写出数轴上点M表示的数为3t﹣20,点N表示的数为12﹣t(用含t的式子表示).②当t=4时,原点O恰为线段MN的中点.③若动点R从点A出发,以每秒9个单位长度的速度沿数轴向右匀速运动,若P、Q、R三动点同时出发,当点R遇到点Q后,立即返回以原速度向点P运动,当点R遇到点P后,又立即返回以原速度向点Q运动,并不停地以原速度往返于点P与点Q之间,当点P与点Q重合时,点R停止运动.问点R从开始运动到停止运动,行驶的总路程是多少个单位长度?【考点】一元一次方程的应用;数轴.【专题】几何动点问题.【分析】(1)根据已知条件求得AB的长度,即可写出点A表示的数;(2)①根据题意画出图形,表示出AP=6t,CQ=3t,再根据线段的中点定义可得AM=3t,根据线段之间的和差关系进而可得到点M表示的数;根据CN=CQ可得CN=t,根据线段的和差关系可得到点N表示的数;②当M在原点O的左侧,根据题意得方程即可得到结论;当M在原点O的右侧,根据题意得方程即可得到结论;③根据OA=20,OC=12,求得AC=32,于是得到点R从开始运动到停止运动,行驶的总路程=×9=32个单位长度.【解答】解:(1)∵BC=AB=8,∴AB=24,∵OB比AO的少1,∴AO=20,∴点A表示的数为:﹣20.故答案为:﹣20,;(2)①由题意得:AP=6t,CQ=3t,如图1所示:∵M为AP中点,∴AM=AP=3t,∴在数轴上点M表示的数是﹣20+3t,∵点N在CQ上,CN=CQ,∴CN=t,∴在数轴上点N表示的数是12﹣t.故答案为:3t﹣20,12﹣t;②当M在原点O的左侧,∵原点O恰为线段MN的中点,∴OM=ON,即20﹣3t=12﹣t,解得:t=4,当M在原点O的右侧,∵原点O恰为线段MN的中点,∴OM=ON,即3t﹣20=t﹣12,解得:t=4,不合题意舍去,综上所述:当t=4秒时,O恰为线段MN的中点.故答案为:4;③∵OA=20,OC=12,∴AC=32,∴点R从开始运动到停止运动,行驶的总路程=×9=32个单位长度.答:点R从开始运动到停止运动,行驶的总路程是32个单位长度.【点评】此题主要考查了数轴,以及线段的计算,解决问题的关键是根据题意正确画出图形,要考虑全面各种情况,不要漏解.。
2018-2019学年七年级(上)期末数学试题(解析版)
2018-2019学年七年级(上)期末数学试卷一、选择题(本大题共8小题,共24.0分)1. 如图,检测4个足球,其中超过标准质量的克数记为正数,不足标准质量的克数记为负数.从轻重的角度看,最接近标准的是()A. B. C. D.【答案】B【解析】【分析】检测质量时,与标准质量偏差越小,合格的程度就越高.比较与标准质量的差的绝对值即可.【详解】|+0.6|=0.6,|-0.2|=0.2,|-0.5|=0.5,|+0.3|=0.3 ,而0.2<0.3<0.5<0.6 ,∴B球与标准质量偏差最小,故选B.【点睛】本题考查的是绝对值的应用,理解绝对值表示的意义是解决本题的关键.2. 用式子表示“a的2倍与b的差的平方”,正确的是()A. 2(a﹣b)2B. 2a﹣b2C. (a﹣2b)2D. (2a﹣b)2【答案】D【解析】【分析】根据代数式的表示方法,先求倍数,然后求差,再求平方.【详解】解:a的2倍为2a,与b的差的平方为(2a﹣b)2故选:D.【点睛】本题考查了列代数式的知识,列代数式的关键是正确理解题目中的关键词,比如本题中的倍、差、平方等,从而明确其中的运算关系,正确的列出代数式.3. 在下面四个几何体中,左视图、俯视图分别是长方形和圆的几何体是()A. B. C. D.【答案】A【解析】【分析】逐一判断出各几何体的左视图、俯视图即可求得答案.【详解】A 、圆柱的左视图是长方形,俯视图是圆,符合题意;B 、圆锥的的左视图是等腰三角形,俯视图是带有圆心的圆,不符合题意;C 、长方体的左视图是长方形,俯视图是长方形,不符合题意;D 、三棱柱的左视图是长方形,俯视图是三角形,不符合题意,故选A .【点睛】本题考查了简单几何体的三视图,熟练掌握常见几何体的三视图是解题的关键.4. 下列各式中运算正确的是( )A. 224a a a +=B. 4a 3a 1-=C. 2223a b 4ba a b -=-D. 2353a 2a 5a +=【答案】C【解析】【分析】根据合并同类项的法则逐一进行计算即可.【详解】A. 222a a 2a +=,故A 选项错误;B. 4a 3a a -=,故B 选项错误;C. 2223a b 4ba a b -=-,正确;D. 23a 与32a 不是同类项,不能合并,故D 选项错误,故选C .【点睛】本题考查了合并同类项法则的应用,注意:合并同类项时,把同类项的系数相加作为结果的系数,字母和字母的指数不变.5. 如图,能用∠1、∠ABC、∠B 三种方法表示同一个角的是( ) A. B. C.D.【答案】A【解析】【分析】根据角的表示法可以得到正确解答.【详解】解:B、C、D选项中,以B为顶点的角不只一个,所以不能用∠B表示某个角,所以三个选项都是错误的;A选项中,以B为顶点的只有一个角,并且∠B=∠ABC=∠1,所以A正确.故选A .【点睛】本题考查角的表示法,明确“过某个顶点的角不只一个时,不能单独用这个顶点表示角”是解题关键.6. 如图,经过刨平的木板上的A,B两个点,能弹出一条笔直的墨线,而且只能弹出一条墨线,能解释这一实际应用的数学知识是()A. 两点之间,线段最短B. 两点确定一条直线C. 垂线段最短D. 在同一平面内,过一点有且只有一条直线与已知直线垂直【答案】B【解析】【分析】根据“经过两点有且只有一条直线”即可得出结论.【详解】解:∵经过两点有且只有一条直线,∴经过木板上的A、B两个点,只能弹出一条笔直的墨线.故选B.【点睛】本题考查了直线性质,牢记“经过两点有且只有一条直线”是解题的关键.7. 在下列式子中变形正确的是( )A. 如果a b =,那么a c b c +=-B. 如果a b =,那么a b 33=C. 如果a 63=,那么a 2=D. 如果a b c 0-+=,那么a b c =+【答案】B【解析】【分析】根据等式的性质逐个判断即可.【详解】A 、∵a=b ,∴a+c=b+c ,不是b-c ,故本选项不符合题意;B 、∵a=b ,∴两边都除以3得:a b 33=,故本选项符合题意; C 、∵a 63=,∴两边都乘以3得:a=18,故本选项不符合题意; D 、∵a-b+c=0,∴两边都加b-c 得:a=b-c ,故本选项不符合题意,故选B .【点睛】本题考查了等式的性质,能熟记等式的性质的内容是解此题的关键.8. 直线l 外一点P 与直线l 上两点的连线段长分别为3cm ,5cm ,则点P 到直线l 的距离是( )A. 不超过3cmB. 3cmC. 5cmD. 不少于5cm【答案】A【解析】【分析】根据直线外的点与直线上各点的连线垂线段最短,可得答案.【详解】解:直线外的点与直线上各点的连线垂线段最短,得点P 到直线l 的距离是小于或等于3,故选A .【点睛】本题考查了点到直线的距离,直线外的点与直线上各点的连线垂线段最短. 二、填空题(本大题共10小题,共30.0分)9. 元月份某天某市的最高气温是4℃,最低气温是-5℃,那么这天的温差(最高气温减最低气温)是______℃.【答案】9【解析】【分析】利用最高气温减最低气温,再根据减去一个数等于加上这个数的相反数计算即可.【详解】这天的温差为4-(-5)=4+5=9(℃),故答案为9【点睛】本题考查有理数的减法的应用,正确列出算式,熟练掌握有理数减法的运算法则是解题的关键. 10. 我国倡导的“一带一路”建设将促进我国与世界各国的互利合作,“一带一路”地区覆盖总人口约为4400000000人,将数据4400000000用科学记数法表示为______.【答案】4.4×109【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>10时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】4400000000的小数点向左移动9位得到4.4,所以4400000000用科学记数法可表示为:4.4×109, 故答案为4.4×109. 【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.11. 若3x =-是关于x 的一元一次方程250x m ++=的解,则m 的值为___________.【答案】1【解析】把x =−3代入方程得:−6+m +5=0,解得:m =1,故答案为1.12. 若|x -12|+(y +2)2=0,则(xy )2019的值为______. 【答案】-1【解析】【分析】根据非负数的性质列出算式,求出x 、y 的值,计算即可.【详解】∵|x-12|+(y+2)2=0, ∴x-12=0,y+2=0, ∴x=12,y=-2,∴(xy)2019=(-1)2019=-1,故答案为-1.【点睛】本题考查的是非负数的性质,掌握当几个非负数相加和为0时,则其中的每一项都必须等于0是解题的关键.13. 若a+b=2019,c+d=-5,则代数式(a-2c)-(2d-b)=______.【答案】2029【解析】【分析】根据去括号、添括号法则把原式变形,代入计算,得到答案.【详解】(a-2c)-(2d-b)=a-2c-2d+b=(a+b)-2(c+d)=2019+10=2029,故答案为2029.【点睛】本题考查的是整式的加减混合运算,掌握去括号、添括号法则是解题的关键.注意整体思想的应用.14. 一个正方体的平面展开图如图所示,将它折成正方体后“扬”字对面是______字.【答案】美【解析】【分析】注意正方体的空间图形,从相对面入手,分析及解答问题.【详解】对于正方体的平面展开图中相对的面一定相隔一个小正方形,由图形可知,“扬”字对面是“美”字,故答案为美.【点睛】本题考查了正方体的平面展开图,对于正方体的平面展开图中相对的面一定相隔一个小正方形,据此作答.15. 若∠A=45°30′,则∠A的补角等于_______________.【答案】134°30′【解析】试题分析:根据补角定义:如果两个角的和等于180°(平角),就说这两个角互为补角可得答案.解:∵∠A=45°30′,∴∠A的补角=180°﹣45°30′=179°60′﹣45°30′=134°30′,故答案为134°30′.考点:余角和补角;度分秒的换算.16. 如图,将一副直角三角板叠放在一起,使其直角顶点重合于点O,若∠DOC=26°,则∠AOB=______°.【答案】154【解析】【分析】先根据∠COB=∠DOB-∠DOC求出∠COB,再代入∠AOB=∠AOC+∠COB,即可求解.【详解】∵∠COB=∠DOB-∠DOC=90°-26°=64°,∴∠AOB=∠AOC+∠COB=90°+64°=154°,故答案是:154.【点睛】本题考查了角度的计算,弄清角的和差关系是解题的关键.17. 已知线段AB=6cm,C是线段AB的中点,E是直线AB上的一点,且CE=13AB,则线段AE=______cm.【答案】1或5【解析】【分析】由已知C是线段AB中点,AB=6,求得AC=3,进一步分类探讨:E在线段AC内;E在线段CB内;由此画图得出答案即可.【详解】∵C是线段AB的中点,AB=6cm,∴AC=12AB=3cm,CE=13AB=2cm,①如图,当E在线段AC上时,AE=AC-CE=3-2=1cm;②如图,E在线段CB上,AE=AC+CE=3+2=5cm,所以AE=1cm或5cm,故答案为1或5.【点睛】本题考查线段中点的意义,线段的和与差,分类探究是解决问题的关键.18. 某中学初三(6)班十几名同学毕业前和数学老师合影留念,一张彩色底片要0.6元,扩印一张相片0.5元,每人分一张,免费赠送老师一张(由学生出钱),每个学生交0.6元刚好,则相片上共有______人.【答案】12【解析】【分析】扩印费+0.5×照片上人数=0.6×学生数,把相关数值代入计算即可.【详解】设相片上共有x人,0.6+0.5x=0.6×(x-1),解得x=12,故答案为12.【点睛】本题考查一元一次方程的应用,弄清题意,得到所需总费用的等量关系是解决本题的关键.三、计算题(本大题共4小题,共32.0分)19. 计算:(1)14-(-12)+(-25)-17.(2)(12-13)÷(-16)-22×(-4).【答案】(1)-16;(2)15【解析】【分析】(1)根据有理数的加减法法则进行计算即可;(2)按顺序先计算括号内的减法、乘方,然后再按运算顺序进行计算即可. 【详解】(1)14-(-12)+(-25)-17=14+12+(-25)+(-17)=-16;(2)(12-13)÷(-16)-22×(-4)=16×(-6)-4×(-4)=(-1)+16=15.【点睛】本题考查了有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.20. 化简:(1)(5a-3b)-3(a-2b);(2)3x2-[7x-(4x-3)-2x2].【答案】(1)2a+3b;(2)5x2-3x-3【解析】【分析】(1)先按照去括号法则去掉整式中的小括号,再合并整式中的同类项即可;(2)先按照去括号法则去掉整式中的小括号,然后去中括号,最后合并整式中的同类项即可.【详解】(1)原式=5a-3b-3a+6b=2a+3b;(2)原式=3x2-[7x-4x+3-2x2]=3x2-7x+4x-3+2x2=5x2-3x-3.【点睛】本题考查整式的加减,解决此类题目的关键是熟记去括号法则,熟练运用合并同类项的法则.21. 解方程:(1)2x+3=11-6x.(2)x24+-2x16-=1【答案】(1)x=1;(2)x=-4.【解析】【分析】(1)按移项、合并同类项、系数化为1的步骤进行求解即可得;(2)按去分母、去括号、移项、合并同类项、系数化为1的步骤进行求解即可得.【详解】(1)2x+6x=11-3,8x=8,x=1;(2)3(x+2)-2(2x-1)=12,3x+6-4x+2=12,3x-4x=12-6-2,-x=4,x=-4.【点睛】本题主要考查解一元一次方程,去分母、去括号、移项、合并同类项、系数化为1,这仅是解一元一次方程的一般步骤,针对方程的特点,灵活应用,各种步骤都是为使方程逐渐向x=a形式转化.22. 先化简,再求值,2(3ab2-a3b)-3(2ab2-a3b),其中a=-12,b=4.【答案】a3b,1 2 -.【解析】【分析】根据乘法分配律,先去括号,再合并同类项进行化简,再代入求值. 【详解】解:原式=6ab2﹣2a3b﹣6ab2+3a3b=a3b,当a=12-,b=4时,原式=3142⎛⎫-⨯⎪⎝⎭=12-.故答案为1 2 -【点睛】本题考核知识点:整式化简求值.解题关键点:根据乘法分配律去括号,再合并同类项.四、解答题(本大题共6小题,共64.0分)23. 如图,点P是∠AOB的边OB上的一点.(1)过点P画OB的垂线,交OA于点C;(2)过点P画OA的垂线,垂足为H;(3)线段PH的长度是点P到______的距离,______是点C到直线OB的距离,线段PC、PH、OC这三条线段大小关系是______(用“<”号连接).【答案】(1)见解析;(2)见解析;(3)OA,PC的长度,PH<PC<OC.【解析】【分析】(1)利用三角板过点P画∠OPC=90°即可;(2)利用网格特点,过点P画∠PHO=90°即可;(3)利用点到直线的距离可以判断线段PH的长度是点P到OA的距离,PC是点C到直线OB的距离,根据垂线段最短即可确定线段PC、PH、OC的大小关系.【详解】(1)如图所示;(2)如图所示;(3) 线段PH的长度是点P到OA的距离,PC是点C到直线OB的距离,根据垂线段最短可知PH<PC<OC,故答案为OA,PC,PH<PC<OC.【点睛】本题主要考查了基本作图----作已知直线的垂线,另外还需利用点到直线的距离才可解决问题.24. 某小组计划做一批“中华结”,如果每人做6个,那么比计划多做了8个;如果每人做4个,那么比计划少做了42个.请你根据以上信息,提出一个用一元一次方程解决的问题,并写出解答过程.【答案】计划做多少个“中华结”?答案见解析.【解析】【分析】首先提出问题:这批“中华结”的个数是多少?设该批“中华结”的个数为x个,根据加工总个数=单人加工个数×人数,结合该小组人数不变找出关于x的一元一次方程,解之即可得出结论.【详解】这批“中华结”的个数是多少?设计划做“中华结”的个数为x个.根据题意,得:842 64x x+-=.解得:x=142.答:计划做“中华结”的个数为142个.【点睛】本题考查了一元一次方程应用.25. 阅读下面一段文字:问题:0.8⋅能用分数表示吗?探求:步骤①设x=0.8⋅,步骤②10x=10×0.8⋅,步骤③10x=8.8⋅,步骤④10x =8+0.8⋅,步骤⑤10x =8+x ,步骤⑥9x =8,步骤⑦x =89. 根据你对这段文字的理解,回答下列问题:(1)步骤①到步骤②的依据是______;(2)仿照上述探求过程,请你尝试把0.36⋅⋅表示成分数的形式.【答案】(1)等式的基本性质2:等式两边都乘以或除以同一个数(除数不能为0),所得的等式仍然成立;(2)见解析,114x =. 【解析】【分析】(1)利用等式的基本性质得出答案;(2)利用已知设x=0.36⋅⋅,进而得出100x=36+x ,求出即可.【详解】(1)步骤①到步骤②,等式的两边同时乘10,依据的是等式的基本性质2:等式两边都乘以或除以同一个数(除数不能为0),所得的等式仍然成立,故答案为等式的基本性质2:等式两边都乘以或除以同一个数(除数不能为0),所得的等式仍然成立;(2)设x=0.36⋅⋅,100x=100×0.36⋅⋅,100x=36.36⋅⋅,100x=36+ 0.36⋅⋅,100x=36+x ,99x=36,解得:x=411. 【点睛】本题主要考查了等式的基本性质以及一元一次方程的应用,根据题意得出正确等量关系是解题关键.26. 如图,直线AB 、CD 、EF 相交于点O ,OG ⊥CD ,∠BOD =32°.(1)求∠AOG 的度数;(2)如果OC 是∠AOE 的平分线,那么OG 是∠AOF 的平分线吗?请说明理由.【答案】(1)∠AOG=58°;(2)OG是∠AOF的平分线,见解析.【解析】【分析】(1)根据对顶角的性质,可得∠AOC的度数,根据角的和差,可得答案;(2)根据角平分线的性质,可得∠AOC与∠COE的关系,根据对顶角的性质,可得∠DOF与∠COE的关系,根据等量代换,可得∠AOC与∠DOF的关系,根据余角的性质,可得答案.【详解】(1)由对顶角相等,得∠AOC=∠BOD=32°,由角的和差,得∠AOG=∠COG-∠AOC=90°-32°=58°;(2)如果OC是∠AOE的平分线,那么OG是∠AOF的平分线,理由如下:由OC是∠AOE的平分线,得∠COE=∠AOC=32°,由对顶角相等,得∠DOF=∠COE,等量代换,得∠DOF=∠AOC,∠AOC+∠AOG=∠COG=90°,∠DOF+∠FOG=∠DOG=90°,由等角的余角相等,得∠AOG=∠FOG,OG是∠AOF的平分线.【点睛】本题考查了对顶角、邻补角,(1)利用了对顶角相等的性质,角的和差;(2)利用了对顶角相等的性质,角的和差,还利用了余角的性质:等角的余角相等.27. 为了加强公民的节水意识,合理利用水资源,某市采用价格调控手段达到节水的目的.该市自来水收费价格见价目表.若某户居民1月份用水38m ,则应收水费:264(86)20⨯+⨯-=元.(1)若该户居民2月份用水312.5m ,则应收水费______元;(2)若该户居民3、4月份共用水315m (4月份用水量超过3月份),共交水费44元,则该户居民3,4月份各用水多少立方米?【答案】(1)48;(2)三月份用水34m .四月份用水113m .【解析】【分析】(1)根据表中收费规则即可得到结果;(2)分两种情况:用水不超过36m 时与用水超过36m ,但不超过310m 时,再这两种情况下设三月份用水3m x ,根据表中收费规则分别列出方程即可得到结果.【详解】(1)应收水费()()264106812.51048⨯+⨯-+⨯-=元.(2)当三月份用水不超过36m 时,设三月份用水3m x ,则()226448151044x x +⨯+⨯+--= 解之得411x =<,符合题意.当三月份用水超过36m 时,但不超过310m 时,设三月份用水3m x ,则()()264626448151044x x ⨯+-+⨯+⨯+⨯--=解之得36x =<(舍去)所以三月份用水34m .四月份用水113m .28. 如图,点O 在直线AB 上,OC ⊥AB ,△ODE 中,∠ODE =90°,∠EOD =60°,先将△ODE 一边OE 与OC 重合,然后绕点O 顺时针方向旋转,当OE 与OB 重合时停止旋转.(1)当OD 在OA 与OC 之间,且∠COD =20°时,则∠AOE =______;(2)试探索:在△ODE 旋转过程中,∠AOD 与∠COE 大小的差是否发生变化?若不变,请求出这个差值;若变化,请说明理由;(3)在△ODE的旋转过程中,若∠AOE=7∠COD,试求∠AOE的大小.【答案】(1)130°;(2)∠AOD与∠COE的差不发生变化,为30°;(3)∠AOE=131.25°或175°.【解析】【分析】(1)求出∠COE的度数,即可求出答案;(2)分为两种情况,根据∠AOC=90°和∠DOE=60°求出即可;(3)根据∠AOE=7∠COD、∠DOE=60°、∠AOC=90°求出即可.【详解】(1)∵OC⊥AB,∴∠AOC=90°,∵OD在OA和OC之间,∠COD=20°,∠EOD=60°,∴∠COE=60°-20°=40°,∴∠AOE=90°+40°=130°,故答案为130°;(2)在△ODE旋转过程中,∠AOD与∠COE的差不发生变化,有两种情况:①如图1、∵∠AOD+∠COD=90°,∠COD+∠COE=60°,∴∠AOD-∠COE=90°-60°=30°,②如图2、∵∠AOD=∠AOC+∠COD=90°+∠COD,∠COE=∠DOE+∠DOC=60°+∠DOC,∴∠AOD-∠COE=(90°+∠COD)-(60°+∠COD)=30°,即△ODE在旋转过程中,∠AOD与∠COE的差不发生变化,为30°;(3)如图1、∵∠AOE=7∠COD,∠AOC=90°,∠DOE=60°,∴90°+60°-∠COD=7∠COD,解得:∠COD=18.75°,∴∠AOE=7×18.75°=131.25°;如图2、∵∠AOE=7∠COD,∠AOC=90°,∠DOE=60°,∴90°+60°+∠COD=7∠COD,∴∠COD=25°,∴∠AOE=7×25°=175°,即∠AOE=131.25°或175°.【点睛】本题考查了角的有关计算的应用,能根据题意求出各个角的度数是解此题的关键.注意分类思想的运用.。
2018-2019学年江苏省南京七年级(上)期末数学试卷(解析版)
2018-2019学年江苏省南京市七年级(上)期末数学试卷一、选择题(本大题共8小题,共16.0分)1.的相反数是()A. B. 3 C. D.2.下列算式中,运算结果为负数的是()A. B. C. D.3.下列计算正确的是()A. B. C. D.4.下列关于多项式2a2b+ab-1的说法中,正确的是()A. 次数是5B. 二次项系数是0C. 最高次项是D. 常数项是15.已知∠α与∠β是互余,若∠α=20°,则∠β的度数为()A. B. C. D.6.下列方程变形中,正确的是()A. 由,去分母得B. 由,移项得C. 由,去括号得D. 由,系数化为1得7.将一个无盖正方体纸盒展开,展开图不可能是()A.B.C.D.8.平面内有n条直线(n≥2),这n条直线两两相交,最多可以得到a个交点,最少可以得到b个交点,则a+b的值是()A. B. C. D.二、填空题(本大题共10小题,共20.0分)9.比较两数的大小(填“>”、“<”或“=”):-______-.10.中秋小长假首日,好天气给了游客好心情.9月22日,现代快报记者从南京市旅游委获悉,截至当天下午4点,南京七大景区总接待量364000人次.将364000人次用科学记数法表示为______人次.11.五棱柱有______个面.12.若代数式-2x a y3与3x5y4-b是同类项,则代数式3a-b=______.13.若x=1是关于x的方程2x+3m-5=0的解,则m的值为______.14.若代数式2a2-4b-1的值为3,则a2-2b的值是______.15.建筑工人在砌墙时,经常在两个墙角分别立一根标志杆,在两根标志杆之间拉一条线,沿这条线就可以砌出直的墙了,其中的数学道理是______.16.某人从甲地到乙地,全程的乘车,全程的乘船,最后又步行了4km到达乙地,设甲、乙两地的路程为xkm,则根据题意可列方程______.17.如图,BC=AB,D为AC的中点,若DB=1,则AB的长是______.18.以∠AOB的顶点O为端点引射线OC,使∠AOC:∠BOC=5:4,若∠AOB=27°,则∠AOC=______.三、计算题(本大题共1小题,共8.0分)19.计算:(1)5-(-3)+|-2|;(2)(-2)3×(-2)÷[-32+3×(-5)]四、解答题(本大题共7小题,共56.0分)20.先化简再求值:3(a2+2b)-(2a2-b),其中a=-2,b=1.21.解方程:(1)4-3x=6-5x;(2)=1.22.某校初一(1)班举行“庆祝元旦”诗歌朗诵比赛.为了鼓励学生积极参与活动,班委会决定奖励比赛成绩优秀的同学,准备用184元班费,买3个书包和5本词典,分别奖给三名一等奖、五名二等奖获得者,已知每个书包的价格比每本词典的价格多8元,每个书包和每本词典的价格各是多少元?23.如图是用10块完全相同的小正方体搭成的几何体.(1)请在空白的方格中画出它的三个视图;(2)若保持主视图和俯视图不变,最多还可以再搭______块小正方体.24.如图,所有小正方形的边长都为1,A、B、C都在格点上.(1)过点C画直线AB的平行线(不写画法,下同);(2)过点A画直线BC的垂线,并注明垂足为G;过点A画直线AB的垂线,交BC于点H.(3)线段______的长度是点A到直线BC的距离;(4)线段AG、AH的大小关系为AG______AH.(填“>”或“<”或“=”),理由______.25.如图,直线AB与CD相交于O,OE是∠AOC的平分线,OF⊥CD,OG⊥OE,∠BOD=52°.(1)求∠AOC,∠AOF的度数;(2)求∠EOF与∠BOG是否相等?请说明理由.26.2018(1)用代数式表示(所填结果需化简)设一次性购买的物品原价是x元,当原价x超过200元但不超过500元时,实际付款为______元;当原价x超过500元时,实际付款为______元;(2)若甲购物时一次性付款490元,则所购物品的原价是多少元?(3)若乙分两次购物,两次所购物品的原价之和为1000元(第二次所购物品的原价高于第一次),两次实际付款共894元,则乙两次购物时,所购物品的原价分别是多少元?答案和解析1.【答案】A【解析】解:根据相反数的定义,得的相反数是-.故选:A.求一个数的相反数,即在这个数的前面加负号.本题主要考查了相反数的求法,比较简单.2.【答案】D【解析】解:由于-(-3)=3,故选项A不为负数;由于|-3|=3,故选项B不为负数;由于(-3)2=9,故选项C不为负数;由于(-3)3=-27,故选项D为负数;故选:D.先计算各选择支,再判断结果为负数的选项.本题考查了负数的化简、绝对值的化简、负数的平方和立方.负数乘方的结果的符号:负数的奇数次方为负,负数的偶数次方为正.3.【答案】D【解析】解:A、原式不能合并,错误;B、5y-3y=2y,错误;C、7a+a=8a,错误;D、3x2y-2yx2=x2y,正确,故选:D.原式各项合并得到结果,即可做出判断.此题考查了合并同类项,熟练掌握运算法则是解本题的关键.4.【答案】C【解析】解:A、多项式2a2b+ab-1的次数是3,故此选项错误;B、多项式2a2b+ab-1的二次项系数是1,故此选项错误;C、多项式2a2b+ab-1的最高次项是2a2b,故此选项正确;D、多项式2a2b+ab-1的常数项是-1,故此选项错误.故选:C.直接利用多项式的相关定义进而分析得出答案.此题主要考查了多项式,正确掌握多项式次数与系数的确定方法是解题关键.5.【答案】A【解析】解:∵∠α与∠β互余,∴∠α+∠β=90°,∵∠α=20°,∴∠β=90°-20°=70°.故选:A.根据题意得出等式∠α+∠β=90°,代入求出即可.本题考查了余角和补角的应用,注意:如果设这个角为∠α,则它的余角的度数是90°-∠α.6.【答案】B 【解析】解:A、由=1,去分母得3(x-2)-2(2x-3)=6,A选项错误;B、由1+x=4,移项得x=4-1,B选项正确;C、由2x-(1-3x)=5,去括号得2x-1+3x=5,C选项错误;D、由2x=-3,系数化为1得x=-,D选项错误;故选:B.根据解一元一次方程的一般步骤变形,判断即可.本题考查的是解一元一次方程,解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1.7.【答案】D【解析】解:由正方体的展开图的特征可知,将一个无盖正方体纸盒展开,展开图不可能是.故选:D.根据平面图形的折叠及正方体的展开图解题.注意本题为无盖正方体.本题考查了正方体的表面展开图.正方体共有11种表面展开图,把11种展开图都去掉一个面得无盖的正方体展开图,把相同的归为一种得无盖正方体有8种表面展开图.8.【答案】D【解析】解:如图:2条直线相交有1个交点;3条直线相交有1+2个交点;4条直线相交有1+2+3个交点;5条直线相交有1+2+3+4个交点;6条直线相交有1+2+3+4+5个交点;…n条直线相交有1+2+3+4+5+…+(n-1)=个交点.所以a=,而b=1,∴a+b=.故选D.分别求出2条直线、3条直线、4条直线、5条直线…的交点个数,找出规律即可解答.本题考查的是直线的交点问题,解答此题的关键是找出规律,需注意的是n条直线相交时最少有一个交点.9.【答案】>【解析】解:∵|-|=,|-|=,<,∴->-.故答案为:>.先求出各数的绝对值,再根据负数比较大小的法则进行比较即可.本题考查的是有理数的大小比较,熟知负数比较大小的法则是解答此题的关键.10.【答案】3.64×105【解析】解:将364000用科学记数法表示为:3.64×105.故答案为:3.64×105.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.11.【答案】7【解析】解:∵五棱柱有2个底面,5个侧面,∴五棱柱的面数为7.故答案为:7.据五棱柱有2个底面,5个侧面,可得五棱柱的面数.此题主要考查了认识立体图形,关键是认识常见的立体图形,掌握棱柱、棱锥、圆柱、圆锥的特点.12.【答案】14【解析】解:∵-2x a y3与3x5y4-b是同类项,∴a=5,3=4-b,即b=1,则3a-b=3×5-1=14,故答案为:14.依据所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项得出a、b的值,代入计算可得.本题主要考查的是同类项的定义,熟练掌握同类项的定义是解题的关键.13.【答案】1【解析】解:把x=1代入方程2x+3m-5=0得2+3m-5=0,解得m=1.故答案为:1.根据方程解的定义,把x=1代入方程,即可得到一个关于m的方程,从而求得m的值.此题考查了一元一次方程的解,理解方程的解即为能使方程左右两边相等的未知数的值以及解方程的方法是解决问题的关键.14.【答案】2【解析】解:∵2a2-4b-1=3,∴2(a2-2b)=4,∴a2-2b=2故答案为:2由题意可知:2(a2-2b)=4,从而可求出答案.本题考查代数式求值,解题的关键是熟练运用等式的性质,本题属于基础题型.15.【答案】两点确定一条直线【解析】解:建筑工人在砌墙时,经常在两个墙角的位置分别立一根标志杆,在两根标志杆之间拉一根线,沿着这条线就可以砌出直的墙.则其中的道理是:两点确定一条直线.故答案为:两点确定一条直线.由直线公理可直接得出答案.此题考查了两点确定一条直线,要想确定一条直线,至少要知道两点.此题较简单,是识记的内容.16.【答案】x-x-x=4【解析】解:设甲、乙两地的路程为xkm,则根据题意可列方程:x-x-x=4.故答案是:x-x-x=4.根据等量关系:总路程-乘车路程-乘船路程=4km列出方程.本题考查了由实际问题抽象出一元一次方程:审题找出题中的未知量和所有的已知量,直接设要求的未知量或间接设一关键的未知量为x,然后用含x的式子表示相关的量,找出之间的相等关系列方程.17.【答案】4【解析】解:∵BC=AB,∴AC=AB+BC=,∵D为AC的中点,∴CD==,∴DB=CD-BC=,即,∴AB=4.故答案为:4根据题意可得AC=AB+BC=,CD==,DB=CD-BC=,把DB的值代入即可得出结果.本题考查的是两点间的距离,熟知各线段之间的和、差及倍数关系是解答此题的关键.18.【答案】15°或135°【解析】解:分两种情况:①如图1,当射线OC在∠AOB的内部时,设∠AOC=5x,∠BOC=4x,∵∠AOB=∠AOC+∠BOC=27°,∴5x+4x=27,解得:x=3,∴∠AOC=15°;②如图2,当射线OC在∠AOB的外部时,设∠AOC=5x,∠BOC=4x,∵∠AOC=∠AOB+∠BOC,又∠AOB=27°,∴5x=27+4x,解得:x=27∴∠AOC=135°,故答案为:15°或135°.分射线OC在∠AOB的内部和外部两种情况进行讨论求解即可.本题考查了角的计算.属于基础题,关键是分两种情况进行讨论.19.【答案】解:(1)原式=5+3+2=10;(2)原式=(-8)×(-2)÷(-9-15)=16÷(-24)=-【解析】(1)减法转化为加法,计算绝对值,再进一步计算加法即可得;(2)根据有理数的混合顺序和运算法则计算可得.本题主要考查有理数的混合运算,解题的关键是掌握有理数的混合运算顺序和运算法则及绝对值的性质.20.【答案】解:3(a2+2b)-(2a2-b)=3a2+6b-2a2+b=a2+7b当a=-2,b=1时,原式=(-2)2+7×1=4+7=11【解析】根据整式的运算法则即可求出答案.本题考查整式的运算,解题的关键是熟练运用整式的运算法则,本题属于基础题型.21.【答案】解:(1)移项,得5x-3x=6-4,合并同类项,得2x=2,系数化为1,得x=1;(2)去分母,得3x-2(x-3)=12去括号,得3x-2x+6=12移项,得3x-2x=12-6,合并同类项,得x=6.【解析】(1)、(2)根据解一元一次方程的一般步骤解出方程.本题考查的是解一元一次方程,解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1.22.【答案】解:设每个书包的价格是x元,则每本词典的价格是(x-8)元.根据题意,得3x+5(x-8)=184,解这个方程,得x=28,则x-8=20.答:每个书包和每本词典的价格各是28元和20元.【解析】设每个书包的价格是x元,则每本词典的价格是(x-8)元,等量关系是:3个书包的价钱+5本词典的价钱=184,依此列出方程,求解即可.本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.23.【答案】3【解析】解:(1)如图所示:;(2)保持主视图和俯视图不变,最多还可以再搭3块小正方体.故答案为:3.(1)根据物体形状即可画出左视图有三列与以及主视图、俯视图都有三列,进而画出图形;(2)可在最左侧前端放两个后面再放一个即可得出答案.本题考查几何体的三视图画法.由几何体的俯视图及小正方形内的数字,可知主视图的列数与俯视数的列数相同,且每列小正方形数目为俯视图中该列小正方形数字中的最大数字.左视图的列数与俯视图的行数相同,且每列小正方形数目为俯视图中相应行中正方形数字中的最大数字.24.【答案】AG<垂线段最短【解析】解:(1)如图所示:CD即为所求;(2)如图所示:AG,AH即为所求;(3)线段AG的长度是点A到直线BC的距离;故答案为:AG;(4)AG<AH,理由是:垂线段最短.故答案为:<,垂线段最短.(1)利用网格进而画出直线AB的平行线;(2)利用垂线的定义结合网格进而得出直线AG,AH;(3)利用点到直线的距离得出答案;(4)利用垂线段的性质进而得出答案.此题主要考查了基本作图以及垂线的画法和平行线的画法,正确借助网格得出是解题关键.25.【答案】解:(1)∵OF⊥CD,∴∠COF=90°,又∵∠AOC与∠BOD是对顶角,∴∠AOC=∠BOD=52°,∴∠AOF=∠COF-∠AOC=90°-52°=38°;(2)相等,理由:∵∠AOC与∠BOD是对顶角,∴∠AOC=∠BOD=52°,∵OE是∠AOC的平分线,∴∠AOE=∠AOC=26°,又∵OG⊥OE,∴∠EOG=90°,∴∠BOG=180°-∠AOE-∠EOG=64°,∵∠EOF=∠AOF+∠AOE=38°+26°=64°,∴∠EOF=∠BOG.【解析】(1)直接利用垂直的定义结合对顶角的定义得出∠AOC,∠AOF的度数;(2)分别求出∠EOF与∠BOG的度数进而得出答案.此题主要考查了垂线的定义以及角平分线的定义和对顶角定义,正确把握相关定义是解题关键.26.【答案】0.9x0.8x+50【解析】解:(1)当200<x≤500时,实际付款0.9x元;当x>500时,实际付款500×0.9+0.8(x-500)=(0.8x+50)元.故答案为:0.9x;0.8x+50.(2)设甲所购物品的原价是y元,∵490>500×0.9=450,∴y>500.根据题意得:0.8y+50=490,解得:y=550.答:甲所购物品的原价是550元.(3)∵第二次所购物品的原价高于第一次,∴第二次所购物品的原价超过500元,第一次所购物品的原价低于500元.设乙第一次所购物品的原价是z元,则第二次所购物品的原价是(1000-z)元,①当0<z≤200时,有z+0.8(1000-z)+50=894,解得:z=220(舍去);②当200<z<500时,有0.9z+0.8(1000-z)+50=894,解得:z=440,∴1000-z=560.答:乙第一次所购物品的原价是440元,第二次所购物品的原价是560元.(1)根据给出的优惠办法,用含x的代数式表示出实际付款金额即可;(2)设甲所购物品的原价是y元,先求出购买原价为500元商品时实际付款金额,比较后可得出y>500,结合(1)的结论即可得出关于y的一元一次方程,解之即可得出结论;(3)由第二次所购物品的原价高于第一次,可得出第二次所购物品的原价超过500元且第一次所购物品的原价低于500元,设乙第一次所购物品的原价是z元,则第二次所购物品的原价是(1000-z)元,分0<z≤200、200<z<500两种情况列出关于z的一元一次方程,解之即可得出结论.本题考查了一元一次方程的应用、列代数以及代数式求值,解题的关键是:(1)根据优惠政策,列出代数式;(2)找准等量关系,正确列出一元一次方程;(3)分0<z≤200、200<z<500两种情况列出关于z的一元一次方程.。
江苏省南京市溧水县七年级(上)期末数学试卷(解析版)
数学试卷一、选择题(本大题共8小题,共32。
0分)1、水文观测中,常遇到水位上升或下降的问题.我们规定:水位上升为正,水位下降为负;几天后为正,几天前为负.假如水位每天上升3cm,今天的水位为0cm,那么2天前的水位用算式表示正确的是()A、(+3)×(+2)B、(+3)×(−2)C。
(−3)×(+2)D、(−3)×(−2)【答案】B【解析】解:依照题意得:2天前的水位用算式表示为(+3)×(−2),ﻫ故选:B、ﻫ依照题意列出算式即可、ﻫ此题考查了正数与负数,弄清题意是解本题的关键。
ﻫ2、如图,点A为直线BC外一点,AC⊥BC,垂足为C,AC=3,点P是直线BC上的动点,则线段AP长不估计是()A、2ﻩB。
3C。
4D、5【答案】A【解析】解:∵AC⊥BC,ﻫ∴AP≥AC,ﻫ即AP≥3、故选:A、ﻫ利用垂线段最短得到AP≥AC,然后对各选项进行判断、本题考查了垂线段最短:垂线段最短,指的是从直线外一点到这条直线所作的垂线段最短.它是相关于这点与直线上其他各点的连线而言、ﻫ3。
ﻩ如图,某商品实施促销“第二件半价”,若购买2件该商品,则相当于这2件商品共打了()折。
A、5B。
5.5C。
7D、7.5【答案】D【解析】解:设一件商品原价为a元,买2件商品共打了x折,依照题意可得:ﻫa+0.5a=2a⋅x10,解得:x=7.5,ﻫ即相当于这2件商品共打了7.5折、ﻫ故选:D、ﻫ依照题意设一件商品原价为a元,买2件商品共打了x折,利用价格得出等式求出答案、ﻫ此题主要考查了一元一次方程的应用,正确得出等量关系是解题关键、ﻫ4。
ﻩ已知线段AB、CD,点M在线段AB上,结合图形,下列说法不正确的是()A。
延长线段AB、CD,相交于点FB。
反向延长线段BA、DC,相交于点FﻩC、过点M画线段AB的垂线,交CD于点EﻩD、过点M画线段CD的垂线,交CD于点E【答案】D【解析】解:A、延长线段AB、CD,相交于点F,说法正确;ﻫB、反向延长线段BA、DC,相交于点F,说法正确;C、过点M画线段AB的垂线,交CD于点E,说法正确;D、过点M画线段CD的垂线,交CD于点E,说法错误;ﻫ故选:D、依照线段和垂线段的定义,结合图形进行分析即可、ﻫ此题主要考查了直线、射线、线段,关键是正确掌握三线的特点。
2018-2019学年上学期七年级数学期末试卷及其答案
七年级数学试题1. -3的相反数是 .2.某型号的电脑标价为a 元.打8折后又降价100元出售.则实际售价可用代数式表示为 元. 3.比较大小:32-- ______ 43- (填“<”、“=”或“>”) 4. 观察下列单项式:2x ; 5x 2; 10x 3; 17x 4; 26x 5; ……;按此规律;第10个单项式是 .5.如图是一个数值转换机;若输入的a 值为3-;则输出的结果应为 .6. 如图;A 、B 、C 、D 四名同学的家在同一条直线上;已知C 同学家处在A 与B 两家的中点处;而D 同学的家又处于A 与C 两家的中点处;又知C 与B 两家相距3千米;则A 与D 两同学家相距 千米. 7.若28x y -=; 则62x y -+= .8.已知2(2)|2|0a b a +++=;则2a b -的值等于 . 9.如图;A 、O 、B 在同一条直线上;如果OA 的方向是北偏西2430';那么OB 的方向是东偏南.... 10.如图所示;要使图中平面展开图按虚线折叠成正方体后;相对面上两个数之积为12;则x y += .二.精心选一选(每小题有且只有一个正确答案;请将你认为正确的答案前的字母填入下表相应的空格内;每题3分;共24分)11. 甲、乙、丙三地的海拔高度分别为20m 、-15m 和-10m ;那么最高的地方比最低的地方高A.5mB.10mC.25mD.35m12.如图;从A 到B 有多条道路;人们会走中间的直路;而不会走其他(第9题)题O 西北 南A B东(第10题)yx432 (第6题)输入 (第5题) (第12题)AB的曲折的路;这是因为A .两点之间线段最短B .两条直线相交只有一个交点C .两点确定一条直线D .其他的路行不通13.几个同学在日历竖列上圈出了三个数;算出它们的和;其中错误的一个是 A. 28 B. 33 C. 45 D. 57 14.物理教科书中给出了几种物质的密度;符合科学记数法的是 A .水银13.6×103 kg/m 3 B .铁7.8×103 kg/m 3 C .金19.3×103 kg/m 3 D .煤油0.8×103 kg/m 315.《棋盘上的米粒》故事中;皇帝往棋盘的第1格中放1粒米;第2格中放2粒米;在第3格上加倍至4粒;…;依次类推;每一格均是前一格的双倍;那么他在第12格中所放的米粒数是A . 22粒 B. 24粒 C. 211粒 D. 212粒16.如图;把边长为2的正方形的局部进行图①~图④的变换;最后再通过图形变换形成图⑤;则图⑤的面积是A 、18B 、16C 、12D 、817.一张桌子上摆放着若干个碟子;从三个方向上看到的三种视图如下图所示;则这张 桌子上共有碟子为A. 17个B. 12个C. 8个D. 6个18. 小颖按如图所示的程序输入一个正数..x ;最后输出的结果为656;则满足条件的x 的不同值最多有A.2个B.3个C.4个D.5个⑤④ ③ ② ①俯视图主视图左视图三.计算小能手(本大题共32分)19.计算与化简(每小题8分;共16分)⑴计算:42232[1(3)]()(15)35-÷--+-⨯-⑵先化简;再求值:222363()3x x x x+-+;其中5x=-20.(本题8分)解方程:242 5()()333 x x-=+-21.(本题8分)化简与求值:⑴ 若3m =-;则代数式2113m +的值为 ;⑵ 若3m n +=-;则代数式2()13m n ++的值为 ; ⑶ 若534m n -=-;请你仿照以上求代数式值的方法求出2()4(2)2m n m n -+-+的值四.请你当老师 (本题8分)22.下面是马小哈同学做的一道题;请按照“要求”帮他改正。
江苏省南京市溧水区2018-2019学年七年级上学期数学期末考试试卷 及参考答案
江苏省南京市溧水区2018-2019学年七年级上学期数学期末考试试卷一、单选题1. 的相反数是( )A . 2B .C .D . 2. “厉行勤俭节约,反对铺张浪费”势在必行,最新统计数据显示,中国每年浪费食物总量折合粮食大约是210000000人一年的口粮.将210000000用科学记数法表示为( )A . 2.1×10B . 0.21×10C . 2.1×10D . 21×103. 与a b 是同类项的是( ) A .B .C .D . 4. 下列各数中,无理数是( ) A . B . C . D . 5. 下列生活、生产现象:①用两个钉子就可以把木条固定在墙上;②从A 地到B 地架设电线,总是尽可能沿着线段架设;③植树时,只要定出两颗树的位置,就能确定同一行树所在的直线;④把弯曲的公路改直,就能缩短路程.其中可用“两点之间,线段最短”来解释的现象有( )A . ①②B . ①③C . ②④D . ③④ 6. 单项式- 的系数与次数分别是( ) A . 和 5 B . 和10 C . 和7 D . 和77. 观察下图,把右边的图形绕着给定的直线旋转一周后可能形成的立体图形是( ) A . B .C .D .8. 找出以下图形变化的规律,计算第2019个图形中黑色正方形的个数是( )A . 3027B . 3028C . 3029D . 3030二、填空题9. -1 的倒数是________.10. 已知关于x 的方程3m-4x=2的解是x=1,则m 的值是________.11. 比较大小:- ________-3(填“>”“<”或“=”)12. 若∠1=32°30′,则∠1的补角为________°.13. 若线段AB=8cm ,BC=3cm ,且A 、B 、C 三点在同一条直线上,则AC=________cm.14. 若x -2x+1的值是3,则5-2x +4x 的值是________.15. 小红在某月的日历中任意框出如图所示的四个数,但不小心将墨水滴在上面遮盖了其中的两个数,则b=________.(用含字母a 的代数式表示)16. 某商店销售一批服装,每件售价150元,打8折出售后,仍可获利20元,则这种服装的成本价为________元.998722217. 如图,直线AB、CD相交于点O,射线OF垂直于OD且平分∠AOE.若∠BOC+∠EOF=210°,则∠DOE=________°.18. 大家知道|5|=|5-0|,它在数轴上的意义是表示5的点与原点(即表示0的点)之间的距离.又如式子|6-3|,它在数轴上的意义是表示6的点与表示3的点之间的距离.则|x-100|+|x-50|+|x+100|的最小值为________.三、解答题19.(1) -2-(-6)÷3;422(2) -1-[(-2)-3×(- )].20. 汽车从甲地到乙地,若每小时行使45千米,则要比原计划延误半小时到达;若每小时行驶50千米,则就可以比原计划提前半小时到达.请你根据以上信息,就汽车行驶的“路程”或“时间”提出一个用一元一次方程解决的问题,并写出解答过程.(1)问题:;(2)解答:21. 重温例题:小丽在水果店花18元买了苹果和橘子共6千克,已知苹果每千克3.2元,橘子每千克2.6元.小丽买了苹果和橘子各多少千克?解决问题:(1)设所购买的苹果质量为xkg.请你将下列同学的探究过程补充完整.①小明同学列出了下表,并根据相等关系“买苹果的金额+买橘子的金额=18元”,可得方程:.单价(元/kg)质量(kg)金额(元)苹果 3.2x 3.2x橘子 2.66-x 2.6(6-x)合计618②小红、小王、小颖三位同学分别给出了不同于小明同学的表格和方程,请补充完整.(友情提醒:表格中的空格表达式不同于小明所填的,所列方程不要化简.)i小红根据相等关系“所买苹果的质量+橘子的质量=6kg”,得方程.ii 小王根据相等关系“苹果的单价×其质量=苹果购买金额”,得方程.iii 小颖根据相等关系“橘子的单价×其质量=橘子购买金额”,得方程.(2) 设苹果购买金额为y 元,下列方程正确的是.(填写正确的序号)① ;②y+2.6(6- )=18;③3.2(6- )=y ;④3.2(6- )=18-y.22. 化简与求值:(1) 化简:a-(5a-3b )+2(a-2b );(2) 先化简,再求值:2(x -2xy )-(x -2xy ),其中x= ,y=-1.23. 解方程:(1) 2(x-2)=6;(2)- =1.24. 如图,点A 、B 、C 都在6×6的网格的格点上,点C 在直线AB 外.①过点C 画AB 的平行线CD ;②过点C 画AB 的垂线CE.25. 如图,是由一些棱长都为1cm 的小正方体组合成的简单几何体.22(1) 该几何体的表面积(含下底面)是cm ;(2) 该几何体的主视图如图所示,请在下面方格纸中分别画出它的左视图和俯视图.(3) 若使该几何体主视图、俯视图不发生改变,最多还可以在几何体上再堆放个相同的小正方体.26. (1) 如图,已知C 为线段AB 上的一点,AC=60cm ,M 、N 分别为AB 、BC 的中点.①若BC=20cm ,则MN=cm ;②若BC=acm ,则MN=cm.(2) 如图,射线OC在∠AOB 的内部,∠AOC=60°,OM 平分∠AOB ,射线ON 在∠BOC内,且∠MON=30°,则ON 平分∠BOC 吗?并说明理由.参考答案1.2.3.4.5.6.7.8.9.210.11.12.13.14.15.16.17.18.19.20.21.22.23.24.25.26.。
(解析版)2018-2019年南京联合体初一上年末数学试卷.doc
(解析版)2018-2019年南京联合体初一上年末数学试卷【一】选择题〔每题2分,共16分〕1、﹣2的倒数是〔〕A、﹣2B、2C、﹣D、2、在数﹣32、|﹣2.5|、﹣〔﹣2〕、〔﹣3〕3中,负数的个数是〔〕A、1B、2C、3D、43、一个点从数轴上的﹣3表示的点开始,先向右移动2个单位长度,再向左移动4个单位长度,这时该点所对应的数是〔〕A、3B、﹣5C、﹣1D、﹣94、以下说法中,正确的选项是〔〕A、符号不同的两个数互为相反数B、两个有理数和一定大于每一个加数C、有理数分为正数和负数D、所有的有理数都能用数轴上的点来表示5、假设2x﹣5y=3,那么4x﹣10y﹣3的值是〔〕A、﹣3B、0C、3D、66、直线l外一点P与直线l上两点的连线段长分别为4cm,6cm,那么点P到直线l的距离是〔〕A、不超过4cmB、4cmC、6cmD、不少于6cm7、某小组计划做一批中国结,如果每人做6个,那么比计划多做了9个,如果每人做4个,那么比计划少7个、设计划做x个“中国结”,可列方程〔〕A、=B、=C、=D、=8、如图,纸板上有10个无阴影的正方形,从中选1个,使得它与图中5个有阴影的正方形一起能折叠成一个正方体的纸盒,选法应该有〔〕A、4种B、5种C、6种D、7种【二】填空题〔每题2分,共20分〕9、在﹣5.3和6.2之间所有整数之和为、10、京沪高铁全长约1318公里,将1318公里用科学记数法表示为公里、11、假设关于x的方程2x+a=0的解为﹣3,那么a的值为、12、两个单项式﹣3a2b m与na2b的和为0,那么m+n的值是、13、固定一根木条至少需要两根铁钉,这是根据、14、假设∠A=68°,那么∠A的余角是、15、在数轴上,与﹣3表示的点相距4个单位的点所对应的数是、16、假设|a|=3,|b|=2,且a+b>0,那么a﹣b的值是、17、一个长方体的主视图与俯视图如下图,那么这个长方体的表面积是、18、如图,∠BOC与∠AOC互为补角,OD平分∠AOC,∠BOC=n°,那么∠DOB=°、〔用含n 的代数式表示〕【三】解答题〔共64分〕19、计算:40÷[〔﹣2〕4+3×〔﹣2〕]、20、计算:[〔﹣1〕3+〔﹣3〕2]﹣[〔﹣2〕3﹣2×〔﹣5〕]、21、化简:3x+5〔x2﹣x+3〕﹣2〔x2﹣x+3〕、22、先化简,再求值:3mn﹣[6〔mn﹣m2〕﹣4〔2mn﹣m2〕],其中m=﹣2,n=、23、解方程:3〔x﹣1〕﹣2〔1﹣x〕+5=0、24、解方程:、25、在如下图的方格纸中,每一个正方形的面积为1,按要求画图,并回答以下问题、〔1〕将线段AB平移,使得点A与点C重合得到线段CD,画出线段CD;〔2〕连接AD、BC交于点O,并用符号语言描述AD与BC的位置关系;〔3〕连接AC、BD,并用符号语言描述AC与BD的位置关系、26、如图,将长方形纸片的一角折叠,使顶点A落在点A′处,折痕CB;再将长方形纸片的另一角折叠,使顶点D落在点D′处,D′在BA′的延长线上,折痕EB、〔1〕假设∠ABC=65°,求∠DBE的度数;〔2〕假设将点B沿AD方向滑动〔不与A、D重合〕,∠CBE的大小发生变化吗?并说明理由、27、,点A、B、C、D四点在一条直线上,AB=6cm,DB=1cm,点C是线段AD的中点,请画出相应的示意图,并求出此时线段BC的长度、28、如图,为一个无盖长方体盒子的展开图〔重叠部分不计〕,设高为xcm,根据图中数据、〔1〕该长方体盒子的宽为,长为;〔用含x的代数式表示〕〔2〕假设长比宽多2cm,求盒子的容积、29、目前节能灯在城市已基本普及,今年南京市面向农村地区推广,为相应号召,某商场计划购进甲、乙两种节能灯共1000只,这两种节能灯的进价、售价如下表:〔1〕如何进货,进货款恰好为28000元?〔2〕如何进货,能确保售完这1000只灯后,获得利润为15000元?30、点A、B在数轴上,点A表示的数为a,点B表示的数为B、〔1〕假设a=7,b=3,那么AB的长度为;假设a=4,b=﹣3,那么AB的长度为;假设a=﹣4,b=﹣7,那么AB的长度为、〔2〕根据〔1〕的启发,假设A在B的右侧,那么AB的长度为;〔用含a,b的代数式表示〕,并说明理由、〔3〕根据以上探究,那么AB的长度为〔用含a,b的代数式表示〕、2018-2018学年江苏省南京市联合体七年级〔上〕期末数学试卷参考答案与试题解析【一】选择题〔每题2分,共16分〕1、﹣2的倒数是〔〕A、﹣2B、2C、﹣D、考点:倒数、专题:计算题、分析:根据倒数的定义:乘积是1的两数互为倒数、一般地,a•=1〔a≠0〕,就说a〔a≠0〕的倒数是、解答:解:﹣2的倒数是﹣,应选C、点评:此题主要考查倒数的概念及性质、倒数的定义:假设两个数的乘积是1,我们就称这两个数互为倒数、2、在数﹣32、|﹣2.5|、﹣〔﹣2〕、〔﹣3〕3中,负数的个数是〔〕A、1B、2C、3D、4考点:正数和负数、分析:根据乘方、相反数及绝对值,可化简各数,根据小于零的数是负数,可得答案、解答:解:﹣32=﹣9<0,|﹣2.5|=2.5>0,﹣〔﹣2〕=2>0,〔﹣3〕3=﹣27,应选:B、点评:此题考查了正数和负数,先化简各数,再判断正数和负数、3、一个点从数轴上的﹣3表示的点开始,先向右移动2个单位长度,再向左移动4个单位长度,这时该点所对应的数是〔〕A、3B、﹣5C、﹣1D、﹣9考点:数轴、分析:根据数轴是以向右为正方向,故数的大小变化和平移变化之间的规律:左减右加,即可求解、解答:解:由题意得:向右移动2个单位长度可表示为+2,再向左移动4个单位长度可表示为﹣4,故该点为:﹣3+2﹣4=﹣5、应选B、点评:此题考查了数轴的知识,属于基础题,难度不大,注意数的大小变化和平移变化之间的规律:左减右加、4、以下说法中,正确的选项是〔〕A、符号不同的两个数互为相反数B、两个有理数和一定大于每一个加数C、有理数分为正数和负数D、所有的有理数都能用数轴上的点来表示考点:有理数的加法;有理数;数轴;相反数、分析:A、根据有相反数的定义判断、B、利用有理数加法法那么推断、C、按照有理数的分类判断:有理数D、根据有理数与数轴上的点的关系判断、解答:解:A、+2与﹣1符号不同,但不是互为相反数,错误;B、两个负有理数的和小于每一个加数,错误;C、有理数分为正有理数、负有理数和0,错误;D、所有的有理数都能用数轴上的点来表示,正确、应选D、点评:此题考查的都是平时做题时出现的易错点,应在做题过程中加深理解和记忆、5、假设2x﹣5y=3,那么4x﹣10y﹣3的值是〔〕A、﹣3B、0C、3D、6考点:代数式求值、专题:计算题、分析:原式前两项提取2变形后,把等式代入计算即可求出值、解答:解:∵2x﹣5y=3,∴原式=2〔2x﹣5y〕﹣3=6﹣3=3、应选C、点评:此题考查了代数式求值,利用了整体代入的思想,熟练掌握运算法那么是解此题的关键、6、直线l外一点P与直线l上两点的连线段长分别为4cm,6cm,那么点P到直线l的距离是〔〕A、不超过4cmB、4cmC、6cmD、不少于6cm考点:点到直线的距离、分析:根据点到直线的距离是直线外的点与直线上垂足间线段的长度,垂线段最短,可得答案、解答:解:直线l外一点P与直线l上两点的连线段长分别为4cm,6cm,那么点P到直线l 的距离是小于或等于4,应选:A、点评:此题考查了点到直线的距离,利用了垂线段最短的性质、7、某小组计划做一批中国结,如果每人做6个,那么比计划多做了9个,如果每人做4个,那么比计划少7个、设计划做x个“中国结”,可列方程〔〕A、=B、=C、=D、=考点:由实际问题抽象出一元一次方程、分析:设计划做x个“中国结”,根据每人做6个,那么比计划多做了9个,每人做4个,那么比计划少7个,列方程即可、解答:解:设计划做x个“中国结”,由题意得,=、应选A、点评:此题考查了由实际问题抽象出一元一次方程,解答此题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程、8、如图,纸板上有10个无阴影的正方形,从中选1个,使得它与图中5个有阴影的正方形一起能折叠成一个正方体的纸盒,选法应该有〔〕A、4种B、5种C、6种D、7种考点:展开图折叠成几何体、分析:利用正方体的展开图即可解决问题,共四种、解答:解:如下图:共四种、应选:A、点评:此题主要考查了正方体的展开图、解题时勿忘记四棱柱的特征及正方体展开图的各种情形、【二】填空题〔每题2分,共20分〕9、在﹣5.3和6.2之间所有整数之和为6、考点:有理数的加法;有理数大小比较、专题:计算题、分析:找出在﹣5.3和6.2之间所有整数,求出之和即可、解答:解:在﹣5.3和6.2之间所有整数为﹣5,﹣4,﹣3,﹣2,﹣1,0,1,2,3,4,5,6,之和为﹣5﹣4﹣3﹣2﹣1+0+1+2+3+4+5+6=6,故答案为:6点评:此题考查了有理数的加法,熟练掌握运算法那么是解此题的关键、10、京沪高铁全长约1318公里,将1318公里用科学记数法表示为1.318×103公里、考点:科学记数法—表示较大的数、分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数、确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同、当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数、解答:解:1318=1.318×103,故答案为:1.318×103、点评:此题考查科学记数法的表示方法、科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值、11、假设关于x的方程2x+a=0的解为﹣3,那么a的值为6、考点:一元一次方程的解、专题:计算题、分析:把x=﹣3代入方程计算即可求出a的值、解答:解:把x=﹣3代入方程得:﹣6+a=0,解得:a=6,故答案为:6点评:此题考查了一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值、12、两个单项式﹣3a2b m与na2b的和为0,那么m+n的值是4、考点:合并同类项、分析:根据合并同类项,可得方程组,根据解方程组,kedem、n的值,根据有理数的加法,可得答案、解答:解:由单项式﹣3a2b m与na2b的和为0,得、n+m=3+1=4,故答案为:4、点评:此题考查了合并同类项,合并同类项得出方程组是解题关键、13、固定一根木条至少需要两根铁钉,这是根据两点确定一条直线、考点:直线的性质:两点确定一条直线、分析:根据直线的性质:两点确定一条直线进行解答、解答:解:固定一根木条至少需要两根铁钉,这是根据:两点确定一条直线,故答案为:两点确定一条直线、点评:此题主要考查了直线的性质,关键是掌握两点确定一条直线、14、假设∠A=68°,那么∠A的余角是22°、考点:余角和补角、分析:∠A的余角为90°﹣∠A、解答:解:根据余角的定义得:∠A的余角=90°﹣∠A=90°﹣68°=22°、故答案为22°、点评:此题考查了余角的定义;熟练掌握两个角的和为90°是关键15、在数轴上,与﹣3表示的点相距4个单位的点所对应的数是1或﹣7、考点:数轴、分析:根据题意得出两种情况:当点在表示﹣3的点的左边时,当点在表示﹣3的点的右边时,列出算式求出即可、解答:解:分为两种情况:①当点在表示﹣3的点的左边时,数为﹣3﹣4=﹣7;②当点在表示﹣3的点的右边时,数为﹣3+4=1;故答案为:1或﹣7、点评:此题考查了数轴的应用,注意符合条件的有两种情况、16、假设|a|=3,|b|=2,且a+b>0,那么a﹣b的值是5,1、考点:有理数的减法;绝对值、分析:根据绝对值的性质、解答:解:∵|a|=3,|b|=2,且a+b>0,∴a=3,b=2或a=3,b=﹣2;∴a﹣b=1或a﹣b=5、那么a﹣b的值是5,1、点评:此题应注意的是:正数和负数的绝对值都是正数、如:|a|=3,那么a=±3、17、一个长方体的主视图与俯视图如下图,那么这个长方体的表面积是88、考点:由三视图判断几何体、分析:根据给出的长方体的主视图和俯视图可得,长方体的长是6,宽是2,高是4,进而可根据长方体的表面积公式求出其表面积、解答:解:由主视图可得长方体的长为6,高为4,由俯视图可得长方体的宽为2,那么这个长方体的表面积是〔6×2+6×4+4×2〕×2=〔12+24+8〕×2=44×2=88、故这个长方体的表面积是88、故答案为:88、点评:考查由三视图判断几何体,长方体的表面积的求法,根据长方体的主视图和俯视图得到几何体的长、宽和高是解决此题的关键、18、如图,∠BOC与∠AOC互为补角,OD平分∠AOC,∠BOC=n°,那么∠DOB=〔90+〕°、〔用含n的代数式表示〕考点:余角和补角;角平分线的定义、分析:先求出∠AOC=180°﹣n°,再求出∠COD,即可求出∠DOB、解答:解:∵∠BOC+∠AOD=180°,∴∠AOC=180°﹣n°,∵OD平分∠AOC,∴∠COD=,∴∠DOB=∠BOC+∠COD=n°+90°﹣=〔90+〕°、故答案为:90+点评:此题考查了补角和角平分线的定义;弄清各个角之间的关系是解决问题的关键、【三】解答题〔共64分〕19、计算:40÷[〔﹣2〕4+3×〔﹣2〕]、考点:有理数的混合运算、专题:计算题、分析:原式先计算中括号中的乘方及乘法运算,再计算除法运算即可得到结果、解答:解:原式=40÷〔16﹣6〕=40÷10=4、点评:此题考查了有理数的混合运算,熟练掌握运算法那么是解此题的关键、20、计算:[〔﹣1〕3+〔﹣3〕2]﹣[〔﹣2〕3﹣2×〔﹣5〕]、考点:有理数的混合运算、分析:先算乘方和和乘法,再算括号里面的,最后算减法,由此顺序计算即可、解答:解:原式=〔﹣1+9〕﹣〔﹣8+10〕=8﹣2=6、点评:此题考查有理数的混合运算,掌握运算顺序,正确判定运算符号计算即可、21、化简:3x+5〔x2﹣x+3〕﹣2〔x2﹣x+3〕、考点:整式的加减、专题:计算题、分析:原式去括号合并即可得到结果、解答:解:原式=3x+5x2﹣5x+15﹣2x2+2x﹣6=3x2+9、点评:此题考查了整式的加减,熟练掌握运算法那么是解此题的关键、22、先化简,再求值:3mn﹣[6〔mn﹣m2〕﹣4〔2mn﹣m2〕],其中m=﹣2,n=、考点:整式的加减—化简求值、专题:计算题、分析:原式去括号合并得到最简结果,把m与n的值代入计算即可求出值、解答:解:原式=3mn﹣6mn+6m2+8mn﹣4m2=2m2+5mn,当m=﹣2,n=时,原式=8﹣5=3、点评:此题考查了整式的加减﹣化简求值,熟练掌握运算法那么是解此题的关键、23、解方程:3〔x﹣1〕﹣2〔1﹣x〕+5=0、考点:解一元一次方程、专题:计算题、分析:方程去括号,移项合并,把x系数化为1,即可求出解、解答:解:去括号得:3x﹣3﹣2+2x+5=0,移项合并得:5x=0,解得:x=0、点评:此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,把x系数化为1,求出解、24、解方程:、考点:解一元一次方程、专题:计算题、分析:先把等式两边的项合并后再去分母得到不含分母的一元一次方程,然后移项求值即可、解答:解:原方程可转化为:=即=去分母得:3〔x+1〕=2〔4﹣x〕解得:x=1、点评:此题考查一元一次方程的解法注意在移项、去括号时要注意符号的变化、25、在如下图的方格纸中,每一个正方形的面积为1,按要求画图,并回答以下问题、〔1〕将线段AB平移,使得点A与点C重合得到线段CD,画出线段CD;〔2〕连接AD、BC交于点O,并用符号语言描述AD与BC的位置关系;〔3〕连接AC、BD,并用符号语言描述AC与BD的位置关系、考点:作图-平移变换、分析:〔1〕根据图形平移的性质画出线段CD即可;〔2〕连接AD、BC交于点O,根据勾股定理即可得出结论;〔3〕连接AC、BD,根据平移的性质得出四边形ABDC是平形四边形,由此可得出结论、解答:解:〔1〕如下图;〔2〕连接AD、BC交于点O,由图可知,BC⊥AD且OC=OB,OA=OD;〔3〕∵线段CD由AB平移而成,∴CD∥AB,CD=AB,∴四边形ABDC是平形四边形,∴AC=BD且AC∥BD、点评:此题考查的是作图﹣平移变换,熟知图形平移不变性的性质是解答此题的关键、26、如图,将长方形纸片的一角折叠,使顶点A落在点A′处,折痕CB;再将长方形纸片的另一角折叠,使顶点D落在点D′处,D′在BA′的延长线上,折痕EB、〔1〕假设∠ABC=65°,求∠DBE的度数;〔2〕假设将点B沿AD方向滑动〔不与A、D重合〕,∠CBE的大小发生变化吗?并说明理由、考点:角的计算;翻折变换〔折叠问题〕、分析:〔1〕由折叠的性质可得∠A′BC=∠ABC=65°,∠DBE=∠D′BE,又因为∠A′BC+∠ABC+∠DBE+∠D′BE=180°从而可求得∠DBE;〔2〕根据题意,可得∠CBE=∠A′BC+∠D′BE=90°,故不会发生变化、解答:解:〔1〕由折叠的性质可得∠A′BC=∠ABC=65°,∠DBE=∠D′BE∴∠DBE+∠D′BE=180°﹣65°﹣65°=50°,∴∠DBE=25°;〔2〕∵∠A′BC=∠ABC,∠DBE=∠D′BE,∠A′BC+∠ABC+∠DBE+∠D′BE=180°,∴∠A′BC+∠D′BE=90°,即∠CBE=90°,故∠CBE的大小不会发生变化、点评:此题主要考查了折叠的性质:折叠前后两图形全等,即对应角相等,对应边相等、也考查了平角的定义、27、,点A、B、C、D四点在一条直线上,AB=6cm,DB=1cm,点C是线段AD的中点,请画出相应的示意图,并求出此时线段BC的长度、考点:两点间的距离、分析:分类讨论:点D在线段AB上,点D在线段AB的延长线上,根据线段的和差,可得AD的长,根据线段中点的性质,可得AC的长,再根据线段的和差,可得答案、解答:解:当点D在线段AB上时,如图:,由线段的和差,得AD=AB﹣BD=6﹣1=5cm,由C是线段AD的中点,得AC=AD=×5=cm,由线段的和差,得BC=AB﹣AC=6﹣=cm;当点D在线段AB的延长线上时,如图:,由线段的和差,得AD=AB+BD=6+1=7cm,由C是线段AD的中点,得AC=AD=×7=cm,由线段的和差,得BC=AB﹣AC=6﹣=cm、点评:此题考查了两点间的距离,利用了线段的和差,线段中点的性质,分类讨论是解题关键、28、如图,为一个无盖长方体盒子的展开图〔重叠部分不计〕,设高为xcm,根据图中数据、〔1〕该长方体盒子的宽为〔6﹣x〕cm,长为〔4+x〕cm;〔用含x的代数式表示〕〔2〕假设长比宽多2cm,求盒子的容积、考点:一元一次方程的应用;展开图折叠成几何体、专题:几何图形问题、分析:〔1〕根据图形即可求出这个长方体盒子的长和宽;〔2〕根据长方体的体积公式=长×宽×高,列式计算即可、解答:解:〔1〕长方体的高是xcm,宽是〔6﹣x〕cm,长是10﹣〔6﹣x〕=〔4+x〕cm;〔2〕由题意得〔4+x〕﹣〔6﹣x〕=2,解得x=2,所以长方体的高是2cm,宽是4cm,长是6cm;那么盒子的容积为:6×4×2=48〔cm3〕、故答案为〔6﹣x〕cm,〔4+x〕cm、点评:此题考查了一元一次方程的应用,正确理解无盖长方体的展开图,与原来长方体的之间的关系是解决此题的关键,长方体的容积=长×宽×高、29、目前节能灯在城市已基本普及,今年南京市面向农村地区推广,为相应号召,某商场计划购进甲、乙两种节能灯共1000只,这两种节能灯的进价、售价如下表:〔2〕如何进货,能确保售完这1000只灯后,获得利润为15000元?考点:一元一次方程的应用、分析:〔1〕设商场购进甲种节能灯x只,那么购进乙种节能灯〔1000﹣x〕只,根据两种节能灯的总价为28000元建立方程求出其解即可;〔2〕设商场购进甲种节能灯a只,那么购进乙种节能灯〔1000﹣a〕只,根据售完这1000只灯后,获得利润为15000元建立方程求出其解即可、解答:解:〔1〕设商场购进甲种节能灯x只,那么购进乙种节能灯〔1000﹣x〕只,由题意得20x+40〔1000﹣x〕=28000,解得:x=600、那么购进乙种节能灯1000﹣600=400〔只〕、答:购进甲种节能灯600只,购进乙种节能灯400只,进货款恰好为28000元;〔2〕设商场购进甲种节能灯a只,那么购进乙种节能灯〔1000﹣a〕只,根据题意得〔30﹣20〕a+〔60﹣40〕〔1000﹣a〕=15000,解得a=500、那么购进乙种节能灯1000﹣500=500〔只〕、答:购进甲种节能灯500只,购进乙种节能灯500只,能确保售完这1000只灯后,获得利润为15000元、点评:此题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解、30、点A、B在数轴上,点A表示的数为a,点B表示的数为B、〔1〕假设a=7,b=3,那么AB的长度为4;假设a=4,b=﹣3,那么AB的长度为7;假设a=﹣4,b=﹣7,那么AB的长度为3、〔2〕根据〔1〕的启发,假设A在B的右侧,那么AB的长度为a﹣b;〔用含a,b的代数式表示〕,并说明理由、〔3〕根据以上探究,那么AB的长度为a﹣b或b﹣a〔用含a,b的代数式表示〕、考点:数轴;列代数式;两点间的距离、分析:〔1〕线段AB的长等于A点表示的数减去B点表示的数;〔2〕由〔1〕可知假设A在B的右侧,那么AB的长度是a﹣b;〔3〕由〔1〕〔2〕可得AB的长度应等于点A表示的数a与点B表示的数b的差表示,应是右边的数减去坐标左边的数,故可得答案、解答:解:〔1〕AB=7﹣3=4;4﹣〔﹣3〕=7;﹣4﹣〔﹣7〕=3;〔2〕AB=a﹣b〔3〕当点A在点B的右侧,那么AB=a﹣b;当点A在点B的左侧,那么AB=b﹣A、故答案为:〔1〕4,7,3;〔2〕a﹣b;〔3〕a﹣b或b﹣A、点评:此题主要考查了数轴及数轴上两点间的距离的计算方法,掌握数轴上两点间的距离的计算方法是关键、。
最新-江苏省南京市溧水县2018学年七年级数学上学期期
江苏省南京市溧水县孔镇中学2018-2018学年七年级上学期期末质量调研测试数学试题(无答案)苏科版一、选择题(每小题2分,共24分) 1.-12的相反数是( )A .-2B .2C .12D .-122.一个点从数轴上的原点开始, 先向左移动3个单位, 再向右移动7个单位长度, 这时该点所对应的数是( )A .3B .-4C .-2D .43. 南京地铁4号线将于年内开工,全长约33200 m ,将33200用科学记数法表示应为( )A .3.32×118B .33.2×118C .332×118D .0.332×118 4.下列合并同类项中,正确的是( )A .b a b a b a 2222=+- B .22=-a aC .422523a a a =+ D .ab b a 22=+5. 如图,检测4个足球,其中超过标准质量的克数记为正数,不足标准质量的克数记为负数.从轻重的角度看,最接近标准的是( )6.一个长方体的主视图与俯视图如图所示, 则这个长方体的体积是( ) A .40 B .50C .20D .307.下列关于单项式532xy -的说法中,正确的是( )A .系数是3,次数是2B .系数是53,次数是2 C .系数是53,次数是3 D .系数是53-,次数是38.甲、乙两个工程队共有100人,且甲队的人数比乙队的人数的4倍少10人.如果设乙队的人数为x 人,则所列的方程为( )A.1004=+x xB.100104=-+x xC.()100104=-+x xD.1001041=+-x x+0.9 -3.6 +2.5-0.8 A . B .C .D .主视图俯视图(第6题图)9.下列四个角中,最有可能与70o 角互补的角是( )10.如图所示,下列几何体中主视图、左视图、俯视图都相同的是( )11.直线l 外一点P 与直线l 上三点的连线段长分别为4cm ,5cm ,6cm ,则点P 到直线l 的距离是( )A .不超过4cmB .4cmC .5cmD .大于6cm12.下列图案是由边长相等的黑、白两色正方形按一定规律拼接而成,通过观察可以推断第8个图案中白色正方形的个数是( ▲ )A .42B .43C .45D .64 二、填空题(每小题2分,共16分)13.写出一个在212- 和1之间的负整数: . 14.已知单项式-a m b 与14-n b a 是同类项,则m +n 的值是 .15.若0=x 是方程632=-m x 的解,则数m 的值是 .16.如图,从A 到B 有多条道路,但人们一般总是会走中间的直路,而不会走其他的曲折的路,这是因为: .17.如图,将一副直角三角板叠在一起,使直角顶点重合于点O , 若∠DOC =28°,则∠AOB = °.18.如图所示,要使图中平面展开图按虚线折叠成正方体后,相对面上两个数之积为12,则x +y = .B .A .C .D .(第16题图) AB(第18题图)yx432第 1 个 第 2 个 第 3 个19.如图,边长为(m +3)的正方形纸片剪出一个边长为m 的正方形之后,剩余部分又剪拼成一个长方形(不重叠无缝隙),若拼成的长方形一边长为3,则另一边长是 .20.A 、B 两地相距10km ,甲、乙两人分别从A 、B 两地沿AB 方向同向而行,同时出发,甲的速度为4km /h ,乙的速度为1km /h ,则 小时后两人相距5km . 三、计算与求解(每题4分,共24分) 21.计算:3)2(2-⨯2)21(5⨯-÷-.22.计算: ()()[]21003335.011--⨯÷---.23.化简:)32()54(722222ab b a ab b a b a +-+-+24.先化简,再求值:)3(24)4(322m mn mn m mn ----,其中21,2=-=n m25.解方程:)2(34x x -=-26.解方程:412812--=+x x (第19题图)四、操作题(第27题4分,第28题6分,共10分)27.如下图,是由5个棱长都为1cm 的小正方体组合成的简单几何体. (1)该几何体的体积是 cm 3,表面积(含下底面)是 cm 2.(2)请在下面方格纸中分别画出它的主视图和左视图.28.在如图所示的方格纸中,按要求画图,并回答问题.(1)分别过A ,B 两点画出线段AB 的垂线m ,n ,并用符号语言描述m 、n 两者之间的位置关系; (2)过点C 画线段AB 的垂线l ,垂足为D ; (3)试比较线段CD 与CB 的长短,并说明理由.五、观察与说理(第29题6分,第30题7分,共13分) 29.如图,点C 在线段AB 上,点M 、N 分别是AC 、BC 的中点. (1)图中共有多少条线段?(2)若AC =8cm ,CB =6cm ,求线段MN 的长;(3)若C 为线段AB 上任一点,满足AC +CB =a ,其它条件不变,你能猜想MN 的长度吗?写出你的结论并说明理由.30.如图,∠AOC 与∠BOC 是邻补角,OD ,OE 分别是∠AOC ,∠BOC 的平分线. (1)写出∠AOE 的补角;(2)若∠BOC =62°,求∠COD 的值;正面主视图 左视图第28题 ABC M NA MCN B(3)试判断OD与OE之间有什么特殊的位置关系?并说明理由.六、解决问题(第31题6分,第32题7分,共13分)31.某班组织秋游,A、B两个风景点全班每人任选一处.去A风景点的每人付费25元,去B风景点的每人付费35元.若去B风景点的人数比去A风景点的少4人,全班共付费1660元.问全班有多少人?32.如图,从左到右,在每个小格子中都填入一个整数,使得其中任意两个相邻格子中所填整数的和都相等.(1)求表格中x的值;(写出求解过程)(2)第2018个格子中的数为多少?(3)判断:前m个格子中所填整数的和.是否能为2018?若能,请写出m的值;若不能,请说明理由;(4)请用含字母n的式子表示前n个格子中所填整数的和..。
2018-2019学年度七年级上数学期末试题(含答案)
(上)期末教学质量测评试题七年级数学注意事项:1.全套试卷分为A 卷和B 卷,A 卷满分100分,B 卷满分50分;考试时间120分钟. 2.在作答前,考生务必将自己的姓名,准考证号及座位号涂写在答题卡规定的地方.3.选择题部分必须使用2B 铅笔填涂;非选择题部分也必须使用0.5毫米黑色签字笔书写,字体工整,笔迹清楚.4.请按照题号在答题卡上各题目对应的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题均无效.5.保持答题卡清洁,不得折叠、污染、破损等.A 卷(共100分)一、选择题:(每小题3分,共30分)每小题均有四个选项,其中只有一项符合题目要求. 1. 下列各数中,大于-2小于2的负数..是 A .-3 B .-2 C .-1 D .0 2. 如果||a a =-,那么a 一定是A .负数B .正数C .非负数D .非正数3. 有理数b a ,在数轴上的位置如图所示,则下列各式的符号为正的是 A . b a + B . b a - C . ab D . -4a 4. 用一平面截一个正方体,不能得到的截面形状是A .直角三角形B .等边三角形C .长方形D .六边形 5. 下列平面图形中不能..围成正方体的是A .B .C .D .6.a 个学生按每8个人一组分成若干组,其中有一组少3人,共分成的组数是A .8a B .38a - C .(3)8a + D .38a +7. 下列说法正确的是 A .23vt -的系数是2-B .233ab 的次数是6次C .5x y +是多项式D .21x x +-的常数项为18.下列语句正确的是A .线段AB 是点A 与点B 的距离 B .过n 边形的每一个顶点有(n -3)条对角线C .各边相等的多边形是正多边形D .两点之间的所有连线中,直线最短9. 某地区卫生组织为了解所在地区老年人的健康状况,分别作了四种不同的抽样调查.你认为抽样比较合理的是A .在公园调查了1000名老年人的健康状况B .在医院调查了1000名老年人的健康状况a(第3题图)C .调查了10名老年邻居的健康状况D .利用派出所的户籍网随机调查了该地区10%的老年人的健康状况10. 成都市为减少雾霾天气采取了多项措施,如对城区主干道进行绿化.现计划把某一段公路的一侧全部栽上银杏树,要求路的两端各栽一棵,并且每两棵树的间隔相等.如果每隔5米栽1棵,则树苗缺21棵;如果每隔6米栽1棵,则树苗正好用完.设原有树苗x 棵,则根据题意列出方程正确的是A .5(x +21-1)=6(x -l)B .5(x +21)=6(x -l)C .5(x +21-1)=6xD .5(x +21)=6x 二、填空题:(每小题3分,共15分)11.近年来,汉语热在全球范围内不断升温。
2018-2019学年七年级上学期期末考试数学试题(解析版)
2018-2019学年度上学期质量监测七年级数学试卷一、选择题(本题共10道小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1. 中国是世界上最早认识和应用负数的国家,比西方早一千多年.在我国古代著名的数学专著《九章算术》中,首次引入负数.若气温为零上8C 记为8C +,则2C -表示气温为( )A. 零上2CB. 零下2CC. 零上6CD. 零下6C【答案】B【解析】【分析】正数和负数可以表示相反意义的量,正数表示零上,我们就用负数表示零下即可.【详解】零上8C 记为8C +,2C -表示气温为零下2C故选B【点睛】本题考查相反意义的量,属于基础题,熟练掌握用正负数表示具有相反意义的量是解答本题的关键.2. 2018年11月5日至10日,首届中国国际进口博览会在国家会展中心(上海)举行,会上交易采购成果丰硕,按一年计,累计意向成交578.3亿美元.578.3亿用科学记数法表示应为( )A. 8578.310⨯B. 957.8310⨯C. 105.78310⨯D. 110.578310⨯ 【答案】C【解析】【分析】先把578.3亿改写成数字形式,再利用科学记数法表示即可.【详解】578.3亿:57 830 000 000;用科学记数法表示为105.78310⨯故选C【点睛】用科学记数法表示一个数,是把一个数写成10n a ⨯形式,其中1||10a ≤<,n 为整数.3. 将下列图形绕着直线旋转一周正好得到如图所示的图形的是( )A. B. C. D.【答案】A【解析】【分析】根据面动成体,所得图形是两个圆柱的组合体进行分析即可得.【详解】A 选项的图形绕直线旋转一周可得到如图所示的几何体,故符合题意;B 选项的图形绕直线旋转一周可得的几何体下面是一个大的圆柱体,上面是一个小的圆柱体,但小的圆柱体中间是空的,故不符合题意;C 选项的图形绕直线旋转一周得到的几何体中间是一个大的圆柱,上下各得一个中间空的小的圆柱,故不符合题意;D 选项的图形绕直线旋转一周得到的几何体中间是一个大的圆柱,上下各有一个小的圆柱,故不符合题意, 故选A.【点睛】本题考查了点、线、面、体,熟知常见平面图形旋转得到的立体图形是解题的关键.注意要对组合图形进行分解.4. 大鹏做了以下四道题:①()3327--=-;②()2213-+-=;③3366410a a a +=;④358a b ab +=,请你帮他检查一下,他一共做对了( )A. 1题B. 2题C. 3题D. 4题 【答案】A【解析】【分析】根据有理数及整式的运算法则分析即可.【详解】①()3327--=,故①错误; ②()2213-+-=,故②正确;③3336410a a a +=,故③错误;④35a b +不能合并同类项,故④错误;所以正确的是②,共1个故选A【点睛】本题考点涉及有理数的乘方、加减以及整式合并同类项等知识点,熟练掌握相关运算法则是解答本题的关键.5. 下列调查中,适合采用抽样调查的是()A. 对乘坐飞机的旅客是否携带违禁物品的调查B. 对辽阳市某中学某班学生进行“创建全国文明城市”知晓率的调查C. 为保证某种新研发的战斗机试飞成功,对其零部件进行检查D. 对一批LED节能灯使用寿命的调查【答案】D【解析】【分析】对于精确度要求高的调查,事关重大的调查往往选用普查,逐个分析选项即可.【详解】A. 对乘坐飞机的旅客是否携带违禁物品的调查,事关重大,必须普查;B. 对辽阳市某中学某班学生进行“创建全国文明城市”知晓率的调查,调查范围小,适合普查;C. 为保证某种新研发的战斗机试飞成功,对其零部件进行检查,要求精确的调查,必须普查;D. 对一批LED节能灯使用寿命的调查,适合抽样调查;故选D【点睛】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查,无法进行普查;普查的意义或价值不大,应选择抽样调查;对于精确度要求高的调查、事关重大的调查,往往选用普查,6. 如图,由5个同样大小的正方体摆成的几何体,将正方体①移走后,所得几何体()A. 主视图不变,左视图改变B. 主视图不变,左视图不变C. 主视图改变,左视图不变D. 主视图改变,左视图改变【答案】C【解析】【分析】分别得到将正方体①移走前后的左视图和主视图,依此即可作出判断. 【详解】所以主视图改变,左视图不变故选C【点睛】本题考查简单组合体的三视图,熟练掌握简单组合体三视图以及立体思维是解答本题的关键. 7. 小亮在做作业时,不小心把方程中的一个常数污染了看不清,被污染的方程为:527x x -=+■,他翻看答案,解为5x =-,请你帮他补出这个常数是( ) A. 32 B. 8 C. 72 D. 12【答案】B【解析】【分析】将5x =-代入被污染的方程,即可求出污染处的常数.【详解】将5x =-代入被污染的方程,得:5(5)27(5)⨯--=⨯-+■25235--=-+■2735-+=■解得:■=8故选B【点睛】本题考查了解一元一次方程,熟练掌握一元一次方程求解是解答本题关键.8. 下列说法中,不正确的个数是( )①将一根细木条固定在墙上至少需要两个钉子,这是因为:两点确定一条直线②角的两边越长,角的度数越大③多项式5ab -是一次二项式 ④232a b π的系数是32 A. 1B. 2C. 3D. 4 【答案】C【解析】【分析】根据线段的性质、角的性质、多项式的次数以及单项式的系数等知识点分析即可.【详解】①将一根细木条固定在墙上至少需要两个钉子,这是因为:两点确定一条直线,正确; ②角的大小与角的两边长度没关系,所以②错误;③多项式5ab -是二次二项式,所以③错误; ④232a b π的系数是32π,所以④错误; 不正确的是②③④,共3个故选C【点睛】本题考点涉及线段的性质、角的性质、多项式的次数以及单项式的系数等知识点,属于多章节综合题,难度系数较低,熟练掌握相关知识点是解答本题的关键.9. 某商场周年庆期间,对销售的某种商品按成本价提高30%后标价,又以9折(即按标价的90%)优惠卖出,结果每件商品仍可获利85元,设这种商品每件的成本是x 元,根据题意,可得到的方程是( )A. ()130%90%85x x +⋅=-B. ()130%90%85x x +⋅=+C. ()130%90%85x x +⋅=-D. ()130%90%85x x +⋅=+【答案】B【解析】分析】由题意可知:成本+利润=售价,设这种商品每件的成本是x 元,则提高30%后的标价为(130%)x +元;打9折出售,则售价为(130%)90%x +,列出方程即可.【详解】由题意可知:售价=成本+利润,设这种商品每件的成本是x 元,则提高30%后的标价为(130%)x +元;打9折出售,则售价为(130%)90%x +;根据:售价=成本+利润,列出方程:()130%90%85x x +⋅=+故选B【点睛】本题考查了一元一次方程的应用,熟练掌握等量关系:“成本+利润=售价”是解答本题的关键. 10. 如图,将两块三角尺AOB 与COD 的直角顶点O 重合在一起,若∠AOD=4∠BOC ,OE 为∠BOC 的平分线,则∠DOE 的度数为( )A. 36°B. 45°C. 60°D. 72°【答案】D【解析】【分析】 先推出∠AOD+∠BOC=180°,结合∠AOD=4∠BOC ,求出∠BOC 的度数,再根据角平分线求出∠COE 的度数,利用∠DOE=∠COD-∠COE 即可解答.【详解】解:∵∠AOB=90°,∠COD=90°,∴∠AOB+∠COD=180°,∵∠AOB=∠AOC+∠BOC ,∠COD=∠BOC+∠BOD ,∴∠AOC+∠BOC+∠BOC+∠BOD=180°, ∴∠AOD+∠BOC=180°,∵∠AOD=4∠BOC ,∴4∠BOC+∠BOC=180°,∴∠BOC=36°,∵OE 为 ∠BOC 的平分线,∴∠COE=12∠BOC=18°, ∴∠DOE=∠COD−∠COE=90°−18°=72°,故选择:A .【点睛】本题考查了角平分线的定义,角的和差计算及数形结合的数学思想,根据图中的数量关系求出∠BOC=36°是解答本题的关键.二、填空题(本题共10道小题,每小题2分,共20分)11. 单项式2313xy z π-的次数是______.【答案】6【解析】【分析】根据“单项式的次数等于单项式各个字母的指数和”分析即可.【详解】单项式的次数:单项式各个字母的指数和,所以单项式2313xy z π-的次数是1+2+3=6注意x 的次数是1,π是系数;故答案为6【点睛】本题考查了单项式的次数,注意π不是字母,是系数;字母没有指数,代表指数是1,不要漏掉. 12. 如图是一个正方体的展开图,则“数”字的对面的字是______.【答案】养【解析】【分析】利用正方体展开图的特点解答即可.【详解】由正方体的展开图可知:正方体中,“数”字与“养”字相对;“学”字与“核”字相对;“心”字与“素”字相对;故答案养【点睛】本题考查正方体展开图,相对的面之间规律:“相隔”或“Z”,熟练掌握该规律,即可轻松解答此类问题.13. 单项式1325m n x y ---与24yx 的和仍是单项式,则n m =______. 【答案】9【解析】【分析】根据题意,1325m n x y ---与24yx 是同类项,根据同类项特征,求出m 、n 的值,进而求出n m 的值即可.【详解】∵单项式1325m n x y ---与24yx 的和仍是单项式 ∴1325m n x y ---与24yx 是同类项, 12,31m n ∴-=-=解得:3,2m n ==239n m ∴==故答案为9【点睛】本题考查了整式中同类项的变式题型,熟练掌握同类项的特征是解答本题的关键.14. 若()220.50a b -++=,则()2019ab =______.【答案】﹣1【解析】【分析】首先利用偶次方的性质和绝对值的性质得出a b 、的值,再利用有理数的乘方运算法则计算得出答案.【详解】∵()220.50a b -++= 2|2|0,(0.5)0a b -≥+≥∴20,0.50a b -=+=解得:2,0.5a b ==-()[]2019201920192(0.5)(1)1ab =⨯-=-=-故答案为-1【点睛】本题考查了偶次方和绝对值的非负性以及有理数的乘方运算,为典型题.15. 如图,在单位长度是1的数轴上,点A 和点C 所表示的两个数互为相反数,则点B 表示的数是______.【答案】﹣2【解析】【分析】根据图示,点A 和点C 之间的距离是6,据此求出点C 表示的数,即可求得点B 表示的数.【详解】∵点A 和点C 所表示的两个数互为相反数,点A 和点C 之间的距离是6∴点C 表示的数是﹣3,∵点B 与点C 之间的距离是1,且点B 在点C 右侧,∴点B 表示的数是﹣2故答案为﹣2【点睛】本题为考查数轴和相反数的综合题,稍有难度,根据题意认真分析,熟练掌握数轴和相反数的相关知识点是解答本题的关键.16. 如图,C 、D 两点将线段AB 分成2:3:4三部分,E 为线段AB 的中点,10AD cm =,则线段DE =______cm .【答案】1cm【解析】【分析】根据C 、D 两点将线段AB 分成2:3:4三部分,设2,3,4AC x CD x DB x ===,然后表示出5AD x =,再根据10AD cm =,求得x 的值,进而求出AB 的长;再计算出AE 的长,然后利用AD ﹣AE 可得DE 长.【详解】解:设2,3,4AC x CD x DB x ===∵10AD cm =∴2310x x +=解得:2x =∴4,6,8,18AC cm CD cm BD cm AB cm ====∵E 为线段AB 的中点 ∴192AE AB cm == 1091DE AD AE cm =-=-=故答案为1cm【点睛】本题考点为两点之间的距离,熟练掌握线段的性质是解答本题的关键.17. 定义一种新的运算:2*a b a b a +=,如:42134*142+⨯==,则()()2*3*1-=______. 【答案】12【解析】【分析】利用题中的新定义计算即可得到结果.【详解】利用题中的新定义:()()()2232*3*1*12+⨯-=- ()42(1)4(2)14*1442+⨯-+-=-=== 故答案为12【点睛】本题为考查有理数的运算的变式题型,正确理解新定义计算以及熟练掌握有理数运算法则是解答本题的关键.18. 已知从六边形的一个顶点出发,可以引m 条对角线,这些对角线可以把这个六边形分成n 个三角形,则m n -=______.【答案】﹣1【解析】【分析】多边形的任意一点连其他各点得到的对角线条数为(n ﹣3);组成的三角形的个数为(n ﹣2),分别求出m 、n 的值即可得出m n -.【详解】根据题意,画出图形:总结规律“多边形的任意一点连其他各点得到的对角线条数为(n ﹣3);组成的三角形的个数为(n ﹣2)”可知,对角线共有6﹣3=3条,分成6﹣2=4个三角形,则3,4m n ==所以341m n -=-=-故答案为﹣1【点睛】本题主要考查了多边形的任意一点连其他各点得到的对角线条数为(n ﹣3)及组成的三角形的个数为(n ﹣2),掌握规律能轻松快速解答本题.19. 一副三角板按如图方式摆放,若2327'α∠=,则β∠的度数为______.【答案】6633'︒【解析】【分析】根据平角定义可得90αβ∠+∠=︒,再利用2327'α∠=,可得β∠的度数.【详解】解:由题意可知:∴1809090αβ∠+∠=︒-︒=︒∵2327'α∠=∴909023276633βα''∠=︒-∠=︒-︒=︒故答案为6633'︒【点睛】本题考点涉及平角定义以及两锐角互余等知识点,属于基础题,熟练掌握相关定义是解答本题的关键.20. 有一数值转换器,原理如图所示,如果开始输入x 的值是4,则第一次输出的结果是5,第二次输出的结果是8,……,那么第2019次输出的结果是______.【答案】7【解析】【分析】理解图表,代入4经过几次输出找到规律,利用规律求解即可.【详解】当输入4时,第一次输出14352⨯+= 当输入5时,第二次输出538+=当输入8时,第三次输出18372⨯+= 当输入7时,第四次输出7310+=当输入10时,第五次输出110382⨯+= 当输入8时,第六次输出18372⨯+=…… 通过观察不难发现从第二次开始,输入三次一个循环,循环数字为8,7,10∵(20191)36722-÷=⋅⋅⋅⋅⋅⋅∴第2019次输出结果为7故答案为7【点睛】本题为考查代数求值的变式题型,理解图表,找出规律是解答本题的关键.三、解答题(共50分)21. 计算:(1)()()617 3.25⎛⎫-+---- ⎪⎝⎭ (2)()()3220191213---+--【答案】(1)﹣6;(2)15【解析】【分析】(1)运用有理数加减法法则运算即可.(2)先运用有理数的乘方法则,再利用有理数加减法法则运算即可.【详解】(1)解:原式=6(1)()(7) 3.25-+-+-+(9.2) 3.2=-+ 6=-(2)解:原式= 1(8)|19|---+-18|19|=-++-188=-++15=【点睛】本题考查了有理数加减法、有理数的乘方以及绝对值等知识点,熟练运用有理数运算法则是解答本题的关键.22. 解方程:219136x x --+=- 【答案】1x =【解析】【分析】按照解一元一次方程步骤“去分母,去括号,合并同类项,移项,系数化为1”解答即可. 【详解】219136x x --+=- 解:去分母,得:2(21)9(1)6x x -+-=-⨯去括号得:4296x x -+-=-合并同类项,得:5116x -=-移项,得:55=x解得:1x =【点睛】本题为考查解一元一次方程基础计算题,比较简单,去分母时注意不要漏乘,等号两边每一项都要乘以分母的最小公倍数.23. 先化简,再求值:()()2223241x xy xy xx ---+++,其中12x =-,3y =. 【答案】104xy -+;19【解析】【分析】 先将代数式化简,再将12x =-,3y =代入化简后的代数式,求值即可. 【详解】解:原式=22236(444)x xy xy x x ---+++ 22236444x xy xy x x =-+--+104xy =-+当12x =-,3y =时,原式104xy =-+ 1(10)()342=-⨯-⨯+ 154=+19=【点睛】本题为代数式求值问题,考点涉及去括号、合并同类项以及有理数乘法,熟练掌握相关知识点及运算法则是解答本题的关键.24. 我市某校的数学学科实践活动课上,老师布置的任务是对本校七年级学生零花钱使用情况进行随机抽样调查,调查结果分为“A .买零食”、“B .买学习用品”、“C .玩网络游戏”、“D .捐款”四项进行统计,学生将统计结果绘制成了如下两幅不完整的统计图(图1、图2),请根据图中的信息解答下列问题.(1)这次调查的学生为______人,图2中,m =______,n =______.(2)补全图1中的条形统计图.(3)在图2的扇形统计图中,表示“C .玩网络游戏”所在扇形的圆心角度数为______度.(4)据统计,辽阳市七年级约有学生12000人,那么根据抽样调查的结果,可估计零花钱用于“D .捐款”的学生约有______人.【答案】(1) 1000;28;35 (2)见解析(3)72°(4)2040【解析】【分析】(1)根据C 组有200人,所占的百分比是20%即可求出总人数,然后根据百分比的意义求解;(2)根据(1)中所求信息,补全直方图即可.(3)利用360°乘以对应的比例即可求解;(4)利用总人数12000乘以对应的比例即可求解;【详解】解:(1)由表格可知,C 组由200人,所占的百分比是20%,∴调查总人数为20020%1000÷= (人),则%280100028%m =÷=B 组人数为:1000280200170350---=(人)%350100035%n =÷=故答案是:1000;28;35(2)补全图1中的条形统计图如下:(3)扇形统计图中“C 组”所对应的圆心角的度数是:2036072100︒⨯=︒ 故答案是:72°(4)零花钱用于“D .捐款”的人数有:170(人) 1701200020401000⨯=(人) 故可估计零花钱用于“D .捐款”的学生约有2040人.【点睛】本题为概率综合题,考查了频数(率)分布表、用样本估计总体、频数(率)分布直方图以及扇形统计图等知识点.25. 如图,15AOC ∠=,45BOC ∠=,OD 平分AOB ∠,求COD ∠的度数.(补全下面的解题过程)解:∵15AOC ∠=,45BOC ∠=∴____________AOB ∠=∠+∠=∵OD 平分AOB ∠ ∴1________2BOD ∠=∠=∴____________COD ∠=∠-∠=答:COD ∠的度数是______.【答案】AOC ;BOC ;60;AOB ;30;BOC ;BOD ;15;15【解析】【分析】先求出AOB ∠,再根据角平分线的定义求出BOD ∠,然后根据COD BOC BOD ∠=∠-∠,即可得解.【详解】解:∵15AOC ∠=,45BOC ∠=∴_____60___AOB AOC BOC ∠=∠+∠=∵OD 平分AOB ∠ ∴1______30__2BOD AOB ∠=∠=(角平分线定义) ∴__________15__COD BOC BOD ∠=∠-∠=答:COD ∠的度数是___15___.【点睛】本题考查了角平分线的定义,熟练掌握角平分线定义是解答本题的关键.学生在本阶段需要掌握基本的几何证明过程.26. 列一元一次方程,解应用题:为迎接春节到来,每年的元旦过后,我市城建局都要开始进行“亮化”工程,装扮美丽辽阳.今年购买了大、小两种树挂彩灯共1000条,所花费用为69800元,其中大彩灯每条80元,小彩灯每条60元.问大彩灯购买了多少条?【答案】大彩灯购买了490条.【解析】【分析】设大彩灯购买了x 条,则小彩灯买了(1000)x -条,根据题意,得到等量关系:买大彩灯费用+买小彩灯费用=69800,列出方程,求解即可.【详解】解:设大彩灯购买了x 条,则小彩灯买了(1000)x -条买大彩灯费用为:80x ;买小彩灯费用为:60(1000)x -根据题意列方程:8060(1000)69800x x +-=解得:490x =答:大彩灯购买了490条.【点睛】本题考查了一元一次方程的应用,分析题干,找到等量关系是解答本题的关键.。
江苏省溧水区2018--2019-学年度第二学期期-末-质量调研测试-七年级数学试卷
江苏省溧水区2018--2019-学年度第二学期期-末-质量调研测试-七年级数学试卷(总7页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--2018~2019 学年度第二学期期末质量调研测试七年级数学试卷注意事项:1.本试卷共6 页.全卷满分100 分.考试时间为100 分钟.考生答题全部答在答题卡上,答在本试卷上无效.2.请认真核对监考教师在答题卡上所粘贴条形码的姓名、考试证号是否与本人相符合,再将自己的姓名、准考证号用毫米黑色墨水签字笔填写在答题卡及本试卷上.3.答选择题必须用2B 铅笔将答题卡上对应的答案标号涂黑.如需改动,请用橡皮擦干净后,再选涂其他答案.答非选择题必须用毫米黑色墨水签字笔写在答题卡上的指定位置,在其他位置答题一律无效.4.作图必须用2B铅笔作答,并请加黑加粗,描写清楚.一、选择题(本大题共8 小题,每小题2 分,共16 分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答.题.卡.相.应.位.置.上)1.下列计算正确的是(▲)A.a+a=a B.a-a=a C.a·a=a D.a÷a=a2.将×10用小数表示为(▲)A.B.C.D.-3.使不等式x+1>4x+5 成立的x 的最大整数是(▲)A.1 B.0 C.-1 D.-24.下列四种说法:(1)如果∣a∣=∣b∣,那么a=b;(2)两个锐角的和是钝角;(3)任何数的平方大于或等于0;(4)三角形的三条高必在三角形内.其中正确的有(▲)个A.1 B.2 C.3 D.45.若a+b=5,ab=2,则(a+b)=(▲)A.9 B.10 C.11 D.126.如图所示,△ABD≌△CDB,下面四个结论中不正确的是(▲)A.△ABD 和△CDB 的面积相等;B.△ABD 和△CDB 的周长相等;C.∠A+∠ABD=∠C+∠CBD;D.AD∥BC,且AD=BC.17.如图,BP 是△ABC 中∠ABC 的平分线,CP 是∠ACB 的外角的平分线.如果∠ABP=20°,∠ACP=50°,则∠P=(▲)A.20°B.30°C.40°D.50°8.已知小敏家距学校5km,小飞家距小敏家3km.若小飞家距学校距离为x km,则x 满足(▲)A.x=2 B.2≤x≤8 C.2≤x≤5 D.2<x<8D CA B(第6 题)(第7 题)a 3 12 b (第14 题)二、填空题(本大题共10 小题,每小题2 分,共20 分.不需写出解答过程,请把答案直接填写在答.题.卡.的.相.应.位.置.上.)9.因式分解:a-4=▲ .10.如果a=2,a=3,那么a=▲ .11.命题“若a>b,则|a|>|b|”是假命题,请举出一个反例加以说明:▲ .12.已知x+mx+9 是一个完全平方式,常数m =▲ .13.一个多边形的每一个外角都等于40°,则这个多边形的边数为▲ .14.如图,已知直线a∥b,∠1=72°,∠2=38°,则∠3=▲ °.15.方程组7324x y zx yx y z+-=⎧⎪+=⎨⎪--=⎩的解为▲ .16.北京2008 年奥运会跳水决赛的门票价格如下表:等级A B C 票价(元/张)500 300 150小丽购买了B 等级和C 等级的跳水决赛门票共6 张,她发现购买这6 张门票所花的钱恰好能购买3 张A 等级门票.则小丽买了▲ 张B 等级门票和▲ 张C 等级门票.217.如图,五边形ABCDE 中,∠A=140°,∠B=120°,∠E=90°,CP 和DP 分别是∠BCD、∠EDC 的外角平分线,且相交于点P,则∠CPD=▲ °.18.如图,在△ABC 中,点D、E、F 分别是BC、AD、CE 的中点,S=4cm,则S=▲ cm.(第17 题)(第18 题)3三、解答题(本大题共8 小题,共64 分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.(本题7 分)先化简,再求值:(x+2) (x-2) -x (x-1),其中x=-2.20.(本题6 分)因式分解:a(x-y)+b(y-x)21.(本题7 分)解不等式组20132xx-≤⎧⎪⎨+<⎪⎩并写出它的整数解.22.(本题8 分)如图,直线EF∥GH,点A 在EF 上,AC 交GH 于点B,若∠EAB=108°,点D 在GH 上,∠BDC=60°,求∠ACD 的度数.(第22 题)423.(本题8 分)已知11xy=⎧⎨=⎩与42xy=⎧⎨=-⎩都是方程mx+ny=6 的解.(1)求m 和n 的值;(2)若y 是不小于-1 的数,求x 的取值范围.24.(本题8 分)已知:如图,点B、F、C、D 在一条直线上.AB=DE,AB∥DE,BF=CD.求证:AC∥EF.B(第24 题)625.(本题 10 分)如果一元一次方程的解也是一元一次不等式组的解,则称该一元一次方程 为该不等式组的关联方程.例如:方程 2x -6=0 的解为 x =3,不等式组104x x ->⎧⎨<⎩的解集为 1<x <4.因为 1<3<4, 所以称方程 2x -6=0 为不等式组104x x ->⎧⎨<⎩的关联方程.( 1 )在方程 ① 3x -2 = 0 ,②25x + 1 =0 ,③ x - (3x + 1 )=- 5 中,不等式组2331432x x x x +>-⎧⎨--<+⎩的关联方程是 ▲ ;(填序号)(2)若不等式组112245x x x ⎧-<⎪⎨⎪+>-+⎩的一个关联方程的根是整数,则这个关联方程可以 是▲;(写出一个即可)(3)若方程 2x -1=x +2,x +3=2(x +12)都是关于 x 的不等式组22x x m x m<-⎧⎨-≤⎩的关联方程,求 m 的取值范围.26.(本题10 分)初步思考(1)如图1,在四边形ABCD中,AB=AD,∠B=∠D=90°,E、F分别是边BC、CD上的点,且∠BAD=2∠EAF.求证:EF=BE+FD.小明发现此题是证明线段的和(差)问题,根据证明此类题型的常见方法,于是就有了如下的思考过程:请在下列框图中补全他的证明思路.第一步:延长CB 至H,使BH=DF,连接AH,易证△ABH ≌△ADF,得出①=AF,∠BAH=∠DAF.第二步:∠BAD=∠BAE+∠EAF+∠DAF,∠BAD=2∠EAF,得出∠BAE+∠DAF=∠EAF,所以② =∠EAF.第三步:易证△EAH ≌△EAF,得出③ =EF,于是BE+④ =EF,即EF=BE+FD解决问题(2)如图2,在四边形ABCD 中,AB=AD,∠B +∠D=180°,E、F 分别是边BC、CD上的点,且∠BAD=2∠EAF,(1)中的结论是否仍然成立说明理由.拓展延伸(3)在(2)的条件下,若将点E、F改在线段BC、CD延长线上,请直接写出线段EF、BE、FD之间的数量关系▲.7。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018-2019学年江苏省南京市溧水区七年级(上)期末数学试卷一、选择题(本大题共8小题,共16.0分)1.-2的相反数是()A. B. 2 C. D.2.“厉行勤俭节约,反对铺张浪费”势在必行,最新统计数据显示,中国每年浪费食物总量折合粮食大约是210000000人一年的口粮.将210000000用科学记数法表示为()A. B. C. D.3.与a2b是同类项的是()A. B. C. D.4.下列各数中,无理数是()A. B. C. D.5.有下列生活,生产现象:①用两个钉子就可以把木条固定在墙上.②从A地到B地架设电线,总是尽可能沿着线段AB架设.③植树时,只要确定两棵树的位置,就能确定同一行树所在的直线.④把弯曲的公路改直,就能缩短路程.其中能用“两点之间,线段最短”来解释的现象有()A. ①②B. ①③C. ②④D. ③④6.单项式-的系数与次数分别是()A. 和5B. 和10C. 和7D. 和77.如图,把左边的图形绕着给定的直线旋转一周后形成的几何体是()A.B.C.D.8.找出以下图形变化的规律,计算第2019个图形中黑色正方形的个数是()A. 3027B. 3028C. 3029D. 3030二、填空题(本大题共10小题,共20.0分)9.的倒数是______.10.已知关于x的方程3m-4x=2的解是x=1,则m的值是______.11.比较大小:-______-3(填“>”“<”或“=”)12.若∠1=32°30′,则∠1的补角为______°.13.若线段AB=8cm,BC=3cm,且A、B、C三点在同一条直线上,则AC=______cm.14.若x2-2x+1的值是3,则5-2x2+4x的值是______.15.小红在某月的日历中任意框出如图所示的四个数,但不小心将墨水滴在上面遮盖了其中的两个数,则b=______.(用含字母a的代数式表示)16.某商店销售一批服装,每件售价150元,打8折出售后,仍可获利20元,则这种服装的成本价为______元.17.如图,直线AB、CD相交于点O,射线OF垂直于OD且平分∠AOE.若∠BOC+∠EOF=210°,则∠DOE=______°.18.大家知道|5|=|5-0|,它在数轴上的意义是表示5的点与原点(即表示0的点)之间的距离.又如式子|6-3|,它在数轴上的意义是表示6的点与表示3的点之间的距离.则|x-100|+|x-50|+|x+100|的最小值为______.三、计算题(本大题共3小题,共27.0分)19.(1)-2-(-6)÷3;(2)-14-[(-2)2-32×(-)].20.汽车从甲地到乙地,若每小时行使45千米,则要比原计划延误半小时到达;若每小时行驶50千米,则就可以比原计划提前半小时到达.请你根据以上信息,就汽车行驶的“路程”或“时间”提出一个用一元一次方程解决的问题,并写出解答过程.(1)问题:______;(2)解答:21.重温例题:小丽在水果店花18元买了苹果和橘子共6千克,已知苹果每千克3.2元,橘子每千克2.6元.小丽买了苹果和橘子各多少千克?解决问题:(1)设所购买的苹果质量为xkg.请你将下列同学的探究过程补充完整.①小明同学列出了下表,并根据相等关系“买苹果的金额+买橘子的金额=18元”,可得方程:______.单价(元/kg)质量(kg)金额(元)苹果 3.2x 3.2x橘子 2.66-x 2.6(6-x)合计618②小红、小王、小颖三位同学分别给出了不同于小明同学的表格和方程,请补充完整.(友情提醒:表格中的空格表达式不同于小明所填的,所列方程不要化简.)i小红根据相等关系“所买苹果的质量+橘子的质量=6kg”,得方程______.单价(元/kg)质量(kg)金额(元)苹果 3.2x 3.2x橘子 2.6______ 18-3.2x合计618ii小王根据相等关系“苹果的单价×其质量=苹果购买金额”,得方程______.单价(元/kg)质量(kg)金额(元)苹果 3.2x______橘子 2.66-x 2.6(6-x)合计618iii小颖根据相等关系“橘子的单价×其质量=橘子购买金额”,得方程______.单价(元/kg)质量(kg)金额(元)苹果 3.2x 3.2x橘子 2.66-x______合计618(2)设苹果购买金额为y元,下列方程正确的是______.(填写正确的序号)①;②y+2.6(6-)=18;③3.2(6-)=y;④3.2(6-)=18-y.四、解答题(本大题共5小题,共37.0分)22.化简与求值:(1)化简:a-(5a-3b)+2(a-2b);(2)先化简,再求值:2(x2-2xy)-(x2-2xy),其中x=,y=-1.23.解方程:(1)2(x-2)=6;(2)-=1.24.如图,点A、B、C都在6×6的网格的格点上,点C在直线AB外.(1)过点C画AB的平行线CD;(2)过点C画AB的垂线CE.25.如图,是由一些棱长都为1cm的小正方体组合成的简单几何体.(1)该几何体的表面积(含下底面)是______cm2;(2)该几何体的主视图如图所示,请在下面方格纸中分别画出它的左视图和俯视图.(3)若使该几何体主视图、俯视图不发生改变,最多还可以在几何体上再堆放______个相同的小正方体.26.(1)如图,已知C为线段AB上的一点,AC=60cm,M、N分别为AB、BC的中点.①若BC=20cm,则MN=______cm;②若BC=acm,则MN=______cm.(2)如图,射线OC在∠AOB的内部,∠AOC=60°,OM平分∠AOB,射线ON在∠BOC内,且∠MON=30°,则ON平分∠BOC吗?并说明理由.答案和解析1.【答案】B【解析】解:-2的相反数是:-(-2)=2,故选:B.根据一个数的相反数就是在这个数前面添上“-”号,求解即可.本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“-”号:一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.不要把相反数的意义与倒数的意义混淆.2.【答案】C【解析】解:将210000000用科学记数法表示为:2.1×108.故选:C.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n是负数.此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a的值以及n的值.3.【答案】C【解析】解:A、22b与a2b所含字母不完全相同,不是同类项,故本选项错误;B、-3ab2与a2b所含字母不完全相同,不是同类项,故本选项错误;C、符合同类项的定义,故本选项正确;D、a2c与a2b所含字母不完全相同,不是同类项,故本选项错误;故选:C.根据同类项的定义,即可得出答案.本题考查了同类项的知识,解答本题的关键是掌握同类项的定义.4.【答案】B【解析】解:A.-2是有理数;B.是无理数;C .是有理数;D.0.是有理数;故选:B.无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.5.【答案】C【解析】解:根据两点之间,线段最短,得到的是:②④;①③的依据是两点确定一条直线.故选:C.四个现象的依据是两点之间,线段最短和两点确定一条直线,据此作出判断.本题主要考查了定理的应用,正确确定现象的本质是解决本题的关键.6.【答案】D【解析】解:单项式-的系数与次数分别是-和7,故选:D.根据单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数可得答案.此题主要考查了单项式,关键是掌握单项式的相关定义.7.【答案】D【解析】解:左边的图形绕着给定的直线旋转一周后形成的几何体是空心圆柱,故选:D.根据面动成体的原理以及空间想象力可直接选出答案.此题主要考查了点、线、面、体,关键是同学们要注意观察,培养自己的空间想象能力.8.【答案】C【解析】解:由图可得,第(1)个图中黑色正方形的个数为:2,第(2)个图中黑色正方形的个数为:2+1=3,第(3)个图中黑色正方形的个数为:2×2+1=5,第(4)个图中黑色正方形的个数为:2×2+1×2=6,第(5)个图中黑色正方形的个数为:2×3+1×2=8,∵2019÷2=1009…1,∴第2019个图形中黑色正方形的个数是:2×(1009+1)+1×1009=3029,故选:C.根据题意和题目中的图形,可以发现小正方形个数的变化规律,从而可以求得第2019个图形中黑色正方形的个数.本题考查图形的变化类,解答本题的关键是明确题意,利用数形结合的思想解答.9.【答案】-【解析】解:∵-1=-,且-×(-)=1,∴的倒数是-.根据倒数的定义求解.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.0没有倒数.10.【答案】2【解析】解:把x=1代入3m-4x=2,得:3m-4×1=2,解得:m=2.故答案为:2.虽然是关于x的方程,但是含有一个未知的系数,其实质是知道一个未知数的值求另一个未知数的值.考查了一元一次方程的解,本题含有一个未知的系数.根据已知条件求未知系数的方法叫待定系数法,在以后的学习中,常用此法求函数解析式.11.【答案】<【解析】解:-<-3,故答案为:<根据两个负数,绝对值大的其值反而小解答即可.本题考查的是有理数的大小比较,有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.12.【答案】147.5【解析】解:∵∠1=32°30′,∴∠1的补角的度数为=180°-32°30′=147°30'=147.5°.故答案为:147.5°若两个角的和等于180°,则这两个角互补.根据已知条件直接求出补角的度数.本题考查了补角的定义,解题时牢记定义是关键.13.【答案】11或5【解析】解:当点C在线段AB之间,AC=AB-BC=8-3=5cm,当点C在点B的右侧,AC=AB+BC=8+3=11cm,故答案为:11或5分点C在线段AB之间,点C在点B的右侧两种情况讨论,由线段的和差关系可求解.本题考查了两点间的距离,渗透了分类讨论的思想,体现了思维的严密性.在今后解决类似的问题时,要防止漏解.14.【答案】1【解析】解:∵x2-2x=2,∴原式=-2(x2-2x)+5=-4+5=1.故答案为:1根据题意得到x2-2x的值,所求式子后两项提取2变形后,将x2-2x的值代入计算即可求出值.此题考查了代数式求值,利用了整体代入的思想解答是解题关键.15.【答案】a-5【解析】解:设阴影部分上面的数字为x,下面为x+7,根据题意得:x=b-1,x+7=a+1,即b-1=a-6,整理得:b=a-5,故答案为:a-5设阴影部分上面的数字为x,下面为x+7,根据日历中数字特征确定出a与b的关系式即可.此题考查了一元一次方程的应用,以及列代数式,弄清题意是解本题的关键.16.【答案】100【解析】解:设这种服装的成本价为每件x元,则实际售价为150×80%元,根据实际售价-成本=利润,那么可得到方程:150×80%-x=20.解得x=100故答案为:100.首先理解题意找出题中存在的等量关系:售价-成本=利润,根据等量关系列方程即可.本题以经济中的打折问题为背景,主要考查根据已知条件构建方程的能力,其中把握等量关系“售价-成本=利润”是关键.17.【答案】30【解析】解:∵OF⊥CD,∴∠COF=∠DOF=90°,∴∠AOC+∠AOF=∠DOE+∠EOF=90°,∵OF平分∠AOE,∴∠AOF=∠EOF,∴∠AOC=∠DOE,∵∠AOC=∠BOD,∴∠BOD=∠DOE,设∠BOD=∠DOE=x,∴∠EOF=90°-x,∠BOC=180°-x,∵∠BOC+∠EOF=210°,∴90°-x+180°-x=210°,∴x=30°,∴∠DOE=30°,故答案为:30°.根据垂直的定义得到∠COF=∠DOF=90°,根据角平分线的定义得到∠AOF=∠EOF,根据对顶角的性质得到∠BOD=∠DOE,设∠BOD=∠DOE=x,列方程即可得到结论.本题考查了对顶角、邻补角,角平分线的定义、垂线的定义以及角的计算,属于基础题型,比较简单.18.【答案】200【解析】解:设数轴上表示100,50,-100的点分别为A,B,C,数轴上任意一点为P,当P不与B重合时,PA+PB+PC>AC,当P与B重合时,PA+PB+PC=AC=100,故答案为:200.本题实质是在数轴上确定一点,使这点到表示100,50,-100的点的距离和最小,通过数轴可知,当该点与表示50的点重合时,距离和最小.本题考查数轴上三点之间距离和的最值,充分御用数形结合思想是解答此类题目的关键.19.【答案】解:(1)原式=-2-(-2)=-2+2=0;(2)原式=-1-[4-9×(-)]=-1-10=-11.【解析】(1)原式先计算除法运算,再计算加减运算即可求出值;(2)原式先计算乘方运算,再计算乘法运算,最后算加减运算即可求出值.此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.20.【答案】求汽车从甲地到乙地的路程【解析】解:(1)问题:求汽车从甲地到乙地的路程;故答案为:求汽车从甲地到乙地的路程;(2)设汽车从甲地到乙地的路程为xkm,则-=+,解得:x=450,答:汽车从甲地到乙地的路程为450km.(1)根据题意提出数学问题,满足题意即可;(2)设汽车从甲地到乙地的路程为xkm,由题意列出方程,求出方程的解即可得到结果.此题考查了一元一次方程的应用,弄清题意是解本题的关键.21.【答案】3.2x+2.6(6-x)=18 x+=6 3.2x=18-2.6(6-x)18-2.6(6-x) 2.6(6-x)=18-3.2x18-3.2x①③【解析】解:(1)①设小丽买了x千克的苹果,则她买橘子(6-x)千克.由题意得:3.2x+2.6(6-x)=18;故答案为:3.2x+2.6(6-x)=18;②i补全表格如下:单价(元/kg)质量(kg)金额(元)苹果 3.2 x 3.2x橘子 2.6 18-3.2x合计 6 18根据相等关系“所买苹果的质量+橘子的质量=6kg”,得方程:x+=6,故答案为:x+=6;ii补全表格如下:单价(元/kg)质量(kg)金额(元)苹果 3.2 x18-2.6(6-x)橘子 2.6 6-x 2.6(6-x)合计 6 18根据相等关系“苹果的单价×其质量=苹果购买金额”,得方程:3.2x=18-2.6(6-x),故答案为:3.2x=18-2.6(6-x).iii补全表格如下:单价(元/kg)质量(kg)金额(元)苹果 3.2 x 3.2x橘子 2.6 6-x 18-3.2x 合计618根据相等关系“橘子的单价×其质量=橘子购买金额”,得方程:2.6(6-x )=18-3.2x , 故答案为:2.6(6-x )=18-3.2x .(2)设苹果购买金额为y 元,所列方程正确的是①③, 故答案为:①③.(1)根据“苹果质量+橘子质量=6kg ,苹果单价×苹果质量=苹果购买金额和橘子的单价×其质量=橘子购买金额”填表、列出方程即可;(2)分别根据“苹果质量+橘子质量=6kg 和苹果单价×苹果质量=苹果购买金额”可得答案. 本题主要考查由实际问题抽象出一元一次方程,解题的关键是审题找出题中的未知量和所有的已知量,直接设要求的未知量或间接设一关键的未知量为x ,然后用含x 的式子表示相关的量,找出之间的相等关系列方程. 22.【答案】解:(1)原式=a -5a +3b +2a -4b=-2a -b ;(2)原式=2x 2-4xy -x 2+2xy=x 2-2xy ,当x =,y =-1时,原式=()2-2××(-1)=. 【解析】(1)直接去括号,进而合并同类项得出答案;(2)直接利用整式的加减运算法则分别化简合并同类项,进而把已知代入即可.此题主要考查了整式的加减运算,正确掌握相关运算法则是解题关键. 23.【答案】解:(1)去括号得:2x -4=6,移项得:2x =6+4, 合并同类项得:2x =10,系数化为1得:x =5,(2)方程两边同时乘以4得:2(x +1)-(3x -1)=4, 去括号得:2x +2-3x +1=4, 移项得:2x -3x =4-1-2, 合并同类项得:-x =1, 系数化为1得:x =-1. 【解析】(1)依次去括号,移项,合并同类项,系数化为1,即可得到答案, (2)依次去分母,去括号,移项,合并同类项,系数化为1,即可得到答案. 本题考查了解一元一次方程,正确掌握解一元一次方程的方法是解题的关键. 24.【答案】解:(1)如图所示,直线CD 即为所求;(2)如图所示,直线CE 即为所求. 【解析】(1)结合网格特点和平行线的判定作图即可得; (2)结合网格特点和垂线的定义作图即可得.此题主要考查了基本作图-应用与设计作图,解题的关键是掌握平行线的判定、垂线的定义. 25.【答案】34 2【解析】解:(1)(6×2+5×2+6×2)×(1×1) =(12+10+12)×1 =34×1 =34(cm 2)答:这个几何体的表面积为34cm 2; 故答案为:34;(2)如图所示:(3)若使该几何体主视图、俯视图不发生改变,可在从左数第2列前排小正方体上添加2个小正方体,故答案为:2.(1)将主视图、左视图、俯视图面积相加,再乘以2即可得;(2)根据三视图的概念求解可得;(3)若使该几何体主视图、俯视图不发生改变,可在从左数第2列前排小正方体上添加2个小正方体.此题主要考查了画三视图,关键是掌握在画图时一定要将物体的边缘、棱、顶点都体现出来,看得见的轮廓线都画成实线,看不见的画成虚线,不能漏掉.本题画几何体的三视图时应注意小正方形的数目及位置.26.【答案】30 30【解析】解:(1)①∵BC=20,N为BC中点,∴BN=BC=10.又∵M为AB中点,∴MB=AB=40.∴MN=MB-BN=40-10=30.故答案为30;②当BC=a时,AB=60+a,BN=a,MB=AB=30+a,∴MN=MB-BN=30.故答案为30;(2)平分理由:∵OM分别平分∠AOB,∴∠BOM=∠AOB=(∠AOC+∠BOC)=30°+∠BOC.又∵∠BOM=∠MON+∠BON=30°+∠BON,∴∠BON=∠BOC.∴ON平分∠BOC.故答案为30,30.(1)①由已知得到AB=80,根据线段中点求出MB和BN的值,计算MB-BN即可得结果;②分别用a表示出BN、MB,根据MN=MB-BN计算即可;(2)根据OM分别平分∠AOB,用∠BOC表示出∠BOM,再用∠BON表示出∠BOM,两个式子进行比较即可得出结论.本题主要考查线段中点的定义及性质、角平分线的定义及性质,掌握线段的和差本分、角的和差倍分是解题的关键.。