传热过程基础知识

合集下载

简单的传热学基础知识及在空调中的应用

简单的传热学基础知识及在空调中的应用
简单的传热学基础知识 及在空调中的应用
一、家用空调器中制冷剂的一般要求
• 制冷剂又称制冷工质,是制冷循环中的工 作介质,制冷剂在制冷机中循环流动,通 过自身热力状态的变化与外界发生能量交 换,从而实现制冷的目的。
• 当前,能用作制冷剂的物质有80多种,最 常用的是氨、氟里昂类、水和少数碳氢化 合物等。本世纪30年代氟里昂制冷剂的出 现,对制冷技术产生了推动作用。
高温高压制冷剂向周围空气环境散热 a.制冷剂—>铜管内壁:对流换热 b.铜管内壁—>铜管外壁及翅片:导热 c.铜管外壁及翅片—>周围大气环境:对流换热
• 高温高压制冷剂以过热蒸气状态进入冷凝器,在管内发 生降温及冷凝,从冷凝器入口到第一个液滴产生前,是 一个温度不断降低的过程;
• 从第一个液滴产生到最后一个气泡消失,是一个温度不 变的过程,在此过程中,制冷剂中含液量不断上升,含 气量不断下降;
生等温蒸发及升温过程;
• 从蒸发器入口到最后一个液滴消失前,是一个温度不变 的过程(理论上),在此过程中,制冷剂中含液量不断 下降,含气量不断上升;
• 从最后一个液滴消失到蒸发器出口,是一个升温过程。 • 总的说来,这是一个低温低压制冷剂液体在蒸发器中吸
热变成低温低压制冷剂气体的过程。
• 3 其他的传热过程 压缩机及配管等与环境的换热;
制冷剂,得到了广泛的应用。
二、制冷剂泄漏的危害
• 制冷剂对环境的主要影响: • 1 对臭氧层的破坏; • 2 温室效应(直接的或间接的)。 • 因氟氯碳化合物泄漏至同温层时,被太阳的紫外
线照射而分解,放出氯原子,与同温层中臭氧进 行连锁反应:
• CFXCLY CFXCLY-1+CL CL + O3 CLO + O2 CLO + O CL+ O2

导热基础必学知识点

导热基础必学知识点

导热基础必学知识点
1. 热传导:热量从高温区传导到低温区的过程。

热传导可以通过导热
机制(分子传导、电子传导和辐射传导)进行。

2. 热导率:物质传导热量的能力。

热导率越高,传热能力越高。

3. 热阻:物质对热传导的阻碍能力。

热阻越高,传热能力越低。

4. 热传导方程:描述热传导过程中温度分布的偏微分方程。

在稳态条
件下,热传导方程为焦耳定律,即热流密度等于热导率乘以温度梯度。

5. 导热系数:描述固体材料导热性能的物理量。

导热系数等于热导率
除以材料的厚度。

6. 热容量:物质吸收或释放的热量与温度变化之间的关系。

热容量越大,物质对热量的吸收或释放能力越强。

7. 热扩散:物质在受热时的体积膨胀现象。

热扩散系数描述了物质在
温度变化下的膨胀程度。

8. 热辐射:由热源发出的电磁辐射。

热辐射可以通过辐射传导方式进
行热传导。

9. 对流传热:通过流体介质(如气体或液体)的运动来实现热传输的
过程。

对流传热具有较高的传热效率。

10. 导热材料:具有较高热导率的材料,常用于热导设备或导热结构中,以实现高效的热传导。

常见的导热材料包括金属、陶瓷和导热塑
料等。

以上是导热基础必学的知识点,掌握了这些知识可以帮助理解热传导的基本原理和特性,对导热材料的选择和应用有一定的指导意义。

传热过程基础知识

传热过程基础知识

传热过程基础知识传热过程是一个物体或系统与其周围环境之间热量交换的过程。

热量是指能量的转移,可以通过辐射、传导和对流三种方式传递。

首先,我们来看辐射传热。

辐射传热是指物体通过电磁波的传播而向周围环境传递热量。

辐射传热不需要介质的存在,它可以在真空中传输热量。

这是因为所有物体都会产生热辐射,用一个术语叫做黑体辐射。

黑体辐射的强度与物体的温度有关,温度越高,辐射的能量越多。

例如,太阳发出的光和热就是一种辐射传热。

传导传热是指物体之间的热量通过分子或原子之间的碰撞传递。

这种传热方式通常发生在固体物体中,因为固体物体的分子或原子之间是紧密排列的。

热传导通常发生在热端和冷端之间存在温度差的物体中。

当物体的一部分受热后,分子或原子的振动能量会传递给相邻的分子或原子,从而传递热量。

对流传热是指液体或气体中的热量通过流体的运动和对流传递给周围环境。

对流传热通常包括自然对流和强制对流两种方式。

自然对流是指流体受热而形成的密度梯度引起的自发流动。

如在锅中烧开水时,底部热水会上升,而冷水会下降,形成对流循环。

强制对流是指通过外力的作用,如风或泵浦,使流体产生对流流动。

例如,空调中的风扇可以通过强制对流将室内的热空气排出室外,从而降低室内温度。

除了以上三种传热方式,还存在相变传热和混相传热。

相变传热是指物体在相变过程中释放或吸收热量。

当物体发生相变时,其温度保持不变,所吸收或释放的热量用于相变过程。

例如,冰块融化时,吸收的热量被用于将冰转化为水。

混相传热是指不同相(如气相和液相)之间的热量转移。

这种传热方式通常发生在液滴蒸发和冷凝过程中。

传热过程的速率可以通过热传导、辐射和对流传热的传热系数来衡量。

传热系数是指单位时间内单位面积上热量的传递速率与温度差的比值。

热传导传热系数取决于物体的导热性质,如热导率。

辐射传热系数取决于物体的辐射性质,例如发射率和吸收率。

对流传热系数取决于流体的流动性质,如流速和流体的粘度。

传热过程在许多实际应用中起着重要作用,如建筑物的供暖和空调、发动机的冷却、工业生产中的加热与冷却等。

流体传热原理概述

流体传热原理概述

流体传热原理概述导语:在日常生活和工业生产中,我们经常会遇到需要传热的情况。

而传热是一个非常重要的物理现象,涉及到热量的传递和受体的温度分布等问题。

本文将针对流体传热原理进行概述,帮助读者对这一领域有更深入的了解。

一、传热基础1.1 热传导热传导是指在物体内部通过微观粒子的热振动实现热量传递的过程。

热传导的速度受到物质的导热性质以及温度梯度的影响。

常见的导热材料包括金属、陶瓷等。

热传导可以通过傅里叶热传导定律来计算:q = -kA(dT/dx)其中 q 为热流量,k 为导热系数,A 为传热面积,(dT/dx) 为温度梯度。

1.2 辐射传热辐射传热是通过电磁波的辐射传递热量的过程,不需要介质来传递热量。

辐射传热的速度与物体的温度的四次方成正比,比如黑体辐射传热可以通过斯特藩-博尔兹曼定律来计算:q = εσA(T^4)其中 q 为热流量,ε 为发射率,σ 为斯特藩-博尔兹曼常数,A 为传热面积,T 为温度。

1.3 对流传热对流传热是指通过流体的运动实现热量传递的过程。

流体可以通过自然对流或强迫对流来传递热量。

对流传热的速度与流体性质(如导热系数、密度等)、流体运动速度以及传热面积等因素相关。

对流传热可以通过牛顿冷却定律来计算:q = hA(Ts - Ta)其中 q 为热流量,h 为传热系数,A 为传热面积,Ts 和 Ta 分别为传热面和流体的温度。

二、流体传热的机制2.1 管束传热管束传热是指在管道内流体与管道壁之间进行传热的过程。

流体通过与管道壁接触,通过对流和热传导进行热量传递。

管束传热广泛应用于工业领域,如换热器、锅炉等。

2.2 辐射传热辐射传热在流体传热中也起到了重要作用。

例如,在太阳能集热器中,太阳辐射直接照射到流体上,并使其升温。

2.3 相变传热相变传热是指物质在相变过程中释放或吸收潜热来进行热量传递的过程。

例如,水在沸腾过程中通过蒸汽释放热量。

三、流体传热的应用流体传热在日常生活和工业生产中有着广泛的应用。

传热学基础知识

传热学基础知识

传热学基础知识
嘿,朋友们!今天咱来聊聊传热学基础知识。

传热学啊,就像是生活中的一场奇妙旅行。

你想想看,冬天的时候,为啥我们在屋里就感觉暖和,到了外面就冻得直哆嗦呢?这就是传热在起作用呀!热量从屋里的暖气啊、空调啊这些热源,传到我们身上,让我们暖洋洋的。

这就好比是一场温暖的传递,暖气是那个热情的传递者,把温暖送给我们。

再说说夏天,太阳晒得厉害,我们会觉得热得不行。

这太阳的热量可不就通过传热来到我们身边啦!就好像一个调皮的小精灵,不停地往我们身上扑。

传热的方式有好几种呢!有一种叫热传导,就像是接力赛跑一样,热量一个接一个地传递下去。

比如说,你拿着一根金属棒,一头放在火上烤,过一会儿另一头也会变热,这就是热传导在起作用呀!是不是很神奇?
还有热对流,这就像是一群小伙伴在跳舞,带着热量一起动起来。

比如烧开水的时候,水受热会翻滚,热量就跟着水一起流动啦。

再有就是热辐射啦,这可厉害咯!太阳的热量就是通过热辐射传到地球上的,不需要任何介质,直接就过来啦,就像远方的朋友给你送来温暖的问候。

咱生活中很多事情都和传热学有关系呢!比如做饭的时候,锅把热量传给食物,让食物变熟;冬天盖厚被子保暖,就是阻止热量往外跑。

传热学好比是生活的一个小秘密,了解了它,你就能更好地理解很多现象啦!你说,这传热学是不是很有趣?它无处不在,影响着我们的生活呢!所以啊,我们可得好好琢磨琢磨它,让它为我们的生活服务呀!这就是传热学,一个看似普通却又无比重要的学问!。

第4-6次课:传热学基础知识和重要参数计算

第4-6次课:传热学基础知识和重要参数计算
干热性气候区,白天在太阳辐射作用下, 墙体外表面温度高于墙体内表面温度,到太 阳下山直至夜间,又低于内表面温度。
空调房间的隔热设计, 墙体内表面温度保持恒定, 外表面周期变化
在非稳态导热中,由于温度不稳定,围护机构不断吸收或释放热 量,即材料在导热的同时还伴随着蓄热量的变化,这是非稳态导 热区别与稳态导热的重要特点。非稳态导热计算极其繁琐,一般 可采取简化模型进行计算。Biblioteka t — 空气温度 C

(5) 对流换热系数(表面传热系数)
(Convection heat transfer coefficient)
h Φ ( A(t w t ))
t t Φ 1 ( hA ) Rh t t q 1 h rh
W (m
2
K)
2 对流(热对流)(Convection)
流体
液体和气体统称为“流体”,它们的特性是抗剪强度极小,外 形以容器为形。由于重力的作用或者外力的作用引起的冷热空 气的相对运动为对流。在建筑中,含空气的部件中有热量传进 、传出或者在其内部传递。
(1)定义:流体中温度不同的各部分之间,由于发生相对 的宏观运动而把热量由一处传递到另一处的现象。空 气的对流换热对建筑热环境有较大影响。 (2)对流换热:当流体流过一个物体表面时的热量传递 过程,它与单纯的对流不同,具有如下特点:

—— 当流体与壁面温度相差1度时、每单位壁面面积上、单位时间内所 传递的热量。影响h因素:流速、流体物性、壁面形状大小等
h的影响因素
h 不是一个常数,而是一个取决于许多因素的物 理量。对于建筑围护结构的表面需考虑的因素有: 气流状况(自然对流还是受迫对流)和壁面所处 位置(垂直或水平)。
(6) 对流换热系数h的计算方法(单位为W/m2· K)

热学热传导知识点总结

热学热传导知识点总结

热学热传导知识点总结热学是物理学的重要分支之一,研究物体内部和物体之间传递热量的规律。

热传导是热学中的基本过程,它通过热传导作用,在相互接触的物体之间进行热能交换和能量传递。

本文将对热学热传导相关的知识点进行总结。

一、热学基本概念1. 温度:物体内部微观粒子的平均动能的度量,是衡量物体热平衡状态的物理量。

2. 热量:物体间由于温度差而传递的能量。

3. 热传导:物体直接接触时,由于温度差异而产生的热量传递。

二、热传导的物质基础热传导的物质基础是材料内部的微观粒子的热运动。

热传导主要通过以下机制进行:1. 导热电子:在导体中,自由电子的热运动产生能量传递。

2. 晶格振动:在晶体中,原子和离子以震动传递能量。

3. 分子碰撞:在非金属物质中,分子之间的碰撞也能够传递热量。

三、热传导的基本定律热传导的过程遵循以下基本定律:1. 热传导定律:描述热量的传导和热流的关系。

热传导率与传导介质的性质有关。

2. 傅里叶定律:描述非恒定热传导的过程,热传导流量正比于温度梯度的上升或下降速率。

3. 热阻和热导:热阻是材料或结构对热传导的抵抗能力,热导是热传导性能的物理量。

四、热传导的影响因素热传导的速率受以下因素的影响:1. 材料的导热性:热导率是物质特性的属性,不同物质有不同的导热性能。

2. 材料的尺寸和形状:物体的尺寸对热传导速率有影响,如宏观尺寸的增大会增加热传导阻力。

3. 温度差:热传导速率与物体间的温度差正相关。

五、热传导的应用热传导在各个领域有广泛的应用,例如:1. 热管:利用容器内介质的热传导性能实现传热和温控。

2. 绝缘材料:通过降低材料的导热性能减少热量的传递,起到隔热保温的作用。

3. 温度传感器:利用热传导进行温度测量和控制。

六、热传导的改善与利用在一些实际应用中,我们需要改善热传导的性能或利用热传导。

1. 传热增强:通过改变热传导介质或增加界面接触以提高传热效果。

2. 热能回收:利用热传导将热能从废气、废水中回收,提高能源利用效率。

传热过程基础知识

传热过程基础知识

传热过程基础知识传热过程是物体之间的热能传递过程。

在自然界中,热能从高温物体传向低温物体,直到两者达到热平衡。

热传递可以通过三种主要方式进行:传导、对流和辐射。

传导是指热量通过物质内部的分子振动传递。

当一个物体受热时,其分子会加速振动,使周围分子受到影响并传递热能。

金属是一个很好的热导体,因为金属中的电子可以迅速传递热量。

相比之下,不导热的物质,如木材和空气,则传导热量较慢。

物体的形状、大小和组成对其导热性能也有影响。

对流是指通过流体运动传递热量。

当流体受热时,其分子会膨胀并导致流体的密度降低。

这会导致流体上升形成对流循环,使热能传递到周围环境中。

对流可以是自然对流或强制对流。

自然对流是指流体的升温和密度减小导致的自然流动。

强制对流是通过外部力量,如风扇或泵,强制使流体流动。

辐射是指通过电磁波传递热量。

所有物体在温度不为零时都会辐射热能。

这种辐射称为热辐射。

热辐射的强度与物体的温度有关,温度越高,热辐射越强。

辐射热量的传递不需要介质,可以在真空中传播。

例如,太阳向地球传输的热能就是通过辐射传递的。

除了这三种主要的热传递方式,热传递还受到其他因素的影响,如温度差异、热导率、表面积和距离等。

温度差异越大,热传递速度越快。

热导率是物质传导热量的能力,热导率越大,物质传热速度越快。

表面积越大,热传递速度越快。

距离越长,热传递速度越慢。

在实际应用中,传热过程的理解对于工程设计和能源利用非常重要。

例如,在建筑设计中,需要考虑如何减少热传递,以提高建筑的节能性能。

通过选择合适的绝缘材料、设计适当的建筑结构和采用有效的空调系统等措施,可以减少热能的传递。

在电子设备设计中,需要考虑散热问题,以确保设备长时间运行时不会过热。

通过设计散热装置和风道,可以有效地将热能散发到周围环境中。

总之,传热过程是物体之间热能传递的基础知识。

通过了解传导、对流和辐射的特点以及其他影响热传递的因素,我们可以更好地理解和应用热传递原理,从而改善能源利用效率、提高工程设计的节能性能。

传热学知识点总结考研真题

传热学知识点总结考研真题

传热学知识点总结考研真题一、传热学概念传热学是研究物体之间热量传递的学科,研究热量传递的基本规律和热传递过程的数学模型。

热传递是热量自高温物体传递到低温物体的过程,主要包括传导、对流和辐射三种方式。

二、传热学基本知识1. 热量传递的基本规律热力学第一定律和第二定律规定了热量传递的基本规律。

第一定律要求能量守恒,在热传递中热量从高温物体流向低温物体,使热能分布均匀。

第二定律限制了热量传递的方向,指出热量自热量大者传递到热量小者。

2. 传热的基本方式传导是通过物体内部分子热运动传递热量的方式,是当物体内部温度不均匀时,热量由高温区向低温区传递。

对流是液体或气体中分子受热膨胀上升,冷却后下沉的过程,是传热最常见的方式。

辐射是热能以电磁波的形式传递的方式,适用于真空或无透明物质的热传递。

3. 传热的数学模型传热的数学模型主要采用热传导方程和流体力学方程,通过数学公式和定理来描述传热过程,求解传热问题。

热传导方程描述了传导过程中热量的扩散规律,流体力学方程描述了流体传热过程中的动力学规律。

4. 传热的工程应用传热学在工程中有着广泛的应用,如热工程、制冷空调、化工工程、建筑工程等都离不开传热学的理论和方法。

热传递是很多工程中必不可少的过程,通过传热学的知识和方法可以提高工程的效率和质量。

三、传热学的研究内容1. 传热传质物理基础传热传质物理基础包括热力学、流体力学、传热学、传质学等多个学科知识,主要研究物体间热量传递的基本规律和热量传递过程的数学模型。

此外,也需要涉及热传导、对流传热、辐射传热等传热方式的研究。

2. 传热的数学模型与方法传热学研究中需要建立相应的数学模型,并通过数学方法来解决传热问题。

传热的数学模型可以分为定常传热和非定常传热,通过微分方程和积分方程来描述传热过程,并通过数值计算方法来求解传热问题。

3. 传热的实验方法与技术传热学研究中需要进行大量的实验,通过实验来验证传热理论和模型的正确性。

2 传热学基本知识

2  传热学基本知识

t = f ( x, y, z,τ )
t = f ( x, y , z )
• 如果在上式的基础上温度场内的温度变化仅 与两个或一个坐标有关, 与两个或一个坐标有关,则称为二维或一维 稳态温度场, 稳态温度场,即 • t = f (x, y ) 或 t = f ( y, z ) 或 t = f x, z
2.1.1 温度场 • 导热与物体内的温度场密切相关。温度场是某一时 导热与物体内的温度场密切相关。 刻空间中各点温度分布的总称。一般来说, 刻空间中各点温度分布的总称。一般来说,温度场 是空间坐标和时间的函数, 是空间坐标和时间的函数,即 • 上式表示物体内部温度在x、y、z三个方向和在时 上式表示物体内部温度在x 间上均发生变化的三维非稳态温度场。 间上均发生变化的三维非稳态温度场。如果温度场 不随时间变化, 不随时间变化,则上式变为
(
)
(3)湿度 (3)湿度
• 保温隔热性的多孔材料很容易吸收水分,吸水后,由于孔隙中充 保温隔热性的多孔材料很容易吸收水分,吸水后, 满了水,水导热系数大于空气导热系数, 满了水,水导热系数大于空气导热系数,加之在温度梯度的推动 下引起水分迁移而传递热量。 下引起水分迁移而传递热量。 • 结论:物质湿度越大,它的导热系数较大;反之,导热系数较小 。 结论:物质湿度越大,它的导热系数较大;反之, 所以,在寒冷地区保温隔热时要特别注意防潮。 所以,在寒冷地区保温隔热时要特别注意防潮。
2
传热学基本知识
2.1 2.2 2.3 2.4 稳定传热的基本概念 对流换热 辐射换热的基本概念 传热
2.1
稳定传热的基本概念
• 温度 • 宏观定义:表示物体冷热程度的物理量。 宏观定义:表示物体冷热程度的物理量。 • 微观定义:表示物体内部大量粒子热运动的剧烈程度,反 微观定义:表示物体内部大量粒子热运动的剧烈程度, 映了物体内粒子热运动平均动能的大小。 映了物体内粒子热运动平均动能的大小。 • 温标:温度的标尺 温标: • ①绝对温标:国际单位制规定热力学温度温标,符号为 , 绝对温标:国际单位制规定热力学温度温标,符号为T, 单位为K(开尔文),中文代号为开。 ),中文代号为开 单位为 (开尔文),中文代号为开。热力学温标规定纯水 三相点温度(即水的汽、 固三相平衡共存时的温度) 三相点温度(即水的汽、液、固三相平衡共存时的温度) 为基本定点,并指定为273.16K。 为基本定点,并指定为 。 • ②摄氏温标:实用温标,又称百分温标。它是把在标准大 摄氏温标:实用温标,又称百分温标。 气压下,纯水开始结冰的温度(冰点)定为零度, 气压下,纯水开始结冰的温度(冰点)定为零度,把纯水

传热过程的定义

传热过程的定义

传热过程的定义传热过程是指物体或系统间由于温度差异而引起的能量传递过程。

它是自然界中普遍存在的现象,主要包括导热、对流传热和辐射传热三种方式。

1. 导热:导热是指物体中颗粒之间的振动导致的能量传递方式。

导热是固体传热的主要方式,因为固体的颗粒间距相对较小,呈现紧密有序排列,使得能量传递较为顺畅。

在导热过程中,热量从高温区传递到低温区,热量的传递速度与物体的导热性质相关,以及与温度差异和距离等因素有关。

2. 对流传热:对流传热是指物体内部或物体表面由于流体的流动而导致的能量传递方式。

对流传热在气体和液体中较为明显,对固体则较少发生。

在对流传热过程中,热量通过流体的流动将热量从高温区传递到低温区。

对流传热受到流体性质、速度、温度差异、流动形式和流体状态等因素的影响。

3. 辐射传热:辐射传热是指由于物体内部或表面发射热辐射而进行的能量传递过程。

辐射传热是一种无需介质的传热方式,可以在真空中传递。

物体的温度决定了其辐射能量的大小,而辐射传热则取决于温度差异、表面性质和几何形状等因素。

辐射传热在太阳辐射和地球散热等过程中起着重要作用。

传热过程中还有一些其他重要的概念和参数:1. 热传导率:热传导率是衡量物质导热性质的物理量,表示单位面积上单位时间内由热传导引起的热量传递。

热导率高的物质传热效果好,如金属物质;热导率低则传热效果较差,如绝缘材料。

2. 热对流系数:热对流系数是衡量对流传热的物理量,表示单位面积上单位时间内通过对流传递的热量。

热对流系数与流体性质、速度、流体状态和流动形式等因素有关。

3. 辐射系数:辐射系数是表征物体辐射传热性质的物理量,表示单位面积上单位时间内通过辐射传递的热量。

辐射系数与物体表面性质和几何形状等因素有关。

4. 热传递方程:热传递方程是用于描述传热过程的数学模型,它根据热传导、对流和辐射等传热机制,通过热平衡原理建立起物体内部或物体与外部的热量传递关系。

热传递方程可以用来求解物体内部温度分布、传热速率和传热效率等问题。

传热学知识点

传热学知识点

传热学主要知识点1.热量传递的三种基本方式。

热量传递的三种基本方式:导热(热传导)、对流(热对流)和热辐射。

2.导热的特点。

a必须有温差;b物体直接接触;c依靠分子、原子及自山电子等微观粒子热运动而传递热量;d在引力场下单纯的导热一般只发生在密实的固体中。

3.对流(热对流)(Convection)的概念。

流体中(气体或液体)温度不同的各部分之间,山于发生相对的宏观运动而把热量由一处传递到另一处的现象。

4对流换热的特点。

半流体流过一个物体表面时的热量传递过程,它与单纯的对流不同,具有如下特点:;导热与热对流同时存在的复杂热传递过程b必须有直接接触(流体与壁面)和宏观运动;也必须有温差C壁面处会形成速度梯度很大的边界层5.牛顿冷却公式的基本表达式及其中各物理量的定义。

= (w)0 = q"A = Ah(t w -t x) w/m2h是对流换热系数单位w/(m:-k)g”是热流密度(导热速率),单位(W/m‘)0是导热量W&热辐射的特点。

a任何物体,只要温度高于0K,就会不停地向周围空间发出热辐射;b可以在真空中传播;c伴随能量形式的转变;d具有强烈的方向性;e辐射能与温度和波长均有关;f发射辐射取决于温度的4次方。

7.导热系数,表面传热系数和传热系数之间的区别。

导热系数:表征材料导热能力的大小,是一种物性参数,与材料种类和温度关。

表面传热系数:、流体与壁面温度相差1度时、每单位壁面面积上、单位时间内所传递的热量。

影响力因素:流速、流体物性、壁面形状大小等传热系数:是表征传热过程强烈程度的标尺,不是物性参数,与过程有关。

T (x, y, z )为标量温度场圆筒壁表面的导热速率①= -kA — = -k(27rrL) — dr dr垂直导过导热微分方程式的理论基础。

傅里叶定律+热力学第一定律导热与导出净热量(使用傅里叶定律)+微元产生的热量二微元的内能变化量。

导热微分方程(热 ' 2伙—)+-伙兰)+2伙岂)+厂兀, ■ ox ox dy dy oz ozdT ~d (k 是导热率一一导热系数)d 2Td 2T(可以用热扩散率的概第一章导热理论基础1傅立叶定律的基本表达式及其中各物理量的意义。

加热炉基础知识

加热炉基础知识

1.传热的基本方式及内容传热的基本方式有三种,它们是:①热传导;②对流;③热辐射。

2.热传导及其基本原理热量从物体中温度较高的部分传递到温度较低的部分或者传递到与之接触的温度较低的另一物体的过程称为热传导,简称导热,在纯导热过程中,物体的各部分之间不发生相对位移。

基础原理:气体的导热是气体分子作不规则热运动时相互碰撞的结果。

气体分子的与其温度有关,即高温区的分子运动速度比低温区的大,能量水平较高的分子与能量水平较低的分子相互碰撞的结果,热量就由高温处传到低温处,良好的导电体中有相当多的自由电子在品格之间运动,它们也能将热能从高温处传递到低温处。

而在非导电的固体中,导热是通过晶格结构的振动来实现的。

3.对流及热辐射的含义对流是指流体各部分质点发生相对位移而引起的热量传递过程,因而对流只能发生在流体中,在化工生产中常遇到的是流体流过固体表面时.热能由流体传到固体里面,或者由固体里面传入周围流体,这一过程称为对流传热。

热辐射当物质受热而引起其内部原子的复杂激动后.就会对外发射出辐射能。

这种能量是以电磁波的形式发射出来,并进行传播,当射到另一物体被吸收时,则又转变成热能.这种只与物体本身改变有关而引起的热射线的传播过程,称热辐射。

4.加热炉的辐射源1)火焰:悬浮着的游离炭。

2)烟气;Co2、H20、S02,N2等。

3)炉墙;炉墙温度高于炉管。

5.温度场一物体的内部.只要各点间有温度差存在,热就可以从高温度向低温度传导,即产生热流.而热流的大小,取决于物体内部的温度分布,物体(或空间)各点温度在任一瞬间的分布情况,称为温度场。

6.等温面温度相同的点所组成的面积为等温面.因为空间任一点不能同时有两个不同的温度.所以温度不同的等温面彼此不会相交。

7.导热系数导热系数表示物质的导热能力,是物质的物理性质之一,其数值常和物质的组成、结构、密度、压力和温度等有关。

8.固体的导热系数金属是良导电体.因而也是良好的导热体。

热传导与热辐射的知识点总结

热传导与热辐射的知识点总结

热传导与热辐射的知识点总结热传导和热辐射是热学领域中重要的基础概念,对于理解和应用于能源转换、材料科学、气候变化等领域具有重要意义。

本文将对热传导和热辐射的知识点进行总结。

一、热传导(Thermal Conduction)热传导是指热量在物质内部传递的过程,当物质的两个不同部分之间存在温度差时,热量会沿着温度梯度从高温区域传递到低温区域。

以下是热传导的几个重要知识点:1. 热传导定律:根据傅立叶热传导定律,热流密度(Q/A)正比于温度梯度(dT/dx)和热导率(k),即Q/A = -k(dT/dx),其中Q是热量,A是传热面积,x是热传导方向。

2. 热导率(Thermal Conductivity):热导率是物质对热传导的抵抗能力的度量。

不同物质的热导率不同,对于导热性能好的物质,热量会更快地传导。

热导率与物质本身的性质有关,如材料的密度、组成、结构等。

3. 热阻(Thermal Resistance):热阻是物质对热传导的阻碍程度的度量。

热阻与热导率成反比,即R = 1/k。

热阻越大,热传导越慢。

在热传导过程中,通过增加热导率或减小热阻,可以提高热传导效率。

4. 热扩散(Thermal Diffusion):热扩散是物质中热能由高温区向低温区传播的过程。

当物质中各点的温度趋于均衡时,热扩散停止。

热扩散速率与热导率、温度梯度和物质的热容量有关。

二、热辐射(Thermal Radiation)热辐射是热量通过电磁波的形式从物体表面传播的过程。

物体在一定温度下会发射热辐射,其频率与温度有关。

以下是热辐射的几个重要知识点:1. 热辐射定律(Stefan-Boltzmann Law):根据斯特藩-玻尔兹曼定律,热辐射的能量正比于物体表面的辐射率(ε)、表面积(A)和温度的四次方(T^4),即E = εσAT^4,其中ε为辐射率,σ为斯特藩-玻尔兹曼常数。

2. 黑体辐射(Blackbody Radiation):理想黑体是能够完全吸收并发射所有入射辐射的物体。

第一讲 传热基础知识

第一讲 传热基础知识

Q q A
式中 A──总传热面积,m2。
二、稳态与非稳态传热 非稳态传热 Q , q , t f x , y , z , 稳态传热
Q , q, t f x , y , z
t 0
三、冷热流体通过间壁的传热过程
T1 Q t2
对流 导热 对流 冷 流 体
式中 K──总传热系数,W/(m2·℃)或W/(m2·K); Q──传热速率,W或J/s; A──总传热面积,m2; tm──两流体的平均温差,℃或K。
2.4.2 热量衡算和传热速率方程间的关系
热流体 G1, T1,cp1,H1
t2 h2
冷流体 G2, t2,cp2,h1 T2 H2
无热损失: Q吸 Q放
t1
t T1 t2 T2 t1 A
t1 t 2 t m t1 ln t 2
t2
t1 T 1t 2
t 2 T2 t1
T1 t1 t t2 dt dA dT t t t1 T T2 t2
t1 T 1t 2
A
t 2 T2 t1
1)也适用于并流
2.4.6 壁温的计算
稳态传热 Q KAt m
T TW Tw tW tw t 1 b 1 1 A1 Am 2 A2
Q T 1 A1
tW
bQ TW Am
TW
tW
Q t 2 A2
1.大,即b/Am小,热阻小,tW=TW
2.当tW=TW,得
d1 1 1 b d1 1 d1 R1 R2 dm d2 2 d2 K 1
式中 R1、R2——传热面两侧的污垢热阻,m2·K/W。
列管换热器总传热系数K的经验数据

传热学知识点

传热学知识点

传热学主要知识点1.热量传递的三种基本方式。

热量传递的三种基本方式:导热(热传导)、对流(热对流)和热辐射。

2.导热的特点。

a 必须有温差;b 物体直接接触;c 依靠分子、原子及自由电子等微观粒子热运动而传递热量;d 在引力场下单纯的导热一般只发生在密实的固体中。

3.对流(热对流)(Convection)的概念。

流体中(气体或液体)温度不同的各部分之间,由于发生相对的宏观运动而把热量由一处传递到另一处的现象。

4对流换热的特点。

当流体流过一个物体表面时的热量传递过程,它与单纯的对流不同,具有如下特点:a 导热与热对流同时存在的复杂热传递过程b 必须有直接接触(流体与壁面)和宏观运动;也必须有温差c 壁面处会形成速度梯度很大的边界层 5.牛顿冷却公式的基本表达式及其中各物理量的定义。

[]W )(∞-=t t hA Φw []2m W )( f w t t h AΦq -==6. 热辐射的特点。

a 任何物体,只要温度高于0 K,就会不停地向周围空间发出热辐射;b 可以在真空中传播;c 伴随能量形式的转变;d 具有强烈的方向性;e 辐射能与温度和波长均有关;f 发射辐射取决于温度的4次方。

7.导热系数, 表面传热系数和传热系数之间的区别。

导热系数:表征材料导热能力的大小,是一种物性参数,与材料种类和温度关。

表面传热系数:当流体与壁面温度相差1度时、每单位壁面面积上、单位时间内所传递的热量。

影响h因素:流速、流体物性、壁面形状大小等。

传热系数:是表征传热过程强烈程度的标尺,不是物性参数,与过程有关。

常温下部分物质导热系数:银:427;纯铜:398;纯铝:236;普通钢:30-50;水:;空气:;保温材料:<;水垢:1-3;烟垢:。

8.实际热量传递过程:常常表现为三种基本方式的相互串联/并联作用。

9.复杂传热过程Upside surface: adiabaticDownside surface: adiabatic xai LL2L A/A/A/第一章导热理论基础1傅立叶定律的基本表达式及其中各物理量的意义。

传热过程基础知识

传热过程基础知识
虽然热对流是一种基本的传热方式,但由于热对流总 伴随热传导,要将二者分开处理是困难的。因此一般 不讨论单纯热对流,而着重讨论具有实际意义的对流 传热。
2020/10/29
6
5在空间的传递。
自然界中一切物体都在不停地发射辐射能,同时又不断地 吸收来自其它物体的辐射能,并将其转化为热能。物体之 间相互辐射和吸收能量的总结果,称为辐射传热。由于高 温物体发射的能量比吸收的多,而低温物体则相反,从而 使净热量从高温物体传递向低温物体。
导电固体:有许多的自由分子在晶格之间运动,正如这些 自由电子能传导电能一样,它们也能将热量从高温处传递 到低温区。
非导电固体:导热是通过晶格结构的振动(即原子、分子 在其平衡位置附近的振动)来实现的。物体中温度较高部分 的分子,因振动而与相邻的分子相碰撞,并将热能的一部 分传递给后者。
一般,通过晶格振动传递的热量比依靠自由电子迁移传递 的热量少,这就是良好的导电体也是良好导热体的原因。
❖纯金属:t↑,k↓ ❖金属: 纯度↑,k↑ 非金属:ρ,t ↑,k↑
〖说明〗
对大多数固体, k值与温度大致成线性关系:
k k0(1 t)
式中: k-固体在温度为 t℃时的导热系数,W/(m·℃) k0-固体在温度为 0℃时的导热系数,W/(m·℃) β-温度系数。 ❖ 大多数金属:β<0 ❖大多数非金属:β>0
因此,导热系数表征物体导热能力的大小,是物质的物性常
数之一。其大小取决于物质的组成结构、状态、温度和压强
等。
导热系数大小由实验测定,其数值随状态变化很大。
大 金属非金属固体液体气体 小
2020/10/29
17
5.3.3.1 固体的导热系数
金属:35~420W/(m·℃),非金属:0.2~3.0W/ (m·℃) 固体中,金属是最好的导热体。

3传热学基础知识

3传热学基础知识
(1)材料为铜,λ=375W/(m·K); (1)材料为钢,λ=36.4W/(m· K); (1)材料为铬砖,λ=2.32W/(m· K); (1)材料为硅藻土砖,λ=0.242W/(m· K)。
多层平壁导热问题
已知房屋的墙壁—白灰内层、水泥砂浆层、红砖主体层组成, 求通过墙体的传热量。 假设各层之间接触良好,可近似 认为结合面上各处温度相等
4、换热表面的几何因素: h相变 > h单相 内部流动对流换热:管内或槽内 外部流动对流换热:外掠平板、圆管、管束 5、流体的热物理性质对换热的影响:
热导率 [W / (m C)] 密度 [kg/m3 ] 比热容 c [J/ (kg C)] 动力粘度 [ N s m 2 ] 运动粘度 = [m 2 / s] 体胀系数 [1/K]
三维温度场: t = f (x, y, z, ) 三维导热 特例:一维稳态导热 t = f (x)
t
(二)等温面与等温线


等温面:同一时刻、温度场中所有温度相同的点连 接起来所构成的面 等温线:用一个平面与各等温面相交,在这个平面 上得到一个等温线簇
等温面与等温线的特点:
(1) 温度不同的等温面或等温线彼此不能相交 (2) 在连续的温度场中,等温面或等温线不会中断, 它们或者是物体中完全封闭的曲面(曲线), 或者就终止与物体的边界上
二、热对流
定义:流体中(气体或液体)温度不同的 各部分之间,由于发生相对的宏观运动而 把热量由一处传递到另一处的现象。 若热对流过程使具有质量流量G的流体 由温度t1处流至温度t2处,则此热对流过程 传递的热流量为:
Φ = Gcp (t2 1 ) t [W ]
对流换热
对流换热:流体与固体壁直接接触时所发生的热量 传递过程
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

间 壁
热流 方向
对流 导热 对流
现讨论典型的间壁式换热器结构及其操作原理
1.套管式换热器 由直径不同的两根圆管组成的同 心套管。一种流体在内管中流动, 另一种流体在套管的环隙中流动, 两流体是通过内管壁面进行换热。
每一段套管称一程。程与程之间一般是上下排列,固定在 管架上。若所需传热面积较大,则可用数排并列,各排均 与总管连接而并联使用。 优点:采用标准管子与管件。构造简单,加工方便,排数和 程数伸缩性大,可距需要增减。适当地选择内、外管的直径, 可使两种流体都达到较高流速,从而提高传热系数;两流体 可始终以逆流方向流动,平均温度差最大。 缺点:接头热过程,往往不是上述三种基本方式单独出 现,而是两种或三种传热的组合,而又以其中一种或两种 方式为主。
5.1.3 典型的传热设备
实现两流体换热过程的设备称为换热器
化工生产中遇到的多是两流体间的热交换。热交换是指热 流体经固体壁面(间壁)将热量传给冷流体的过程。
热流体
冷流体
冷、热流体被间壁隔开,它们分 别在壁面两侧流动。此壁面即构 成间壁式换热器。热由热流体以 对流方式传递到壁面一侧,通过 间壁的导热,在由壁面另一侧以 对流形式传递到冷流体。
虽然热对流是一种基本的传热方式,但由于热对流总 伴随热传导,要将二者分开处理是困难的。因此一般 不讨论单纯热对流,而着重讨论具有实际意义的对流 传热。
5.1.2.3.热辐射
定义:因热的原因而产生的电磁波在空间的传递。 自然界中一切物体都在不停地发射辐射能,同时又不断地 吸收来自其它物体的辐射能,并将其转化为热能。物体之 间相互辐射和吸收能量的总结果,称为辐射传热。由于高 温物体发射的能量比吸收的多,而低温物体则相反,从而 使净热量从高温物体传递向低温物体。 特点: 可在真空中传播 能量传递同时伴随有能量的转换 任何物体只要在绝对零度以上,都能发射辐射能,但是只 有在物体温度较高时,热辐射才能成为主要的传热方式。
流动的原因不同,热对流的规律也不同。在强制对流的同 时常常伴随有自然对流。
化工生产中,常遇到的并非是单纯的热对流方式,而 是流体流过固体表面时发生的热对流和热传导联合作 用的传热过程,即热由流体传递到固体表面(或反之)的 过程,通常将它称为对流传热(也称给热)。其特点是靠 近固体壁面附近的流体中依靠热传导方式传热,而在 流体主体中则主要依靠对流方式传热。 可见,对流传热与流体流动状况密切相关。
5.1.2.2.热对流(对流)
定义:由于流体质点发生相对位移而引起的热量传递过程 特点: 热对流只发生在流体中。 流体各部分间产生相对位移 产生对流的原因 由于流体内部温度不同形成密度的差异,在浮力的作用下 产生流体质点的相对位移,使轻者上浮,重者下沉,称为 自然对流; 由于泵、风机或搅拌等外力作用而引起的质点强制运动, 称为强制对流。
2.列管式换热器
为了改变套管式换热器传热 面积小,设备不紧凑的状况, 常将若干细管组成的管束放 在一大的外管中,这种换热 器称为列管式换热器 。
组成:壳体、管束、管板和封头等部分。
一种流体由封头的进口管进入,流经封头与管板的空间分配 至各管内,从另一端封头的出口管流出。另一种流体则由壳 体的接管流入,在壳体与管束间的空隙流动中通过管束表面 与管束内流体换热,然后从壳体的另一端接管排出。为增加 流体湍动程度,通常壳体内安装若干与管束垂直的折流档板。
✓液体: ✓一种观点认为它定性地和气体类似,只是液体分子间的距 离比较近,分子间的作用力对碰撞过程的影响比气体大得 多,因而更复杂。 ✓另一种观点认为其导热机理类似于非导电固体,即主要依 靠原子、分子在其平衡位置附近的振动,只是振动的平衡 位置间歇地发生移动。
✓总的来说,关于导热过程的微观机理,目前仍不很清楚。 本章只讨论导热现象的宏观规律。
发生热传导的条件是有温度差存在,其结果是热量从高温 部分传向低温部分。
从微观角度看,气体、液体、导电固体和非导电固体的机 理各不相同。
气体:是气体分子做不规则热运动时相互碰撞的结果。气 体分子的动能与其温度有关,高温区的分子运动速度比低 温区的大。热量水平较高的分子与热量水平较低的分子相 互碰撞的结果,热量就由高温区传递到低温区。
流体流经管束的过程,称为流经管程,将该流体称为管程 (管方)流体;
流体流经壳体环隙的过程,称为流经壳程,将该流体称为壳 程(壳方)流体。
若流体只在管程内流过一次的,称为单管程;只在壳程内 流过一次的,称为单壳程。
导电固体:有许多的自由分子在晶格之间运动,正如这些 自由电子能传导电能一样,它们也能将热量从高温处传递 到低温区。
非导电固体:导热是通过晶格结构的振动(即原子、分子在 其平衡位置附近的振动)来实现的。物体中温度较高部分的 分子,因振动而与相邻的分子相碰撞,并将热能的一部分 传递给后者。
一般,通过晶格振动传递的热量比依靠自由电子迁移传递 的热量少,这就是良好的导电体也是良好导热体的原因。
第五章 传热过程基础
5.1 传热过程导论 物体或者系统内部由于温度不同而使热量发生转移的过程, 称为热量的传递,简称传热。根据热力学第二定律,只要 有温度差就将有热量自发地从高温处传到低温处,因此传 热是自然界和工程技术领域中普遍存在的一种物理现象。
5.1.1 传热在化工生产中的应用 化学工业与传热问题更为密切,无论是化学反应过程,还 是物理性操作过程,几乎都伴有热量的引入或导出。因此, 传热是重要的化工单元操作之一,其应用主要包括以下几
1. 2.对设备或管道进行保温、隔热,以减少热量(或冷量)损
失。 3.合理使用热源,进行热量的综合回收利用。
5.1.2 传热的基本方式
根据传热的机理不同, 5.1.2.1.热传导(导热) 定义:热量从物质中温度较高的部分传递到温度较低的部 分,或者从高温物质传递到与之相邻的低温物质的热量传 递现象。 特点: 由于物质微观粒子的热运动而引起的热量传递,在传热方 向上无物质的宏观位移。 存在于固体、静止流体及滞流流体中。
相关文档
最新文档