三极管放大电路介绍ppt课件

合集下载

2.2三极管的基本放大电路课件

2.2三极管的基本放大电路课件
称交流工作状态。
动态时电路中的信号为交直流分量的叠加。
输入正弦信号vs后,
电路将处在动态工作情 况。此时,三极管各极 电流及电压都将在静态 值的基础上随输入信号 作相应的变化。
1、输入回路的动态分析
输入交流信号vi通过电容C1的耦合送到三极管的基极和发射极。交流信号vi 与直流偏压VBEQ叠加的vBE波形如图(b),基极电流iB产生相应的变化,波形如
UCE=VCC ICRC 12 1.6 4 5.6V
2. 静态工作点分析--图解法 首先利用以下两式估算IB,
然后再根据电路中三极管输出 特性曲线确定静态工作点。
按照方程UCE=UCC-ICRC作一条称为直流负载线的直线, 步骤如下:
电路与模拟电子技术基础
2.2.4放大电路的动态分析
输入信号不为零时,放大电路的工作状态,也
IC βIB 37.50.04 1.5mA
Rb
Cb1
+
+
u i
-
+
+VCC Rc
Cb2
T
+
RL
u o
-
UCE VCC ICRC 12 1.5 4 6V
请注意电路中IB和IC的数量级
例题1-3-2:
共射电路如图,已知三极管为硅管,β=40,试求电路中的 直流量IB、 IC 、UBE 、UCE。
+
u -
i
开路
将交流电压源短路, 将电容开路,
+ VCC 电感视为短路。
Cb2
T
开路 +
.
uo
RL -
+ VCC
R b1 R c
T
1. 静态工作点分析--估计法 RB称为偏置电 阻,IB称为偏 置电流。

电工电子三极管放大电路 (共87张PPT)

电工电子三极管放大电路 (共87张PPT)
任务二 学习放大电路的主要性能指标 睡昆杭霈簧渡烀蛟谊延隙黄槲镁缴扶笏劈瞒瓴皙厩绛弋昆獍榕尾美荠捂袜潴汗挡宪板括舐涤
• 差模输入信号uid——大小相等而极性相反的两个输入信号。
(a)扩音机的功能框图 这种失真是因为三极管进入饱和引起的
任务三 学习放大电路的图解分析法 ②共射极放大电路的倒相作用——ib、ic与ui 相位相同;
图6-3 简化的单管放大电路
(a)信号直接输入输出
(b)变压器耦合信号输入输出
图6-4 信号输入输出的其他形式
2 放大电路中电压和电流符号的规定
• 表6-1 放大电路中电压和电流的符号
名称
直流值
交流分量
瞬时值
有效值
总电压或 电流
瞬时值
基极电流
IB
ib
集电极电流 发射极电流
IC IE
ic ie
集-射极电压
• 1.三极管微变等效电路 • 2.放大电路的微变等效电路
1.三极管微变等效电路
• (1)输入端等效
• 如果输入信号很小,可认为三极管在静态工 作点附近的工作段是线性的
• uCE为常数的条件下,当晶体管在静态工 作点上叠加一个交流信号时,有输入 电压的微小变化量ΔuBE以及相应的基极电
流变化量ΔiB。
• 设输入信号ui=ωt V,则晶体三极管发射
结上的总电压
• uBE=UBEQ+ui=(+ωt)在之间变化。 • 由于晶体三极管工作在输入特性曲线
的线性区,随着uBE的变化,工作点沿 着Q→Q1→Q→Q2→Q往复变化,故iB随 ui按正弦规律变化,变化范围为20~60μA
之间,
• 即ib=20sinωt μA
大电路输出端看进去的等效内阻称为输出电阻ro。

半导体三极管放大电路基础课件

半导体三极管放大电路基础课件
第2章 半导体三极管放大电路基础
§2.1 三极管工作原理 §2.2 共射极放大电路 §2.3 图解分析法 §2.4 微变等效电路分析法 §2.5 工作点稳定的放大电路 §2.6 共集电极放大电路和共基极放大电路
1
§2.1 三极管工作原理
BJT全称为双极型半导体三极管,内部有自由电子 和空穴两种载流子参与导电。种类很多:有硅管和锗管, 有高频管和低频管,有大、中、小功率管。
2
2.1.1 三极管的结构与符号:
NPN型 c 集电极
集电极
c PNP型
N
b
P
基极
N
P
B
N
基极
P
e
b c 发射极
e
几微米至 几十微米
e
发射极
c b
e
3
c 集电极
集电结
N
b
P
基极
N
发射结
e
发射极
4
集电区: 面积较大
b
基极
c
集电极
N P N
e
发射极
基区:较薄, 掺杂浓度低
发射区:掺 杂浓度较高
5
2.1.2 三极管放大的工作原理
0.061mA
I B 50 0.061mA 3.05m Icmax
Ic Icmax 2mA
Q 位于饱和区,此时IC 和IB 已不是 倍的关系。
二、共基极连接时的V-I特性曲线
IB
A
RE
V UEB
IC
mA R
C
V UCB EC
EE
实验线路
26
1、输入特性:
UCB=5V
8
UCB =1V
=(ICN+ICBO)+(IBN+IEP-ICBO) IE =IC+IB

三极管放大电路的三种基本组态ppt.(ppt)

三极管放大电路的三种基本组态ppt.(ppt)

Rb
+VCC
C1
+
VT C2
Rs +
ui
us -
-
+
Re
RL uo
-
+ Rs
+ ui us
-
b ib
ic c
rbe
βib
Rb
e
+
Re
RL uo
-
上页 下页 首页
+ Rs
+ ui us
-
b ib
ic c
rbe
βib
Rb
e
Re
RL
ii
b ib
eie
R s +
+ ui
+ uo
u s-
-
-
rbe
βib
ic c
b ib
e - ie
+ Rs us+ ui
rbe Rb
iC βib
+
RL Re
uo
--
-
c
Ri = Rb //[ rbe + (1 + β) Re´] = 118kΩ
Ro =
rbe 1
+Rs´ +β
//
Re
= 0.26kΩ = 260Ω
Aus =
Ri Rs + Ri
Au =
118 10+ 118
×
0.993
io +
uo Re -
b ib
e - ie
+
rbe
+
Rs us+ ui Rb
iC βib

半导体三极管及放大电路PPT精品课件

半导体三极管及放大电路PPT精品课件

截止区
图3-20
饱和区: 输出特性的上升和弯曲部分
动态:当放大电路输入信号后(vi0), 电路中各处的电压、电流处于变动 状态,这时电路处于动态工作情况, 简称动态。
1. 估算法确定静态工作点
见图3-14(b)
IB
V CC V BE Rb
VBE:硅管约为0.7V。 锗管约为0.2V。
Rb
300k
Rc 4k Cb2
Cb1 IB
c IC
vi
e
12V
BJT的放大作用,按电流分配实现,称 之为电流控制元件;
电流放大系数
共基电路: 共射电路:
IC 1
IE
IC
IB
三、BJT的特性曲线(共射连接)
iC
iB
N
P
N
vCE
vBE
图3-8
1. 输入特性曲线
iB f (vBE ) vCE 常数
iB(mA)
vCE=0V VCE 1V
80
25 C
60
40
满足放大的外部条件。
b. 下面推导IC和IB的关系
IE = IB + IC
I C αI E I CBO
代入
IC αI B αI C ICBO
整理 式得
IC
α 1
IB
I CBO
1
令 α 1
则 I C I B (1 ) I CBO
令 I CEO (1 ) I CBO
ICEO:基极开路,c流到e的电流,称穿透电流
4k
图3-18 (a)
ib
+ vi Rb
ic +
Rc RL v0
图3-18 (b)

三极管基本放大电路ppt课件

三极管基本放大电路ppt课件

(a)原理电路
(b)实物图
精品课件
发射极单管放大电路各组成元件的作用
精品课件
电路中各电流、电压的符号规定
电路中既包含输入信号所产生的交流量,又包含直流电源所产生 的直流量。为了区分不同分量,通常做了以下规定
精品课件
放大电路原理图的画法
1.直流通路和交流通路 【直流通路】指静态时放大电路直流电流通过的路径。 画直流通路原则 :将电容视为开路。
确定出静态工作点Q。
以单管共射放大电路为例,其直流通路如右下图所示。设电路参数VCC、 Rb、RC和三极管放大倍数β已知,忽略三极管的UBEQ(硅管UBEQ≈0.7V,锗 管UBEQ≈0.3V),可以推导得:
IBQVCC UBEQ VCC
Rb
Rb
ICQ=βIBQ
UCEQ = VCC-ICQ RC
由上述公式求得的IB、 IC和UCE值即是静态工作点Q。
Ro=Ron
精品课件
多级放大电路的耦合方式
多级放大电路中每个单管放大电路称为“级”,级与级之间的连接 方式叫耦合。下表为三种常用耦合方式的比较。
精品课件
本章小结
1.三极管由两个PN结构成,按结构分为NPN和PNP两类。三极管的集电极 电流受基极电流的控制,所以三极管是一种电流控制器件。在满足发 射结正偏、集电结反偏的条件下,具有电流放大的作用。三极管的输 出特性曲线可分成截止区、饱和区、放大区。
所以,分压式偏置放大电路具有自动调整功能,当ICQ要增加时,电路 不让其增加;当ICQ要减小时,电路不让其减小;从而迫使ICQ稳定。所以 该电路具有稳定静态工作点的作用。B>>UBEQ
精品课件
C C V Q Q C E I I T V ec RR QEB Q B U I 2 1 b b R R Q B U 21 II

晶体三极管及其基本放大电路解读PPT课件

晶体三极管及其基本放大电路解读PPT课件
第13页/共79页
2. 设置静态工作点的必要性
为什么放大的对象是动态信号,却要晶体管在信号为零 时有合适的直流电流和极间电压?
输出电压必然失真! 设置合适的静态工作点,首先要解决失真问题,但Q点 几乎影响着所有的动态参数!
第14页/共79页
三、基本共射放大电路的波形分

动态信号
驮载在静
态之上
与iC变化 方向相反
当VCC>>UBEQ时,IBQ 已知:VCC=12V,
VCC Rb
Rb=600kΩ,
Rc=3kΩ ,
β
=100。
Q
=?
第23页/共79页
二、等效电路法
输入回路等效为 恒压源

半 利
导 用
体 线
器 性
件 元
的 件
非 建
线 立
性 模
特 型
性 ,
使 来
放 描
大 述
电 非
路线IBQ的性=分器VBB析件-RU复的b BE杂特Q
第36页/共79页
直流负载线和交流负载线
B
I CQ RL'
Uom=? Q点在什么位置Uom最大?
交流负载线应过Q点,且 斜率决定于(Rc∥RL)
第37页/共79页
§4.4 晶体管放大电路的 三种接法
一、静态工作点稳定的共射放大电路 二、基本共集放大电路 三、基本共基放大电路 四、三种接法的比较
第38页/共79页ห้องสมุดไป่ตู้
• 在Ui不变的情况下, Rb减小,Uo如何变化?Au如何变化?
当Uo最大时,再减小Rb,会出现失真吗?

在增什大么,不情 真一了定?行!
况A下u ,UU空oi 载

三极管放大电路PPT

三极管放大电路PPT

输入回路和输出回路的公共端,故称为共基极放大电路。
思考题
• 1.三种放大电路中哪一种输入电阻最大? 哪一种最小?哪一种输出电阻最小?
• 2.如何提高共集电极电路的输入电阻?
2.6 多级放大电路
• 一般放大器都是由几级放大电路组成,能对输入 信号进行逐级接力方式连续放大,以获得足够的 输出功率去推动负载工作,这就是多级放大器。 其中接入信号的为第1级,接着为第2级,直至末 级。前级的输出是后级的信号源,后级是前级的 负载。
输出电压信号就不能保证与输入电压信号相似, 把这种情况下的输出信号叫做失真,进入截止区 产生的失真称为截止失真,进入饱和区产生的失 真称为饱和失真。
2.3 微变等效电路
• 2.3.1 放大电路的微变等效电路

1.晶体管的微变等效电路

放大电路的微变等效电路,其核心是晶体
管的微变等效电路。
晶体管的微变等效电路
• 6.多级放大电路常用的耦合方式有三种:阻容耦合、直接 耦合和变压器耦合。
谢谢观赏!
2020/11/5
36
2.5 共集电极电路和共基极电路
• 2.5.1 共集电极电路

1.电路的组成

共集电极放大电路是从发射极输出,所以简称
射极输出器。
(a)所示是射极输出器电路图,(b)是其直流通路
共集电极放大电路的交流通路及微变等效电路
• 2.静态分析

确定静态工作点的值
• 3.动态分析

(1)电压放大倍数

(2)输入电阻
多极放大电路的组成
2.6.1 级间耦合方式
• 阻容耦合、直接耦合、变压器耦合
多级放 大器常 用的耦 合方式

三极管及其放大电路 ppt课件

三极管及其放大电路  ppt课件

② 基区:很薄(通常为几微米~几十微米),低
掺杂浓度;(薄牛肉)
c
③ 集电区: 掺杂浓度要比发 射区低;
面积比发射区大;
N
b
P
N
e
ppt课件
7
第2章 半导体三极管及其基本放大电路
2.1.2 BJT的电流放大作用
1.三极管的偏置 为实现放大,必须满足三极管的内部结构和外部 条件两方面的要求。
c
N
输出特性曲线可以划分为三个区域: 饱和区——iC受vCE控制的区域,该区域内vCE的 数值较小。此时Je正偏,Jc正偏
iC /mA
pp2t课5件℃
=80μA =60μA =40μA
=20μA
vCE /2V0
第2章 半导体三极管及其基本放大电路
饱和区——iC受vCE显著控制的区域,该区域内vCE的数值较 小。此时Je正偏,Jc正偏。
2.极限参数 (1)集电极最大允许电流ICM 指BJT的参数变化不超过允许值时集电极允 许的最大电流。
ppt课件
27
第2章 半导体三极管及其基本放大电路
(1)集电极最大允许电流ICM
指BJT的参数变化不超过允许值时集电极允许的最大电流。
(2)集电极最大允许功率损耗PCM
表示集电极上
过流区
允许损耗功率
Ii
Io
+
+
Rs Vi
放大电路 Ri (放大器)
Vo
RL
-
-
Ri
Ri决定了放大电路从信号源吸取信号幅值的大
小,即它决定了放大电路对信号源的要求。
Ri越大,Ii就越小,放大电路从信号源索取的电流越
小。放大电路所得到的输入电压Vi越接近信号源电压Vs。

晶体三极管及放大电路PPT课件

晶体三极管及放大电路PPT课件

输入特性
IBf(UBE )UCE 常 数
特点:非线性
IB(A) 80 60
UCE1V
40
发射结正偏时发射结导通 电压: NPN型硅管
UBE 0.6~0.7V PNP型锗管
20
UBE 0.2 ~ 0.3V
O 0.4 0.8 UBE(V)
开启电压:硅 管0.5V,锗 管0.1V。
16
2. 输出特性 描述基极电流iB为一常量时,集电极电流ic与
VBB 补充。
晶体管内部载流子的运动
多数电子在基区继续运动,
到达集电结的一侧。
10
3.集电结加反向电压,漂移运动形成集电极电流Ic,集电
结反偏,有利于收集基区漂移过来的电子而形成集电极电流 Icn。 其能量来自外接电源 VCC 。
c IC
ICBO
IB
b Rc
Rb
另外,集电区和基区的
少子在外电场的作用下将
V UCE
+ EC
输出回路 –

EB
发射极是输入回路、输出回路的公共端 14
1、输入特性曲线 描述管压降UCE一定的情况下,基极Leabharlann 电流iB与发射结压降uBE之间的函数关
系,即
iB f(uBE)UCE
为什么像PN结的伏安特性?
为什么UCE增大曲线右移? 为什么UCE增大到一定值曲线右移就 不明显了?
1.发射结加正向电压,扩散运动
c
形成发射极电流发射区的电子越
过发射结扩散到基区,基区的空
Rc
穴扩散到发射区—形成发射极电 流 IE (基区多子数目较少,空穴电
IB
流可忽略)
b Rb
e
2. 扩散到基区的自由电子与 空

三极管的基本放大电路分析ppt

三极管的基本放大电路分析ppt

Ri = RB // rbe = 300 // 0.967≈0.964kΩ
Ro= RC = 4kΩ
7.1.4 稳定工作点旳电路
当温度变化、更换三极管、电路元件老化、电源
电压波动时,都可能造成前述共发射极放大电路静态 工作点不稳定,进而影响放大电路旳正常工作。在这 些原因中,又以温度变化旳影响最大。所以,必须采 用措施稳定放大电路旳静态工作点。常用旳措施有两 种,一是引入负反馈;另一是引入温度补偿。
第7章 基本放大电路
放大电路旳功能是利用三极管旳电流控制作用, 或场效应管电压控制作用,把薄弱旳电信号(简称信 号,指变化旳电压、电流、功率)不失真地放大到所 需旳数值,实现将直流电源旳能量部分地转化为按输 入信号规律变化且有较大能量旳输出信号。放大电路 旳实质,是一种用较小旳能量去控制较大能量转换旳 能量转换装置。
放大电路构成旳原则是必须有直流电源,而且电 源旳设置应确保三极管或场效应管工作在线性放大状 态;元件旳安排要确保信号旳传播,即确保信号能够 从放大电路旳输入端输入,经过放大电路放大后从输 出端输出;元件参数旳选择要确保信号能不失真地放 大,并满足放大电路旳性能指标要求。
本章将根据上述原则,简介几种常用旳基本放大 电路旳构成,讨论它们旳工作原理、性能指标和基本 分析措施。掌握这些基本放大电路,是学习和应用复 杂电子电路旳基础。
稳定旳过程是: T↑→ Ic ↑→IE ↑→UE↑ →UBE ↓→IB↓→IC↓
(3) 静态分析
该电路旳静态工作点一般用估算法来拟定,详细 环节如下:
① 由:UB
UCC,求UB。
② 由:IE RB2 ③ 由IC=βIB,RB求1 IBR。B2
,求IC、IE 。

由UCE =UUBCC - ICRC - IERE ≈ UCC -

三极管放大电路-PPT..

三极管放大电路-PPT..

多级放 大器常 用的耦 合方式
1.阻容耦合
阻容耦合就是利用电容作为耦合和隔直流元件。
阻容耦合方式
• 阻容耦合的
• 优点是:
• 前后级直流通路彼此隔开,每一级的静态工作点 都相互独立。便于分析、设计和应用。
• 缺点是:
• 信号在通过耦合电容加到下一级时会大幅度衰减 。在集成电路里制造大电容很困难,所以阻容耦 合只适用于分立元件电路。
2.3.2 用微变等效电路法分析放大电路
• 1画出放大电路的交流通路
用微变等 效电路法 分析放大 电路的步

• 2用相应的等效电路代替三极管
• 3计算性能指标
小知识 输入电阻是从输入端看放 大电路的等效电阻,输出电阻是 从输出端看放大电路的等效电阻 。因此,输入电阻要包括RB ,而 输出电路就不能把负载电阻算进 去。
本章导读
第2章 基本放大电路
本章重点学习基本放大电路的工作原理和 放大电路的基本分析方法。同时介绍放大电路的 性能指标,并介绍多级放大电路及应用。
本章以共射极的基本放大电路为基础,分析 放大电路的原理和实质,讲述了电压偏置电路的 意义。通过图解法和微变等效电路两种方法,讨 论如何设置工作点,计算输入电阻、输出电阻和 电压放大倍数,了解多级放大电路的级间耦合方 式及场效应管放大电路。
2.3 微变等效电路
• 2.3.1 放大电路的微变等效电路 • 1.晶体管的微变等效电路 • 放大电路的微变等效电路,其核心是晶体管的
微变等效电路。
晶体管的微变等效电路
• 2.共射极放大电路的微变等效电路
• 小知识
• 交流通路上电压、电流都是交变量,既可 用交流量表示,也可以用相量表示,上图 箭标表示它们的参考方向。

三极管放大电路及分析ppt课件

三极管放大电路及分析ppt课件

);输出端负载开路( R L ) U ,得到相应的输出电
o
流 I o ,二者的比值为输出电阻。
Ro
Uo Io
U 0
S
RL
第四章 放大电路的基本原理
输出电阻Ro的测量:
图 3 放大电路技术指标测试示意图
RL
输入端正弦电压
的输U出o电 压RUooUR oRL、LU
U
o
i ,分别测量空载和输出端接负载 。
电压的变化,传送到电路
的输出端;
VBB 、Rb:为发射结提 供正向偏置电压。
图 1 单管共射放大电路的 原理电路
第四章 放大电路的基本原理
组成放大电路的原则:
1. 外加直流电源的极 性必须使发射结正偏,集 电结反偏。则有:
ΔiCΔiB
2. 输入回路的接法应使输入电压 u 能够传送到三 极管的基极回路,使基极电流产生相应的变化量 iB。
第四章 放大电路的基本原理
2.4 放大电路的基本分析方法
基本分析方法两种 图解法 微变等效电路法
静态分析:电路中未施加输入信号,仅存在偏置电 路直流作用时的电路工作状态,如输入、输出回路 的电流及电压
动态分析:当外加交流输入信号时,电路中存在直 流、交流信号并存状态时的电路状态,如放大倍数、 输入电阻、输出电阻、通频带、最大输出功率等。
第四章 放大电路的基本原理
4.4 放大电路的基本分析方法
4.4.1 直流通路与交流通路
图5
图 5(a)
图 5(b)
第四章 放大电路的基本原理
4.4.2 静态工作点的近似计算
IBQVCCRU b BEQ
硅管 UBEQ = (0.6 ~ 0.8) V 锗管 UBEQ = (0.1 ~ 0.2) V

三极管的基本放大电路PPT幻灯片课件

三极管的基本放大电路PPT幻灯片课件

但是,电容对交、直流的作用不同。如果电 容容量足够大,可以认为它对交流不起作用,即 对交流短路。而对直流可以看成开路,这样,交 直流所走的通道是不同的。
交流通道:只考虑交流信号的分电路。 直流通道:只考虑直流信号的分电路。 信号的不同分量可以分别在不同的通道分析。
(1-10)
10
电子技术教案
基本放大电路: 对直流信号(只有+EC)
工作在线性区,克服死区电压,以保证信号不失真。
IB
IC
IB
Q
IC
UBE UBE
Q IB
UCE
UCE
直流通路
可以用放大电路的直流通路来分析计算静态工作点。
直流通路:将放大电路中的电容视为开路,电感视为短路
即可得到直流通路。
将交流电压源短路, 将电容开路,
电感视为短路。
19
直流通路画法
R b1 R c Cb1
了放大,但它随时间变化的规律不能变,即不失真。
放大电路一般由电压放大和功率放大两部分组成。先由电压放
大电路将微弱的电信号放大去推动功率放大电路,再由功率放
大电路输出足够的功率去推动执行元件。
2
共发射极接法电压放大电路
基本放大电路有以下几种:
1)共射极电路:共射极电路又称反相放大电路,其特点为 电压增益大,输出电压与输入电压反相,低频性能差,适用于 低频、和多级放大电路的中间级。
2.2.1 共射极基本放大电路的组成 2.2.2 放大电路的基本工作原理 2.2.3 放大电路的静态分析 2.2.4 放大电路的动态分析
1
1. 放大电路的基本概念
ii
+
RS
+
+
uS
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

• 多级放大电路 的通频带比它 的任何一级都 窄。
10
习题课
一、选择题、填空题和判断题
12V
1、电路如左图所示,晶体管VBE
3k
= 0.7 V , = 50,则晶体管工作在
1k
( )。
3V
(a)放大区 (b)饱和区 (c)
6k
截止区
12V
2、已知稳压管的稳压值UZ=6V,稳定电流的最小值IZmin= 5mA。下图所示电路中UO1为( 6V),UO2为( 5V )。
1. BJT的高频小信号模型
rbe
(1
β
)
VT I EQ
rbb rbe rbe
混合型高频小信号模型
gm
Ib
Vb'e
I EQ VT
1
单级共射极放大电路的频率响应高频响应
2
单级共射极放大电路的频率响应高频响应
3
2. 低频响应
①低频等效电路
4
2. 低频响应
①低频等效电路
Rb=(Rb1 || Rb2)远大于Ri
增大电源的值或选用ß 小的管子
17
五、 设下图所示各电路的静态 工作点均合适,分别画出它们的 交流等效电路,并写出Au、Ri和 Ro的表达式。
解:
I b1
I b 2
电压增益: Au 1
R2 ∥ [rbe2 (1 2 )rd ]
R1 rbe1
[
2 R3
]
rbe2 (1 2 )rd
8
4.7.5 多级放大电路的频率响应
1. 多级放大电路的增益
Ro1
+
+
+
Vi1
Ri1
AVo 1Vi 1
Vo1
-
-
-
Ro2
+
+
Ri2
AVo2Vi2 Vo
RL
-
-
AV ( j )
Vo ( j ) Vi ( j )
Vo1(j ) Vi (j )
Vo2 Vo1
( (
j j
) )
Von(j ) Vo(n-1)( j
大直流信号。( × )
(7)只有直接耦合放大电路中晶体管的参数才随温度而变化。
(× )
13
基本放大电路
一、试分析下图所示各电路是否能够放大正弦交流信号,简 述理由。设图中所有电容对交流信号均可视为短路。
解:(a)不能。因为输入信号被VBB短路。 (b)可能。
(c)不能。因为输入信号作用于基极与地之间,不
)
AV 1(j ) AV 2 (j ) AVn (j )
• 前级的开路电压是下级的信号源电压
• 前级的输出阻抗是下级的信号源阻抗
• 下级的输入阻抗是前级的负载
9
4.7.5 多级放大电路的频率响应
2. 多级放大电路的频率响应
(以两级为例)
当两级增益和频带均相同时, 则单级的上下限频率处的增益为 0.707 AVM1 。 两级的增益为 (0.707 AVM1)2 0.5 A2VM1 。 即两级的带宽小于单级带宽。
输入电阻: Ri R1 rbe1
输出电阻: Ro R3
18
六、三级放大电路如图所示。各晶体管的参数 1 2 3 50 rbe1 4.7 k r, be2 3 k r, be3 1.6 k , 试求 (1)画出微变等效电路; (2)求出此电路的输入电阻 Ri与输出电阻Ro。
1
Ce
Re
Ie Ic ,Ce>>Cb2
Ri
C1
(1
Cb1Ce
)Cb1
Ce
5
2. 低频响应
②低频响应
AVSL
Vo Vs
βRL •
1
Rs rbe 1 j / ωC1 Rs rbe
1

1 j / ωC b2 Rc RL

AVSM
RL Rs rbe
中频区(即通常内)源电压增益(忽略基极偏置电 阻Rb)
f L1
1 2πC1 ( Rs
rbe
)
f L2
1 2πCb2 ( Rc
RL )

AVSL
[1
j(
f
AVSM L1/f )][1
j(
f
L2 /f
)]
当 fL1 4 fL2 下限频率取决于 fL1
6
2. 低频响应
②低频响应
AVSL
[1
j(
f
AVSM L1/f )][1
j(
f
L2 /f
)]
AVSL
AVSM 1
1 j( f
L1/f
)
幅频响应
20 lg |AVSL | 20 lg |AVSM |
20lg
1
1 ( fL1 / f )2
相频响应 =-180-arctan(- fL1 / f) =-180 +arctan(fL1/f)
7
2. 低频响应
②低频响应
包含fL2的幅频响应
*4.7.4 单级共集电极和共基极放大电路的高频响应 (自学)
输入电阻增大,电压增益减小,频带变宽
16
四、放大电路如图1所示, 已知晶体管的 rbe 1 k , 50 , 要求:(1) 试求放大电路的电压放大倍数,输入电阻,输出电阻; (2) 设输出电压的波形出现如图2的失真情况, 试问改变偏流电 阻 的R大B 小能否消除失真?为什么?若负载电阻和输入信号 均不变,怎样才能消除上述失真。
(3×)只要是共射放大电路,输出电压的底部失真都是饱和失真。 ()
(4)现测得两个共射放大电路空载时的电压放大倍数均为-100,
将×它们连成两级放大电路,其电压放大倍数应为10000。( ) (5) 阻容耦合多级放大电路各级的Q点相互独立,( √ )它只能 放大交流信号。(√ ) (6) 直接耦合多级放大电路各级的Q点相互影响,( √ )它只能放
RB 390kΩ
+
+
C1
ui -
R3.C3kΩ
•+ C2
12V +
1.2kRΩL uo

uห้องสมุดไป่ตู้ O
图2
(2)不能。因 为现在同时出 现饱和失真和 截止失真。改 t 变RB,只能使 饱和失真或截 止失真更厉害。
解:(1) 图1 AU= - ß(RC//RL)/rbe=-44
Ri=RB//rbe≈1kΩ Ro=RC=3.3kΩ
11
3、 分别判断下 图所示各电路中 晶体管是否有可 能工作在放大状 态。
解:
(a)可能
(b)可能 (c)不能
(d)不能,T 的发射结会因电 流过大而损坏。
(e)可能
12
4、判断下列说法是否正确,凡对的在括号内打“√”,否则打
“×”。

(1)放大电路必须加上合适的直流电源才能正常工作;( )
(2)由于放大的对象是变化量,所以×当输入信号为直流信号时, 任何放大电路的输出都毫无变化;( )
能驮载在静态电压之上,必然失真。
14
二、判断所示各两级 放大电路中,T1和T2 管分别组成哪种基本 接法的放大电路。设 图中所有电容对于交 流信号均可视为短路。
(a)共射,共基 (b)共射,共射 (c)共射,共射 (d)共集,共基
(f)共基,共集
15
三 、若电容Ce开路,则将引起 电路的哪些动态参数发生变化? 如何变化?
相关文档
最新文档