第3章 凸轮机构-内燃机的配气机构资料
合集下载
第三章 凸轮机构
第三章 凸轮机构 凸轮机构及其设计
• • • • 3-1 3-2 3-3 3-4 凸轮机构的应用及分类 从动件常用运动规律 凸轮机构的压力角 凸轮轮廓的设计
本章重点 •几种常用运动规律的特点 •压力角与机构尺寸、机构效率的关系 •盘形凸轮廓线曲线的设计
主要内容: 1.凸轮机构的类型、特点 2.常用从动件运动规律及运动线图的绘制 3.凸轮轮廓曲线的设计 本章重点: 从动件运动线图的绘制 凸轮轮廓曲线的设计 本章难点: 从动件运动线图的绘制
1
1200
600
F
S2
1200
1800
3000
3600
0 1200 600 1200 600
1
升程h——推杆的最大位移。
其对应的凸轮转角t——推程运动角
S2 h
1200 1800 3000 3600
1
0
t
1200 600 1200 600
S2 EF段从动件在远处停止, 其对应的转角s——远休止角。 h
2 h12 a cos( 1 ) 2 t2 t
作图: 图3-8
注意:横轴和半圆的等分点一定要相同(不是度数相同)
实际上, 从动件在推、回程的运动规律并非要相同。
s2
h
1
s2
h
1
s2
h
1
4. 正弦加速度运动——摆线运动
推程 • 运动方程:
1 2 s h sin t t 2 2 h v 1 cos t t
S2
h
6.作轮廓线 1 h
11
10 9 8 7 6
1
2
3
4 5
0 1 2 3 4 5 6 7 8 9 10 11 12 1800 0 3000 3600 210
• • • • 3-1 3-2 3-3 3-4 凸轮机构的应用及分类 从动件常用运动规律 凸轮机构的压力角 凸轮轮廓的设计
本章重点 •几种常用运动规律的特点 •压力角与机构尺寸、机构效率的关系 •盘形凸轮廓线曲线的设计
主要内容: 1.凸轮机构的类型、特点 2.常用从动件运动规律及运动线图的绘制 3.凸轮轮廓曲线的设计 本章重点: 从动件运动线图的绘制 凸轮轮廓曲线的设计 本章难点: 从动件运动线图的绘制
1
1200
600
F
S2
1200
1800
3000
3600
0 1200 600 1200 600
1
升程h——推杆的最大位移。
其对应的凸轮转角t——推程运动角
S2 h
1200 1800 3000 3600
1
0
t
1200 600 1200 600
S2 EF段从动件在远处停止, 其对应的转角s——远休止角。 h
2 h12 a cos( 1 ) 2 t2 t
作图: 图3-8
注意:横轴和半圆的等分点一定要相同(不是度数相同)
实际上, 从动件在推、回程的运动规律并非要相同。
s2
h
1
s2
h
1
s2
h
1
4. 正弦加速度运动——摆线运动
推程 • 运动方程:
1 2 s h sin t t 2 2 h v 1 cos t t
S2
h
6.作轮廓线 1 h
11
10 9 8 7 6
1
2
3
4 5
0 1 2 3 4 5 6 7 8 9 10 11 12 1800 0 3000 3600 210
《内燃机的配气机构》
整理课件
1) 在气门斜面上涂上一层气门砂,在 气门杆上涂润滑油将气门插入导管内,研磨 要领是一镦、二蹭、三旋转。用粗砂研磨后 用细砂精磨。
2) 使用气门捻子将气门上下往复并旋 转进行研磨。研磨时不要过分用力,以免将 斜面环带变宽或磨出凹形槽痕。
整理课件
3) 当气门斜面与气门座斜面研 出一条完整、乌洁的环带时,将气门 砂洗净,在涂上机油,研磨3min~ 5min即可。
2) 发动机气门头部斜面角度一般是 45°,每组气门铰刀有45°、15°和75° 三种不同的角度,如图3-16所示,铰刀又 分为精铰刀和粗铰刀两种。根据进排气门 环带斜面的不同角度选择气门座铰刀,并 将铰刀固定在铰刀杆上。
整理课件
图3-44 气门座铰刀
整理课件
3) 粗铰45°斜面,直到消除烧蚀的痕 迹为止。气门座密封环带有硬化层时,可 先用粗砂布垫在铰刀下面磨除硬化层,以 防影响铰削的质量。
第3章 内燃机的配气机构
中国铁道出版社
整理课件
3.1 配气机构的功用与分类
整理课件
3.1.1 配气机构的功用 配气机构是控制发动机进气和排气
的装置, 其作用是按照发动机的工作循 环和发火次序的要求, 定时开启和关闭 各缸的进、排气门,以便在进气行程使 尽可能多的可燃混合气(汽油机)或空 气(柴油机)进入气缸,在排气行程将 废气快速排出气缸。
4) 铰修气门座斜面宽度。用15°铰刀 在气门座斜面上方缩小其宽;用75°铰刀 在气门座斜面下方缩小其宽度。
整理课件
气门座接触环带的位置应位于其斜面 的中间并偏向于气门杆部。如环带偏向斜 面上部,须加大15°斜面的铰削量进行修 整。如环带偏向气门杆部,则须加大75° 斜面的铰削量进行修理整。
气门座斜面接触环带的宽度一般在: 1.5mm~2.0 mm之间。
1) 在气门斜面上涂上一层气门砂,在 气门杆上涂润滑油将气门插入导管内,研磨 要领是一镦、二蹭、三旋转。用粗砂研磨后 用细砂精磨。
2) 使用气门捻子将气门上下往复并旋 转进行研磨。研磨时不要过分用力,以免将 斜面环带变宽或磨出凹形槽痕。
整理课件
3) 当气门斜面与气门座斜面研 出一条完整、乌洁的环带时,将气门 砂洗净,在涂上机油,研磨3min~ 5min即可。
2) 发动机气门头部斜面角度一般是 45°,每组气门铰刀有45°、15°和75° 三种不同的角度,如图3-16所示,铰刀又 分为精铰刀和粗铰刀两种。根据进排气门 环带斜面的不同角度选择气门座铰刀,并 将铰刀固定在铰刀杆上。
整理课件
图3-44 气门座铰刀
整理课件
3) 粗铰45°斜面,直到消除烧蚀的痕 迹为止。气门座密封环带有硬化层时,可 先用粗砂布垫在铰刀下面磨除硬化层,以 防影响铰削的质量。
第3章 内燃机的配气机构
中国铁道出版社
整理课件
3.1 配气机构的功用与分类
整理课件
3.1.1 配气机构的功用 配气机构是控制发动机进气和排气
的装置, 其作用是按照发动机的工作循 环和发火次序的要求, 定时开启和关闭 各缸的进、排气门,以便在进气行程使 尽可能多的可燃混合气(汽油机)或空 气(柴油机)进入气缸,在排气行程将 废气快速排出气缸。
4) 铰修气门座斜面宽度。用15°铰刀 在气门座斜面上方缩小其宽;用75°铰刀 在气门座斜面下方缩小其宽度。
整理课件
气门座接触环带的位置应位于其斜面 的中间并偏向于气门杆部。如环带偏向斜 面上部,须加大15°斜面的铰削量进行修 整。如环带偏向气门杆部,则须加大75° 斜面的铰削量进行修理整。
气门座斜面接触环带的宽度一般在: 1.5mm~2.0 mm之间。
第三章 凸轮机构介绍
第三章 凸轮机构
凸轮传动是通过凸轮与从动件间的接触来传递运动和动力,是一种 常见的高副机构,结构简单,只要设计出适当的凸轮轮廓曲线,就 可以使从动件实现任何预定的复杂运动规律。 §3-1 凸轮机构应用和分类 一、凸轮机构的组成和应用
内燃机
配气机构
凸轮式内燃机配气机构
自动车床上的走刀机构 1、组成:凸轮,从动件,机架 2、作用:将凸轮的转动或移动转变为从动件的移动或摆动 3、特点:(1)只需设计适当的凸轮轮廓,便可使从动件得到所需的 运动规律 (1)结构简单、紧凑,工作可靠,容易设计; (2)高副接触,易磨损 4、应用:适用于传力不大的控制机构和调节机构
推杆运动规律选取应从便于加工和动力特性来考虑。
低速轻载凸轮机构:采用圆弧、直线等易于加工的曲线作为凸 轮轮廓曲线。
高速凸轮机构:首先考虑动力特性,以避免产生过大的冲击。
大质量从动件不宜选用νmax太大的运动规律 高速度从动件不宜选用amax太大的运动规律
(2)机器工作过程对从动件的的运动规律有特殊要求
4、偏臵直动尖顶从动件盘形凸轮机构 已知条件:已知凸轮的基圆半径为r0,凸轮沿逆时针方向等速回转。 从动画中看,从动件 而推杆的运动规律已知,已知偏距e。试设计。
在反转运动中依次占 据的位臵将不在是以 凸轮回转中心作出的 径向线,而是始终与O 保持一偏距e的直线, 因此若以凸轮回转中 心O为圆心,以偏距e 为半径作圆(称为偏 距圆),则从动件在 反转运动中依次占据 的位臵必然都是偏距 圆的切线,(图 中 …)从 动件的位移 ( …) 也应沿切线量取。然 后将 …等点 用光滑的曲线连接起 来,既得偏臵直动尖 顶从动件盘形凸轮轮
按从动件运动形式 可分为直动从动件(又分为对心直动从动件和偏臵直动从动件) 和摆动从动件两种。
凸轮传动是通过凸轮与从动件间的接触来传递运动和动力,是一种 常见的高副机构,结构简单,只要设计出适当的凸轮轮廓曲线,就 可以使从动件实现任何预定的复杂运动规律。 §3-1 凸轮机构应用和分类 一、凸轮机构的组成和应用
内燃机
配气机构
凸轮式内燃机配气机构
自动车床上的走刀机构 1、组成:凸轮,从动件,机架 2、作用:将凸轮的转动或移动转变为从动件的移动或摆动 3、特点:(1)只需设计适当的凸轮轮廓,便可使从动件得到所需的 运动规律 (1)结构简单、紧凑,工作可靠,容易设计; (2)高副接触,易磨损 4、应用:适用于传力不大的控制机构和调节机构
推杆运动规律选取应从便于加工和动力特性来考虑。
低速轻载凸轮机构:采用圆弧、直线等易于加工的曲线作为凸 轮轮廓曲线。
高速凸轮机构:首先考虑动力特性,以避免产生过大的冲击。
大质量从动件不宜选用νmax太大的运动规律 高速度从动件不宜选用amax太大的运动规律
(2)机器工作过程对从动件的的运动规律有特殊要求
4、偏臵直动尖顶从动件盘形凸轮机构 已知条件:已知凸轮的基圆半径为r0,凸轮沿逆时针方向等速回转。 从动画中看,从动件 而推杆的运动规律已知,已知偏距e。试设计。
在反转运动中依次占 据的位臵将不在是以 凸轮回转中心作出的 径向线,而是始终与O 保持一偏距e的直线, 因此若以凸轮回转中 心O为圆心,以偏距e 为半径作圆(称为偏 距圆),则从动件在 反转运动中依次占据 的位臵必然都是偏距 圆的切线,(图 中 …)从 动件的位移 ( …) 也应沿切线量取。然 后将 …等点 用光滑的曲线连接起 来,既得偏臵直动尖 顶从动件盘形凸轮轮
按从动件运动形式 可分为直动从动件(又分为对心直动从动件和偏臵直动从动件) 和摆动从动件两种。
第三章 凸轮机构
图3-9 等加速、等减速 运动规律线图
3.2.2.3 简谐运动规律(余弦加速度运动规律)
图3-10 简谐运动线图 当一质点在圆周上作匀速运动时,该点在这个圆的直径上
的投影所构成的运动,称为简谐运动。从动件的位移按简 谐运动变化的运动规律,称为简谐运动规律。 如图3-10所 示,设从动件升程h为直径,其从动件的位移方程为 h (3-4) s (1 cos ) 2 由图3-10可知,当θ=π时,φ=φ0,故θ=πφ/φ0代入上式可导 出从动件推程时简谐运动方程为
单,是凸轮最基本的形式。盘形凸轮分为两种:利用外轮 廓推动从动件运动的称为盘形外轮廓凸轮,如图3-1、图3-2 所示;利用曲线沟槽推动从动件运动的称为盘形槽凸轮, 如图3-4所示。 盘形凸轮作等速回转时,从动件在垂直于凸轮轴线的平面 内运动(往复移动或摆动),因此,盘形凸轮机构属于平面凸 轮机构。由于从动件的行程或摆动太大会引起凸轮径向尺 寸变化过大,不利于机构正常工作。因此,盘形凸轮机构 一般用于从动件行程或摆动较小的场合。
凸轮轮廓,便可得到从动件所需的运动规律。 缺点:凸轮与从动件属高副接触,压强大,易磨损。适用 于传力不大的控制机构和调节机构中。
3.1.2 凸轮机构的类型
3.1.2.1 按凸轮的形状分类
按凸轮的形状可分为盘形凸轮、移动凸轮和柱体凸轮3类。
(1) 盘形凸轮。是一个具有变化半径的圆盘形构件,结构简
图3-10 简谐运动线图
3.余弦加速度运动规律
5 特点: 4 加速度变化连续平缓. 3 始、末点有软性冲击. 2 6
S
7
8 H
d0
1 0
1 V
2
3
4
5
6
7
汽车构造(上册)第3章 配气机构_OK
气门旋转机构:当气门工作时,如能产生缓慢的旋转
运动,可使气门头部周向温度分布比较均匀,从而
减少
44
小气门头部的热变形。同时,气门旋转时,在密封 锥面上产生轻微的摩擦力,能够清除锥面上的沉积
等螺距弹簧
非等螺距弹簧
变螺距弹簧
采用等螺距的单弹 簧,在其内圈加一 个过盈配合的阻尼45 摩擦片来消除共振
46
锥角作用: A、获得较大的气门座合压力,提高密封性和导热性
。 B、气门落座时有较好的对中、定位作用。 C、避免气流拐弯过边缘大应保而持降一定低的流厚 速。
度,1~3mm。
39
2.气门座 气门座概念:
气缸盖的进、排气道与气门锥面相结合的部位。 作用:
靠其内锥面与气门锥面的紧密贴合密封气缸。接受 气门传来的热量。
热作用。 工作条件: 工作温度较高,约500K。润滑困难,易磨
损。 材料: 用含石墨较多的铸铁,能提高自润滑作用。 装配: 气门与气门导管间隙0.05~0.12mm,确保气门
能在导管中自由运动。同时为防止过多润滑油进入 燃烧室,通常会在气门导管上安装橡胶油封。
42
气门导管
卡环:防止气门导 管在使用中脱落。
摇臂轴支座
摇臂称套
调整螺钉
定位弹簧
35
❖3.4 气门组
❖ 气门组件主要由气门、气门座、气门导管、气门弹 簧、气门锁夹零件组成。
要求: ①气门头部与气门座贴合严密; ②气门导管与气门杆上下运动有良好的导向; ③气门弹簧的两端面与气门杆的中心线相垂直; ④气门弹簧的弹力足以克服气门及其传动件的运动
惯性。
轮轴配气机构、顶置凸轮轴配气机构。
11
(3)按曲轴和配气凸轮轴的传动方式分 按曲轴和配气凸轮轴的传动方式可分为齿轮传动、 链传动和齿带传动。
机械设计基础第3章
常用解决方法:增大r0,原则是保证不出现尖点和失 真现象的前提下,取r0最小。
三,平底与导路中心线的交点为尖顶
四 摆动从动件盘形凸轮轮廓的绘制
已知凸轮以等角速w顺时针回转,凸轮基圆半径为r0,凸轮 与摆动从动件的中心距为a,从动件长度l,从动件最大摆角ymax, 以及从动件的运动规律(位移线图y-f),求作此凸轮的轮廓曲线。 设计步骤: (1)以为半径作基圆,以中心距为a,作摆杆长为l与基圆交点于点 (2)作从动件位移线图,并分成若干等分 (3)以中心矩a为半径,o为原心作图 (4)用反转法作位移线图对应等得点A0,A1,A2,…… (5)以l为半径,A1,A2,……,为原心作一系列圆弧、……交于 基圆C1,C2,……点 (6)以l为半径作对应等分角。 (7)以A1C1,A2C2向外量取对应的A1B1,A2B2…… (8)将点B0,B1,B2……连成光滑曲线。
§3-5 凸轮廓线的解析法设计
一 滚子直动从动件盘形凸轮 已知偏距e,基圆半径r0,滚子半径rT,从动件运动规 律s=s( )以及凸轮以等角速度w顺时针方向回转。
• 已知基圆半径r0,从动件运动规律s=s( )以及 凸轮以等角速度w顺时针方向回转。
二 平底直动从动件盘形凸轮
第三章 凸轮机构
机架 从动件(推杆)
凸轮
凸轮机构的优点:凸轮具有曲线工作表面, 只需设计适当的凸轮轮廓,便可使从动件得 到所需的运动规律,并且结构简单、紧凑、 设计方便。 凸轮机构的缺点:凸轮轮廓与从动件之间是 点接触或线接触,易于磨损,通常用于传力 不大的控制机构。
凸轮和滚子材料的选择
(2)将位移线图s-φ的推程运动角和回程运动角分别作若干等分 (图中各为四等分)。 (3)自OC0开始,沿w的相反方向取推程运动角(1800)、远休止 角(300)、回程运动角(1900)、近休止角(600),在基圆上得C4、 C5、C9诸点。将推程运动角和回程运动角分成与从动件位移线 图对应的等分,得C1、C2、C3和C6、C7、C8诸点。 (4)过C1、C2、C3、...作偏距圆的一系列切线,它们便是反转 后从动件导路的一系列位置。 注意:射线方向应与凸轮的转动方向相一致。 (5)沿以上各切线自基圆开始往外量取从动件相应的位移量, 即取线段C1B1=11' 、C2B2=22'、...,得反转后尖底的一系列位 置B1、B2、...。 (6)将B0、B1、B2、...连成光滑曲线(B4和B5之间以及B9和 B0之间均为以O为圆心的圆弧),便得到所求的凸轮轮廓曲线。 滚子直动从动件盘形凸轮 只要首先取滚子中心为参考点,把它看作为尖顶从动件的尖顶, 则由上方法得出的轮廓曲线称为理论轮廓曲线,然后以该轮廓曲 线为圆心,滚子半径rT为半径画一系列圆,再画这些圆所包络的 曲线,即为所设计的轮廓曲线,这称为实际轮廓曲线。其中r0指 理论轮廓曲线的基圆半径。
《内燃机的配气机构》课件
配气机构的主要功能是控制气缸内的燃气进出, 使内燃机能正常工作。
3 特点
4 组成
配气机构需要在内燃机快速运转时能够准确可靠 地开关进、排气门。
配气机构由凸轮轴、摇臂、气门等部件组成。
三、物理原理
本节将通过PV图解析、热力循环以及配气机构的工作原理来介绍配气机构的 物理原理。
四、常见配气机构
滑阀式
八、参考文献
本节列举相关领域的最新研究成果以及重要的文献及参考书目,以供进一步 学习和研究。
滑阀式配气机构通过滑动阀门 的开闭控制气缸进、排气门的 开启和关闭。
ቤተ መጻሕፍቲ ባይዱ
曲柄连杆机构
曲柄连杆机构通过曲柄的转动 驱动摇臂带动气门开启和关闭。
摆柄式
摆柄式配气机构通过摆臂的摆 动来控制气门的开闭。
桥式
桥式配气机构通过桥轴的转动控制气缸进、排气门 的开启和关闭。
进气歧管式
进气歧管式配气机构通过进气歧管的设计控制气缸 进气阀的开启和关闭。
五、配气机构的优化设计
本节将解释相关概念,介绍优化目标,并提供优化方法及思路,以使配气机构达到更高效更可靠的设计。
六、案例分析
本节将具体分析一些成功的配气机构案例,分享它们的设计原则和创新技术。
七、总结与展望
在本节中,我们将讨论配气机构的应用前景,盈利模式与商业化趋势,以及 展望与未来发展方向。
《内燃机的配气机构》 PPT课件
本PPT课件将介绍内燃机的配气机构,包括引言、配气机构的作用、物理原理、 常见配气机构、优化设计、案例分析、总结与展望以及参考文献。
一、引言
内燃机是一种广泛应用的动力机械,本节将介绍内燃机的作用及分类。
二、配气机构的作用
1 定义
第三章 配气机构解析
为气门叠开角。
第二节
气门驱动组的主要机件
一、凸轮轴及其驱动装置
(一)凸轮轴的功用
1. 驱动和控制各缸气门的开启和关闭,使
其符合发动机的工作顺序、配气相位及 气门开度变化规律等要求。 2. 驱动汽油泵、机油泵和分电器等。
(二)凸轮轴的构造
凸轮轴主要由凸轮、凸轮轴轴颈等组成。
对于下置式凸轮轴,还有偏心轮(用于驱动汽
(2)吸收气门在开启和关闭过程中传动零件所产 生的惯性力,以防止各种传动件彼此分离而 破坏配气机构正常工作。
三、摇臂和摇臂组
1.功用:
将推杆或凸轮 传来的推力传给 气门使其开启。
2. 结构
摇臂装在摇臂轴上,摇臂轴通过
摇臂轴支座装在气缸盖上。摇臂是
一个不等臂杠杆,其长臂一端驱动 气门。
3. 浮动式摇臂
其摇臂没有 中间支承轴,是 在导槽中浮动的 安装。摇臂的一 端安装在气缸盖 的液力挺柱上, 另一端驱动气门, 凸轮抵在摇臂的
入中间惰轮传动
1. 齿轮传动
(3)正时齿轮都用斜齿轮并用不同材料制成,以
减小噪声和磨损。通常小齿轮用中碳钢,大齿轮柴
油机用钢而汽油机用夹布胶木或塑料。
1. 齿轮传动
(4)正时齿轮上有正
时记号,装配时必须
使记号对齐,以保证
配气正时。
2. 链条传动
(1)链条传动使用寿命
长,但噪声大,一般用
于上置凸轮轴的发动机
a-气门锁片固定;b-圆柱销固定 1-气缸盖;2-气门杆;3-气门弹簧;4-气门弹簧振动阻尼器;5-气门油封;6-气门弹 簧座;7-气门锁片;8-圆柱销;9-气门导管
三、气门导管
1. 作用
(1 ) 为气门运动导向。
(2)
第二节
气门驱动组的主要机件
一、凸轮轴及其驱动装置
(一)凸轮轴的功用
1. 驱动和控制各缸气门的开启和关闭,使
其符合发动机的工作顺序、配气相位及 气门开度变化规律等要求。 2. 驱动汽油泵、机油泵和分电器等。
(二)凸轮轴的构造
凸轮轴主要由凸轮、凸轮轴轴颈等组成。
对于下置式凸轮轴,还有偏心轮(用于驱动汽
(2)吸收气门在开启和关闭过程中传动零件所产 生的惯性力,以防止各种传动件彼此分离而 破坏配气机构正常工作。
三、摇臂和摇臂组
1.功用:
将推杆或凸轮 传来的推力传给 气门使其开启。
2. 结构
摇臂装在摇臂轴上,摇臂轴通过
摇臂轴支座装在气缸盖上。摇臂是
一个不等臂杠杆,其长臂一端驱动 气门。
3. 浮动式摇臂
其摇臂没有 中间支承轴,是 在导槽中浮动的 安装。摇臂的一 端安装在气缸盖 的液力挺柱上, 另一端驱动气门, 凸轮抵在摇臂的
入中间惰轮传动
1. 齿轮传动
(3)正时齿轮都用斜齿轮并用不同材料制成,以
减小噪声和磨损。通常小齿轮用中碳钢,大齿轮柴
油机用钢而汽油机用夹布胶木或塑料。
1. 齿轮传动
(4)正时齿轮上有正
时记号,装配时必须
使记号对齐,以保证
配气正时。
2. 链条传动
(1)链条传动使用寿命
长,但噪声大,一般用
于上置凸轮轴的发动机
a-气门锁片固定;b-圆柱销固定 1-气缸盖;2-气门杆;3-气门弹簧;4-气门弹簧振动阻尼器;5-气门油封;6-气门弹 簧座;7-气门锁片;8-圆柱销;9-气门导管
三、气门导管
1. 作用
(1 ) 为气门运动导向。
(2)
0 第3章 (1-4)凸轮机构
1. 根据凸轮的结构确定rb
当凸轮与轴做成一体时:rb r rr (2 ~ 5) mm
当凸轮装在轴上时: rb rn rr (2 ~ 5) mm
r——凸轮轴的半径,mm; rn——凸轮轮毂的半径,mm;一般rn=(1.5~1.7)r; rr——滚子半径,mm; 2. 根据αmax≤[α]确定rb 已知推程运动角、行程和最大压力角,由诺模图求得。
盘形凸轮的结构设计
三、滚子半径的选择 (1)当滚子半径rr<ρ时,实际轮廓的曲率半径ρ'>0,即比
较圆滑;
(2)当滚子半径rr=ρ时, 实际轮廓的曲率半径ρ'=0, 出现尖点; (3)滚子半径rr>ρ时,实 际轮廓的曲率半径ρ'<0,轮 廓线发生叠交,叠交阴影 部分在实际加工过程中将 被切去。工作时,这一部 分的运动规律无法实现, 这种现象称为运动失真。
盘形凸轮的结构设计
Fx F sin
Fy F cos
由上述关系式知,压力角
α愈大,有效分力Fy愈小,有 害分力Fx愈大。当a角大到某
一数值时,必将会出现Fy<Fx 的情况。这时,不论施加多大
的Fn力,都不能使从动件运动, 这种现象称为自锁。因此,为
了保证凸轮机构的正常工作,
必须对凸轮机构的压力角进行
盘形凸轮的结构设计
图解法设计凸轮轮廓曲线时,假设凸轮的基圆半径、滚 子半径等尺寸均为已知。而在实际设计时,则需根据机构的 受力情况,并考虑结构的紧凑性、运动的可靠性等因素,合 理确定这些尺寸。
一、压力角
不考虑从动件与凸轮 接触处的磨擦,凸轮对从 动件的作用力F沿接触点 A的法线n方向,直动从动 杆的速度v沿导路方向。 从动件所受作用力F与受 力点速度ν间所夹的锐角 称为凸轮机构的压力角, 用α表示。
当凸轮与轴做成一体时:rb r rr (2 ~ 5) mm
当凸轮装在轴上时: rb rn rr (2 ~ 5) mm
r——凸轮轴的半径,mm; rn——凸轮轮毂的半径,mm;一般rn=(1.5~1.7)r; rr——滚子半径,mm; 2. 根据αmax≤[α]确定rb 已知推程运动角、行程和最大压力角,由诺模图求得。
盘形凸轮的结构设计
三、滚子半径的选择 (1)当滚子半径rr<ρ时,实际轮廓的曲率半径ρ'>0,即比
较圆滑;
(2)当滚子半径rr=ρ时, 实际轮廓的曲率半径ρ'=0, 出现尖点; (3)滚子半径rr>ρ时,实 际轮廓的曲率半径ρ'<0,轮 廓线发生叠交,叠交阴影 部分在实际加工过程中将 被切去。工作时,这一部 分的运动规律无法实现, 这种现象称为运动失真。
盘形凸轮的结构设计
Fx F sin
Fy F cos
由上述关系式知,压力角
α愈大,有效分力Fy愈小,有 害分力Fx愈大。当a角大到某
一数值时,必将会出现Fy<Fx 的情况。这时,不论施加多大
的Fn力,都不能使从动件运动, 这种现象称为自锁。因此,为
了保证凸轮机构的正常工作,
必须对凸轮机构的压力角进行
盘形凸轮的结构设计
图解法设计凸轮轮廓曲线时,假设凸轮的基圆半径、滚 子半径等尺寸均为已知。而在实际设计时,则需根据机构的 受力情况,并考虑结构的紧凑性、运动的可靠性等因素,合 理确定这些尺寸。
一、压力角
不考虑从动件与凸轮 接触处的磨擦,凸轮对从 动件的作用力F沿接触点 A的法线n方向,直动从动 杆的速度v沿导路方向。 从动件所受作用力F与受 力点速度ν间所夹的锐角 称为凸轮机构的压力角, 用α表示。
第3章配气机构
• 1.配气定时工作原理
•
配气定时就是进、排气门的实际开闭时刻,通常用相对于上、下止点曲拐位置的曲轴转角的环
形图来表示。这种图形称为配气定时图(如图3-7所示)。
• 2.可变配气定时典型机构
•
20世纪90年代初,日本本川公司推出了一种既可改变配气定时,又能改受气门运动规律的可变
气门正时和气门升程电子控制机构,称为VTEC机构。其配气凸轮轴上布置了高速机低速两种凸轮,采用了
并将气门杆所承受的热量传给汽缸盖。气门导管为一空心管状结构,如图3-19所示。气门导管压装在汽缸
盖上的导管孔中,其外圆柱面与导管孔的配合有一定的过盈量,以保计良好的传热性能和防止松脱。有些
发动机为防止气门导管脱落,利用卡环对气门导管定位。气门导管的下端仲入气道,为减小对气流造成的
阻力,仲入气道的部分制成锥形。
但位于气门组上方,凸轮轴直接通过摇臂来驱动气门开启和关闭,省去了推杆,使往复运动质量大大减小。
但此种布置使凸轮轴距离曲轴较远,因此不便于使用齿轮传动,现多采用同步齿形胶带传动。这种结构形
式的气门传动组主要由凸轮轴、同步齿形胶带、摇臂、摇臂轴等组成。
第4页/共36页
上一页 下一页 返回
3.1配气机构的功用及组成
锁片或锁销与气门杆定以保证气门迅速回座,保证气门和气门座密封。
• ②必须克服在气门开闭的过程中气门及传动零件产生的惯性力。
• ③高速度、长时间运转下具有良好的耐久性。
• ④保证气门不会发生跳动。
第15页/共36页
上一页 返回
3.4气门传动组
图3-2凸轮轴中置式配气机构
第23页/共36页
返回
图3-3凸轮轴顶置式配气机构
第24页/共36页
第三章 配气机构1讲义
冲击损坏或被高温气体
烧坏。
常见气门锥角有45°和 30°两种。
32
2. 锥形工作面的作用:
提高密封和导热性能; 气门落座时有自动定位作用; 避免气流拐弯过大而降低流速; 气门落座时能挤掉接触面的沉积物,即有自洁作
用。
一般气门锥角比气门座圈锥角稍小,可增加 接触压力,挤出积垢和积炭。
33
3-8 气门密封性检验
59
3.2.3 气门导管
作用:
为气门的运动导向,保证气门直线运动兼起导热作用。
完成进排气一次,即凸轮轴只转一周,曲轴与凸 轮轴的传动比为2:1
19
3.1.3 配气相位
两个概念:
配气相位-----气门从开启到关闭所经历
的曲轴转角。
配气相位图-----用曲轴转角来表示气门
开启与关闭时刻和开启的持续时间
20
配气相位图
21
动画演示
22
10°~30 ° 40°~80 ° 40°~80 ° 10°~30 °
2
二、配气机构的组成
气门组 气门传
动组
3
气门组 气门传动组
4
配气机构的装配
5
三、配气机构的分类
按气门布置形式分
1、气门顶置式
气门顶置式 特点: A.气门行程大,
燃烧室紧凑, B.有利于燃烧及
散热,可提高 发动机压缩比一个工 作循环,曲轴 转两圈,凸轮 轴转一圈,曲 轴与凸轮轴传 动比为2:1。
排气滞后:
高于大气压力, 利用惯性将废气 排的更干净
26
气门叠开
概念:当进气门早开和排气门晚关时,出现的进排 气门同时开启的现象。
气门叠开角:进气门提前角与排气门滞后角之和 (+ )。
第三章 配气机构
配气机构组成
§3-1
配气机构的功用与组成
• 三、配气机构的类型 • 按凸轮轴位置分:下置、侧置、顶置。 1.下置凸轮轴式配气机构 特点: – 凸轮轴在气缸下部 – 正时齿轮传动 – 需较长推杆 – 需摇臂和摇臂轴
§3-1
配气机构的功用与组成
• 三、配气机构的类型 2.侧置(中置)凸轮 轴式配气机构 特点: – 凸轮轴在气缸侧 – 正时皮带或链条传动 – 需较短推杆 – 需摇臂和摇臂轴
气门组成:头部和杆身
• 一、气门的构造与维修 • 1.气门的构造 – 类型:进、排气门。 • 头部——与气门座配合,密 封气道; • 杆身——与气门导管配合, 给气门运动导向。
§3-2
气门组零件的构造与维修
工作面锥角: 45°
• 一、气门的构造与维修 • 1.气门的构造
头部形状:平、凸、凹3种
和30°两种
§3-3
气门传动组零件的构造与维修
液力挺杆1
• 三、挺杆的构造与维修 • 2.液力挺杆的构造与维修 – 功用:传力,实现无间隙传动。 – 组成:挺杆体、柱塞、弹簧和单 向阀、推杆支座等。 – 工作原理:
•润滑油经油道、油孔进入挺杆内; •低压腔A、高压腔B充满油;
•热胀时,B腔从柱塞与挺杆体间隙泄油;
• 拆时不可硬撬,可用镗削等方法。 • 安装前,应加工座孔,保证过盈量约0.08~0.12mm。 • 安装时,冷冻新座圈或加热缸盖。
§3-2
气门组零件的构造与维修
• 三、气门导管、气门油封的构造与维修 • 1.气门导管的构造 – 功用:与气门杆配合为气门导向。 – 位置:缸盖上的气门导管孔中。 – 结构特点: • 空心管状结构; • 伸入气道部分成锥形。 • 后端装气门油封; • 有些带限位卡环; • 与座孔过盈配合; • 内孔与气门杆间隙配合。
完整版机械原理 凸轮机构
O2
杆长l
A
?0
?
?
O1
B
摆杆初始位置角 ? 0
角位移? 摆幅? max
基圆 D
C
? ? ? 0 ? arccos (a 2 ? l 2 ? rb2) /(2al )
四、凸轮机构的设计任务
1)从动件运动规律的设计
2)凸轮机构基本尺S寸(?的)设计
移 摆 摆 滚 平动动动子底?O从从中从从1 动动心动动(件件的件件? m: : 距 : :ahx基 基 离 除 除) 圆 圆 上 上aΦ及半 半 述 述摆径 径 外 外Φ杆, ,rrS的bb还平,,Φ?长有底偏凸' O度滚长心轮1Φl子度距转; 'S半动2eLπ;径。中心?r r到。a从动件 O2
s (从动件位移)
行程
B'
h As
h
BC
(? ,s)
??
?
O
A 0?
D ?s ?'
2π
?
' s
?
基圆
e
D 偏心距
B 推程运动角
回程运动角
C 远休止角
近休止角
?
推程角Φ为什么是∠BOB ‘ ? 而不是∠BOA ?
推程运动角Φ
B'
A
?
?
O
D
问1:导致Φ ≠∠BOA的原因是 什么?
或: 什么条件下Φ=∠BOA?
c2
? ?
? c3
o
? ? 0,s ? 0,v ? 0
a
? ? ? ,s ? h
s
?
h 2
???1 ?
?
3)凸轮机构曲线轮廓的设计
4)绘r b制凸e轮机构工作图
杆长l
A
?0
?
?
O1
B
摆杆初始位置角 ? 0
角位移? 摆幅? max
基圆 D
C
? ? ? 0 ? arccos (a 2 ? l 2 ? rb2) /(2al )
四、凸轮机构的设计任务
1)从动件运动规律的设计
2)凸轮机构基本尺S寸(?的)设计
移 摆 摆 滚 平动动动子底?O从从中从从1 动动心动动(件件的件件? m: : 距 : :ahx基 基 离 除 除) 圆 圆 上 上aΦ及半 半 述 述摆径 径 外 外Φ杆, ,rrS的bb还平,,Φ?长有底偏凸' O度滚长心轮1Φl子度距转; 'S半动2eLπ;径。中心?r r到。a从动件 O2
s (从动件位移)
行程
B'
h As
h
BC
(? ,s)
??
?
O
A 0?
D ?s ?'
2π
?
' s
?
基圆
e
D 偏心距
B 推程运动角
回程运动角
C 远休止角
近休止角
?
推程角Φ为什么是∠BOB ‘ ? 而不是∠BOA ?
推程运动角Φ
B'
A
?
?
O
D
问1:导致Φ ≠∠BOA的原因是 什么?
或: 什么条件下Φ=∠BOA?
c2
? ?
? c3
o
? ? 0,s ? 0,v ? 0
a
? ? ? ,s ? h
s
?
h 2
???1 ?
?
3)凸轮机构曲线轮廓的设计
4)绘r b制凸e轮机构工作图
凸轮配气机构
凸轮配气机构
一、概述:配气机构由凸轮轴、挺杆、推杆、摇臂、摇臂轴、气门弹簧及气门导管等一些相关部件组成。
凸轮轴在发动机上的布置有下置,侧置和顶置。
现代发动机上常采用顶置式,它位于气缸盖上。
凸轮轴直接通过摇臂驱动气门,省去了一大套如挺杆、推杆等往复运动的部件,很适用于高转速发动机,但也带来传动轴的困难,由于凸轮轴在气缸盖上,气缸盖拆装较为麻烦,并且喷油器的布置也较困难。
另有一种顶置式是凸轮轴的幅轮直接驱动气门。
这种形式的优点不但机构简单、惯性小、对凸轮轴的要求不高,故在新式汽车应用广泛.
二、配气机构的组成
(1)气门组件。
气门组件包括气门、气门导管、气门座及气门弹簧等零件组成,配气机构气门组件的作用是保证实现对气缸的可靠性密封,为此要求气门头部与气门座贴合严密,气门导管对气门杆的往复运动导向良好,气门弹簧两端与气门杆中心线相互垂直,气门弹簧的弹力保证气门关闭时紧压在气门座上。
(2)气门传动组件。
气门传动组件主要包括凸轮轴及其传动机构、挺柱、推杆和摇臂机构等零部件。
凸轮轴:凸轮轴是气门传动组中的主要部件,其作用是控制气门的开闭及其升程的变化规律凸轮轴一般用优质钢模锻而成,并对凸轮和轴颈工作表面进行高频感应加热淬火(中碳钢)或渗碳淬火(低碳钢)处理。
挺柱:挺柱的作用是将凸轮轴旋转时产生的推动力传给推杆或气门,挺柱一般用耐磨性好的合金钢或合金铸铁等材料制造。
摇臂组件主要有摇臂、摇臂轴、支撑座、气门间隙调整螺钉等零件。
摇臂是一个以中间轴孔为支点的双臂杠杆,短臂一侧装有气门间隙调整螺钉,长臂一端有一圆弧工作面用来推动气门。