[物理]高电压技术-第1章气体的绝缘特性与介质的电气强度终

合集下载

高电压技术

高电压技术
第一篇 电介质的电气强度
电介质在电气设备中作为绝缘材料使用,按其 物质形态,可分为: 气体介质 液体介质
固体介质
在电气设备中: 外绝缘: 一般由气体介质(空气)和固体介质(绝缘子) 联合构成。 内绝缘: 一般由固体介质和液体介质联合构成。
在电气作用下,电介质中出现的电气现象可分
为两大类:
电子数.
设外界光电离因素在阴极表面产生了一个自由电 子,此电子到达阳极表面时由于 过程,电子总数 增至 ed 个。因在对 系数进行讨论时已假设每次电 离撞出一个正离子,故电极空间共有( ed -1)个 正离子。由系数 的定义,此( ed -1)个正离子 在到达阴极表面时可撞出 (ed -1)个新电子,这 些电子在电极空间的碰撞电离同样又能产生更多的
带电粒子在空气中的运动
• 自由行程长度 单位行程中的碰撞次数的倒数为该粒子的平均 自由行程长度。 粒子的自由行程长度等于或大于某一距离x的 x 概率为 P( x) e • 带电粒子的迁移率 带电粒子的速度和场强的比值 v/E • 扩散
带电粒子的产生
产生带电粒子的物理过程称为电离。 原子中电子在外界因素的作用下可跃迁到能级较高的 外层轨道,称之为激励,所需的能量称为激励能。 如果原子获得的外加能量足够大,电子还可以跃迁到 更远的轨道上去,甚至摆脱原子核的束缚,成为自由电子。 使基态原子或分子中最松弛的那个电子电离出来所需的最小 能量称为电离能。
电子崩的形成
外界电离因子在阴极附 近产生了一个初始电子,如 果空间电场强度足够大,该 电子在向阳极运动时就会引 起碰撞电离,产生一个新的 电子,初始电子和新电子继 续向阳极运动,又会引起新 的碰撞电离,产生更多电子。
图1-4 电子崩的示意图
依此类推,电子将按照几何级数不断增多,类

【VIP专享】高电压技术知识

【VIP专享】高电压技术知识
考虑了空间电荷对原有电场的影响和空间光电离的作用,适用两者乘积大于 0.26cm 时的情况 6、均匀电场与不均匀电场的划分 以最大场强与平均场强之比来划分。 7、极不均匀电场中的电晕放电 电晕放电的过程、起始场强、放电的极性效应 8、冲击电压作用下气隙的击穿特性 雷电和操作过电压波的波形 冲击电压作用下的放电延时与伏秒特性 50%击穿电压的概念 9、电场形式对放电电压的影响 均匀电场无极性效应、各类电压形式放电电压基本相同、分散性小 极不均匀电场中极间距离为主要影响因素、极性效应明显。 10、电压波形对放电电压的影响 电压波形对均匀和稍不均匀电场影响不大
6.培养学生观察、思考、对比及分析综合的能力。过程与方法1.通过观察蚯蚓教的学实难验点,线培形养动观物察和能环力节和动实物验的能主力要;特2征.通。过教对学观方察法到与的教现学象手分段析观与察讨法论、,实对验线法形、动分物组和讨环论节法动教特学征准的备概多括媒,体继课续件培、养活分蚯析蚓、、归硬纳纸、板综、合平的面思玻维璃能、力镊。子情、感烧态杯度、价水值教观1和.通过学理解的蛔1虫.过观适1、察于程3观阅 六蛔寄.内列察读 、虫生出蚯材 让标容生3根常蚓料 学本教活.了 据见身: 生,师的2、解 问的体巩鸟 总看活形作 用蛔 题线的固类 结雌动态业 手虫 自形练与 本雄学、三: 摸对 学动状习人 节蛔生结4、、收 一人 后物和同类 课虫活构请一蚯集 摸体 回并颜步关 重的动、学、蚓鸟 蚯的 答归色学系 点形教生生让在类 蚓危 问纳。习从 并状学理列学平的害 题线蚯四线人 归、意特出四生面体以形蚓、形类 纳大图点常、五观玻存 表及动的鸟请动文 本小引以见引、察璃现 ,预物身类 3学物明 节有言及的、导巩蚯上状 是防的体之生和历 课什根蚯环怎学固蚓和, 干感主是所列环史 学么据蚓节二样生练引牛鸟 燥染要否以举节揭 到不上适动、区回习导皮类 还的特分分蚯动晓 的同节于物让分答。学纸减 是方征节布蚓物起 一,课穴并学蚯课生上少 湿法。?广的教, 些体所居归在生蚓前回运的 润;4泛益学鸟色生纳.靠物完的问答动原 的4蛔,处目类 习和活环.近在成前题蚯的因 ?了虫以。标就 生体的节身其实端并蚓快及 触解寄上知同 物表内特动体结验和总利的慢我 摸蚯生适识人 学有容点物前构并后结用生一国 蚯蚓在于与类 的什,的端中思端线问活样的 蚓人飞技有 基么引进主的的考?形题环吗十 体生行能着 本特出要几变以动,境?大 节活的1密 方征本“特节化下物.让并为珍 近习会形理切 法。课生征有以问的小学引什稀 腹性态解的 。2课物。什游题主.结生出么鸟 面和起结蛔关观题体么戏:要利明蚯?类 处适哪构虫系察:的特的特用确蚓等 ,于些特适。蛔章形殊形征板,这资 是穴疾点于可虫我态结式。书生种料 光居病是寄的们结构,五小物典, 滑生?重生鸟内学构,学、结的型以 还活5要生类部习与.其习巩鸟结的爱 是如原活生结了功颜消固类构线鸟 粗形何因的存构腔能色化练适特形护 糙态预之结的,肠相是系习于点动鸟 ?、防一构现你动适否统。飞都物为结蛔。和状认物应与的行是。主构虫课生却为和”其结的与题、病本理不蛔扁的他构特环以生?8特乐虫形观部特8征境小理三页点观的动位点梳相组等、这;,哪物教相,理适为方引些2鸟,育同师.知应单面导鸟掌类结了;?生识的位学你握日构解2互.。办特生认线益特了通动手征观识形减点它过,抄;察吗动少是们理生报5蛔?物,与的解.参一了虫它和有寄主蛔与份解结们环些生要虫其。蚯构都节已生特对中爱蚓。会动经活征人培鸟与飞物灭相。类养护人吗的绝适这造兴鸟类?主或应节成趣的为要濒的课情关什特临?就危感系么征灭来害教;?;绝学,育,习使。我比学们它生可们理以更解做高养些等成什的良么两好。类卫动生物习。惯根的据重学要生意回义答;的3.情通况过,了给解出蚯课蚓课与题人。类回的答关:系线,形进动行物生和命环科节学动价环值节观动的物教一育、。根教据学蛔重虫点病1.引蛔出虫蛔适虫于这寄种生典生型活的线结形构动和物生。理二特、点设;置2.问蚯题蚓让的学生生活思习考性预和习适。于穴居生活的形态、结构、生理等方面的特征;3.线形动物和环节动物的主要特征。

高电压技术(赵智大)1-2章总结讲诉

高电压技术(赵智大)1-2章总结讲诉

绪论高电压技术是一门重要的专业技术基础课;随着电力行业的发展,高压输电问题越来越得到人们的重视;高电压、高场强下存在着一些特殊的物理现象;高电压试验在高电压工程中起着重要的作用。

气体的绝缘特性与介质的电气强度研究气体放电的目的:了解气体在高电压(强电场)作用下逐步由电介质演变成导体的物理过程掌握气体介质的电气强度及其提高方法高压电气设备中的绝缘介质有气体、液体、固体以及其它复合介质。

气体放电是对气体中流通电流的各种形式统称。

由于空气中存在来自空间的辐射,气体会发生微弱的电离而产生少量的带电质点。

正常状态下气体的电导很小,空气还是性能优良的绝缘体;在出现大量带电质点的情况下,气体才会丧失绝缘性能。

自由行程长度单位行程中的碰撞次数Z的倒数λ即为该粒子的平均自由行程长度。

()λ-=xexP令x=λ,可见粒子实际自由行程长度大于或等于平均自由行程长度的概率是36.8%。

带电粒子的迁移率k=v/E它表示该带电粒子单位场强(1V/m)下沿电场方向的漂移速度。

电子的质量比离子小得多,电子的平均自由行程长度比离子大得多热运动中,粒子从浓度较大的区域运动到浓度较小的区域,从而使分布均匀化,这种过程称为扩散。

电子的热运动速度大、自由行程长度大,所以其扩散速度比离子快得多。

产生带电粒子的物理过程称为电离,是气体放电的首要前提。

光电离i W h ≥νc λν=气体中发生电离的分子数与总分子数的比值m 称为该气体的电离度。

碰撞电离附着:当电子与气体分子碰撞时,不但有可能引起碰撞电离而产生出正离子和新电子,而且也可能会发生电子与中性分子相结合形成负离子的情况。

电子亲合能:使基态的气体原子获得一个电子形成负离子时所放出的能量,其值越大则越易形成负离子。

电负性:一个无量纲的数,其值越大表明原子在分子中吸引电子的能力越大带电粒子的消失1到达电极时,消失于电极上而形成外电路中的电流2带电粒子因扩散而逸出气体放电空间3带电粒子的复合复合可能发生在电子和正离子之间,称为电子复合,其结果是产生一个中性分子;复合也可能发生在正离子和负离子之间,称为离子复合,其结果是产生两个中性分子。

高电压技术——(一)

高电压技术——(一)
平行平板电极的电场
《高电压技术》第一讲 30
第一章 气体放电的基本物理过程
第二节 均匀电场中气体击穿的发展过程
1、非自持放电和自持放电
图1-2 测定气体中电 流的回路示意图
图1-3 气体中电流和电压的关 系——伏安特性曲线
《高电压技术》第一讲 31
第一章 气体放电的基本物理过程
实验分析结果
➢ 当U<Ua
2)定性分析: 气压越低, 温度越高,扩散越快。
结论:电子的热运动速度大、自由行程长度大,所以其 扩散速度比离子快得多。
《高电压技术》第一讲 16
第一章 气体放电的基本物理过程
第一节 带电粒子的产生和消失 1.1.2 带电粒子的产生
(1)原子的电离和激励
(2) 电离的四种形式
——按引起电离的外部能量形式不同,分为: 1)光电离 2)热电离 3)碰撞电离 4)电极表面电离
《高电压技术》第一讲 24
第一章 气体放电的基本物理过程
第一节 带电粒子的产生和消失
1.1.3 负离子的产生
➢ 附 着: 当电子与气体分子碰撞时,不但有可能引起碰撞电离而产
生出正离子和新电子,而且也可能会发生电子与中性分子 相结合形成负离子的情况。 ➢ 负离子产生的作用
负离子的形成并未使气体中带电粒子的数目改变,但却能 使自由电子数减少,因而对气体放电的发展起抑制作用。
定义:电子或离子与气体分子碰撞,将电场能传递给气体分子
引起的电离。它是气体中产生带电粒子的最重要的方式,主要是 由电子完成。
条件:电子获得加速后和气体分子碰撞时,把动能传给后者,
如果动能大于或等于气体分子的电离能Wi,该电子就有足够的能 量完成碰撞电离。碰撞电离时应满足以下条件:

[物理]高电压技术-第1章气体的绝缘特性与介质的电气强度终

[物理]高电压技术-第1章气体的绝缘特性与介质的电气强度终
引入系数。
1.1.3 电子崩与汤逊理论
设外界光电离因素在阴极表面产生了一个自由电子,此 电子到达阳极表面时由于 过程,电子总数增至 ed个。因在 对 系数进行讨论时已假设每次电离撞出一个正离子,故电
d e -1) 极空间共有(e -1)个正离子。由系数 的定义,此( d e -1)个新电子,这 个正离子在到达阴极表面时可撞出(
产生两个中性分子。
1.1.3 电子崩与汤逊理论
气体放电现象与规律因气体的种类、气压和间隙中电场的均匀度而异。 但气体放电都有从电子碰撞电离开始发展到电子崩的阶段。
1、放电的电子崩阶段
(1)非自持放电和自持放电的不同特点 宇宙射线和放射性物质的射线会使气体发生微弱的电离而产生少量带电质点;
另一方面正、负带电质点又在不断复合,使气体空间存在一定浓度的带电质
研究气体放电的目的:
了解气体在高电压(强电场)作用下逐步由电介质 演变成导体的物理过程 掌握气体介质的电气强度及其提高方法
1.1 气体放电的基本物理过程 1.2 气体介质的电气强度 1.3 固体绝缘表面的气体沿面放电
1.1 气体放电的基本物理过程
高压电气设备中的绝缘介质有气体、液体、固体以及其
1.1.1 带电质点的产生
1.1.2 带电质点的消失
1.1.3 电子崩与汤逊理论
1.1.4 巴申定律与适用范围
1.1.5 不均匀电场中的气体放电
1.1.1 带电质点的产生
气体放电是对气体中流通电流的各种形式统称。 由于空气中存在来自空间的辐射,气体会发生微弱 的电离而产生少量的带电质点。 正常状态下气体的电导很小,空气还是性能优良的 绝缘体;
x
(1-9)
na n0e
d

高电压技术(赵智大)1-2章总结.(DOC)

高电压技术(赵智大)1-2章总结.(DOC)

绪论高电压技术是一门重要的专业技术基础课;随着电力行业的发展,高压输电问题越来越得到人们的重视;高电压、高场强下存在着一些特殊的物理现象;高电压试验在高电压工程中起着重要的作用。

气体的绝缘特性与介质的电气强度研究气体放电的目的:了解气体在高电压(强电场)作用下逐步由电介质演变成导体的物理过程掌握气体介质的电气强度及其提高方法高压电气设备中的绝缘介质有气体、液体、固体以及其它复合介质。

气体放电是对气体中流通电流的各种形式统称。

由于空气中存在来自空间的辐射,气体会发生微弱的电离而产生少量的带电质点。

正常状态下气体的电导很小,空气还是性能优良的绝缘体;在出现大量带电质点的情况下,气体才会丧失绝缘性能。

自由行程长度单位行程中的碰撞次数Z的倒数λ即为该粒子的平均自由行程长度。

()λ-=xexP令x=λ,可见粒子实际自由行程长度大于或等于平均自由行程长度的概率是36.8%。

带电粒子的迁移率k=v/E它表示该带电粒子单位场强(1V/m)下沿电场方向的漂移速度。

电子的质量比离子小得多,电子的平均自由行程长度比离子大得多热运动中,粒子从浓度较大的区域运动到浓度较小的区域,从而使分布均匀化,这种过程称为扩散。

电子的热运动速度大、自由行程长度大,所以其扩散速度比离子快得多。

产生带电粒子的物理过程称为电离,是气体放电的首要前提。

光电离i W h ≥νc λν=气体中发生电离的分子数与总分子数的比值m 称为该气体的电离度。

碰撞电离附着:当电子与气体分子碰撞时,不但有可能引起碰撞电离而产生出正离子和新电子,而且也可能会发生电子与中性分子相结合形成负离子的情况。

电子亲合能:使基态的气体原子获得一个电子形成负离子时所放出的能量,其值越大则越易形成负离子。

电负性:一个无量纲的数,其值越大表明原子在分子中吸引电子的能力越大带电粒子的消失1到达电极时,消失于电极上而形成外电路中的电流2带电粒子因扩散而逸出气体放电空间3带电粒子的复合复合可能发生在电子和正离子之间,称为电子复合,其结果是产生一个中性分子;复合也可能发生在正离子和负离子之间,称为离子复合,其结果是产生两个中性分子。

《高电压技术一》PPT课件

《高电压技术一》PPT课件

2、在电场的作用下,电介质中出现的电气现象: 弱电场——电场强度比击穿场强小得多 如:极化、电导、介质损耗等。 强电场——电场强度等于或大于放电起始场 强或击穿场强: 如:放电、闪络、击穿等。
强电场下的放电、闪络、击穿等电气现象是 我们本篇所要研究的主要内容。
3、几个基本概念
击穿:在电场的作用下,电介质由绝缘状态突变为 良导电状态的过程。 放电:特指气体绝缘的击穿过程。
电气设备中常用的气体介质 : 空气、压缩的高电气强度气体(如SF6) 纯净的、中性状态的气体是不导电的,只有气体中出现
了带电粒子(电子、正离子、负离子)后,才可能导电, 并在电场作用下发展成各种形式的气体放电现象。
辉光放 火花放电(雷闪)

大气压力下。
气压较低, 电源功率较小时, 电源功率很小时, 间隙间歇性击穿, 放电充满整个间隙。 放电通道细而明亮。
称为气体的电气强度,通常称之为平均击穿场强。
击穿场强是表征气体间隙绝缘性能的重要参数。
1、电介质的分类
按物质形态分:
➢气体电介质 ➢液体电介质 ➢固体电介质 其中气体最常见。气体介质同其它介质相比,具有在 击穿后完全的绝缘自恢复特性,故应用十分广泛。
按在电气设备中所处位置分:
外绝缘: 一般由气体介质(空气)和固体介质(绝缘子 )联合构成。 内绝缘: 一般由固体介质和液体介质联合构成。
ห้องสมุดไป่ตู้
第一节 带电粒子的产生和消失
(2)电离的四种形式
• 电子要脱离原子核的束缚成为自由电子,则必须给予其能量。能量来源的不同 带电粒子产生的方式就不同。
• 因此,根据电子获得能量方式的不同,带电粒子产生的方式可分为以下几种 。
第一节 带电粒子的产生和消失

高电压技术电介质的电气强度PPT课件

高电压技术电介质的电气强度PPT课件
和陡度。 电晕放电在静电除尘、静电喷涂、臭
氧发生器等方面有广泛的应用。
第43页/晕放电时,空间电荷对放电的
影响已得到关注。由于高场强电极极性 的不同,空间电荷的极性也不同,对放 电发展的影响也就不同,这就造成了不 同极性的高场强电极的电晕起始电压的 不同,以及间隙击穿电压的不同,称为 极性效应。
第37页/共149页
• 均匀电场是一种少有的特例,在实际电 力设施中常见的却是不均匀电场。
• 为了描述各种结构的电场不均匀程度, 可引入一个电场不均匀系数f,表示为:
f Emax Ev
• f<2时为稍不均匀电场, f>4属不均匀电场。
第38页/共149页
一、电晕放电 在极不均匀场中,当电压升高到一
第17页/共149页
(1)在I-U曲线的OA段: 气隙电流随外施电压的提高而增大,
这是因为带电质点向电极运动的速度加 快导致复合率减小。当电压接近 时,U A 电流趋于饱和,因为此时由外电离因素 产生的带电质点全部进入电极,所以电 流值仅取决于外电离因素的强弱而与电 压无关
第18页/共149页
(2)在I-U曲线的B、C点: 电压升高至 UB 时,电流又开始增
第5页/共149页
第一节 带电粒子的产生和消失
一、带电粒子在气体中的运动 1.自由行程长度
某粒子在单位行程中的碰撞次数Z的 倒数λ称为该粒子的平均自由行程长度。
2.带电粒子的迁移率 v:粒子沿着电场方向 漂移的速度。 E: 电场强度。
k v E
第6页/共149页
3.扩散 在热运动的过程中,粒子会从浓度较大
U0
B( pd)
ln
A( pd)
ln(1
1
)
第30页/共149页

高电压技术第一章课件.ppt

高电压技术第一章课件.ppt
• 这些电离强度和发 展速度远大于初始
电子崩的二次电子
崩不断汇入初崩通
道的过程称为流注。
流注条件
• 流注的特点是电离强度很大和传播速度很快, 出现流注后,放电便获得独立继续发展的能 力,而不再依赖外界电离因子的作用,可见 这时出现流注的条件也就是自持放电的条件。
• 流注时初崩头部的空间电荷必须达到某一个临界 值。对均匀电场来说,自持放电条件为:
n
n0
e
dx
0
n n0ed
• 途中新增加的电子数或正离子数应为:
n na n0 n0 (ed 1)
• 将等号两侧乘以电子的电荷qe ,即得 电流关系式::
I I0ed I0 n0qe
一旦除去外界电离因子?
(三)自持放电与非自持放电
在I-U曲线的BC段 一旦去除外电离因素,
气隙中电流将消失。 外施电压小于U0时 的放电是 非自持放 电。
• 复合可能发生在电子和正离子之间,称 为电子复合,其结果是产生一个中性分 子;
• 复合也可能发生在正离子和负离子之间, 称为离子复合,其结果是产生两个中性 分子。
气体放电的基本理论
• 汤逊理论 • 流注理论 • 巴申定律
一 汤逊气体放电理论
1. 电子崩
• 电子崩的形成过程 • 碰撞电离和电子崩引起的电流 • 碰撞电离系数
一、带电粒子在气体中的运动
(一)自由行程长度
气体中存在电场时, 粒子进行 热运动和 沿电场定向运动
• 各种粒子在气体中运动时 不断地互相碰撞,任一粒 子在1cm的行程中所遭遇 的碰撞次数与气体分子的 半径和密度有关。
• 单位行程中的碰撞次数Z 的倒数λ
–即为该粒子的平均自由行 程长度。
二、带电粒子的产生

高电压技术复习资料要点

高电压技术复习资料要点

第一章电介质的电气强度1.1气体放电的基本物理过程1.高压电气设备中的绝缘介质有气体、液体、固体以及其他复合介质。

2.气体放电是对气体中流通电流的各种形式统称。

3.电离:指电子脱离原子核的束缚而形成自由电子和正离子的过程。

4.带电质点的方式可分热电离、光电离、碰撞电离、分级电离。

5.带电质点的能量来源可分正离子撞击阴极表面、光电子发射、强场发射、热电子发射。

6.带电质点的消失可分带电质点受电场力的作用流入电极、带电质点的扩散、带电质点的复合。

7.附着:电子与气体分子碰撞时,不但有可能引起碰撞电离而产生出正离子和新电子,也可能发生电子附着过程而形成负离子。

8.复合:当气体中带异号电荷的粒子相遇时,有可能发生电荷的传递与中和,这种现象称为复合。

(1)复合可能发生在电子和正离子之间,称为电子复合,其结果是产生一个中性分子;(2)复合也可能发生在正离子和负离子之间,称为离子复合,其结果是产生两个中性分子。

9.1、放电的电子崩阶段(1)非自持放电和自持放电的不同特点宇宙射线和放射性物质的射线会使气体发生微弱的电离而产生少量带电质点;另一方面、负带电质点又在不断复合,使气体空间存在一定浓度的带电质点。

因此,在气隙的电极间施加电压时,可检测到微小的电流。

由图1-3可知:(1)在I-U 曲线的OA 段: 气隙电流随外施电压的提高而增大,这是因为带电质点向电极运动的速度加快导致复合率减小。

当电压接近 时,电流趋于饱和,因为此时由外电离因素产生的带电质点全部进入电极,所以电流值仅取决于外电离因素的强弱而与电压无关。

(2)在I-U 曲线的B 、C 点:电压升高至 时,电流又开始增大,这是由于电子碰撞电离引起的,因为此时电子在电场作用下已积累起足以引起碰撞电离的动能。

电压继续升高至 时,电流急剧上升,说明放电过程又进入了一个新的阶段。

此时气隙转入良好的导电状态,即气体发生了击穿。

(3)在I-U 曲线的BC 段:虽然电流增长很快,但电流值仍很小,一般在微安级,且此时气体中的电流仍要靠外电离因素来维持,一旦去除外电离因素,气隙电流将消失。

高电压技术复习要点

高电压技术复习要点

第一章 电介质的电气强度1.1气体放电的基本物理过程1.高压电气设备中的绝缘介质有气体、液体、固体以及其他复合介质。

2.气体放电是对气体中流通电流的各种形式统称。

3.电离:指电子脱离原子核的束缚而形成自由电子和正离子的过程。

4.带电质点的方式可分热电离、光电离、碰撞电离、分级电离。

5.带电质点的能量来源可分正离子撞击阴极表面、光电子发射、强场发射、热电子发射。

6.带电质点的消失可分带电质点受电场力的作用流入电极、带电质点的扩散、带电质点的复合。

7.附着:电子与气体分子碰撞时,不但有可能引起碰撞电离而产生出正离子和新电子,也可能发生电子附着过程而形成负离子。

8.复合:当气体中带异号电荷的粒子相遇时,有可能发生电荷的传递与中和,这种现象称为复合。

(1)复合可能发生在电子和正离子之间,称为电子复合,其结果是产生一个中性分子;(2) 复合也可能发生在正离子和负离子之间,称为离子复合,其结果是产生两个中性分子。

9.1、放电的电子崩阶段(1)非自持放电和自持放电的不同特点宇宙射线和放射性物质的射线会使气体发生微弱的电离而产生少量带电质点;另一方面、负带电质点又在不断复合,使气体空间存在一定浓度的带电质点。

因此,在气隙的电极间施加电压时,可检测到微小的电流。

由图1-3可知:(1)在I-U曲线的OA段:气隙电流随外施电压的提高而增大,这是因为带电质点向电极运动的速度加快导致复合率减小。

当电压接近 时,电流趋于饱和,因为此时由外电离因素产生的带电质点全部进入电极,所以电流值仅取决于外电离因素的强弱而与电压无关。

(2)在I-U 曲线的B 、C 点:电压升高至 时,电流又开始增大,这是由于电子碰撞电离引起的,因为此时电子在电场作用下已积累起足以引起碰撞电离的动能。

电压继续升高至 时,电流急剧上升,说明放电过程又进入了一个新的阶段。

此时气隙转入良好的导电状态,即气体发生了击穿。

(3)在I-U 曲线的BC 段:虽然电流增长很快,但电流值仍很小,一般在微安级,且此时气体中的电流仍要靠外电离因素来维持,一旦去除外电离因素,气隙电流将消失。

高电压技术知识

高电压技术知识

高电压技术知识第一篇电介质的电气强度第1章气体的绝缘特性与介质的电气强度1、气体中带电质点产生的方式热电离、光电离、碰撞电离、表面电离2、气体中带电质点消失的方式流入电极、逸出气体空间、复合3、电子崩与汤逊理论电子崩的形成、汤逊理论的基本过程及适用范围4、巴申定律及其适用范围击穿电压与气体相对密度和极间距离乘积之间的关系。

两者乘积大于0.26cm 时,不再适用5、流注理论考虑了空间电荷对原有电场的影响和空间光电离的作用,适用两者乘积大于0.26cm时的情况6、均匀电场与不均匀电场的划分以最大场强与平均场强之比来划分。

7、极不均匀电场中的电晕放电电晕放电的过程、起始场强、放电的极性效应8、冲击电压作用下气隙的击穿特性雷电和操作过电压波的波形冲击电压作用下的放电延时与伏秒特性50%击穿电压的概念9、电场形式对放电电压的影响均匀电场无极性效应、各类电压形式放电电压基本相同、分散性小极不均匀电场中极间距离为主要影响因素、极性效应明显。

10、电压波形对放电电压的影响电压波形对均匀和稍不均匀电场影响不大对极不均匀电场影响相当大完全对称的极不均匀场:棒棒间隙极大不对称的极不均匀场:棒板间隙11、气体的状态对放电电压的影响湿度、密度、海拔高度的影响12、气体的性质对放电电压的影响在间隙中加入高电强度气体,可大大提高击穿电压,主要指一些含卤族元素的强电负性气体,如SF613、提高气体放电电压的措施电极形状的改进空间电荷对原电场的畸变作用极不均匀场中屏障的采用提高气体压力的作用高真空高电气强度气体SF6的采用第2章液体和固体介质的绝缘的电气强度1、电介质的极化极化:在电场的作用下,电荷质点会沿电场方向产生有限的位移现象,并产生电矩(偶极矩)。

介电常数:电介质极化的强弱可用介电常数的大小来表示,与电介质分子的极性强弱有关。

极性电介质和非极性电介质:具有极性分子的电介质称为极性电介质。

由中性分子构成的电介质。

极化的基本形式电子式、离子式(不产生能量损失)转向、夹层介质界面极化(有能量损失)2、电介质的电导泄漏电流和绝缘电阻气体的电导:主要来自于外界射线使分子发生电离和强电场作用下气体电子的碰撞电离液体的电导:离子电导和电泳电导固体的电导:离子电导和电子电导3、电介质的损耗介质损耗针对的是交流电压作用下介质的有功功率损耗电介质的并联与串联等效回路介质损耗一般用介损角的正切值来表示气体、液体和固体电介质的损耗液体电介质损耗和温度、频率之间的关系4、液体电介质的击穿纯净液体介质的电击穿理论纯净液体介质的气泡击穿理论工程用变压器油的击穿理论5、影响液体电介质击穿的因素油品质、温度、电压作用时间、电场均匀程度、压力6、提高液体电介质击穿电压的措施提高油品质,采用覆盖、绝缘层、极屏障等措施7、固体电介质的击穿电击穿、热击穿、电化学击穿的击穿机理及特点8、影响固体电介质击穿电压的主要因素电压作用时间温度电场均匀程度受潮累积效应机械负荷9、组合绝缘的电气强度“油-屏障”式绝缘油纸绝缘第二篇电气设备绝缘试验第3章绝缘的预防性试验1、绝缘电阻与吸收比的测量用兆欧表来测量电气设备的绝缘电阻吸收比K定义为加压60s时的绝缘电阻与15s时的绝缘电阻比值。

高电压技术

高电压技术

第一章气体的绝缘特性1.电介质在电气设备中作为绝缘材料使用,按其物质形态,可分为三类:气体电介质液体电介质固体电介质在电气设备中又分为:外绝缘:一般由气体介质(空气)和固体介质(绝缘子)联合构成。

内绝缘:一般由固体介质和液体介质联合构成。

2、一些基本概念:①气体介质的击穿——当加在气体间隙上的电场强度达到某一临界值后,间隙中的电流会突然剧增,气体介质会失去绝缘性能而导致击穿的现象,也称为气体放电。

②放电电压UF——在间隙距离及其它相关条件一定的条件下,加在间隙两端刚好能使其击穿的电压。

由于相关条件的变化,这个值有一定的分散性。

③击穿场强——指均匀电场中击穿电压与间隙距离之比。

这个参数反映了某种气体介质耐受电场作用的能力,也即该气体的电气强度,或称气体的绝缘强度。

④平均击穿场强——指不均匀电场中击穿电压与间隙距离之比。

3.大气击穿的基本特点固体介质中的击穿将使介质强度永久丧失;而气体和液体击穿发生击穿时,一般只引起介质强度的暂时降低,当外加电压去掉后,绝缘性能又可以恢复,故称为自恢复绝缘。

§1.1 气体介质中带电质点的产生和消失一、气体原子的激发与游离产生带电质点的物理过程称为游离,是气体放电的首要前提。

1、几个基本概念①激发—-原子在外界因素(如电场、温度等)的作用下,吸收外界能量使其内部能量增加,从而使核外电子从离原子核较近的轨道跃迁到离原子核较远的轨道上去的过程(也称为激励)。

②游离—-中性原子由外界获得足够的能量,以致使原子中的一个或几个电子完全脱离原子核的束缚而成为自由电子和正离子(即带正电的质点)的过程(也称为电离)。

2、游离的基本形式①碰撞游离a 、当带电质点具有的动能积累到一定数值后,在与气体原子(或分子)发生碰撞时,可以使后者产生游离,这种由碰撞而引起的游离称为碰撞游离。

b 、发生条件:——气体分子(或原子)的游离能c 、碰撞游离的特点碰撞游离是气体放电过程中产生带电质点的极重要的来源。

高电压技术最全总结

高电压技术最全总结

由光辐射引起气体原子(或分子)的游离称为光游离
(3)热游离
因气体分子热运动状态引起的游离称为热游离。
其实质仍是碰撞游离和光游离,能量来源不同而已。
(4)表面游离 ——放在气体中的金属电极表面游离出自由电子的现象
逸出功:使电子从金属便面逸出所需要的功
金属表面游离的途径
(1)正离子撞击阴极
(2)光电子发射
(1)碰撞游离
1 2
mv2
=
eEx
≥ Wi
条件:x ≥ Ui E
当带电质点具有的 动能积累到一定数值后,在与气体 原子(或分子)发生
碰撞时,可以使后者产生游离,分裂成正离子和电子,这种由碰撞而引起的游
离称为碰撞游离
当原子或分子有可 能在外界给予的能量小于电离能但 大于激励能时发生的
激励称为分级电离
(2)光游离
第 1 章 气体的绝缘强度 1.1 气体放电的基本物理过程 1.1.1 气体中带电质点的产生和消失 气体电介质的放电特性 绝缘介质:气体、固体、液体及其复合介质 空气在强电场下放电特性:
气体在正常状态下 是良好的绝缘体,在一个立方厘米 体积内仅含几千个带 电粒子,但在高电压下,气体从少量电符会突然产生大量的电符,从而失去绝 缘能力而发生放电现象。气体由绝缘状态突变为良导电状态过程称为击穿。 放电形式:
1
(3)强场发射(冷发射) (4)热电子发射
一些金属的逸出功(eV)
金属
逸出功

1.8

3.1

3.9

3.9
氧化铜
5.3
气体中负离子的产生
电子与气体分子或 原子碰撞时,不但有可能发生碰撞 电离产生正离子和电
子,也有可能发生电子附着过程形成负离子。

高电压课后习题答案

高电压课后习题答案

第1章 气体得绝缘特性与介质得电气强度1-1气体放电过程中产生带电质点最重要得方式就是什么,为什么?答: 碰撞电离就是气体放电过程中产生带电质点最重要得方式。

这就是因为电子体积小,其自由行程(两次碰撞间质点经过得距离)比离子大得多,所以在电场中获得得动能比离子大得多。

其次.由于电子得质量远小于原子或分子,因此当电子得动能不足以使中性质点电离时,电子会遭到弹射而几乎不损失其动能;而离子因其质量与被碰撞得中性质点相近,每次碰撞都会使其速度减小,影响其动能得积累。

1-2简要论述汤逊放电理论。

答: 设外界光电离因素在阴极表面产生了一个自由电子,此电子到达阳极表面时由于α过程,电子总数增至d eα个。

假设每次电离撞出一个正离子,故电极空间共有(d eα-1)个正离子。

这些正离子在电场作用下向阴极运动,并撞击阴极.按照系数γ得定义,此(d e α-1)个正离子在到达阴极表面时可撞出γ(d e α-1)个新电子,则(d e α-1)个正离子撞击阴极表面时,至少能从阴极表面释放出一个有效电子,以弥补原来那个产生电子崩并进入阳极得电子,则放电达到自持放电。

即汤逊理论得自持放电条件可表达为r(d e α-1)=1或γd e α=1。

1-3为什么棒-板间隙中棒为正极性时电晕起始电压比负极性时略高?答:(1)当棒具有正极性时,间隙中出现得电子向棒运动,进入强电场区,开始引起电离现象而形成电子崩。

随着电压得逐渐上升,到放电达到自持、爆发电晕之前,在间隙中形成相当多得电子崩。

当电子崩达到棒极后,其中得电子就进入棒极,而正离子仍留在空间,相对来说缓慢地向板极移动。

于就是在棒极附近,积聚起正空间电荷,从而减少了紧贴棒极附近得电场,而略为加强了外部空间得电场。

这样,棒极附近得电场被削弱,难以造成流柱,这就使得自持放电也即电晕放电难以形成。

(2)当棒具有负极性时,阴极表面形成得电子立即进入强电场区,造成电子崩。

当电子崩中得电子离开强电场区后,电子就不再能引起电离,而以越来越慢得速度向阳极运动。

《高电压绝缘技术》

《高电压绝缘技术》

《高电压绝缘技术》学习包第一章气体的绝缘特性一、气体电介质的放电特性1空气在强电场下放电特性 气体在正常状态下是良好的绝缘体,在一个立方厘米体积内仅含几千个带电粒子,但在高电压下,气体从少量电符会突然产生大量的电符,从而失去绝缘能力而发生放电现象.一旦电压解除后,气体电介质能自动恢复绝缘状态2.带电质点的产生与消失(1) 激发原子在外界因素作用下,其电子跃迁到能量较高的状态(2)游离 原子在外界因素作用下,使其一个或几个电子脱离原子核的束博而形成自由电子和正离子(3)游离的方式a.碰撞游离b.光游离c.热游离d.金属表面游离碰撞游离当带电质点具有的动能积累到一定数值后,在与气体原子(或分子)发生碰撞时,可以使后者产生游离,这种由碰撞而引起的游离称为碰撞游离引起碰撞游离的条件:: 气体原子(或分子)的游离能 光游离由光辐射引起气体原子(或分子)的游离称为光游离产生光游离的条件:h:普朗克常数ν:光的频率热游离气体在热状态下引起的游离过程称为热游离产生热游离的条件:K:波茨曼常数i W m ≥221υi W i W h ≥νi W KT ≥23T:绝对温度金属表面游离电子从金属电极表面逸出来的过程称为表面游离(4)去游离a.扩散 带电质点从高浓度区域向低浓度区域运动.b.复合 正离子与负离子相遇而互相中和还原成中性原子c.附着效应 电子与原子碰撞时,电子附着原子形成负离子二.气体放电的两个理论1.汤逊放电理论.适用条件:均匀电场,低气压,短间隙(1).电子崩在电场作用下电子从阴极向阳极推进而形成的一群电子(2).非自持放电去掉外界游离因素的作用后,放电随即停止(3).自持放电不需要外界游离因素存在,放电也能维持下去(4).自持放电条件a.电子的空间碰撞系数α一个电子在电场作用下在单位行程里所发生的碰撞游离数b.正离子的表面游离系数γ一个正离子到达阴极,撞击阴极表面产生游离的电子数一个正离子到达阴极,撞击阴极表面产生游离的电子数自持放电条件可表达为:(5)巴申定律a.表达式:P:气体压力 S:极间距离b.均匀电场中几种气体的击穿电压与ps 的关系)(PS f U F =1)1(=-S e αγ2.流注理论(1).在ps乘积较大时,用汤逊理论无法解释的几种现象a.击穿过程所需时间,实测值比理论值小10--100倍b.按汤逊理论,击穿过程与阴极材料有关,然而在大气压力下的空气隙中击穿电压与阴极材料无关.c.按汤逊理论,气体放电应在整个间隙中均匀连续地发展,但在大气中击穿会出现有分枝的明亮细通道(2).理论要点:认为电子碰撞游离及空间光游离是维持自持放电的主要因素,流注形成便达到了自持放电条件,它强调了空间电符畸变电场的作用和热游离的作用.(3)放电简单流程图:有效电子(经碰撞游离)-----电子崩(畸变电场)-----发射光子(在强电场作用下)-----产生新的电子崩(二次崩)-----形成混质通道(流注)-----由阳极向阴极(阳极注)或由阴极向阳极(阴极流注)击穿.三.不均匀电场中气隙的放电特性1.电晕放电一定电压作用下,在曲率半径小的电极附近发生局部游离,并发出大量光辐射,有些像日月的晕光,称为电晕放电.电晕起始场强开始出现电晕时电极表面的场强电晕起始场强开始出现电晕时电极表面的场强电晕起始场强开始出现电晕时电极表面的场强2.极性效应(1).正棒---负板分析:a.由于捧极附近积聚起正空间电荷,削弱了电离,使电晕放电难以形成,造成电晕起始电压提高。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

图1-4 电子崩的示意图
1.1.3 电子崩与汤逊理论
依此,电子将按照几何级数不断增多,类似雪崩似地发展,这种急
剧增大的空间电子流被称为电子崩。
为了分析碰撞电离和电子崩引起的电流,引入电子碰撞电离系数 。
:表示一个电子沿电场方向运动1cm的行程所完成的碰撞电离次数
平均值。
ቤተ መጻሕፍቲ ባይዱ
如图1-5为平板电极气隙,板内电
2
质点电荷量(e)、电场强度(E )以及碰撞前的行程( x )有
关。即
1 mv2 eEx 2
(1-3)
1.1.1 带电质点的产生
高速运动的质点与中性的原子或分子碰撞时,如 原子或分子获得的能量等于或大于其电离能,则会发 生电离。
电离条件为
eEx Wi
(1-4)
式中:
➢ e :电子的电荷量
➢ E :外电场强度
电压已能维持,不再需要外电离因素了。外施电压达到 后
的放电称为自持放电,U 0 称为放电的起始电压。
1.1.3 电子崩与汤逊理论
(2)电子崩的形成
外界电离因子在阴极附 近产生了一个初始电子,如 果空间电场强度足够大,该 电子在向阳极运动时就会引 起碰撞电离,产生一个新的 电子,初始电子和新电子继 续向阳极运动,又会引起新 的碰撞电离,产生更多电子。
1.1 气体放电的基本物理过程
1.1.1 带电质点的产生 1.1.2 带电质点的消失 1.1.3 电子崩与汤逊理论 1.1.4 巴申定律与适用范围 1.1.5 不均匀电场中的气体放电
1.1.1 带电质点的产生
➢ 气体放电是对气体中流通电流的各种形式统称。
➢ 由于空气中存在来自空间的辐射,气体会发生微弱 的电离而产生少量的带电质点。
场均匀,设外界电离因子每秒钟使阴
极表面发射出来的初始电子数为n0。
由于碰撞电离和电子崩的结果,
在它们到达x处时,电子数已增加为n,
这n个电子在dx的距离中又会产生dn
个新电子。
图1-5 计算间隙中电子数增长的示意图
1.1.3 电子崩与汤逊理论
根据碰撞电离系数 的定义,可得:
d n nd x
(1-7)
1.1.3 电子崩与汤逊理论
(2)在I-U曲线的B、C点:
电压升高至U B 时,电流又开始增
大,这是由于电子碰撞电离引起
的,因为此时电子在电场作用下
已积累起足以引起碰撞电离的动
能。电压继续升高至 U 0 时,电
流急剧上升,说明放电过程又进
入了一个新的阶段。此时气隙转
入良好的导电状态,即气体发生 图1-3 气体间隙中电流与外施电压的
将式(1-8)的等号两侧乘以电子的电荷 qe,即得电流关系式:
I I0ed
(1-12)
式(1-12)中, I0 n0qe
式(1-12)I I0ed表明:虽然电子崩电流按指数规律
随极间距离d而增大,但这时放电还不能自持,因为一旦
除去外界电离因子(令I0 0 ),即电流变为零。
1.1.3 电子崩与汤逊理论
(1-13)
1.1.3 电子崩与汤逊理论
由式(1-4)可知,实际自由行程长度等于或大于xi的
概率为e
xi e
,所以也就是碰撞电离的概率。
根据碰撞电离系数 的定义,即可得出:
1
xi
e e
1
Ui
e e E
e
e
(1-14)
由第一节公式
e
kT
r 2 p
内容可知,电子的平均自
由长度 e与气温 T 成正比、与气压 p成反比,即:
分离变量并积分之,可得:
x
n
n0
e
dx 0
(1-8)
对于均匀电场来说,气隙中各点的电场强度相同, 值
不随x而变化,所以上式可写成:
n n0ex
(1-9)
抵达阳极的电子数应为:
na n0ed
途中新增加的电子数或正离子数应为:
n na n0 n0 (ed 1)
(1-10) (1-11)
1.1.3 电子崩与汤逊理论
e
T p
(1-15)
1.1.3 电子崩与汤逊理论
当气温 T 不变时,式(1-14)即可改写为:
Bp
Ape E
式中A、B是两个与气体种类有关的常数。
(1-16)
由上式不难看出:
➢电场强度E增大时, 急剧增大;
➢ p 很大或很小时, 都比较小。
➢高气压时,e 很小,单位长度上的碰撞次数很多,但能引起
些电子在电极空间的碰撞电离同样又能产生更多的正离子, 如此循环下去。
1.1.3 电子崩与汤逊理论
自持放电条件为 (ed 1) 1
(1-21)
:一个正离子撞击到阴极表面时产生出来的二次电子数
:电子碰撞电离系数
d :两极板距离
此条件物理概念十分清楚,即一个电子在自己进入阳极
后可以由 及 过程在阴极上又产生一个新的替身,从而无
(3)影响碰撞电离系数的因素
若电子的平均自由行程为 ,则在1cm长度内一个电子的平
均碰撞次数为
1

设在x 0处有 n0个电子沿电力线方向运动,行经距离 x 时还 剩下 n 个电子未发生过碰撞,则在 x 到 x dx这一距离中发生
碰撞的电子数应为: dn n dx
由上式积分得: n n0e x /
1.1.3 电子崩与汤逊理论
由图1-3可知:
(1)在I-U曲线的OA段:
气隙电流随外施电压的提高而增
大,这是因为带电质点向电极运
动的速度加快导致复合率减小。
当电压接近
U
时,电流趋于饱
A
和,因为此时由外电离因素产生
的带电质点全部进入电极,所以
电流值仅取决于外电离因素的强
弱而与电压无关。
图1-3 气体间隙中电流与外施电压的 关系
1.1.2 带电质点的消失
带电质点的消失可能有以下几种情况:
➢带电质点受电场力的作用流入电极 ; ➢带电质点因扩散而逸出气体放电空间; ➢带电质点的复合。 复合:当气体中带异号电荷的粒子相遇时,有可能发生电荷的传递与 中和,这种现象称为复合。
➢ 复合可能发生在电子和正离子之间,称为电子复合,其结果是产生 一个中性分子;
电子从电极表面逸出所需的能量可通过下述途径获得:
(1)正离子撞击阴极 (2)光电子发射 (3)强场发射 (4)热电子发射
1.1.1 带电质点的产生
3、气体中负离子的形成
附着:电子与气体分子碰撞时,不但有可能引起 碰撞电离而产生出正离子和新电子,也可能发生电子附 着过程而形成负离子。
负离子的形成并未使气体中带电粒子的数目改变, 但却能使自由电子数减少,因而对气体放电的发展起 抑制作用。
电离的概率很小;
➢低气压和真空时,e很大,总的碰撞次数少,所以也比较小。
所以,在高气压和高真空下,气隙不易发生放电现象,具
有较高的电气强度。
1.1.3 电子崩与汤逊理论
2、汤逊理论
前述已知,只有电子崩过程是不会发生自持放电的。要 达到自持放电的条件,必须在气隙内初始电子崩消失前产生 新的电子(二次电子)来取代外电离因素产生的初始电子。
时,击穿过程将发生变化,汤逊理论的计算结果不再适用, 但其碰撞电离的基本原理仍是普遍有效的。
1.1.4 巴申定律与适用范围
1、巴申定律
早在汤逊理论出现之前,巴申(Paschen)就于1889年从
大量的实验中总结出了击穿电压ub与pd 的关系曲线,称为
巴申定律,即 U b f ( pd )
(1-23)
➢复合也可能发生在正离子和负离子之间,称为离子复合,其结果是 产生两个中性分子。
1.1.3 电子崩与汤逊理论
➢气体放电现象与规律因气体的种类、气压和间隙中电场的均匀度而异。 ➢但气体放电都有从电子碰撞电离开始发展到电子崩的阶段。
1、放电的电子崩阶段
(1)非自持放电和自持放电的不同特点 宇宙射线和放射性物质的射线会使气体发生微弱的电离而产生少量带电质点; 另一方面正、负带电质点又在不断复合,使气体空间存在一定浓度的带电质 点。因此,在气隙的电极间施加电压时,可检测到微小的电流。
不断上升,但实际上电压U上升到一定程度后,场致发射将 导致击穿,汤逊的碰撞电离理论不再适用,击穿电压将不 再增加。
1.1.3 电子崩与汤逊理论
d 过大时,气压高,或距离大,这时气体击穿的很多实
验现象无法全部在汤逊理论范围内给以解释:放电外形;放 电时间;击穿电压;阴极材料。
因此,通常认为,d >0.26 cm(pd>200 cm • mmHg)
需外电离因素放电即可继续进行下去。
1.1.3 电子崩与汤逊理论
(2)汤逊放电理论的适用范围 汤逊理论是在低气压、d 较小的条件下在放电实验的基
础上建立的。d 过小或过大,放电机理将出现变化,汤逊理
论就不再适用了。
d 过小时,气压极低( 过小在实际上是不可能的)d / ,
过小,远大于 d ,碰撞电离来不及发生,击穿电压似乎应
到达阴极表面都将引起阴极表面电离,统称为 过程。 为
引入系数。
1.1.3 电子崩与汤逊理论
设外界光电离因素在阴极表面产生了一个自由电子,此
电子到达阳极表面时由于 过程,电子总数增至ed个。因在 对 系数进行讨论时已假设每次电离撞出一个正离子,故电
极空间共有(ed-1)个正离子。由系数 的定义,此(ed-1) 个正离子在到达阴极表面时可撞出(ed-1)个新电子,这
图1-1 不同温度下空气和气体的热电离程度
1.1.1 带电质点的产生
(2)光电离
当满足以下条件时,产生光电离
式中:
hc
Wi
(1-2)
➢ :光的波长
➢c :光速
相关文档
最新文档