中值定理证明方法总结
高等数学-中值定理证明
若结论是
f '' 0
1.在不同区间用
罗尔找到 1,2
2.在 1,2 用一
次罗尔
柯西中值 定理
1.同一字母同一 侧,分别积分, 找原函数 F,G 2.对 F,G 用柯西
泰勒定理
1.在 题 目 出 现 的
某点泰勒展开
2.带入其他点,寻
找与结论之间的
1
关系(有时会结合
介值定理)
1.闭区间上连续函数定理 ① ② ③ ④ 2.微分中值定理 ①
(1) 存在(0,1)内两个不同的点 , ,使得 f ' ( ) f ' () 2 .
(2)
存在(0,1)内两个不同的点 , ,使得
1 f ' ( )
1 f ' ()
2 .
(3) 存在(0,1)内两个不同的点 , ,使得 f ' ( ) f ' () 1 .
f ' ( ) (4) 存在(0,1)内两个不同的点 , 及大于零的常数 ,使得 f ' () (5) 对于任意的正整数 n,存在(0,1)内两个不同的点 , 及常数 0 ,
3
5.若 f (x) 在[0,1] 上可导,且当 x [0,1] 时有 0 f (x) 1,且 f (x) 1,证明:在 (0,1) 内有且仅有一个点 使得 f ( )
6.设 f (x) 在[0,1]上连续,在(0,1)内可导,且 f (0) = f (1) =0, f (1 ) =1。试证 2
②
③
④
3.积分中值定理 ① ②
不等式证明思路 构造函数(利用极值) 拉格朗日中值定理 函数凹凸性定义
2
1.若 f (x) 在 [a,b] 上连续,在 (a,b) 上可导, f (a) f (b) 0 ,证明: R , (a,b) 使得: f ( ) f ( ) 0
关于高等数学常见中值定理证明及应用
中值定理首先我们来看看几大定理:1、介值定理:设函数fx在闭区间a,b上连续,且在该区间的端点取不同的函数值fa=A及fb=B,那么对于A与B之间的任意一个数C,在开区间a,b内至少有一点ξ使得fξ=Ca<ξ<b.Ps:c是介于A、B之间的,结论中的ξ取开区间;介值定理的推论:设函数fx在闭区间a,b上连续,则fx在a,b上有最大值M,最小值m,若m≤C≤M,则必存在ξ∈a,b, 使得fξ=C;闭区间上的连续函数必取得介于最大值M与最小值m之间的任何值;此条推论运用较多Ps:当题目中提到某个函数fx,或者是它的几阶导函数在某个闭区间上连续,那么该函数或者其几阶导函数必可以在该闭区间上取最大值和最小值,那么就对于在最大值和最小值之间的任何一个值,必存在一个变量使得该值等于变量处函数值;2、零点定理:设函数fx在闭区间a,b上连续,且fa与fb异号,即fa.fb<0,那么在开区间内至少存在一点ξ使得fξ=0.Ps:注意条件是闭区间连续,端点函数值异号,结论是开区间存在点使函数值为0.3、罗尔定理:如果函数fx满足:1、在闭区间a,b上连续;2、在开区间a,b内可导;3、在区间端点处函数值相等,即fa=fb.那么在a,b内至少有一点ξ<aξ<b,使得f`x=0;4、 拉格朗日中值定理:如果函数fx 满足:1、在闭区间a,b 上连续;2、在开区间a,b 内可导;那么在a,b 内至少有一点ξ<a ξ<b,使得fb-fa=f`ξ.b-a.5、 柯西中值定理:如果函数fx 及gx 满足1、在闭区间a,b 上连续;2、在开区间a,b 内可导;3、对任一xa<x<b,g`x ≠0,那么在a,b 内至少存在一点ξ,使得Ps :对于罗尔定理、拉格朗日中值定理、柯西中值定理结论都是开开区间内取值;6、 积分中值定理:若函数fx 在a,b 上连续,则至少存在一点],[b a ∈ξ使得)()()(a b f dx x f ba -=⎰ξPs :该定理课本中给的结论是在闭区间上成立;但是在开区间上也是满足的,下面我们来证明下其在开区间内也成立,即定理变为:若函数fx 在a,b 上连续,则至少存在一点),(b a ∈ξ使得)()()(a b f dx x f b a -=⎰ξ证明:设⎰=x a dx x f x F )()(,],[b a x ∈因为)(x f 在闭区间上连续,则)(x F 在闭区间上连续且在开区间上可导导函数即为)(x f ;则对)(x F 由拉格朗日中值定理有:),(b a ∈∃ξ使得a b dxx f a b a F b F F b a -=--=⎰)()()()`(ξ而)()`(ξξf F =所以),(b a ∈∃ξ使得)()()(a b f dx x f ba -=⎰ξ;在每次使用积分中值定理的时候,如果想在开区间内使用,我们便构造该函数,运用拉格朗日中值定理来证明下使其在开区间内成立即可;千万不可直接运用,因为课本给的定理是闭区间;定理运用:1、设)(x f 在0,3上连续,在0,3内存在二阶导函数,且⎰+==20)3()2()()0(2f f dx x f f . 证明:1)2,0(∈∃η使)0()(f f =η2)3,0(∈∃ξ使0)``(=ξf证明:先看第一小问题:如果用积分中指定理似乎一下子就出来了,但有个问题就是积分中值定理是针对闭区间的;有的人明知这样还硬是这样做,最后只能是0分;具体证明方法在上面已经说到,如果要在开区间内用积分中指定理,必须来构造函数用拉格朗日中值定理证明其在开区间内符合;1、令]2,0[),()(0∈=⎰x x F dt t f x则由题意可知)2,0(]2,0[)(上连续,在x F 内可导. 则对)(x F 由拉格朗日中值定理有:2、对于证明题而言,特别是真题第一问证明出来的结论,往往在第二问中都会有运用,在做第二问的时候我们不要忘记了第一问证明出来的东西,我们要时刻注意下如何将第一问的东西在第二问中进行运用:第二问是要证明存在点使得函数二阶倒数为0,这个很容易想到罗尔定理来证明零点问题,如果有三个函数值相等,运用两次罗尔定理那不就解决问题啦,并且第一问证明出来了一个等式,如果有fa=fb=fc,那么问题就解决了;第一问中已经在0,2内找到一点,那么能否在2,3内也找一点满足结论一的形式呢,有了这样想法,就得往下寻找了,)3()2()0(2f f f +=,看到这个很多人会觉得熟悉的,和介值定理很像,下面就来证明:]3,0[)(在x f 上连续,则在]3,2[上也连续,由闭区间上连续函数必存在最大值和最小值,分别设为M,m;则.)3(,)2(M f m M f m ≤≤≤≤从而,M f f m ≤+≤2)3()2(,那么由介值定理就有: 则有罗尔定理可知:0)`(),,0(11=∈∃ξηξf ,0)`(),,(22=∈∃ξηξf cPs :本题记得好像是数三一道真题,考察的知识点蛮多,涉及到积分中值定理,介值定理,最值定理,罗而定理,思路清楚就会很容易做出来;2、设fx 在0,1上连续,在0,1内可导,且f0=0,f1=1.证明:ξξξ-=∈∃1)()1,0()1(f 使得、本题第一问较简单,用零点定理证明即可;1、首先构造函数:]1,0[,1)()(∈-+=x x x f x F由零点定理知:ξξξξ-==∈∃1)(,0)()1,0(f F 即使得2、初看本问貌似无从下手,但是我们始终要注意,对于真题这么严谨的题目,他的设问是一问紧接一问,第一问中的结论或多或少总会在第二问中起到作用;在想想高数定理中的就这么些定理,第一问用到的零点定理,从第二问的结论来看,也更本不涉及什么积分问题,证明此问题也只可能从三大中值定理出发,具体是哪个定理,得看自己的情况,做题有时候就是慢慢试,一种方法行不通,就换令一种方法,有想法才是最重要的,对于一道题,你没想法,便无从下手;另外在说一点,在历年证明题中,柯西中值定理考的最少;本题结论都涉及一阶倒数,乘积之后为常数,很可能是消去了变为1你题目做多了,肯定就知道事实就是这样.并且第一问中0与1之间夹了个ξ,如果我们在0与ξ,ξ与1上对)(x f 运用拉格朗日中值定理似乎有些线索;写一些简单步骤,具体详细步骤就不多写了:将第一问中)(ξf 代入即可;Ps :本题是05年数一的一道真题,第一问是基本问题,送分的,第二问有一定区分度,对定理熟练的会容易想到拉格朗日定理,不熟练的可能难以想到方法;做任何题,最重要的不是你一下子就能把题目搞出来,而是你得有想法,有想法才是最重要的,有了想法你才能一步步的去做,如果行不通了,在改变思路,寻求新的解法,如果你没想法,你就根本无从下手;3、设函数fx 在闭区间0,1上连续,在开区间0,1内可导,且f0=0,f1=1/3.对于这道题的结论比较有意思,比较对称,另外一个就是结论的条件,为何要把ηξ、放在两个范围内,不像上一题中直接来个)1,0(∈ξη、,这个分界点1/2 的作用是干吗的;很可能也是把1 /2当做某一个点就像上一题中的ξ,是否要用到拉格朗日中值定理呢,这是我们的一个想法;那具体的函数如何来构造呢,这个得从结论出发,22)`()`(ηξηξ+=+f f我们把等式变一下:0)`()`(22=-+-ηηξξf f ,2)`(ξξ-f 这个不就是331)(ξξ-f 关于ξ的导数而且题目中f1=1/3,貌似这样有点想法了,本题会不会也像上一题那样,运用拉格朗日中值定理后相互消掉变为0呢,有了这些 想法我们就要开始往下走了:先来构造一个函数:0)`()`(=+ξηF F 刚好证明出来;Ps :本题是近几年数二的一道真题,只有一问,有比较大区分度的,得从条件结论互相出发,如何构造出函数是关键;做出来之后我们反过来看这个1/2的作用就知道了,如果只给)1,0(∈ξη、,那就更难了 得自己找这个点,既然题中给了这个点,并且把两个变量分开在两个区间内,我们就对这两个变量在对应区间用相应定理;说明真题出的还是很有技巧的;一般设计难一点的中值定理证明,往往得用拉格朗日定理来证明,两个变量,都涉及到导数问题,这是因为拉格朗日中值定理条件要少些,只需连续,可导即可,不像罗尔定理得有式子相等才可进一步运用;4.设fx 在区间-a,aa>0上具有二阶连续导数,f0=01、写出fx 的带拉格朗日余项的一阶麦克劳林公式2、证明在-a,a 上至少存在一点η使得⎰-=aa dx x f f a )(3)``(3η第一问课本上记住了写出来就行,考的很基础1、22!2)``()0`(!2)``(!1)0`()0()(x f x f x f x f f x f ξξ+⋅=++=2、第二问先将第一问的式子fx 代入看看有什么结果出来⎰⎰--⋅=a a aa dx x f dx x f 22)``()(ξ,)``(ξf 此处不能直接拿到积分号外面,因为他不是与x 无关的数;做到这儿,我们想办法把他弄到积分号外面似乎就能出来,有了这样想法就得寻求办法;题目中说道fx 有二阶连续导数,为何要这样说呢,我们知道连续函数有最大值,最小值,往往会接着和介值定理一起运用;所以有:因为fx 有二阶连续导数,所以存在最大值和最小值,设为M,m 则对于区间-a,a,222)``(,)``(Mx x f mx M x f m ≤⋅≤≤≤ξ所以由介值定理有结论成立;Ps :本题是以前的一道真题,具体哪年也记不得了,主要就是考到介值定理的运用;题目中说的很明白的,有二阶连续导数,往往当题目中提及到什么连续啊,特别是对于导函数连续的,我们总得注意下他有最大值,最小值,进而与介值定理联合运用;5、设fx 在],0[π上连续,且0cos )(,0)(00=⋅=⎰⎰ππxdx x f dx x f .证明:在),0(π内至少存在两个不同点0)()(2121==ξξξξf f 使得、本题看似很简洁,但做起来去不容易;结论是证明等式成立且为0,很容易让我们想到罗尔定理,我们如果能找到三个点处函数值相等,那么是不是就能有些思路了呢;令:],0[,)()(0π∈=⎰x dt t f x F x ,0)()0(==πF F似乎只需在找出一点Fc=0即可;,如果一切如我们所想,证明也就完成了;0)(sin )(cos )(cos cos )(0000=⋅+⋅==⋅⎰⎰⎰ππππdx x F x x F x x xdF xdx x f 似乎已经找到这个点了;但是积分中值定理中,是取闭区间,如果要用的话得先构造函数用拉格朗日中值定理来证明其在开区间内成立;构造函数],0[,)(sin )(0π∈⋅=⎰x dt t F t x G x 具体的证明步骤和上面涉及到的一样,自己去证;证完后就得到所以有:),0(,0)()()0(ππ∈===c F c F F接下来的证明就和第一题中第二小问一样了,具体就不去证明了,自己证,关键掌握方法,思路;Ps :本题是02年左右的数一一道证明题,看看题目很简洁,但具体来做,如果对定理的运用不熟练,还是不好弄出来;本题中涉及到积分,而且又要证明等式成立且为0,容易想到积分中值定理,以及罗尔定理;但是积分中值定理是对于闭区间而言,而我们要用到开区间,只能自己构造函数来证明其在开区间内成立,如果在实际做题的时候你不证明直接用,估计一半的分都没了;本题关键的就是寻找这个点C,找出来了其他的都不是问题,既然是关键点,那得分点也肯定最多了,你不证明这个点,直接套用课本中定理如果用的话,得分类讨论了,硬是说C 点就成立,那估计一半的分都没了;对于中值定理这章,就先给出上面一些经典的题目,大家好好体会下,多做些题,多思考;下面来讲讲对于证明题中的,函数如何来构造:基本上都是从结论出发,运用求导或是积分,或是求微分方程,解出来也可;本人自己总结了一些东西,与大家交流下:首先我们来看看一些构造函数基本方法:一、要证明的等式是一阶导数与原函数之间的关系:一般都会构造出为任意常数或者或者n x e e XXX x g n x x ,)(-⋅=1、如果只是单纯导函数和原函数之间关系,想想构造带有x x e e -或者)()`(x f x f = 可以构造x e x f x g -⋅=)()(0)()`(=+x f x f 可构造x e x f x g ⋅=)()(λ=+)()`(x f x f 可构造x x e e x f x g ⋅-⋅=λ)()()()(x f dt t f xa =⎰这个也是原函数与一阶导函数问题,构造函数⎰⋅=-x a x dt t f e x g )()( 先将其变形下:x x f x f λλ-=-1)()`(左边是导函数与原函数关系可构造:x e x f λ-⋅)(右边可以看成是x x λ-`也成了导函数和原函数之间关系,如是可以构造:x e x λ-⋅从而要构造的函数就是:x e x x f x g λ--=))(()(2、如果还涉及到变量X,想想构造n x0)()`(=+x f x xf 可构造x x f x g ⋅=)()(xx f x f )(2)(-=可构造2)()(x x f x g ⋅= 0)()`(=+x nf x xf 可构造n x x f x g ⋅=)()(3、另外还可以解微分方程来构造函数:如0)`()(=+x f x xf二、二阶导数与原函数之间关系构造带有x x e e -或者如何构造如下:)()`()`()``(x f x f x f x f +=+对于此式子,你会不会有所想法呢,在上面讲到一阶导函数与原函数之间的构造方法,等式前面也可以看成是一阶导函数与原函数只不过原函数是)`(x f 之间关系,从而等式左边可以构造x e x f ⋅)`(等式右边可以构造x e x f ⋅)(总的构造出来函数为:x e x f x f x g ⋅-=))()`(()(另:如果这样变形:构造函数如下:x e x f x f x g -⋅+=))()`(()(,可以看上面原函数与导函数之间关系如何构造的;从而对于此函数构造有两种方法,具体用哪一种构造得看题目给的条件了;如果题目给了)()`(x f x f -为什么值可以考虑第一中构造函数,如果题目给了)()`(x f x f +,则可以考虑第二种构造方法;先变形:变成一阶导函数和原函数之间关系这个函数确实不好构造,如果用微分方程来求会遇到复数根;实际做的时候还得看题目是否给了)`(x f 的一些条件,如果在某个开区间内不为0,而构造出来的函数在闭区间端点取值相等,便可用罗而定理来证明;具体来看看题目:1、 设)(x f 在0,1上连续,在0,1内可导,且f0=f1=0,f1/2=1证明:2、存在1)()`(),,0(+-=∈ηηηξηf f 使得1、对一问直接构造函数用零点定理:x x f x F -=)()(具体详细步骤就不写了;2、该问主要问题是如何构造函数:如果熟练的话用上面所讲方法来构造: 1)()`(+-=ηηηf f 先变形 另:用微分方程求解法来求出要构造的函数把常数退换掉之后就是要构造的函数函数构造出来了,具体步骤自己去做;2、设)`(x f 在a,b 上连续,fx 在a,b 内二阶可导,fa=fb=0,0)(=⎰b a dx x f证明:1存在)`()(),`()(),(,221121ξξξξξξf f f f b a ==∈使得2存在)()``(,),,(21ηηξξηηf f b a =≠∈使得1、第一问中的函数构造:2、第二问中函数构造有两种构造方法,上面讲解中说道了我们在这用第一种原因在于第一问中)()`(x f x f -=0符合此题构造; 具体详细步骤自己去写写;3、设奇函数]1,1[)(-在x f 上具有二阶导数,且f1=1,证明:(1) 存在1)`(),1,0(=∈ξξf 使得(2) 存在1)`()``(),1,1(=+-∈ηηηf f 使得第一问中证明等式,要么用罗尔定理,要么介值定理,要么零点本题很容易想到用罗尔定理构造函数来求,因为涉及到了导函数1、x x f x F -=)()(,题目中提到奇函数,f0=0有F0=F1=0从而用罗尔定理就出来了;2、第二问中的结论出发来构造函数,从上面讲的方法来看,直接就可以写出要构造的函数先变形下:x xx e x f x G e e x f f f ⋅-==⋅=+)1)`(()()`(1)`()``(ηη函数构造出来,并且可以用到第一问的结论,我们只需要在-1,0之间在找一个点也满足1的结论即可;也即1)`(),0,1(=-∈ζζf从而可以对)1,1(),(-⊆∈ξζη运用罗尔定理即可;Ps :本题为13年数一真题,第一问基础题,但要看清题目为奇函数,在0点处函数值为0.第二问关键是构造函数,函数构造出来了就一步步往下做,缺什么条件就去找什么条件或者证明出来,13年考研前我给我的几个考研小伙伴们讲过构造函数的一些方法,考场上都很快就搞出来了;以上是关于中值定理这章的一些小小的讲解,由于科研实践很忙,这些都是今天抽出时间写出来的,Word 上写,真心费时间,如果大家还有什么问题,可以来讨论下;。
中值定理证明方法总结
中值定理证明方法总结中值定理(Intermediate Value Theorem)是微积分中的一项重要定理,它表明如果一个连续函数$f(x)$在闭区间$[a,b]$上取两个不同的值$f(a)$和$f(b)$,那么在开区间$(a,b)$内,函数$f(x)$必然取到介于$f(a)$和$f(b)$之间的所有值。
中值定理的证明是通过构造一个辅助函数$g(x)$,它将闭区间$[a,b]$映射到实数区间$[f(a),f(b)]$上,并利用连续函数的性质来证明中值定理。
证明过程如下:1.首先,我们定义辅助函数$g(x)=f(x)-k$,其中$k$是一个常数。
我们的目标是证明如果$g(a)$和$g(b)$异号,那么在开区间$(a,b)$内,$g(x)$必然等于$0$。
2.根据函数$g(x)$的定义,我们可以得到$g(a)=(f(a)-k)$和$g(b)=(f(b)-k)$。
由于$g(a)$和$g(b)$异号,即$(f(a)-k)$和$(f(b)-k)$异号,所以$g(x)$在$[a,b]$上一定有一个根。
3. 接下来,我们要证明在开区间$(a,b)$内,$g(x)$没有其他根。
假设在$(a,b)$内存在一个根$x=c$,即$g(c)=0$。
根据连续函数的性质,我们有$\lim_{x \to c} g(x) = g(c) = 0$。
又因为$f(x)$是连续函数,所以$\lim_{x \to c} f(x) = f(c)$。
4. 根据极限的性质,我们有$\lim_{x \to c} g(x) = \lim_{x \to c} [f(x)-k] = f(c)-k$。
由于$\lim_{x \to c} g(x) = 0$,所以$f(c)-k=0$,即$f(c)=k$。
这意味着$f(c)-k=0$是$g(x)$的唯一根。
5.综上所述,我们可以得出结论,如果$g(a)$和$g(b)$异号,那么在开区间$(a,b)$内,$g(x)$的根只有$f(c)-k=0$。
广义积分中值定理的证明
广义积分中值定理的证明
广义积分中值定理:若f在[a,b]上连续,则至少存在一点c属于[a,b],使得在[a,b]上的积分值等于f(c)(b-a)。
推广:若f与g都在[a,b]上连续,且g在[a,b]上不变号,则至少存在一点c属于[a,b],使得f乘以g在[a,b]上的积分等于f(c)乘以g在[a,b]上的积分。
积分中值定理:设函数f在[a,b]上可积,1:若函数g在[a,b]上递减,且g大于
等于0,则存在一点c属于[a,b],使得(f乘以g)在[a,b]上的积分等于g(a)乘以(f在[a,c]上的积分)。
2:若函数g在[a,b]上递增,且g大于等于0,则存在一点d属于[a,b],使得(f乘以g)在[a,b]上的积分等于g(b)乘以(f在[d,b]推论:设函数f在[a,b]上可积。
若g为单调函数,则存在一点c属于[a,b],使得(f乘以g)的积分等于g(a)乘
以(f在[a,c]上的积分)加上g(b)乘以(f在[c,b]上的积分)。
:若函数g在[a,b]上递增,且g大于等于0,则存在一点d属于[a,b],使得(f乘以g)在[a,b]上的积分等于g(b)乘以
(f在[d,b]上的积分).推论:设函数f在[a,b]上可积.若g为单调函数,则存在一点c属于[a,b],使得(f乘以g)的积分等于g(a)乘以(f在[a,c]上的积分)加上g(b)乘以(f在
[c,b]上的积分)证明太多。
求中值定理证明的几种构造函数的方法
求中值定理证明的几种构造函数的方法1 原函数法此法是将结论变形并向罗尔定理的结论靠拢,凑出适当的原函数作为辅助函数,主要思想分为四点1)将要证的结论中的换成;(2)通过恒等变形将结论化为易消除导数符号的形式;(3)用观察法或积分法求出原函数(等式中不含导数符号),并取积分常数为零;(4)移项使等式一边为零,另一边即为所求辅助函数 . 例1:证明柯西中值定理分析:在柯西中值定理的结论中令,得,先变形为再两边同时积分得,令,有故为所求辅助函数. 例2:若, , ,…, 是使得的实数.证明方程在(0,1)内至少有一实根. 证:由于并且这一积分结果与题设条件和要证明的结论有联系,所以设(取),则 1)在[0,1]上连续 2)在(0,1)内可导 3) =0,故满足罗尔定理的条件,由罗尔定理,存在使,即亦即 . 这说明方程在(0,1)内至少有实根.2 积分法对一些不易凑出原函数的问题,可用积分法找相应的辅助函数. 例3:设在[1,2]上连续,在(1,2)内可导,, .证明存在使 . 分析:结论变形为,不易凑成 .我们将换为,结论变形为,积分得: ,即,从而可设辅助函数为,有 .本题获证. 例4:设函数,在上连续,在内可微, .证明存在,使得: . 证:将变形为,将换为,则,两边关于积分,得: ,所以,其中,由可得 .由上面积分的推导可知,为一常数,故其导数必为零,从整个变形过程知,满足这样结论的的存在是不成问题的.因而令,易验证其满足罗尔定理的条件,原题得证.3 几何直观法此法是通过几何图形考查两函数在区间端点处函数值的关系,从而建立适当的辅助函数. 例5:证明拉格朗日中值定理. 分析:通过弦两个端点的直线方程为,则函数与直线AB的方程之差即函数在两个端点处的函数值均为零,从而满足罗尔定理的条件故上式即为要做辅助函数. 例6:若在上连续且 .试证在内至少有一点,使 . 分析:由图可看出,此题的几何意义是说,连续函数的图形曲线必跨越这一条直线,而两者的交点的横坐标,恰满足 .进而还可由图知道,对上的同一自变量值,这两条曲线纵坐标之差构成一个新的函数,它满足 <0, >0,因而符合介值定理的条件.当为的一个零点时,恰等价于 .因此即知证明的关键是构造辅助函数 .4 常数k值法此方法构造辅助函数的步骤分为以下四点: 1)将结论变形,使常数部分分离出来并令为 . 2)恒等变形使等式一端为及构成的代数式,另一端为及构成的代数式. 3)观察分析关于端点的表达式是否为对称式.若是,则把其中一个端点设为,相应的函数值改为 . 4)端点换变量的表达式即为辅助函数 . 例7:设在上连续,在内可导,,试证存在一点,使等式成立. 分析:将结论变形为,令,则有,令,可得辅助函数 . 例8:设在上存在,在,试证明存在,使得 . 分析:令,于是有,上式为关于,,三点的轮换对称式,令(or: ,or: ),则得辅助函数 .5 分析法分析法又叫倒推法,就是从欲证的结论出发借助于逻辑关系导出已知的条件和结论. 例9:设函数在[0,1]上连续,在(0,1)内可导,证明在(0,1)内存在一点,使得 . 分析:所要证的结论可变形为: ,即,因此可构造函数,则对与在[0,1]上应用柯西中值定理即可得到证明. 例10:设函数在[0,1]上连续,在(0,1)内可导,且 =0,对任意有 .证明存在一点使(为自然数)成立. 分析:欲证其成立,只需证由于对任意有,故只需证: 即,于是引入辅助函数(为自然数). 例11:设函数在区间[0,+ ]上可导,且有个不同零点: .试证在[0,+ ]内至少有个不同零点.(其中,为任意实数)证明:欲证在[0,+ )内至少有个不同零点,只需证方程 =0在[0,+ ]内至少有个不同实根. 因为,,,故只需证方程在内至少有个不同实根. 引入辅助函数,易验证在区间[ ],[ ],…,[ ]上满足罗尔定理的条件,所以,分别在这个区间上应用罗尔定理,得,其中且以上说明方程在[ ] [ ] … [ ] [0,+ ]内至少有个不同实根,从而证明了方程 =0在[0,+ ]内至少有个不同实根。
中值定理的证明及应用
中值定理的证明及应用中值定理是微积分学中的重要定理之一,它具有广泛的应用。
本文将对中值定理进行证明,并介绍其在实际问题中的应用。
一、中值定理的证明中值定理有三种形式:拉格朗日中值定理、柯西中值定理和罗尔中值定理。
以下分别对这三种中值定理进行证明。
1. 拉格朗日中值定理证明拉格朗日中值定理是最经典的中值定理之一。
它的表述是:若函数f(x)在闭区间[a,b]上连续,并在开区间(a,b)内可导,则存在一个点c∈(a,b),使得f(b)-f(a)=(b-a)f'(c)。
证明过程:通过利用泰勒展开和魏尔斯特拉斯逼近定理,可以得到f(x)的泰勒展开式为f(x)=f(a)+f'(c)(x-a),其中c∈(a,b)。
由于f(x)在闭区间[a,b]上连续,在[a,b]上的最大值和最小值存在,设分别为M和m。
则有|f(x)-f(a)|≤M|c-a|,而|c-a|≤(b-a),即|f(x)-f(a)|≤M(b-a)。
2. 柯西中值定理证明柯西中值定理是拉格朗日中值定理的推广形式。
它的表述是:若两个函数f(x)和g(x)在闭区间[a,b]上连续,并在开区间(a,b)内可导,且g'(x)≠0,则存在一个点c∈(a,b),使得[f(b)-f(a)]g'(c)=[g(b)-g(a)]f'(c)。
证明过程:将f(x)和g(x)分别代入拉格朗日中值定理的证明过程中,得到f(x)=f(a)+f'(c)(x-a)和g(x)=g(a)+g'(c)(x-a)。
将这两个式子相乘并移项整理,可以得到[f(b)-f(a)]g'(c)=[g(b)-g(a)]f'(c)。
3. 罗尔中值定理证明罗尔中值定理是中值定理中最简单的一种形式。
它的表述是:若函数f(x)在闭区间[a,b]上连续,在开区间(a,b)内可导,并且满足f(a)=f(b),则存在一个点c∈(a,b),使得f'(c)=0。
(完整版)高等数学中值定理的题型与解题方法
高等数学中值定理的题型与解题方法高数中值定理包含:1.罗尔中值定理(rolle); 2.拉格朗日中值定理(lagrange); 3.柯西中值定理(cauchy); 还有经常用到的泰勒展开式(taylor), 其中(,)a b ξ∈,一定是开区间.全国考研的学生都害怕中值定理,看到题目的求解过程看得懂,但是自己不会做,这里往往是在构造函数不会处理,这里给总结一下中值定理所涵盖的题型,保证拿到题目就会做。
题型一:证明:()0nf ξ=基本思路,首先考虑的就是罗尔定理(rolle),还要考虑极值的问题。
例1. ()[,]f x C a b ∈在(,)a b 可导,()()0f a f b >>,()()02a bf a f +<, 证明:存在(,)a b ξ∈,使得'()0f ξ=.分析:由()()0f a f b >>,()()02a bf a f +<,容易想到零点定理。
证明:()()02a b f a f +<,∴存在1(,)2a bx a +∈,使得1()0f x =,又()()0f a f b >>,∴(),()f a f b 同号,∴()()02a bf b f +<,∴存在2(,)2a bx b +∈,使得2()0f x =,∴12()()0f x f x ==,所以根据罗尔中值定理:存在(,)a b ξ∈,使得'()0f ξ=.例2. ()[0,3]f x C ∈在(0,3)内可导,(0)(1)(2)3f f f ++=,(3)1f =, 证明:存在(0,3)ξ∈,使得'()0f ξ= 证明:(1)()[0,3]f x C ∈,∴()f x 在[0,3]使得上有最大值和最小值,M m ,∴根据介值性定理(0)(1)(2)3f f f m M ++≤≤,即1m M ≤≤∴存在[0,3]c ∈,使得()1f c =,(2)()(3)1f c f ==,所以根据罗尔中值定理:存在(,3)(0,3)c ξ∈⊂,使得'()0f ξ=.例3. ()f x 在(0,3)三阶可导,[0,1]x ∈,(1)0f =,3()()F x x f x = 证明:存在(0,1)ξ∈,使得'''()0F ξ= 证明:(1)(0)(1)0F F ==,∴存在1(0,1)ξ∈,使得1'()0F ξ=,(2)23'()3()'()F x x f x x f x =+,所以1'(0)'()0F F ξ==,∴存在21(0,)ξξ∈,使得2''()0F ξ=,(3)223''()6()3'()3'()''()F x xf x x f x x f x x f x =+++,所以2''(0)''()0F F ξ==,∴存在2(0,)(0,1)ξξ∈⊂,使得'''()0F ξ=,例3. ()[0,1]f x C ∈在(0,1)内可导,[0,1]x ∈,(0)1f =,11()22f =,(1)2f = 证明:存在(0,1)ξ∈,使得'()0f ξ= 证明:(0)1f =,11()22f =,(1)2f =∴存在(0,1)ξ∈,使得()f m ξ=,又()f x 在(0,1)内可导,∴存在(0,1)ξ∈,使得'()0f ξ=题型二:证明:含ξ,无其它字母 基本思路,有三种方法: (1)还原法。
微分中值定理有关证明
☆例1 设)(x f 在[0,3]上连续,在(0,3)内可导,且3)2()1()0(=++f f f ,1)3(=f .试证:必存在)3,0(∈ξ,使()0f ξ'=证:∵ )(x f 在[0,3]上连续,∴ )(x f 在[0,2]上连续,且有最大值和最小值.于是M f m ≤≤)0(;M f m ≤≤)1(;M f m ≤≤)2(,故M f f f m ≤++≤)]2()1()0([31. 由连续函数介值定理可知,至少存在一点[0,2]c ∈使得1)]2()1()0([31)(=++=f f f c f ,因此)3()(f c f =,且)(x f 在[,3]上连续,(,3)内可导,由罗尔定理得出必存在)3,0()3,(⊂∈c ξ使得()0f ξ'=。
☆例2 设)(x f 在[0,1]上连续,(0,1)内可导,且⎰=132)0()(3f dx x f求证:存在)1,0(∈ξ使0)('=ξf证:由积分中值定理可知,存在2[,1]3c ∈,使得⎰-=132)321)(()(c f dx x f得到 ⎰==132)0()(3)(f dx x f c f对)(x f 在[0,c]上用罗尔定理,(三个条件都满足) 故存在)1,0(),0(⊂∈c ξ,使()0f ξ'=☆例3 设)(x f 在[0,1]上连续,(0,1)内可导,对任意1>k ,有⎰-=k x dx x f xe k f 11)()1(,求证存在)1,0(∈ξ使1()(1)()f f ξξξ-'=-证:由积分中值定理可知存在1[0,]c k∈使得)01)(()(1101-=--⎰k c f ce dx x f xe ck x令)()(1x f xex F x-=,可知)1()1(f F =这样1110(1)(1)()()()x c k F f kxe f x dx ce f c F c --====⎰,对)(x F 在]1,[c 上用罗尔定理(三个条件都满足)存在)1,0()1,(⊂∈c ξ,使()0F ξ'= 而111()()()()xx x F x ef x xe f x xe f x ---''=-+∴ 11()[()(1)()]0F ef f ξξξξξξ-''=--=又01≠-ξξe,则1()(1)()f f ξξξ'=-在例3的条件和结论中可以看出不可能对)(x f 用罗尔定理,否则结论只是()0f ξ'=,而且条件也不满足。
微分中值定理的证明
微分中值定理的证明假设函数f(x)在闭区间[a,b]上满足连续性和可导性。
根据闭区间上连续函数的性质,函数f(x)在[a,b]上可得到最大值和最小值。
首先,我们观察在闭区间[a,b]上函数f(x)的最大值和最小值。
根据最大值和最小值的定义,存在两个点x1和x2,其中a≤x1≤b,a≤x2≤b,并且满足f(x1)≥f(x)≥f(x2),对于任何x∈[a,b]。
接下来,我们按照下面的步骤来证明微分中值定理:步骤1:构造一个辅助函数g(x)=f(x)-(f(b)-f(a))/(b-a)*(x-a)。
这个辅助函数的目的是将原函数f(x)通过线性函数的方式转换到一个更便于证明的形式上。
根据辅助函数的构造,显然g(a)=0,g(b)=f(b)-(f(b)-f(a))=f(a)。
步骤2:证明辅助函数g(x)在闭区间[a,b]上可导。
首先,根据f(x)的可导性可知f(x)在闭区间[a,b]上连续,因此辅助函数g(x)也在该区间上连续。
其次,对于该辅助函数g(x),我们可以计算它在闭区间[a,b]内的导数g'(x)。
根据导函数的定义以及线性函数导数的性质,我们有:g'(x)=f'(x)-(f(b)-f(a))/(b-a)。
由于f(x)在闭区间[a,b]上可导,所以g'(x)在闭区间[a,b]上也可导。
步骤3:证明辅助函数g(x)在闭区间[a,b]的特定点c处的导数值等于0。
根据罗尔定理,若函数g(x)在闭区间[a,b]上连续,在开区间(a,b)上可导且g(a)=g(b),则存在点c位于(a,b)内,使得g'(c)=0。
由于g(a)=g(b)=0,所以根据罗尔定理,我们可以得到存在特定点c 位于(a,b)内,使得g'(c)=0,即f'(c)-(f(b)-f(a))/(b-a)=0。
整理上面的等式,我们可以得到f'(c)=(f(b)-f(a))/(b-a)。
二元函数的中值定理罗比达法则及应用
二元函数的中值定理罗比达法则及应用一、二元函数的中值定理中值定理是微积分中的重要定理,用于研究函数在一定区间内的平均变化率和瞬时变化率的关系。
对于二元函数,我们也可以推广中值定理的概念和应用。
1.雅可比中值定理:设f(x,y)在闭区域D={(x,y),a≤x≤b,a≤y≤b}上连续且有连续一阶偏导数,则对于D内任意两点(x1,y1)和(x2,y2),存在一点(x0,y0)位于(x1,x2)和(y1,y2)的连线上,使得:f(x2,y2)-f(x1,y1)=∂f/∂x(x0,y0)*(x2-x1)+∂f/∂y(x0,y0)*(y2-y1)其中,∂f/∂x和∂f/∂y分别表示f对x和y的偏导数。
2.勒让德中值定理:设f(x,y)在闭区域D={(x,y),a≤x≤b,a≤y≤b}上连续且有连续一阶偏导数,则对于D内任意两点(x1,y1)和(x2,y2),存在一点(x0,y0)位于(x1,x2)和(y1,y2)的连线上,使得:f(x2,y2)-f(x1,y1)=∂f/∂x(x0,y0)*(x2-x1)+∂f/∂y(x0,y0)*(y2-y1)+R(x1,y1,x2,y2)其中,R(x1,y1,x2,y2)表示剩余项。
罗比达法则(Rolle's theorem)是中值定理的一种特例,用于描述函数在一些条件下的极值问题。
设函数f(x)在区间[a,b]上连续,在(a,b)内可导,并且满足f(a)=f(b),则在(a,b)内必然存在至少一点c,使得f'(c)=0。
罗比达法则的应用包括以下方面。
1.寻找极值点:通过罗比达法则,我们可以知道如果在一个函数的两个端点处函数值相等,那么在两个端点之间一定存在至少一个极值点。
因此,如果我们要寻找函数的极值点,可以首先比较函数在区间的两个端点的取值,并进一步利用罗比达法则来判断是否存在其他极值点。
2.证明存在性:罗比达法则的证明过程中,我们假设了函数在区间两个端点处的函数值相等,然后利用导数为0的性质来推导出存在性。
396考积分中值定理
396考积分中值定理(最新版)目录1.396 考积分中值定理的概念2.396 考积分中值定理的证明方法3.396 考积分中值定理的应用实例4.总结与展望正文【1】396 考积分中值定理的概念396 考积分中值定理,是微积分学中的一个基本定理,主要研究了函数在区间上的积分与其在该区间上的平均值之间的关系。
具体来说,就是对于一个在闭区间 [a, b] 上连续的函数 f(x),则存在一个ξ∈(a, b),使得∫[a, b]f(x)dx = f(ξ)。
【2】396 考积分中值定理的证明方法为了证明 396 考积分中值定理,我们首先需要证明一个引理,即拉格朗日中值定理。
拉格朗日中值定理是指,如果函数 f(x) 在闭区间 [a, b] 上连续,在开区间 (a, b) 上可导,那么在这个区间上一定存在一个点ξ,使得 f"(ξ) = (f(b) - f(a))/(b - a)。
有了拉格朗日中值定理,我们就可以证明 396 考积分中值定理了。
假设函数 f(x) 在闭区间 [a, b] 上连续,我们需要证明存在一个ξ∈(a, b),使得∫[a, b]f(x)dx = f(ξ)。
我们可以将这个问题转化为求解 f(ξ) 的问题。
由拉格朗日中值定理,我们知道存在一个ξ,使得 f"(ξ) = (f(b) - f(a))/(b - a)。
那么,我们可以将 f(ξ) 表示为 f(ξ) = f(a) + ∫[a, ξ]f"(x)dx = f(a) + (f(ξ) - f(a))/(ξ - a)。
通过化简,我们可以得到 f(ξ) = (b - a)f(ξ) / (b - a),即 f(ξ) = ∫[a, b]f(x)dx/ (b - a)。
这就证明了 396 考积分中值定理。
【3】396 考积分中值定理的应用实例396 考积分中值定理在实际应用中非常广泛,例如求解定积分、证明一些不等式等。
这里我们举一个简单的例子来说明。
中值定理证明方法总结
f (a) g (a) h( a )
f (b) g (b) h(b)
f ′(ξ ) g ( a ) g (b ) ′ f (ξ ) g ′(ξ ) = h(a ) h(b) h′(ξ )
f (a) − h( a ) f (b) ′ f (a) g (ξ ) + h(b) g (a) f (b) ′ h (ξ ) g (b)
y
y = f ( x)
o
aξ
b x
在( a , b ) 内至少存在一点 ξ , 使 f ′(ξ ) = 0. 故在[ a , b ]上取得最大值 证: 因 f ( x) 在[ a , b] 上连续,
M 和最小值 m .
若 M = m , 则 f ( x ) ≡ M , x ∈ [ a , b] , 因此 ∀ξ ∈ (a , b) , f ′(ξ ) = 0 .
拉氏 目录 上页 下页 返回 结束
三、柯西(Cauchy)中值定理
f ( x) 及 F ( x) 满足 : (1) 在闭区间 [ a , b ] 上连续 (2) 在开区间 ( a , b ) 内可导 (3)在开区间 ( a , b ) 内 F ′( x) ≠ 0 f (b) − f (a ) f ′(ξ ) = . 至少存在一点 ξ ∈ ( a, b) , 使 F (b) − F (a ) F ′(ξ ) a <η < b 分析: F (b) − F (a ) = F ′(η )(b − a ) ≠ 0 f (b) − f (a ) F ′(ξ ) − f ′(ξ ) = 0 要证 ′(ξ ) ϕ F (b) − F (a ) f (b ) − f ( a ) ϕ ( x) = F ( x) − f ( x) F (b ) − F ( a )
第四章 微积分中值定理与证明
.
若 ,我们取 或 ,结论显然成立.若 ,则
根据零点定理, 有 ,所以有 .
(方法2:利用介值定理)由于 在 上连续,所以 在 上可以达到最
大值和最小值, 使得 ,当然 ,所以
,
故
,
从而有
,
根据介值定理, 有
,
所以有
.
例2设 在 上连续, ,证明: ,使得 .
证明引入辅助函数 ,则
4.设 , 在 上连续,在 可导,证明:在 内至少存在一
点 ,使得 .
(提示:对两个函数 和 在 上应用柯西中值定理)
5.设 在 上连续,在 可导,且 ,证明:在 ,使得 .
(提示:引入辅助函数 ,在 上满足罗尔定理条件)
6.设 在 上可导,且 ,证明:
(1) ,使得 .
(2)在 上存在 ,使得 .
所以
整理得到
.
例12设 在 上连续,且 ,证明:存在 满足
.
分析解方程 ,即 ,所以辅助函数为
.
例13和例14对数三考生不做要求:
例13若 在 上有三阶导数,且 ,设 ,证明:
在 内至少存在一个 使得 .
证明由于 具有三阶导数,于是
由于
,
所以 ,故
,
因为 ,所以 ,即存在一个 使得 .
例14设 在区间 上具有三阶连续导数,且 , ,
柯西中值定理,有
, ;
, .
将上面两式相除,整理得到
.
4.1练习
1.试证方程 ,其中 至少有一个正根并且不超过 .
(提示:只需证明函数 在 至少有一个根)
2.试证方程 恰有两个实根.
(提示:函数 是偶函数,关于 轴对称)
积分中值定理(开区间)证明的几种方法
积分中值定理(开区间)的几种证明方法定理:设f 在[a,b ]上连续,则 (a,b),使得f (x) f ()在[a,b ]上连续,易证(可反证)(这还是书上例2的结论)(a,b),使得 F( ) f( ) f( ) 0,即 f ( ) f()。
x[证二]:令F(x) f (t)dt ,则F(x)在[a,b ]上满足拉格朗日中值定理的条件,故a(a,b),使得 F(b) F(a) F ( )(b a),即结论成立。
(注:书上在后面讲的微积分基本定理 )b[证三]:反证:假设不 (a,b),使得 f(x)dx f( )(b a),由积分第一中值定理, a知只能为a 或b ,不妨设为b ,即1bx (a,b), f (x) f (b) - a f(x)dx 。
b a a 由于 f 连续,故 x (a,b), f (x) f(b)(或 f (x) f(b)),(这一点是不是用介值定理来说明 )这样x b(上限 x 改为 b ) f (x)dx f (b)dx f (b)(b a).a a(这个严格不等号不太显然要用书上例 2结论来说明)矛盾。
[证四]:设f 在[a,b ]上的最大值为 M ,最小值为m 。
若m M ,则f c , 可任取。
b若 m M ,则 x - [a,b ],有 M f(x -) 0,故[M f (x)]dx 0,即ab f (x)dx M (b a).f(x)dx f( )(b a)。
[证一]:由积分第一中值定理(P217),b[a,b],使得 f (x)dx a f( )(b a)。
于是a 【f (X ) f ( )]dx 0.由于函数F(x)同理有m(b ba) & f(x)dx.由连续函数的介质定理知:1 b (a,b),使得f ( ) f (x)dx.。
b a a主:以上方法有的能推广到定理9.8的证明,有的不能,再思考吧!。
中值定理证明方法总结
中值定理证明方法总结中值定理是微积分中的一个重要定理,它建立了一个函数在一些区间上连续的条件与其在该区间上取到的最大值和最小值之间的关系。
中值定理分为费马中值定理、罗尔中值定理和拉格朗日中值定理三种形式。
在实际问题中,通过中值定理可以推导出很多有用的结论,因此学好中值定理的证明方法对于掌握微积分知识非常重要。
下面对中值定理的证明方法进行总结。
1.费马中值定理的证明方法:费马中值定理是对实数集上的连续函数的最值及其存在性进行了精确的描述。
其证明方法如下:首先,假设函数f(x)在[a,b]上取得了极大值或者极小值。
如果f(x)在[a,b]的内点c处取得极值,那么根据极值点的定义,f'(c)=0。
我们可以通过数学归纳法证明,如果一个函数在[a,b]上的内点x处取得了极大值或者极小值,那么f'(x)=0。
假设f(x)在[a,b]的每个内点处都取得了极大值或者极小值,那么f'(x)=0在它们的闭区间上也成立。
根据极值点的定义,f(x)在[a,b]的端点处也取得了极大值或者极小值,因此f(x)在[a,b]上的每个内点处都取得了极大值或者极小值。
这与f(x)在[a,b]上连续的条件矛盾,所以假设错误,即f(x)在[a,b]上没有取得极大值或者极小值。
根据介值定理,f(x)在[a,b]上连续,所以在[a,b]上一定取到了最大值和最小值。
2.罗尔中值定理的证明方法:罗尔中值定理是对实数集上的可微函数的导数为0的点进行了描述。
其证明方法如下:首先,假设函数f(x)在[a,b]上满足f(a)=f(b)。
根据闭区间上连续函数的最值存在定理,f(x)在[a,b]上一定取到了最大值和最小值。
如果最大值和最小值不是在[a,b]的内点处取到的,那么它们一定是在[a,b]的端点处取到的。
根据最值点的定义,f(x)在[a,b]的端点处的导数等于0。
所以,如果f(x)在[a,b]的内点处取到了最大值或者最小值,那么根据费马中值定理,它们的导数等于0。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(5) 若结论为恒等式 ,先证变式导数为 0 , 再利用 特殊点定常数 .
(6) 若结论为不等式 , 要注意适当放大或缩小的 技巧.
构造辅助函数的方法
(1)不定积分求积分常数法.
构造辅助函数 F(x) 的步骤如下: ● 将欲证结论中的 改写为 x ; ● 通过恒等变形将结论化为易消除导数符号的形式.(即易积
则至少存在一点
使
证:
设辅助函数
F(x)
f f
(a 0), (x) ,
xa a xb
f (b 0) , x b
显然 在
上连续, 在
内可导, 由罗尔
定理可知 , 存在一点
使 F( ) 0 , 即
f ( ) 0 .
* 中值定理的统一表达式
设 f (x), g(x), h(x) 都在 [a ,b]上连续 , 且在 (a ,b)
求证存在 (0,1),使 证:设辅助函数 (x) xn f (x)
辅助函数 如何想出来的?
显然 (x) 在 [0,1] 上满足罗尔定理条件,
因此至少存在 (0,1) , 使得 ( ) n n1 f ( ) n f ( ) 0
即
机动 目录 上页 下页 返回 结束
例3. 设函数 在 内可导, 且
( 自己验证 )
中值定理的主要应用与解题方法
原函数的性质
中值定理
反映 反映
导函数的性质
中值定理的主要应用
(1) 利用中值定理求极限
(2) 研究函数或导数的性质
(3) 证明恒等式
(4) 判定方程根的存在性和唯一性
(5) 证明有关中值问题的结论
(6) 证明不等式
注:(1) 几个中值定理中最重要、最常用的是: 罗尔中值定理。 (2) 应用中值定理的关键为: 如何构造合适的辅助函数?(难点、 重点)
f (b) f (a) f ( ) F(b) F(a) F( )
泰勒o 中a 值定理b x
1 n!
f
(n) (x0)(x
x0 )n
证明中值定理的方法
辅助函数法
直观分析 逆向分析
例如, 证明拉格朗日定理 : f (b) f (a) f ( )(b a)
要构造满足罗尔定理条件的辅助函数 .
f (b) f (a) f ( x) . g(b) g(a) g( x)
直接积分消不去导数,故变形为 f (b) f (a) g( x) f ( x) . g(b) g(a)
方程两边同时积分 f (b) f (a) g(x) C f (x) . g(b) g(a)
解出积分常数C ,则 C f (x) f (b) f (a) g(x) . g(b) g(a)
内可导, 证明至少存在一点 (a ,b) , 使
f (a) f (b) f ( ) g(a) g(b) g( ) 0 h(a) h(b) h( )
证: 按三阶行列式展开法有
f (a) g(a) h(a)
f (b) g (b) h(b)
f ( ) g( ) h( )
g(a) h(a)
g(b) h(b)
证明 在
内有界.
证: 取点 x0 (a ,b), 再x 为端点的区间上用拉氏中值定理
得
f (x) f (x0) f ( )(x x0)
( 界于 x0 与x 之间)
f (x) f (x0) f ( )(x x0)
f (x0) f ( ) x x0 f (x0) M (b a)
方程两边同时积分
f (b) f (a) x C f (x)
ba
解出积分常数C ,则
C f (x) f (b) f (a) x ba
令辅助函数
F(x)
f (x)
f (b) f (a) x
ba
柯西中值定理的结论:
f (b)
f (a)
f ( )
.
g(b) g(a) g( )
将 改写为 x
g即(a) hf((ab))
g(b)
hf(b()
f )
(
)
F
(
)
fg((aa)) hh(a(a))
hfgh((b((bbb)))) g (gh)(())
f(a0) g(a)
f (b) g(b)
h( )
设 f (x), g(x), h(x) 都在 (a ,b)上连续 , 且在[a ,b]
内可导, 证明至少存在一点 (a ,b) , 使
f (b) g (b) h(b)
f (x) g(x) h(x)
显然 F(x) 在[a , b] 上连续 , 在 (a , b)内可导, 且
F(a) F(b) 0, 因此,由罗尔定理知至少存在一点
gf ((aa())a
h(a)
,
bgf)((,bb使))
h(b)
Fgf((()))0 , h(f )(a)
令 K f (x0) M (b a), 则对任意 x (a ,b),
f (x) K , 即
在
内有界.
例4. 设函数 在 上连续, 在 内可导,
且
但当
时
求证对任意
自然数 n , 必有 (0, 1) , 使 n f ( ) f (1 ) f ( ) f (1 )
令辅助函数 F(x) f (x) f (b) f (a) g(x) . g(b) g(a)
(2)常数变易法 此法适用于常数已分离出来的命题, 构造辅助函数的步
骤如下:
● 将常数部分设为 k
● 恒等变形, 将等式一端变为由 a 及 f (a)构成的代数式, 另 一端为由b 及 f (b) 构成的代数式.
则(x)在[a,b]上连续,在(a,b)内可导, 且
(a) f (b)F (a) f (a)F (b) (b)
F (b) F (a)
由罗尔定理知, 至少存在一点
使
即
f (b) f (a) f ( ) . F (b) F (a) F( )
思考: 柯西定理的下述证法对吗 ?
f (b) f (a) f ( )(b a), (a, b) 两个 不 F(b) F(a) F( )(b a), (a, b) 一定相同
方法1. 直观分析 由图可知 , 设辅助函数
y f (x)
y
F(x) f (x) f (b) f (a) x C ba
(C 为任意常数 )
oa b x
y
f (b) f (a) ba
xC
方法2. 逆向分析 要证 即证
F(x) f (x) f (b) f (a) ba
原函数法 F(x) f (x) f (b) f (a) x
y
o 1x
y
y
1 o 1 x
o 1x
机动 目录 上页 下页 返回 结束
2) 定理条件只是充分的. 本定理可推广为
在 ( a , b ) 内可导, 且
lim f (x) lim f (x)
xa
xb
在( a , b ) 内至少存在一点 使
证明提示: 设
证 F(x) 在 [a , b] 上满足罗尔定理 .
拉氏 目录 上页 下页 返回 结束
三、柯西(Cauchy)中值定理
及 满足 :
(1) 在闭区间 [ a , b ] 上连续
(2) 在开区间 ( a , b ) 内可导
(3)在开区间 ( a , b ) 内 至少存在一点
使
f (b) f (a) F (b) F (a)
f ( ) . F( )
分析: F(b) F(a) F()(b a) 0 a b
ba 辅助函数
同样, 柯西中值定理要证
即证 设 F(x) f (x) f (b) f (a) g(x)
g(b) g(a) 原函数法 F(x) f (x) f (b) f (a) g( x)
g(b) g(a)
* 中值定理的条件是充分的, 但非必要. 因此
可适当减弱.
例如, 设 在 内可导,且 f (a 0) f (b 0),
要证 f (b) f (a) F( ) f ( ) 0
F (b) F (a)
( )
(x) f (b) f (a) F (x) f (x)
F (b) F (a)
柯西 目录 上页 下页 返回 结束
证:
作辅助函数
( x)
f (b) F (b)
f (a) F(x) F (a)
f
(x)
由介值定理知存在 x0 (0,1), 使
f (x0 ) 0, 即方程有小于 1 的正根
2) 唯一性 .
假设另有
f (x)在以
x0 , x1 为端点的区间满足罗尔定理条件 , 在 x0 , x1 之间
至少存在一点
但
矛盾, 故假设不真!
机动 目录 上页 下页 返回 结束
例2.
设 f (x) 在 [0,1] 连续,(0,1) 可导,且 f (1) 0 ,
上面两式相比即得结论. 错!
机动 目录 上页 下页 返回 结束
几个中值定理的关系
罗尔定理 f (a) f (b) 拉格朗日中值定理
f ( ) 0
yF (x) y xf (x) f (a) f (b)
f ( ) f (b) f (a)
ba F(x) x y n 0y f (x)
o
柯西a 中值b定x理
解题方法:
从结论入手, 利用逆向分析法, 选择有关中值定 理及适当设辅助函数 .
(1) 证明含一个中值的等式或证根的存在 , 常用 罗尔定理 , 此时可用原函数法设辅助函数.
(2) 若结论中涉及到含一个中值的两个不同函数,