四元素与欧拉角

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.欧拉角

在四元数出现之前先看下欧拉角:

对于在三维空间里的一个参考系,任何坐标系的取向,都可以用三个欧拉角来表现。为了后面的角度不混乱,我们要先区分参考系和坐标系的概念。

参考系即为大地参考系,是静止不动的。而坐标系则固定于四轴飞行器,随着四轴飞行器的旋转而旋转。

按照右图所示。设定xyz-轴为四轴上的参考轴,XYZ-轴则是大地的参考轴。右图即为四轴相对地面进行了一定旋转,xy-平面与XY-平面的相交线为交点线,用英文字母(N)代表。我们可以这样定义欧拉角:

α是x-轴与交点线的夹角

β是z-轴与Z-轴的夹角

γ是交点线与X-轴的夹角

这样我们就可以用三个欧拉角:(α,β,γ)其取值为0-360来描述四轴飞行器相对于大地的参考系的姿态角度了。

三个欧拉角:(α,β,γ)。蓝色的轴是xyz-轴,红色的轴是XYZ-坐标轴。绿色的线是交点线(N) 。

2.轴角

欧拉角使用roll,pitch,yaw来表示这些分量的旋转值。需要注意的是,这里的旋转是针对大地参考系说的,这意味着第一次的旋转不会影响第二、三次的转轴,简单的说,三角度系统无法表现任意轴的旋转,只要一开始旋转,物体本身就失去了任意轴的自主性,这也就导致了万向节锁(Gimbal Lock)的问题。

什么是Gimbal Lock?

正如前面所说,因为欧拉描述中针对x,y,z的旋转描述是世界坐标系下的值,所以当任意一轴旋转90°的时候会导致该轴同其他轴重合,此时旋转被重合的轴可能没有任何效果,这就是Gimbal Lock,还有一种是轴角的描述方法,这种方法比欧拉描述要好,它避免了Gimbal Lock,它使用一个3维向量表示转轴和一个角度分量表示绕此转轴的旋转角度,即(x,y,z,angle),一般表示为(x,y,z,w)或者(v,w)。(x,y,z)为旋转轴,w为旋转角度。但这种描述法却不适合插值。

轴角的表示方法:

那么轴、角的描述方法又有什么问题呢?

虽然轴、角的描述解决了Gimbal Lock,但这样的描述方法会导致差值不平滑,差值结果可能跳跃,欧拉角描述同样有这样的问题。虽然轴角有这样的问题,但是我们根据传感器采集到的角度可以很容易的确定轴角的表达式:(x,y,z,angle)。

所以我们解算姿态时要用四元数算法,可以避免旋转时的GimbalLock,为了控制电机更直观,最后根据欧拉角和四元数转换关系把四元数再转换成欧拉角

相关文档
最新文档