初中数学自主招生模拟试题.pdf

合集下载

初中数学自招模拟试卷三

初中数学自招模拟试卷三

一、选择题(每题5分,共50分)1. 下列各数中,绝对值最小的是()A. -2.3B. 0.2C. -2.5D. 0.42. 若m是正数,则下列各式中正确的是()A. m + 1 > mB. m - 1 < mC. m × 1 = mD. m ÷ 1 = m3. 在下列各数中,有理数是()A. √4B. √-1C. πD. 0.54. 下列各式中,能化为最简二次根式的是()A. √18B. √24C. √27D. √365. 若一个数列的前三项分别是1,-2,3,则这个数列的第四项是()A. -4B. -3C. 4D. 56. 下列函数中,是奇函数的是()A. y = x^2B. y = x^3C. y = x^4D. y = x^57. 已知等差数列的前三项分别是1,2,3,则该数列的公差是()A. 1B. 2C. 3D. 48. 下列图形中,中心对称图形是()A. 等边三角形B. 等腰三角形C. 正方形D. 长方形二、填空题(每题5分,共50分)9. 已知一个数的平方根是2,则这个数是______。

10. 若一个数的立方根是3,则这个数是______。

11. 下列各式中,完全平方公式可以化简的是______。

12. 下列各式中,有理数乘以有理数得到无理数的是______。

13. 若一个数的倒数是-1/2,则这个数是______。

14. 下列各数中,能化为最简二次根式的是______。

15. 若一个等差数列的公差是2,则第10项是______。

三、解答题(每题10分,共40分)16. (10分)已知等差数列的前三项分别是1,2,3,求这个数列的第10项。

17. (10分)已知等比数列的前三项分别是2,6,18,求这个数列的公比。

18. (10分)若一个数列的前三项分别是1,-2,3,求这个数列的第4项。

19. (10分)已知一个数列的前三项分别是1,-2,3,求这个数列的通项公式。

初中数学自主招生模拟试题

初中数学自主招生模拟试题

初中数学自主招生模拟试题初中数学自主招生模拟试题Company number:【0089WT-8898YT-W8CCB-BUUT-202108】初中数学自主招生模拟试题(一)一、选择题(每小题6分,共30分)1、设a,b,c,d 为整数,且a <2b ,b <3c ,c <4d ,若d <100,则a 可能取的最大值为()A. 2367B. 2375C. 2391D. 23992、若方程02022222=-+=++b cx x b ax x 与有一个相同的根,且a,b,c 为一个三角形的三边,则此三角形一定是()。

A. 直角三角形B. 等腰三角形C. 等边三角形D. 等腰直角三角形3、如果一条直线l 经过不同的三点A(a,b),B(b,a),C(a-b,b-a),那么直线l 经过第()象限。

A. 二、四B. 一、三C. 二、三、四D. 一、三、四4、如图,AB 是圆的直径,CD 是平行于AB 的弦,且AC 和BD 相交于E ,∠AED=α,那么△CDE和△ABE 的面积之比是()A.αcosB. α2sinC. α2cosD. αsin 1-5、点P 在锐角△ABC 的内部,若∠PAB+∠PBC+∠PCA=90°,则点P 是△ABC 的()A. 外心、内心或重心B. 内心或重心或垂心C. 外心或内心或垂心D. 外心或重心或垂心二、填空题(每小题6分,共30分)6、若等式e d c b a ed c b a ,,,,111111中的=++++都是自然数且互不相等。

则 a= ,b= ,c= ,d= ,e= 。

7、当m 取遍0至5的所有实数值,满足)83(3-=m m n 的整数n 的个数是。

8、如图,△ABC 内三个三角形的面积分别为5,8,10,则四边形AEFD的面积是。

9、若凸4n+2边形2421+n A A A (n 为自然数)的每个内角都是30°的整数倍,且?=∠=∠=∠90321A A A ,则n 的所有可能值是。

湖北省黄冈中学2020年自主招生(理科实验班)预录考试数学模拟试题五(pdf版,含解析)

湖北省黄冈中学2020年自主招生(理科实验班)预录考试数学模拟试题五(pdf版,含解析)

2020年黄冈中学自主招生(理科实验班)预录考试数学模拟试题五一、选择题(共5小题,每题4分,满分20分)1.(4分)下列图中阴影部分面积与算式|﹣|+()2+2﹣1的结果相同的是()A.B. C. D.2.(4分)如图,∠ACB=60°,半径为2的⊙O切BC于点C,若将⊙O在CB上向右滚动,则当滚动到⊙O与CA也相切时,圆心O移动的水平距离为()A.2πB.4πC.2D.43.(4分)如果多项式x2+px+12可以分解成两个一次因式的积,那么整数p的值可取多少个()A.4 B.5 C.6 D.84.(4分)小明、小林和小颖共解出100道数学题,每人都解出了其中的60道,如果将其中只有1人解出的题叫做难题,2人解出的题叫做中档题,3人都解出的题叫做容易题,那么难题比容易题多多少道()A.15 B.20 C.25 D.305.(4分)已知BD是△ABC的中线,AC=6,且∠ADB=45°,∠C=30°,则AB=()A.B.2C.3D.6二、填空题(共6题,每小题5分,满分30分)6.(5分)满足方程|x+2|+|x﹣3|=5的x的取值范围是.7.(5分)已知三个非负实数a,b,c满足:3a+2b+c=5和2a+b﹣3c=1,若m=3a+b ﹣7c,则m的最小值为.8.(5分)如图所示,设M是△ABC的重心,过M的直线分别交边AB,AC于P,Q两点,且=m,=n,则+=.9.(5分)在平面直角坐标系中,横坐标与纵坐标都是整数的点(x,y)称为整点,如果将二次函数的图象与x轴所围成的封闭图形染成红色,则此红色区域内部及其边界上的整点个数有个.10.(5分)如图所示:在平面直角坐标系中,△OCB的外接圆与y轴交于A (0,),∠OCB=60°,∠COB=45°,则OC=.(第10题图) (第11题图)11.(5分)如图所示:两个同心圆,半径分别是和,矩形ABCD边AB,CD分别为两圆的弦,当矩形ABCD面积取最大值时,矩形ABCD的周长是.三、简答题(共4小题,满分50分)12.(12分)九年级(1)、(2)、(3)班各派4名代表参加射击比赛,每队每人打两枪,射中内环得50分,射中中环得35分,射中外环得25分,脱靶得0分.统计比赛结果,(1)班8枪全中,(2)班1枪脱靶,(3)班2枪脱靶,但三个班的积分完全相同,都是255分.请将三个班分别射中内环、中环、外环的次数填入下表并简要说明理由:班级内环中环外环(1)班(2)班(3)班13.(12分)设二次函数y=ax2+bx+c的开口向下,顶点落在第二象限.(1)确定a,b,b2﹣4ac的符号,简述理由.(2)若此二次函数图象经过原点,且顶点在直线x+y=0上,顶点与原点的距离为3,求抛物线的解析式.14.(12分)如图,四边形ABCD为圆内接四边形,对角线AC、BD交于点E,延长DA、CB交于点F,且∠CAD=60°,DC=DE.求证:(1)AB=AF;(2)A为△BEF的外心(即△BEF外接圆的圆心).15.(14分)在平面直角坐标中,边长为1的正方形OABC的两顶点A、C分别在y轴、x轴的正半轴上,点O在原点.现将正方形OABC绕O点顺时针旋转,当A点第一次落在直线y=x上时停止旋转.旋转过程中,AB边交直线y=x 于点M,BC边交x轴于点N(如图1).(1)求边AB在旋转过程中所扫过的面积;(2)设△MBN的周长为p,在旋转正方形OABC的过程中,p值是否有变化?请证明你的结论;(3)设MN=m,当m为何值时△OMN的面积最小,最小值是多少?并直接写出此时△BMN内切圆的半径.2020年黄冈中学自主招生(理科实验班)预录考试数学模拟试题五参考答案与试题解析一、选择题(共5小题,每题4分,满分20分)1.(4分)下列图中阴影部分面积与算式|﹣|+()2+2﹣1的结果相同的是()A.B.C.D.【分析】先把算式的值求出,然后根据函数的性质分别求出四个图中的阴影部分面积,看是否与算式的值相同,如相同,则是要选的选项.【解答】解:原式=++==.A、作TE⊥X轴,TG⊥Y轴,易得,△GTF≌△ETD,故阴影部分面积为1×1=1;B、当x=1时,y=3,阴影部分面积1×3×=;C、当y=0时,x=±1,当x=0时,y=﹣1.阴影部分面积为[1﹣(﹣1)]×1×=1;D、阴影部分面积为xy=×2=1.故选B.【点评】解答A时运用了全等三角形的性质,B、C、D都运用了函数图象和坐标的关系,转化为三角形的面积公式来解答.2.(4分)如图,∠ACB=60°,半径为2的⊙O切BC于点C,若将⊙O在CB上向右滚动,则当滚动到⊙O与CA也相切时,圆心O移动的水平距离为()A.2πB.4πC.2D.4【分析】连接O′C,O′B,O′D,OO′,则O′D⊥BC.因为O′D=O′B,O′C平分∠ACB,可得∠O′CB=∠ACB=×60°=30°,由勾股定理得BC=2.【解答】解:当滚动到⊙O′与CA也相切时,切点为D,连接O′C,O′B,O′D,OO′,∵O′D⊥AC,∴O′D=O′B.∵O′C平分∠ACB,∴∠O′CB=∠ACB=×60°=30°.∵O′C=2O′B=2×2=4,∴BC===2.故选:C.【点评】此题主要考查切线及角平分线的性质,勾股定理等知识点,属中等难度题.3.(4分)如果多项式x2+px+12可以分解成两个一次因式的积,那么整数p的值可取多少个()A.4 B.5 C.6 D.8【分析】先把12分成2个因数的积的形式,共有6总情况,所以对应的p值也有6种情况.【解答】解:设12可分成m•n,则p=m+n(m,n同号),∵m=±1,±2,±3,n=±12,±6,±4,∴p=±13,±8,±7,共6个值.故选C.【点评】主要考查了分解因式的定义,要熟知二次三项式的一般形式与分解因式之间的关系:x2+(m+n)x+mn=(x+m)(x+n),即常数项与一次项系数之间的等量关系.4.(4分)小明、小林和小颖共解出100道数学题,每人都解出了其中的60道,如果将其中只有1人解出的题叫做难题,2人解出的题叫做中档题,3人都解出的题叫做容易题,那么难题比容易题多多少道()A.15 B.20 C.25 D.30【分析】设容易题有x道,中档题有y道,难题有z道,然后根据题目数量和三人解答的题目数量列出方程组,然后根据系数的特点整理即可得解.【解答】解:设容易题有x道,中档题有y道,难题有z道,由题意得,,①×2﹣②得,z﹣x=20,所以,难题比容易题多20道.故选B.【点评】此类题注意运用方程的知识进行求解,观察系数的特点巧妙求解更简便.5.(4分)已知BD是△ABC的中线,AC=6,且∠ADB=45°,∠C=30°,则AB=()A.B.2C.3D.6【分析】根据题中所给的条件,在直角三角形中解题.根据角的正切值与三角形边的关系,结合勾股定理求解.【解答】解:过点B作BE⊥AC交AC于点E.如下图设BE=x,∵∠BDA=45°,∠C=30°,∴DE=x,BC=2x,∵tan∠C=,∴=tan30°,∴3x=(3+x),解得x=,在Rt△ABE中,AE=DE﹣AD=﹣3=,由勾股定理得:AB2=BE2+AE2,AB==3.故选C.【点评】本题考查了解直角三角形中三角函数的应用,要熟练掌握好边角之间的关系.二、填空题(共6题,每小题5分,满分30分)6.(5分)满足方程|x+2|+|x﹣3|=5的x的取值范围是﹣2≤x≤3.【分析】分别讨论①x≥3,②﹣2<x<3,③x≤﹣2,根据x的范围去掉绝对值,解出x,综合三种情况可得出x的最终范围.【解答】解:从三种情况考虑:第一种:当x≥3时,原方程就可化简为:x+2+x﹣3=5,解得:x=3;第二种:当﹣2<x<3时,原方程就可化简为:x+2﹣x+3=5,恒成立;第三种:当x≤﹣2时,原方程就可化简为:﹣x﹣2+3﹣x=5,解得:x=﹣2;所以x的取值范围是:﹣2≤x≤3.【点评】解一元一次方程,注意最后的解可以联合起来,难度很大.7.(5分)已知三个非负实数a,b,c满足:3a+2b+c=5和2a+b﹣3c=1,若m=3a+b ﹣7c,则m的最小值为﹣.【分析】解方程组,用含m的式子表示出a,b,c的值,根据a≥0,b≥0,c≥0,求得m的取值范围而求得m的最小值.【解答】解:由题意可得,解得a=﹣3,b=7﹣,c=,由于a,b,c是三个非负实数,∴a≥0,b≥0,c≥0,∴﹣≥m≥﹣.=﹣.所以m最小值故本题答案为:﹣.【点评】本题考查了三元一次方程组和一元一次不等式的解法.8.(5分)如图所示,设M是△ABC的重心,过M的直线分别交边AB,AC 于P,Q两点,且=m,=n,则+=1.【分析】根据三角形的重心是三角形三条中线的交点,且重心到顶点的距离是它到对边中点的距离的2倍.可以分别过点B,C作BE∥AD,CF∥AD,交PQ 于点E,F,根据平行线等分线段定理和梯形中位线定理可得到两个等式,代入所求代数式整理即可得到答案.【解答】解:分别过点B,C作BE∥AD,CF∥AD,交PQ于点E,F,则BE ∥AD∥CF,∵点D是BC的中点,∴MD是梯形的中位线,∴BE+CF=2MD,∴+==+===1.【点评】此题考查了重心的概念和性质,能够熟练运用平行线分线段成比例定理、平行线等分线段定理以及梯形的中位线定理.9.(5分)在平面直角坐标系中,横坐标与纵坐标都是整数的点(x,y)称为整点,如果将二次函数的图象与x轴所围成的封闭图形染成红色,则此红色区域内部及其边界上的整点个数有25个.【分析】找到函数图象与x轴的交点,那么就找到了相应的x的整数值,代入函数求得y的值,那么就求得了y的范围.【解答】解:将该二次函数化简得,y=﹣[(x﹣4)2﹣],令y=0得,x=或.则在红色区域内部及其边界上的整点为(2,0),(3,0),(4,0),(5,0),(6,0),(2,1),(2,2),(3,1),(3,2),(3,3),(3,4),(3,5),(4,1),(4,2),(4,3),(4,4),(4,5),(4,6),(5,1),(5,2),(5,3),(5,4),(5,5),(6,1),(6,2)共25个,故答案为:25.【点评】本题涉及二次函数的图象性质,解决本题的关键是得到相对应的x的值.10.(5分)如图所示:在平面直角坐标系中,△OCB的外接圆与y轴交于A (0,),∠OCB=60°,∠COB=45°,则OC=1+.【分析】连接AB,由圆周角定理知AB必过圆心M,Rt△ABO中,易知∠BAO=∠OCB=60°,已知了OA=,即可求得OB的长;过B作BD⊥OC,通过解直角三角形即可求得OD、BD、CD的长,进而由OC=OD+CD求出OC的长.【解答】解:连接AB,则AB为⊙M的直径.Rt△ABO中,∠BAO=∠OCB=60°,∴OB=OA=×=.过B作BD⊥OC于D.Rt△OBD中,∠COB=45°,则OD=BD=OB=.Rt△BCD中,∠OCB=60°,则CD=BD=1.∴OC=CD+OD=1+.故答案为:1+.【点评】此题主要考查了圆周角定理及解直角三角形的综合应用能力,能够正确的构建出与已知和所求相关的直角三角形是解答此题的关键.11.(5分)如图所示:两个同心圆,半径分别是和,矩形ABCD边AB,CD分别为两圆的弦,当矩形ABCD面积取最大值时,矩形ABCD的周长是16+12.【分析】此题首先能够把问题转化到三角形中进行分析.根据锐角三角函数的概念可以证明三角形的面积等于相邻两边的乘积乘以夹角的正弦值,根据这一公式分析面积的最大值的情况.然后运用勾股定理以及直角三角形的斜边上的高等于两条直角边的乘积除以斜边求得长方形的长和宽,进一步求得其周长.【解答】解:连接OA,OD,作OP⊥AB于P,OM⊥AD于M,ON⊥CD于N.根据矩形的面积以及三角形的面积公式发现:矩形的面积是三角形AOD的面积的4倍.因为OA,OD的长是定值,则∠AOD的正弦值最大时,三角形的面积最大,即∠AOD=90°,则AD=6,根据三角形的面积公式求得OM=4,即AB=8.则矩形ABCD的周长是16+12.【点评】本题考查的是矩形的定理以及垂径的性质,考生应注意运用勾股定理来求得边长继而才能求出周长.三、简答题(共4小题,满分50分)12.(12分)九年级(1)、(2)、(3)班各派4名代表参加射击比赛,每队每人打两枪,射中内环得50分,射中中环得35分,射中外环得25分,脱靶得0分.统计比赛结果,(1)班8枪全中,(2)班1枪脱靶,(3)班2枪脱靶,但三个班的积分完全相同,都是255分.请将三个班分别射中内环、中环、外环的次数填入下表并简要说明理由:班级内环中环外环(1)班(2)班(3)班【分析】本题可以通过设出内环、中环、外环射中的枪数为x,y,z;设脱靶数为t,根据等量关系“总得分=内环得分+中环得分+外环得分”列出函数方程进行分析,从而确定出各中枪数.【解答】解:填表如下:班级内环中环外环(1)班134(2)班232(3)班330理由如下:可设t枪脱靶,x枪射中内环,y枪射中中环,则有(8﹣x﹣y﹣t)枪射中外环,所以50x+35y+25(8﹣x﹣y﹣t)=255化简得y=5+2(t﹣x)+(1+t﹣x)对于(1)班,t=0,y=5﹣2x+(1﹣x),x为奇数,只能取x=1,得y=3;对于(2)班,t=1,y=7﹣2x+(2﹣x),x为偶数,只能取x=2,得y=3;对于(3)班,t=2,y=9﹣2x+(3﹣x),x为奇数,只能取x=3,得y=3;【点评】此题考查的是学生对函数方程的分析讨论并对某些值确定,同学们要注意细心分析.13.(12分)设二次函数y=ax2+bx+c的开口向下,顶点落在第二象限.(1)确定a,b,b2﹣4ac的符号,简述理由.(2)若此二次函数图象经过原点,且顶点在直线x+y=0上,顶点与原点的距离为3,求抛物线的解析式.【分析】(1)根据抛物线的开口向下判断a的符号,再根据第二象限点的坐标特点及二次函数的顶点坐标列出不等式组,确定出解答a,b,b2﹣4ac的符号即可.(2)根据抛物线过原点及顶点在直线x+y=0上求出其顶点坐标及一次项系数,再根据顶点与原点的距离为3求出二次项系数,进而求出其解析式.【解答】解:(1)∵抛物线开口向下,∴a<0;∵顶点在第二象限,∴,∴b<0,b2﹣4ac>0.(2)由题意可得c=0,此时顶点坐标为(﹣,﹣),因顶点在直线x+y=0上,所以﹣﹣=0,b=﹣2.此时顶点坐标为(,﹣),由+=18,a=﹣,则抛物线的解析式为y=﹣x2﹣2x.【点评】本题考查的是二次函数的图象与系数的关系及用待定系数法求二次函数的解析式,掌握二次函数的特点是解题的关键.14.(12分)如图,四边形ABCD为圆内接四边形,对角线AC、BD交于点E,延长DA、CB交于点F,且∠CAD=60°,DC=DE.求证:(1)AB=AF;(2)A为△BEF的外心(即△BEF外接圆的圆心).【分析】(1)根据圆内接四边形的性质和三角形的内角和定理进行证明;(2)根据三角形的外心到三角形的三个顶点的距离相等的性质只需证明AB=AF=AE,根据等腰三角形的性质和判定进行证明.【解答】证明:(1)∠ABF=∠ADC=120°﹣∠ACD=120°﹣∠DEC=120°﹣(60°+∠ADE)=60°﹣∠ADE,(4分)而∠F=60°﹣∠ACF,(6分)因为∠ACF=∠ADE,(7分)所以∠ABF=∠F,所以AB=AF.(8分)(2)四边形ABCD内接于圆,所以∠ABD=∠ACD,(10分)又DE=DC,所以∠DCE=∠DEC=∠AEB,(12分)所以∠ABD=∠AEB,所以AB=AE.(14分)∵AB=AF,∴AB=AF=AE,即A是三角形BEF的外心.(16分)【点评】综合运用了圆内接四边形的性质、三角形的内角和定理以及三角形的外心的性质.15.(14分)在平面直角坐标中,边长为1的正方形OABC的两顶点A、C分别在y轴、x轴的正半轴上,点O在原点.现将正方形OABC绕O点顺时针旋转,当A点第一次落在直线y=x上时停止旋转.旋转过程中,AB边交直线y=x 于点M,BC边交x轴于点N(如图1).(1)求边AB在旋转过程中所扫过的面积;(2)设△MBN的周长为p,在旋转正方形OABC的过程中,p值是否有变化?请证明你的结论;(3)设MN=m,当m为何值时△OMN的面积最小,最小值是多少?并直接写出此时△BMN内切圆的半径.【分析】(1)S阴=S△OAB+S扇形OBB′﹣S△OAA′﹣S扇形OAA′,根据公式即可求解.(2)延长BA交y轴于E点,可以证明:△OAE≌△OCN,△OME≌△OMN 证得:OE=ON,AE=CN,MN=ME=AM+AE=AM+CN.从而求得:P=MN+BN+BM=AM+CN+BN+BM=AB+BC=2.即可求解.(3)Rt△BMN中,BM2+BN2=MN2,所以(1﹣n)2+(1﹣m+n)2=m2⇒m2﹣mn+2﹣m=0.把这个方程看作关于n的方程,根据一元二次方程有解得条件,即可求得.【解答】解:(1)如图,S阴=S△OAB+S扇形OBB'﹣S△OA'B′﹣S扇形OAA'=S扇形OBB′﹣S扇形OAA′=π﹣π×12=(2)p值无变化证明:延长BA交y轴于E点,在△OAE与△OCN中,∴△OAE≌△OCN(AAS)∴OE=ON,AE=CN在△OME与△OMN中,∴△OME≌△OMN(SAS)∴MN=ME=AM+AE=AM+CN∴P=MN+BN+BM=AM+CN+BN+BM=AB+BC=2;(3)设AM=n,则BM=1﹣n,CN=m﹣n,BN=1﹣m+n,∵△OME≌△OMN,=S△MOE=OA×EM=m∴S△MON在Rt△BMN中,BM2+BN2=MN2∴(1﹣n)2+(1﹣m+n)2=m2⇒n2﹣mn+1﹣m=0∴△=m2﹣4(1﹣m)≥0⇒m≥2﹣2或m≤﹣2﹣2,∴当m=2﹣2时,△OMN的面积最小,为﹣1.此时n=﹣1,则BM=1﹣n=2﹣,BN=1﹣m+n=2﹣,∴Rt△BMN的内切圆半径为=3﹣2.【点评】本题综合运用了扇形的面积公式,全等三角形的判定,三角形的面积公式以及勾股定理的综合应用,难度较大.。

数学初中自主招生考试试卷

数学初中自主招生考试试卷

一、选择题(每题5分,共50分)1. 下列各数中,有最小整数解的是()A. 3x + 2 = 19B. 2x - 5 = 11C. 4x + 1 = 13D. 5x - 3 = 142. 已知方程 2(x - 3) = 3(x + 2) - 4,其解为()A. x = 5B. x = 6C. x = 7D. x = 83. 若方程 x^2 - 5x + 6 = 0 的两个根分别为 a 和 b,则 a + b 的值为()A. 5B. 6C. 7D. 84. 在下列各数中,不是无理数的是()A. √2B. √3C. √4D. √55. 若等差数列的前三项分别为 2,5,8,则该数列的公差为()A. 1B. 2C. 3D. 46. 下列图形中,面积最大的图形是()A. 正方形B. 长方形C. 等腰三角形D. 梯形7. 若函数 y = 2x - 3 的图象与 x 轴交于点 A,则点 A 的坐标为()A. (1, 0)B. (2, 0)C. (3, 0)D. (4, 0)8. 在直角三角形 ABC 中,∠C = 90°,AC = 3,BC = 4,则 AB 的长度为()A. 5B. 6C. 7D. 89. 若 a,b,c 是等比数列的前三项,且 a + b + c = 18,a + c = 12,则 b 的值为()A. 6B. 7C. 8D. 910. 若函数 y = x^2 - 4x + 3 的图象与 x 轴交于点 A 和 B,则 AB 的长度为()A. 1B. 2C. 3D. 4二、填空题(每题5分,共50分)1. 若方程 3x - 5 = 2(x + 1) + 4 的解为 x = 2,则 x 的值为()2. 在等差数列 2,5,8,... 中,第 10 项的值为()3. 若等比数列 2,4,8,... 的第 5 项为 32,则该数列的公比为()4. 在直角三角形 ABC 中,∠A = 45°,∠B = 90°,AC = 6,则 AB 的长度为()5. 若函数 y = -2x + 3 的图象与 y 轴交于点 P,则点 P 的坐标为()6. 若 a,b,c 是等差数列的前三项,且 a + b + c = 18,a + c = 12,则 b 的值为()7. 在等比数列 2,4,8,... 的第 6 项为 64,则该数列的公比为()8. 若函数 y = x^2 - 4x + 3 的图象与 x 轴交于点 A 和 B,则 AB 的长度为()9. 在直角三角形 ABC 中,∠C = 90°,AC = 3,BC = 4,则 AB 的长度为()10. 若 a,b,c 是等比数列的前三项,且 a + b + c = 18,a + c = 12,则 b的值为()三、解答题(每题20分,共60分)1. 解方程组:\[\begin{cases}2x + 3y = 11 \\4x - y = 5\end{cases}\]2. 已知等差数列的前三项分别为 2,5,8,求该数列的前 10 项和。

初中自主招生试卷数学答案

初中自主招生试卷数学答案

一、选择题(每题3分,共30分)1. 下列数中,不是有理数的是()A. -3/5B. √4C. 0.618D. √(-1)答案:D解析:有理数是可以表示为两个整数之比的数,包括整数、分数和有限小数。

√(-1)是虚数,不属于有理数。

2. 若a=2,b=-3,则a+b的值为()A. 5B. -1C. -5D. 0答案:C解析:a+b=2+(-3)=-1,所以选C。

3. 下列函数中,y是x的一次函数的是()A. y=2x^2-3x+1B. y=3x+4C. y=√xD. y=x^3-2x+1答案:B解析:一次函数的形式为y=kx+b,其中k和b是常数。

只有选项B符合一次函数的定义。

4. 已知三角形ABC的三个内角分别为∠A=45°,∠B=60°,则∠C的度数为()A. 45°B. 60°C. 75°D. 90°答案:C解析:三角形内角和为180°,所以∠C=180°-∠A-∠B=180°-45°-60°=75°。

5. 下列方程中,x=3是它的解的是()A. 2x+1=7B. x^2-5x+6=0C. 3x-2=7D. x^2+2x+1=0答案:A解析:将x=3代入选项A,左边=23+1=7,右边=7,左边等于右边,所以x=3是方程2x+1=7的解。

二、填空题(每题5分,共20分)6. 已知a+b=5,a-b=3,则a=(),b=()答案:a=4,b=1解析:将两个方程相加得2a=8,解得a=4;将两个方程相减得2b=2,解得b=1。

7. 已知x^2-4x+4=0,则x的值为()答案:x=2解析:这是一个完全平方公式,可以分解为(x-2)^2=0,解得x=2。

8. 已知直角三角形ABC中,∠C=90°,AB=10,BC=6,则AC的长度为()答案:AC=8解析:根据勾股定理,AC^2=AB^2-BC^2,代入AB=10,BC=6,得AC^2=100-36=64,所以AC=8。

2020年黄冈中学自主招生(理科实验班)预录考试数学模拟试题六及答案解析(pdf版 )

2020年黄冈中学自主招生(理科实验班)预录考试数学模拟试题六及答案解析(pdf版 )

19.(15 分)某家电生产企业根据市场调查分析,决定调整产品生产方案,准备每周(按
120 个工时计算)生产空调器、彩电、冰箱共 360 台,且冰箱至少生产 60 台,已知生产
这些家电产品每台所需工时和每台产值如下表:
家电名称 空调
彩电
冰箱
工时
产值(千元) 4
3
2
问每周应生产空调器、彩电、冰箱各多少台,才能使产值最高最高产值是多少?(以千
14.解:如图,由勾股定理易得 AC=15,设 AC 的中点为 E,折线 FG 与 AB 交于 F,(折 线垂直平分对角线 AC),AE=7.5. ∵∠AEF=∴==.
∴EF=

∴折线长=2EF= .
故答案为 .
15.解:由方程 x2﹣3x+2=0 解方程的两个根是 1,2,即 a=1,b=2 故这组数据是 3,1,4,2,5
∴Px2007=

而 Qx2007(即 Px2007)在 y= 上,所以 Qy2007=
=
=

∴|P2007Q2007|=|Py2007﹣Qy2007|=|4013﹣
|=

故答案为: .
13.解:∵图中扇形的弧长是 2π,根据弧长公式得到 2π= ∴n=120°即扇形的圆心角是 120° ∴弧所对的弦长是 2×3sin60°=3

故可得△ENK≌△EML,即阴影部分的面积始终等于正方形面积的 . 故选 B.
4.解:设一支铅笔、一本练习本和一支圆珠笔的单价分别为 x、y 和 z 元,
根据题意得:

②﹣①得:x+3y=1.05③, ①﹣3③可得:2y=z, 故可得:x+y+2y=x+y+z=1.05. 故选 B. 5.解:方法 1、∵方程有两个不相等的实数根, 则△>0, ∴(a+2)2﹣4a×9a=﹣35a2+4a+4>0, 解得﹣ <a< ,

自主招生试卷数学初三

自主招生试卷数学初三

1. 已知一元二次方程x^2 - 4x + 3 = 0的两个根为x1和x2,则x1 + x2的值为()A. 1B. 3C. 4D. 52. 下列函数中,定义域为全体实数的是()A. y = √(-x)B. y = 1/xC. y = x^2D. y = log2x3. 在△ABC中,∠A = 60°,∠B = 45°,则∠C的度数为()A. 45°B. 60°C. 75°D. 90°4. 已知函数f(x) = 2x - 3,若f(x) + f(2-x) = 0,则x的值为()A. 1B. 2C. 3D. 45. 在等差数列{an}中,a1 = 2,公差d = 3,则第10项an的值为()A. 27B. 30C. 33D. 366. 若函数y = kx + b(k ≠ 0)的图像经过点A(1,-2),B(3,4),则k和b的值分别为()A. k = 1,b = -1B. k = 1,b = 2C. k = 2,b = -1D. k = 2,b = 27. 已知数列{an}的通项公式为an = n^2 - 3n + 2,则数列{an}的前n项和S_n 为()A. n^3 - 3n^2 + 2nB. n^3 - 3n^2 + 2C. n^3 - 3n^2 + 3nD. n^3 - 3n^2 + 4n8. 在等比数列{bn}中,b1 = 2,公比q = 3,则第5项b5的值为()A. 162B. 48C. 18D. 69. 已知函数y = x^2 - 4x + 4,则该函数的图像的对称轴为()A. x = 2B. y = 2C. x = 1D. y = 110. 在△ABC中,AB = 5,AC = 7,BC = 8,则△ABC的面积S为()A. 10B. 15C. 20D. 251. 若函数y = kx + b(k ≠ 0)的图像经过点A(1,2),B(3,-1),则k = __,b = __。

2019-2020年九年级数学自主招生3月模拟试题

2019-2020年九年级数学自主招生3月模拟试题

AB,将△
23 ( 1)当 BC= 3 时,判断直线 FD与以 AB为直径的⊙ O的位置关系,并 加以证明;
( 2)如图②,点 B 在 CG上向点 C运动,直线 FD 与 AB为直径的⊙ O交于 D、 H 两点,连接 AH,当 ∠ CAB=∠BAD=∠ DAH时,求 BC的长。
20. (本题 10 分)已知矩形 ABCD在平面直角坐标系中,顶点 A、 B、D 的坐标分别为 A(0, 0), B ( m, 0), D( 0, 4)其中 m≠ 0.
1,2, 3)的生
长情况进行观察记录. 这三个微生物第一天各自一分为二, 产生新的微生物 (分别被标号为 4, 5,
6,7,8,9),接下去每天都按照这样的规律变化,即每个微生物一分为二,形成新的微生物(课
题组成员用如图所示的图形进行形象的记录) .那么标号为 100 的微生物会出现在(

A.第 3 天
A

D
C
点 A 所经过的路线长为(
)。
A
B
P
A.14 B . 12 2 C . 12
D .6
9.如图 , 凸五边形 ABCDE内接于半径为 1 的⊙ O,ABCD是矩形 ,AE=ED,且
BE 和 CE把 AD三等分 . 则此五边形 ABCDE的面积是(

3
A.
B
3

C. 3
53
D.
3
2
4
10.设 a, b,c 为实数 , 且 a
C、 D四点可以构成平行四边形的点 D 共有(
)个。
A. 1 B . 2 C . 3 D . 4
5.已知一列数的前
6 个数依次是:
1 23 5 8 1, , , , ,

湖北省黄冈中学初中数学自主招生预录考试训练试题二(

湖北省黄冈中学初中数学自主招生预录考试训练试题二(

湖北省黄冈中学2016年初中数学自主招生预录考试训练试题二(理科实验班)预录考试数学训练题(二) 参考答案一、选择题(共4小题,每小题5分,共20分) 1.D . 2.B . 3.A . 解析:CPE∆∽CBA ∆222PE CP CP bPE AB a b AB BC BC a ⇒=⇒=⋅=+222b EF PE a b a ⇒==+.4.C .二、填空题(共8小题,每小题5分,共40分) 5.3. 6.10. 7.23 . 8.33332x --<<. 解析:由26<0x mx +-,2222424122224m mm mx m m+++-<<=++解得 -.当1≤m ≤3时,22241241=322m m ++++- -的最大值为-,221212333=2243243m m-++++的最小值为. 所以,当1≤m ≤3时,y <0即260x mx +-<恒成立时, x 的取值范围是33332x --<<. 9.25.解析:由题意知(a -b )2=1,∴a 2-2ab + b 2=1,又∵a 2+ b 2=13,∴2ab =12,∴(a +b )2=a +2ab + b 2=13+12=25. 10.2018.解析:由题意知m 2-2016m +1=0,∴m 2-2015m =m -1,m 2+1= 2016m ,∴原式=m -1+20162016m +3= m -1+1m+3=2+1m m +2=2016m m +2=2016+2=2018.11.9.解析:从俯视图知该立体图形从前到后共排了三排小正方体,各位置上小正方体的个数如图所示. 12.-10.解析:[5]+3[-π]=2+3×(-4)=2-12=-10. 三、解答题(本大题共4小题,共60分)QBC A P 13.(本小题14分)由题意知,3+2=3a +b ,且3= -a +b ,解得a =3-1,b =23-1. ∴2-c =ac +b =(3-1)c +(23-1),解得c =3-2. ∴a -b = -3,b -c =3+1,c -a = -1. ∴a 2+b 2+c 2-ab -bc -ca =21[(a -b )2+(b -c )2+(c-a )2]=21[(-3)2+(3+1)2+(-1)2]=4+3. 14.(本小题16分)(1)连接EP ,FP ,∵四边形ABCD 为正方形,∴∠BAD=90°,∠BPA=90°,∴∠FPE=90°,∴∠BPF=∠APE , 又∵∠FBP=∠PAE=45°,∴△BPF ≌△APE ,∴BF=AE ,而AB=AD ,∴DE=AF ; (2)连EF ,∵∠BAD=90°,∴EF 为⊙O 的直径,而⊙O 的半径为23,∴EF=3, ∴AF 2+AE 2=EF 2=(3)2=3,而DE=AF ,故DE 2+AE 2=3 ①;又∵AD=AE+ED=AB ,∴AE+ED= 12+ ②,由①②联立起来组成方程组,解得AE=1,ED=2或AE= 2,ED=1,所以ED AE= 222或. 15.(本小题12分)(1)当0x a <≤时,PCQ PBQ PBC S S S S ∆∆∆==-=ax x x a a x a x a 4343)(2321)(23)(212+-=-•--•+,当x a >时,PCQ PBQ PBC S S S S ∆∆∆==-=ax x a x a a x x a 4343)(2321)(23)(212-=-•--•+, ⎪⎪⎩⎪⎪⎨⎧>-≤<+-=∴)(4343)0(434322a x ax x a x ax x S ; (2)2213sin602ABC S a a ∆=︒=,若ABC PCQ S S ∆∆=,则 当0x a <≤时,有22333444x ax a -+=QACB P即220xax a -+=,解得,此方程无实根;当x a >时,有22333444x ax a -= 即220xax a --=解得,121515 22x a a x a a +-=>=<,(舍去)所以,当152APa +=时, △PCQ 的面积和△ABC 的面积相等.16.(本小题18分)(1)设过B 、A 、A ′三点的抛物线的函数表达式为y=ax 2+bx+c . ∵抛物线过点B (﹣1,0),A (0,2),A ′(1,1),∴021a b c c a b c -+=⎧⎪=⎨⎪++=⎩,解得32122a b c ⎧=-⎪⎪⎪=⎨⎪=⎪⎪⎩. ∴过B 、A 、A ′三点的抛物线的函数表达式为y=32-x 2+12x+2; (2)存在,E (﹣2,1);(3)如图,△ABO 向下平移到△AB 1O 1,△B A ′B ′向左平移到B 2 A ′B ′,AB 1交x 轴于点C ,B A ′交y 轴于点D ,AB 1交B A ′于点E ,连接O E . 移动t 秒时,A(0,2﹣t ),C(22t -,0),B 2 (﹣1﹣t ,0),D(0,12t+), 设直线A C 的解析式为y=k 1x+b 1,则1112202b ttk b =-⎧⎪⎨-+=⎪⎩,解得1122k b t =⎧⎨=-⎩,故y=2x+2﹣t ; 设直线B 2D 的解析式为y=k 2x+b 2,则122012t k b t b +=⎧⎪⎨+=⎪⎩(-1-),解得221212k t b ⎧=⎪⎪⎨+⎪=⎪⎩,故y=12 x+12t +; 由221122y x tty x =+-⎧⎪⎨+=+⎪⎩得112222t x t x ++-=+,4421x t x t +-=++,333x t =-,1x t =-,故E(t ﹣1,t ).0设△ABO 与△B A ′B ′重叠面积为S ,则S=S△COE +S△DOE=12OC·︱y E︱+12OD·︱x E︱=12·22t-·t+12·12t+·(1﹣t) =14(2 t﹣t2)+14(1﹣t2)=﹣12t2+12t+14=﹣12(t﹣12)2+38.∵﹣12<0,∴当t=12时,△ABO与△B A′B′重叠面积的最大值为38.。

初中自主招生模拟试卷数学

初中自主招生模拟试卷数学

一、选择题(每题4分,共40分)1. 下列各数中,有理数是()A. √-1B. √4C. √-9D. √02. 若a=3,b=-2,则a²+b²的值为()A. 7B. 9C. 13D. 173. 已知x²+2x+1=0,则x的值为()A. -1B. 0C. 1D. -24. 在△ABC中,∠A=60°,∠B=45°,则∠C的度数是()A. 75°B. 105°C. 120°D. 135°5. 若x²-3x+2=0,则x的值为()A. 1B. 2C. 3D. -16. 下列函数中,一次函数是()A. y=x²B. y=2x+1C. y=3x-4D. y=5x³7. 在平面直角坐标系中,点A(2,3)关于x轴的对称点为()A.(2,-3)B.(-2,3)C.(-2,-3)D.(2,6)8. 若a、b、c是△ABC的三边,且a+b>c,则下列结论正确的是()A. a-b>cB. a-b>cC. a-b>cD. a-b>c9. 已知a=2,b=3,则a²-b²的值为()A. -5B. 5C. -2D. 210. 在△ABC中,∠A=30°,∠B=45°,则∠C的度数是()A. 75°B. 105°C. 120°D. 135°二、填空题(每题4分,共40分)1. 若x²-6x+9=0,则x的值为__________。

2. 在平面直角坐标系中,点A(-2,3)关于y轴的对称点为__________。

3. 若a、b、c是△ABC的三边,且a+b>c,则下列结论正确的是__________。

4. 若a=2,b=3,则a²-b²的值为__________。

2025年山东枣庄滕州一中自主招生数学模拟试卷(含答案详解)

2025年山东枣庄滕州一中自主招生数学模拟试卷(含答案详解)


试卷第 5页,共 9页
三.解答题
18.如图所示,九(1)班数学兴趣小组为了测量河对岸的古树 A、B 之间的距离,他们在 河边与 AB 平行的直线 l 上取相距 60m 的 C、D 两点,测得∠ACB=15°,∠BCD=120°, ∠ADC=30°.
(1)求河的宽度; (2)求古树 A、B 之间的距离.(结果保留根号) 19.如图,在 Rt△ABC 中,∠B=90°,AE 平分∠BAC 交 BC 于点 E,O 为 AC 上一点,经 过点 A、E 的⊙O 分别交 AB、AC 于点 D、F,连接 OD 交 AE 于点 M.

x
0
时,
x
2 m
4
0
无解;

x
1 2
时,
x
2 m
4
1 2
,解得
m
0;
综上,m 的值为 0 或 4;
故选:D.
【点睛】本题考查了分式方程无解的情况,即分式方程有增根,分两种情况,分别是最简公
分母为 0 和化成的整式方程无解,熟练掌握知识点是解题的关键.
2.C
【分析】先利用勾股定理计算出 AC=25cm,由于圆锥的侧面展开图为一扇形,这个扇形的
2
试卷第 8页,共 9页
(3)如图(2),点 C 关于 x 轴的对称点为点 D ,点 P 为线段 BC 上的一个动点,连接 AP ,点 Q 为线段 AP 上一点,且 AQ 3PQ ,连接 DQ ,当 3AP+4DQ 的值最小时,直接写出 DQ 的长.
试卷第 9页,共 9页
1.D
【分析】先将分时方程化为整式方程,再根据方程无解的情况分类讨论,当 m 4 0 时,当
()
A.
a

全国初中数学自主招生试卷

全国初中数学自主招生试卷

一、选择题(每题5分,共50分)1. 下列各数中,无理数是()A. √2B. -√3C. 3.14D. 02. 已知a,b是方程x^2 - 4x + 3 = 0的两根,则a + b的值是()A. 1B. 2C. 3D. 43. 下列函数中,定义域为全体实数的是()A. y = √xB. y = 1/xC. y = x^2D. y = |x|4. 若a > b,则下列不等式中正确的是()A. a^2 > b^2B. a^3 > b^3C. a^2 < b^2D. a^3 < b^35. 下列各式中,等式成立的是()A. (a + b)^2 = a^2 + 2ab + b^2B. (a - b)^2 = a^2 - 2ab + b^2C. (a + b)^2 = a^2 - 2ab + b^2D. (a - b)^2 = a^2 + 2ab - b^26. 已知等差数列{an}的首项为a1,公差为d,则第n项an可以表示为()A. a1 + (n - 1)dB. a1 - (n - 1)dC. a1 + ndD. a1 - nd7. 已知等比数列{an}的首项为a1,公比为q,则第n项an可以表示为()A. a1 q^(n - 1)B. a1 / q^(n - 1)C. a1 q^nD. a1 / q^n8. 已知函数f(x) = 2x + 3,则f(-1)的值是()A. 1B. 2C. 3D. 49. 下列各数中,有理数是()A. √3B. -√5C. 0.333...D. 0.666...10. 已知一元二次方程x^2 - 5x + 6 = 0,则它的两个根是()A. x1 = 2,x2 = 3B. x1 = 3,x2 = 2C. x1 = 1,x2 = 6D. x1 = 6,x2 = 1二、填空题(每题5分,共50分)1. 已知a,b,c是方程x^2 - 3x + 2 = 0的两根,则a + b + c的值是______。

初二数学自主招生考试试卷

初二数学自主招生考试试卷

一、选择题(每题3分,共30分)1. 下列各数中,绝对值最小的是()A. -3B. -2C. 0D. 12. 若a < b,那么下列不等式中正确的是()A. a + 1 < b + 1B. a - 1 > b - 1C. a + 2 < b + 2D. a - 2 > b - 23. 在直角坐标系中,点A(2,3)关于原点对称的点是()A.(-2,-3)B.(-2,3)C.(2,-3)D.(2,3)4. 下列函数中,自变量x的取值范围是所有实数的是()A. y = 2x + 1B. y = √xC. y = x² - 4D. y = 1/x5. 若x² + 2x + 1 = 0,则x的值为()A. 1B. -1C. 2D. -26. 在等腰三角形ABC中,AB = AC,若∠BAC = 40°,则∠ABC的度数是()A. 40°B. 50°C. 70°D. 80°7. 下列各组数中,成等差数列的是()A. 2, 4, 6, 8B. 1, 3, 5, 7C. 3, 6, 9, 12D. 4, 7, 10, 138. 若等比数列的首项为2,公比为3,则第5项为()A. 18B. 27C. 54D. 819. 在一次函数y = kx + b中,若k > 0,则函数图像经过的象限是()A. 第一、二象限B. 第一、三象限C. 第二、四象限D. 第三、四象限10. 下列关于一元二次方程x² - 5x + 6 = 0的解法中,正确的是()A. 因式分解法B. 直接开平方法C. 迭代法D. 插值法二、填空题(每题5分,共25分)11. 已知等差数列的首项为2,公差为3,求第10项的值。

12. 若直角三角形的两条直角边分别为3和4,求斜边的长度。

13. 已知函数y = -2x + 1,求当x = -3时,y的值。

数学自主招生模拟试题

数学自主招生模拟试题

数学自主招生模拟试题
第一部分:选择题
1. 下列哪个数学符号代表无穷大?
A. √2
B. ∞
C. π
D. e
2. 如果对数a的值为3,那么指数a的值为多少?
A. 9
B. 5
C. 27
D. 81
3. 若a^2 + b^2 = 25,且a + b = 7,则a和b的值分别为多少?
A. a=3, b=4
B. a=4, b=3
C. a=5, b=6
D. a=6, b=5
4. 一个正方形的对角线长度为10,那么它的面积是多少?
A. 25
B. 50
C. 75
D. 100
5. 以下哪个不是三角函数?
A. sin
B. log
C. cos
D. tan
第二部分:填空题
1. 20%的250是多少?
答:50
2. 已知a=3,b=4,c=5,那么a^2 + b^2 = __?
答:25
3. 若a:b=2:3,b:c=3:4,求a:b:c的比值。

答:2:3:4
第三部分:简答题
1. 请简要说明直角三角形的勾股定理。

答:直角三角形的斜边的平方等于直角边的平方和。

2. 请解释什么是复数?
答:复数是由实部和虚部组成的数,通常表示为a+bi,其中a为实部,b为虚部,i为虚数单位。

3. 请列举一个常用的数学公式,并简要说明其应用场景。

答:圆的面积公式S=πr^2,可以用来计算圆形物体的表面积。

结束语:以上就是数学自主招生模拟试题的内容,希望能帮助大家更好地准备数学招生考试。

祝各位考生顺利通过考试!。

自主招生试卷数学初中模拟

自主招生试卷数学初中模拟

1. 已知实数a,b满足a+b=1,则a^2+b^2的取值范围是()A. [0, 1]B. [1, 2]C. [1, 3]D. [0, 3]2. 若函数f(x)=x^3-3x+2的零点个数是()A. 1B. 2C. 3D. 03. 已知等差数列{an}的首项为a1,公差为d,则a1+a2+a3+...+an的值是()A. n(a1+an)/2B. (n^2+n)/2C. n(n+1)/2D. (n^2+2n)/24. 若等比数列{an}的首项为a1,公比为q,则a1+a2+a3+...+an的值是()A. a1(1-q^n)/(1-q)B. a1(1-q^n)/(1+q)C. a1(1+q^n)/(1-q)D. a1(1+q^n)/(1+q)5. 若函数f(x)=ax^2+bx+c(a≠0)的图像与x轴正半轴的交点个数是1,则a,b,c之间的关系是()A. b^2-4ac=0B. b^2-4ac>0C. b^2-4ac<0D. a+b+c=0二、填空题6. 若实数x满足不等式|x-1|<2,则x的取值范围是__________。

7. 已知等差数列{an}的首项为3,公差为2,则第10项an的值为__________。

8. 若函数f(x)=x^2+2x+1的图像关于x轴对称,则a的值为__________。

9. 若等比数列{an}的首项为2,公比为3,则第5项an的值为__________。

10. 若函数f(x)=ax^2+bx+c(a≠0)的图像与x轴正半轴的交点个数是2,则a,b,c之间的关系是__________。

三、解答题11. 已知等差数列{an}的首项为2,公差为3,求第10项an的值。

12. 若函数f(x)=ax^2+bx+c(a≠0)的图像与x轴正半轴的交点个数是2,求a,b,c之间的关系。

13. 已知等比数列{an}的首项为2,公比为3,求第5项an的值。

14. 若实数x满足不等式|x-1|<2,求x的取值范围。

湖北省黄冈中学2020年自主招生(理科实验班)预录考试数学模拟试题八(pdf版,含答案)

湖北省黄冈中学2020年自主招生(理科实验班)预录考试数学模拟试题八(pdf版,含答案)

2020年黄冈中学自主招生(理科实验班)预录考试数学模拟试题八一.选择题(共8小题,满分40分,每小题5分)1.若实数x满足|x﹣3|+=7,化简2|x+4|﹣的结果是()A.4x+2 B.﹣4x﹣2 C.﹣2 D.22.△ABC的三条边分别为a,b,c,下列条件不能判断△ABC是直角三角形的是()A.a2+b2=c2B.a=5,b=12,c=13C.∠A=∠B+∠C D.∠A:∠B:∠C=3:4:53.一根长30cm、宽3cm的长方形纸条,将其按照图示的过程折叠,为了美观,希望折叠完成后纸条两端超出点P的长度相等,则最初折叠时,MA的长应为()A.7.5cm B.9cm C.12cm D.10.5cm4.桌面上有甲、乙、丙三个圆柱形的杯子,杯深均为15公分,各装有10公分高的水,且表记录了甲、乙、丙三个杯子的底面积.今小明将甲、乙两杯内一些水倒入丙杯,过程中水没溢出,使得甲、乙、丙三杯内水的高度比变为3:4:5.若不计杯子厚度,则甲杯内水的高度变为多少公分?()A.5.4 B.5.7 C.7.2 D.7.55.抛物线y=x2+4x+5是由抛物线y=x2+1经过某种平移得到,则这个平移可以表述为()A.向左平移1个单位B.向左平移2个单位C.向右平移1个单位D.向右平移2个单位6.在打靶中,某运动员每发子弹都是命中8、9、10环,他打了多于11发子弹,共得100环,那么,他命中10环的次数是()A.0 B.1 C.2 D.不能确定7.如图,在Rt△ABC中,∠C=90°,AC=,BC=1,D在AC上,将△ADB沿直线BD翻折后,点A落在点E处,如果AD⊥ED,那么△ABE的面积是()A.1 B.C.D.8.点C是半径为1的半圆弧AB的一个三等分点,分别以弦AC、BC为直径向外侧作2个半圆,点D、E也分别是2半圆弧的三等分点,再分别以弦AD、DC、CE、BE为直径向外侧作4个半圆.则图中阴影部分(4个新月牙形)的面积和是()A.B.C.D.二.填空题(共10小题,满分40分,每小题4分)9.已知扇形的半径为2cm,面积是cm2,则扇形的弧长是cm.10.如图,在菱形ABCD中,∠B=60°,对角线AC平分角∠BAD,点P是△ABC内一点,连接PA、PB、PC,若PA=6,PB=8,PC=10,则菱形ABCD的面积等于.11.若直线y=2x+3与直线y=mx+5平行,则m+2的值为.12.已知对于任意正整数n,都有a1+a2+…+a n=n3,则=.13.取大小、质地都相同的四张卡片,正面分别写有数字﹣1,1,2,3,充分洗匀后任取两张,取卡片上标注的两个数作为点的坐标,那么该点刚好在一次函数y=x﹣2图象上的概率是14.若关于x的不等式组的所有整数解的和是﹣9,则m的取值范围是.15.如图,菱形ABCD的边长是2cm,∠A=60°,点E、F分别是边AB、CD上的动点,则线段EF的最小值为cm.16.如图,Rt△ABC,∠BCA=90°,AC=BC,点D为△ABC外一点,且AC=CD,连接DB交AC于点H,∠DCA的平分线交DH于点F,过B点作FC的垂线交FC的延长线于点E.已=8,则CE的长为.知tan∠DBC=,S△ACD17.方程|x2﹣3x+2|+|x2+2x﹣3|=11的所有实数根之和为.18.已知实数a,b满足等式a2﹣2a﹣1=0,b2﹣2b﹣1=0,则的值是.三.解答题(共4小题,满分40分,每小题10分)19.(10分)如图,在△ABC中,∠ACB=90°,以点B为圆心,BC长为半径画弧,交线段AB于点D;以点A为圆心,AD长为半径画弧,交线段AC于点E,连结CD.(1)若∠A=28°,求∠ACD的度数.(2)设BC=a,AC=b.①线段AD的长是方程x2+2ax﹣b2=0的一个根吗?说明理由.②若AD=EC,求的值.20.(10分)如图1,在平面直角坐标系xOy中,直线l:与x轴、y轴分别交于点A和点B(0,﹣1),抛物线经过点B,且与直线l的另一个交点为C (4,n).(1)求n的值和抛物线的解析式;(2)点D在抛物线上,且点D的横坐标为t(0<t<4).DE∥y轴交直线l于点E,点F在直线l上,且四边形DFEG为矩形(如图2).若矩形DFEG的周长为p,求p与t的函数关系式以及p的最大值;(3)M是平面内一点,将△AOB绕点M沿逆时针方向旋转90°后,得到△A1O1B1,点A、O、B的对应点分别是点A1、O1、B1.若△A1O1B1的两个顶点恰好落在抛物线上,请直接写出点A1的横坐标.21.(10分)若关于x的分式方程的解为负数,求a的取值范围.22.(10分)如图①,△ABC内接于⊙O,点P是△ABC的内切圆的圆心,AP交边BC 于点D,交⊙O于点E,经过点E作⊙O的切线分别交AB、AC延长线于点F、G.(1)求证:BC∥FG;(2)探究:PE与DE和AE之间的关系;(3)当图①中的FE=AB时,如图②,若FB=3,CG=2,求AG的长.2020年黄冈中学自主招生(理科实验班)预录考试数学模拟试题八参考答案与试题解析一.选择题(共8小题,满分40分,每小题5分)1.解:∵|x﹣3|+=7,∴|x﹣3|+|x+4|=7,∴﹣4≤x≤3,∴2|x+4|﹣=2(x+4)﹣|2x﹣6|=2(x+4)﹣(6﹣2x)=4x+2,故选:A.2.解:A、a2+b2=c2,是直角三角形,错误;B、∵52+122=132,∴此三角形是直角三角形,故本选项正确;C、∵∠A+∠B+∠C=180°,∠A=∠B+∠C∴∠A=90°,∴此三角形是直角三角形,故本选项正确;D、设∠A=3x,则∠B=4x,∠C=5x,∵∠A+∠B+∠C=180°,∴3x+4x+5x=180°,解得x=15°∴∠C=5×15°=75°,∴此三角形不是直角三角形,故本选项正确;故选:D.3.解:将折叠这条展开如图,根据折叠的性质可知,两个梯形的上底等于纸条宽,即3cm,下底等于纸条宽的2倍,即6cm,两个三角形都为等腰直角三角形,斜边为纸条宽的2倍,即6cm,故超出点P的长度为(30﹣15)÷2=7.5,AM=7.5+3=10.5.故选D.4.解:设后来甲、乙、丙三杯内水的高度为3x、4x、5x,根据题意得:60×10+80×10+100×10=60×3x+80×4x+100×5x,解得:x=2.4,则甲杯内水的高度变为3×2.4=7.2(公分).故选:C.5.解:原抛物线的顶点为(0,1),新抛物线的顶点为(﹣2,1),∴是抛物线y=x2+1向左平移2个单位得到,故选:B.6.解:设环数为8,9,10的次数分别为x,y,z,∴x+y+z>11,8x+9y+10z=100,∵若x+y+z≥13,则8x+9y+10z≥8×13>100,故x+y+z=12.∴该运动员打靶的次数为:12.当x=10时,y=0,z=2,当x=9时,y=2,z=1,当x=8时,y=4,z=0.故他命中10环的次数分别为:0,1,2.故选:D.7.解:∵∠C=90°,AC=,BC=1,∴AB==2,∴∠BAC=30°,∵△ADB沿直线BD翻折后,点A落在点E处,∴BE=BA=2,∠BED=∠BAD=30°,DA=DE,∵AD⊥ED,∴BC∥DE,∴∠CBF=∠BED=30°,在Rt△BCF中,CF==,BF=2CF=,∴EF=2﹣,在Rt△DEF中,FD=EF=1﹣,ED=FD=﹣1,∴S△ABE=S△ABD+S△BED+S△ADE=2S△ABD+S△ADE=2×BC•AD+AD•ED=2××1×(﹣1)+×(﹣1)(﹣1)=1.故选:A.8.解:易知D、C、E三点共线,点C是半径为1的半圆弧AB的一个三等分点,∴对的圆心角为=60°,∴∠ABC=30°,∵AB是直径,∴∠ACB=90°,∴AC=AB=1,BC=AB•COS30°=,BE=BC•COS30°=,CE=DC=,AD=,且四边形ABED为直角梯形,外层4个半圆无重叠.从而,S阴影=S梯形ABED+S△ABC﹣,=S△ADC+S△BCE,=.故选:B.二.填空题(共10小题,满分40分,每小题4分)9.解:设弧长为l,∵扇形的半径为2cm,面积是cm2,∴•2•l=π,∴l=πcm.故答案为=π.10.解:将线段AP绕点A顺时针旋转60°得到线段AM,连接PM,作AH⊥BP于H.∵四边形ABCD是菱形,∴AB=BC,∵∠ABC=60°,∴△ABC是等边三角形,∵AM=AP,∠MAP=60°,∴△AMP是等边三角形,∵∠MAP=∠BAC,∴∠MAB=∠PAC,∴△MAB≌△PAC,∴BM=PC=10,∵PM2+PB2=100,BM2=100,∴PM2+PB2=BM2,∴∠MPB=90°,∵∠APM=60°,∴∠APB=150°,∠APH=30°,∴AH=PA=3,PH=3,BH=8+3,∴AB2=AH2+BH2=100+48,∴菱形ABCD的面积=2•△ABC的面积=2××AB2=50+72,故答案为50+72.11.解:∵两直线平行∴两直线的k值相同∴m=2∴m+2=4.12.解:∵当n≥2时,有a1+a2+…+a n﹣1+a n=n3,a1+a2+…+a n﹣1=(n﹣1)3,两式相减,得a n=3n2﹣3n+1,∴==(﹣),∴++…+,=(1﹣)+(﹣)+…+(﹣),=(1﹣),=.故答案为:.13.解:画出树状图如下:当x=﹣1时,y=﹣1﹣2=﹣3,当x=1时,y=1﹣2=﹣1,点(1,﹣1)在函数图象上,当x=2时,y=2﹣2=0,当x=3时,y=3﹣2=1,点(3,1)在函数图象上,所以,共有12个点的坐标,其中在一次函数y=x﹣2图象上的有2个,P(在一次函数y=x﹣2图象上)==,故答案为:.14.解:∵解不等式①得:x≥﹣4,又∵不等式组的所有整数解得和为﹣9,∴﹣4+(﹣3)+(﹣2)=﹣9或(﹣4)+(﹣3)+(﹣2)+(﹣1)+0+1=﹣9,∴﹣2<m≤﹣1或1<m≤2,故答案为:﹣2<m≤﹣1或1<m≤2.15.解:作DM⊥AB与M,∴∠AMD=90°.∵四边形ABCD是菱形,∴AD=AB=BC=CD=2cm.∵∠A=60°,∴∠ADM=30°.∴AM=AD=1cm.在Rt△AMD中,由勾股定理,得DM=cm.∴线段EF的最小值为.故答案为:.16.解:延长CF交AD于M,连接AF,以C为圆心OA为半径作⊙C.∵CD=CA,CF平分∠ACD,∴CM⊥AD,DM=AM,∴FD=FA,∵∠ADB=∠ACB=45°,∴∠FDA=∠FAD=45°,∴∠AFD=∠AFB=∠ACB=90°,∴A、F、C、B四点共圆,∵tan∠DBC==,设CH=3k,则BC=4k,BH=5k,AB=4k,∴AH=AC﹣CH=k,FH k,AF=k,AD=k,∵△FHC∽△AHB,∴==,∴CF=k,∴CM=CF+FM=k,=8,∵S△ACD∴×k×k=8,∴k=,∴AM=,∵∠AMC=∠E=90°,AC=BC,∠ACM=∠CBE,∴△AMC≌△CEB,∴CE=AM=.故答案为.17.解:分段讨论知(1),解得x=(舍去);(2),解得x=﹣;(3),解得x=(舍去);(4),解得x=.∴(﹣)+=.故答案为:.18.解:因为实数a,b满足等式a2﹣2a﹣1=0,b2﹣2b﹣1=0,(1)当a=b=1+或1﹣时,原式==2﹣2或﹣2﹣2;(2)当a≠b时,可以把a,b看作是方程x2﹣2x﹣1=0的两个根.由根与系数的关系,得a+b=2,ab=﹣1.则原式=﹣2.故填空答案:﹣2或2﹣2或﹣2﹣2.三.解答题(共4小题,满分40分,每小题10分)19.解:(1)∵∠ACB=90°,∠A=28°,∴∠B=62°,∵BD=BC,∴∠BCD=∠BDC=59°,∴∠ACD=90°﹣∠BCD=31°;(2)①由勾股定理得,AB==,∴AD=﹣a,解方程x2+2ax﹣b2=0得,x==﹣a,∴线段AD的长是方程x2+2ax﹣b2=0的一个根;②∵AD=AE,∴AE=EC=,由勾股定理得,a2+b2=(b+a)2,整理得,=.20.解:(1)∵直线l:y=x+m经过点B(0,﹣1),∴m=﹣1,∴直线l的解析式为y=x﹣1,∵直线l:y=x﹣1经过点C(4,n),∴n=×4﹣1=2,∵抛物线y=x2+bx+c经过点C(4,2)和点B(0,﹣1),∴,解得,∴抛物线的解析式为y=x2﹣x﹣1;(2)令y=0,则x﹣1=0,∴点A的坐标为(,0),∴OA=,在Rt△OAB中,OB=1,∴AB===,∵DE∥y轴,∴∠ABO=∠DEF,在矩形DFEG中,EF=DE•cos∠DEF=DE•=DE,DF=DE•sin∠DEF=DE•=DE,∴p=2(DF+EF)=2(+)DE=DE,∵点D的横坐标为t(0<t<4),∴D(t,t2﹣t﹣1),E(t,t﹣1),∴DE=(t﹣1)﹣(t2﹣t﹣1)=﹣t2+2t,∴p=×(﹣t2+2t)=﹣t2+t,∵p=﹣(t﹣2)2+,且﹣<0,∴当t=2时,p有最大值;(3)∵△AOB绕点M沿逆时针方向旋转90°,∴A1O1∥y轴时,B1O1∥x轴,设点A1的横坐标为x,①如图1,点O1、B1在抛物线上时,点O1的横坐标为x,点B1的横坐标为x+1,∴x2﹣x﹣1=(x+1)2﹣(x+1)﹣1,②如图2,点A1、B1在抛物线上时,点B1的横坐标为x+1,点A1的纵坐标比点B1的纵坐标大,∴x2﹣x﹣1=(x+1)2﹣(x+1)﹣1+,解得x=﹣,综上所述,点A1的横坐标为或﹣.21.解:分式方程去分母得:(x+1)(x﹣1)﹣(x﹣2)2=2x+a,整理得:x2﹣1﹣x2+4x﹣4=2x+a,解得:x=,根据题意得:<0,解得:a<﹣5,再将x=2代入方程得:a=﹣1;将x=﹣1代入得:a=﹣7,则a的取值范围为a<﹣5且a≠﹣7.22.(1)证明:连接BE,∵点P是△ABC的内心,∴∠BAD=∠CAD.又∵FG切⊙O于E,∴∠BEF=∠BAD.又∵∠DBE=∠CAD,∴∠BEF=∠DBE.∴BC∥FG.(2)解:连接BP,则∠ABP=∠CBP.∵∠BPE=∠BAP+∠ABP=∠PBC+∠EBD,∴∠BPE=∠PBE.∴BE=PE.在△ABE和△BDE中,∠BAE=∠EBD,∠BED=∠AEB,∴△ABE∽△BDE.∴=.∴BE2=AE•DE.∴PE2=AE•DE.(3)解:∵FE2=FB•FA=FB(FB+AB),而FE=AB,∴AB2=3(3+AB).设AB=x,则x2﹣3x﹣9=0,解之得x=.∴AB=(取正值).由(1)在△AFG中,BC∥FG,∴.∴AC==×=1+.∴AG=AC+CG=3+.。

初中自主招生数学试题

初中自主招生数学试题

初中自主招生数学试题一、 填空(24分)1.据估计全世界人口已达到 6477000000 人,横线上的数读作( )、改写成用“万”作单位的数是( )。

省略亿后面的尾数是( )。

2.五月份有五个星期三,第一天和最后一天都不是星期三,则五月一号是星期( )。

3.在6、 3 、2 、3、 11 这组数中,中位数是( ),众数是( ),平均数是( )。

4. 72:0.25的比值是( )。

9:3.6的最简比是( )。

5.一个长方形长、宽、高的比是3:2:1它的棱长总和是192厘米,它的表面积是( )。

6在一张照片上量得爸爸的身高是10厘米,爸爸的实际身高是1.8米这张照片的比例尺是( )。

7.一个圆锥的体积比它等底等高的圆柱的体积小50.24m ³,圆锥的体积是( )。

8.在一个三角形中最大的角不能小于( )度。

9.5时10分、时针与分钟的最小夹角是()度。

10.小芳家在小明家偏西30度的方向上,小明在小芳家()偏()的方向上。

11.在24个零件中有一个次品,已知次品比合格产品重。

至少称()次就能保证称出次品。

12.照规律填空1,4,3,16,9,36,()、()。

13 A=2×5×m ,B=3×5×m如果AB的最大公因数是35最小公倍数是()14我们学过的统计图有()统计图、()统计图和()统计图。

二、判一判(共6分)1.圆的面积和它的半径成正比例。

()2.7只鸽子向3个笼子里飞至少有一个笼子里飞进3只鸽子。

()3.等底等高的三角形一定能拼成一个平行四边形。

()4.同一幅方格中数对(4 ,5)和(5 ,4)表示的位置相同。

()5.身份证号132428************反映的信息是一位与北京奥运同生日的望都县的女性公民。

()6.圆锥的高一定,它的底面积和体积成反比例。

()三、选择(4分)1.圆的半径扩大到原来的2倍面积就扩大到原来的()倍。

A 1 B2 C42.一个三角形的三个内角的度数比是2:3:4这是一个()三角形。

初中数学自招试卷

初中数学自招试卷

一、选择题(每题4分,共40分)1. 已知等差数列{an}的前n项和为Sn,若S10=55,S15=150,则公差d等于()A. 1B. 2C. 3D. 42. 在直角坐标系中,点A(-2,3),点B(4,-1),点C在直线y=-2x+5上,若三角形ABC是等腰三角形,则点C的坐标是()A. (1,3)B. (3,-1)C. (-1,-3)D. (1,-3)3. 若等比数列{an}的公比q≠1,且a1+a2+a3=27,a3+a4+a5=243,则a2的值为()A. 3B. 6C. 9D. 124. 已知函数f(x)=x^2-2ax+1,若f(x)的图像关于直线x=a对称,则a的值为()A. 0B. 1C. 2D. 35. 在等腰三角形ABC中,底边BC=6,腰AB=AC=8,则顶角A的度数为()A. 30°B. 45°C. 60°D. 90°6. 已知正方体ABCD-A1B1C1D1的棱长为2,则对角线AC1的长度为()A. 2√2B. 2√3C. 2√5D. 2√67. 在等腰三角形ABC中,AB=AC,若∠BAC=40°,则∠B的度数为()A. 40°B. 50°C. 60°D. 70°8. 若函数f(x)=ax^2+bx+c(a≠0)的图像开口向上,且f(1)=3,f(2)=5,则a、b、c的值分别为()A. 1、2、0B. 1、-2、0C. -1、2、0D. -1、-2、0二、填空题(每题4分,共20分)9. 已知等差数列{an}的前n项和为Sn,若S10=55,S15=150,则公差d=______。

10. 在直角坐标系中,点A(-2,3),点B(4,-1),点C在直线y=-2x+5上,若三角形ABC是等腰三角形,则点C的坐标为______。

11. 若等比数列{an}的公比q≠1,且a1+a2+a3=27,a3+a4+a5=243,则a2的值为______。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中数学自主招生模拟试题(一)
一、选择题(每小题6分,共30分)
1、设a,b,c,d 为整数,且a <2b ,b <3c ,c <4d ,若d <100,则a 可能取的最大值为( )
A. 2367
B. 2375
C. 2391
D. 2399
2、若方程02022222=−+=++b cx x b ax x 与有一个相同的根,且a,b,c 为一个三角形的三边,则此三角形一定是( )。

A. 直角三角形
B. 等腰三角形
C. 等边三角形
D. 等腰直角三角形
3、如果一条直线l 经过不同的三点A(a,b),B(b,a),C(a-b,b-a),那么直线l 经过第( )象限。

A. 二、四
B. 一、三
C. 二、三、四
D. 一、三、四
4、如图,AB 是圆的直径,CD 是平行于AB 的弦,
且AC 和BD 相交于E ,∠AED=α,那么△CDE
和△ABE 的面积之比是( )
A.αcos
B. α2sin
C. α2cos
D. αsin 1−
5、点P 在锐角△ABC 的内部,若∠PAB+∠PBC+∠PCA=90°,则点P 是△ABC 的( )
A. 外心、内心或重心
B. 内心或重心或垂心
C. 外心或内心或垂心
D. 外心或重心或垂心
二、填空题(每小题6分,共30分)
6、若等式e d c b a e
d c b a ,,,,111111中的=++++都是自然数且互不相等。

则 a= ,b= ,c= ,d= ,e= 。

7、当m 取遍0至5的所有实数值,满足)83(3−=m m n 的整数n 的个数是 。

8、如图,△ABC 内三个三角形的
面积分别为5,8,10,则四边形AEFD
的面积是 。

9、若凸4n+2边形2421+n A A A (n 为自然数)的每个内角都是30°的整数倍,且︒=∠=∠=∠90321A A A ,则n 的所有可能值是 。

三、解答题(每小题15分,共60分)
11、⑴n m mn n m R n m +=++∈,求,且设13,33的值
⑵求方程组⎪⎩⎪⎨⎧+==−−)
(232333z y x xyz z y x 的正整数解。

12、半径为a 的半圆材料上,如图截两个正方形ABCD,BEFG ,D 、F 两点在半圆周上,C 、G 在半圆内,试求这样两块面积和,并可得出什么结论。

13、如图,在Rt △ABC 中,∠ACB=90°,CD ⊥AB 于D ,△ADC 和△CDB 的
内心分别为2121,,I I I I 与CD 相交于K ,求证:CK
BC AC 111=+
14、如图,在平行四边形ABCD 上,E 为AD 上一点,F 为AB 上一点,且BE=DF ,BE 与DF 交于G 。

求证∠BGC=∠DGC。

相关文档
最新文档