随机信号通过线性系统分析

合集下载

(完整版)随机信号处理考题答案

(完整版)随机信号处理考题答案

填空:1.假设连续随机变量的概率分布函数为F(x)则F(-∞)=0, F(+∞)=12.随机过程可以看成是样本函数的集合,也可以看成是随机变量的集合3.如果随机过程X(t)满足任意维概率密度不随时间起点的变化而变化,则称X(t)为严平稳随机过程,如果随机过程X(t)满足均值为常数,自相关函数只与时间差相关则称X(t)为广义平稳随机过程4.如果一零均值随机过程的功率谱,在整个频率轴上为一常数,则称该随机过程为白噪声,该过程的任意两个不同时刻的状态是不相关5. 宽带随机过程通过窄带线性系统,其输出近似服从正态分布,窄带正态噪声的包络服从瑞利分布,而相位服从均匀分布6.分析平稳随机信号通过线性系统的两种常用的方法是冲激响应法,频谱法7.若实平稳随机过程相关函数为Rx(τ)=25+4/(1+6τ),则其均值为5或-5,方差为4 7.匹配滤波器是输出信噪比最大作为准则的最佳线性滤波器。

1.广义各态历经过称的信号一定是广义平稳随机信号,反之,广义平稳的随机信号不一定是广义各态历经的随机信号2.具有高斯分布的噪声称为高斯噪声,具有均匀分布的噪声叫均匀噪声,而如果一个随机过程的概率谱密度是常数,则称它为白噪声3.白噪声通过都是带宽的线性系统,输出过程为高斯过程4.平稳高斯过程与确定的信号之和是高斯过程,确定的信号可以认为是该过程的数学期望5.平稳正态随机过程的任意概率密度只由均值和协方差阵确定1.白噪声是指功率谱密度在整个频域内均匀分布的噪声。

3.对于严格平稳的随机过程,它的均值与方差是与时间无关的函数,即自相关函数与时间间隔有关,与时间起点无关。

4.冲激响应满足分析线性输出,其均值为_____________________。

5.偶函数的希尔伯特变换是奇函数。

6.窄带随机过程的互相关函数公式为P138。

1.按照时间和状态是连续还是离散的,随机过程可分为四类,这四类是连续时间随机过程,离散型随机过程、随机序列、离散随机序列。

随机信号分析实验报告

随机信号分析实验报告

实验一 随机噪声的产生与性能测试一、实验内容1.产生满足均匀分布、高斯分布、指数分布、瑞利分布的随机数,长度为N=1024,并计算这些数的均值、方差、自相关函数、概率密度函数、概率分布函数、功率谱密度,画出时域、频域特性曲线; 2.编程分别确定当五个均匀分布过程和5个指数分布分别叠加时,结果是否是高斯分布; 3.采用幅度为2, 频率为25Hz 的正弦信号为原信号,在其中加入均值为2 , 方差为0.04 的高斯噪声得到混合随机信号()X t ,编程求 0()()tY t X d ττ=⎰的均值、相关函数、协方差函数和方差,并与计算结果进行比较分析。

二、实验步骤 1.程序N=1024; fs=1000; n=0:N —1;signal=chi2rnd (2,1,N); %rand(1,N)均匀分布 ,randn(1,N )高斯分布,exprnd(2,1,N )指数分布,raylrnd (2,1,N)瑞利分布,chi2rnd(2,1,N )卡方分布 signal_mean=mean(signal ); signal_var=var (signal );signal_corr=xcorr(signal,signal ,'unbiased ’); signal_density=unifpdf(signal ,0,1); signal_power=fft(signal_corr); %[s,w]=periodogram (signal); [k1,n1]=ksdensity(signal);[k2,n2]=ksdensity (signal,’function ’,'cdf ’); figure ;hist(signal);title (’频数直方图’); figure ;plot (signal);title(’均匀分布随机信号曲线’); f=n *fs/N ; %频率序列 figure;plot(abs (signal_power)); title('功率幅频’); figure;plot(angle (signal_power)); title ('功率相频'); figure;plot (1:2047,signal_corr); title ('自相关函数’); figure;plot(n1,k1);title('概率密度’);figure;plot(n2,k2);title('分布函数’);结果(1)均匀分布(2)高斯分布(3)指数分布(4)瑞利分布(5)卡方分布2.程序N=1024;signal_1=rand(1,N);signal_2=rand(1,N);signal_3=rand(1,N);signal_4=rand(1,N);signal_5=rand(1,N);signal=signal_1+signal_2+signal_3+signal_4+signal_5; [k1,n1]=ksdensity(signal);figure(1)subplot(1,2,1);hist(signal);title('叠加均匀分布随机数直方图');subplot(1,2,2);plot(n1,k1);title(’叠加均匀分布的概率密度');结果指数分布叠加均匀分布叠加结果:五个均匀分布过程和五个指数分布分别叠加时,结果是高斯分布。

随机过程通过线性系统

随机过程通过线性系统
现代通信原理
随机过程通过线性系统
通信的目的在于传输信号,信号和系统总是联系在一起的。 通信系统中的信号或噪声一般都是随机的,因此在以后的讨论 中我们必然会遇到这样的问题:随机过程通过系统(或网络) 后,输出过程将是什么样的过程?
这里,我们只考虑平稳过程通过线性时不变系统的情况。 随机信号通过线性系统的分析,完全是建立在确知信号通过线 性系统的分析原理的基础之上的。我们知道,线性系统的响应 vo(t)等于输入信号vi(t)与系统的单位冲激响应h(t)的卷积,即
度,然后讨论输出过程的概率分布问题。
1. 输出过程ξo(t)的数学期望
E[ξo(t)]= e[h( ) ξi(t-τ)dτ ]

h(
0
)E[1[i
(t
)]d
a
h( )d
0
式中利用了平稳性假设E[ξi(t-τ)]=E[ξi(t)]=a(常数)。 又因为
H(W)=
h(t)e
jwtd
t
0
求得
H(0)= h(t)dt
可见, ξo(t)的自相关函数只依赖时间间隔τ而与时间起点t1 无关。
若线性系统的输入过程是平稳的,那么输出过程也是平 稳的。
3. 输出过程ξo(t)的功率谱密度
对式(2.4 - 7)进行傅里叶变换, 有
p0(w)
R0
(
)e
jw
d
0
[h(a)h(
0
)Ri (
)dad ]e jwrd
噪声平均功率。理想低通的传输特性为
H(ω)=
K0e-jwt 0
w wH
其他
解 由上式得|H(ω)|2=
K02
,|ω|≤ωH。输出功率谱密度为

随机信号分析实验:随机过程通过线性系统的分析

随机信号分析实验:随机过程通过线性系统的分析

实验三 随机过程通过线性系统的分析实验目的1. 理解和分析白噪声通过线性系统后输出的特性。

2. 学习和掌握随机过程通过线性系统后的特性,验证随机过程的正态化问题。

实验原理1.白噪声通过线性系统设连续线性系统的传递函数为)(ωH 或)(s H ,输入白噪声的功率谱密度为2)(0N S X =ω,那么系统输出的功率谱密度为2)()(02N H S Y ⋅=ωω (3.1) 输出自相关函数为⎰∞∞-=ωωπτωτd e H N R j Y 20)(4)( (3.2)输出相关系数为)0()()(Y Y Y R R ττγ=(3.3) 输出相关时间为⎰∞=00)(ττγτd Y (3.4)输出平均功率为[]⎰∞=202)(2)(ωωπd H N t Y E (3.5)上述式子表明,若输入端是具有均匀谱的白噪声,则输出端随机信号的功率谱主要由系统的幅频特性)(ωH 决定,不再是常数。

2.等效噪声带宽在实际中,常常用一个理想系统等效代替实际系统的)(ωH ,因此引入了等效噪声带宽的概念,他被定义为理想系统的带宽。

等效的原则是,理想系统与实际系统在同一白噪声的激励下,两个系统的输出平均功率相等,理想系统的增益等于实际系统的最大增益。

实际系统的等效噪声带宽为⎰∞=∆022max)()(1ωωωωd H H e (3.6)或⎰∞∞--=∆j j e ds s H s H H j )()()(212maxωω (3.7)3.线性系统输出端随机过程的概率分布 (1)正态随机过程通过线性系统若线性系统输入为正态过程,则该系统输出仍为正态过程。

(2)随机过程的正态化随机过程的正态化指的是,非正态随机过程通过线性系统后变换为正态过程。

任意分布的白噪声通过线性系统后输出是服从正态分布的;宽带噪声通过窄带系统,输出近似服从正态分布。

实验内容设白噪声通过图3.1所示的RC 电路,分析输出的统计特性。

图3.1 RC 电路(1)试推导系统输出的功率谱密度、相关函数、相关时间和系统的等效噪声带宽。

随机信号分析基础第五章习题王永德答案

随机信号分析基础第五章习题王永德答案
了解随机信号的应用领域
详细描述
这道题目考察了学生对随机信号应用领域 的了解,包括通信、雷达、声呐、图像处 理等领域的应用。
THANKS
感谢观看
随机信号分析基础 第五章习题王永德 答案
目录
• 习题一答案 • 习题二答案 • 习题三答案 • 习题四答案
01
CATALOGUE
习题一答案
题目一答案
总结词:周期性
详细描述:题目一考察了周期性随机信号的特点,包括周期信号的波形、频谱和 功率谱等。通过分析,可以理解周期信号的规律性和稳定性,以及在通信、雷达 、声呐等领域的应用。
掌握随机信号的模拟生成方 法
详细描述
这道题目要求学生掌握随机 信号的模拟生成方法,包括 基于概率密度函数的生成方 法和基于概率质量函数的生
成方法。
总结词
理解随机信号的数字生成方法
详细描述
这道题目考察了学生对随机信号数字生成 方法的理解,包括基于离散概率分布的生 成方法和基于连续概率分布的生成方法。
总结词
04
详细描述
这道题目要求学生掌握随机信号的表 示方法,包括概率密度函数、概率质 量函数、特征函数等。
06
详细描述
这道题目考察了学生对随机信号线性变换的理 解,包括线性变换的基本原理和计算方法。
题目二答案
总结词
掌握随机信号的谱分析方法
详细描述
这道题目要求学生掌握随机信号的谱分析方法,包括谱 估计的基本原理和计算方法,以及谱估计的评价指标。
详细描述
这道题目要求学生掌握随机信号的模拟生成方法,包括基于 概率分布的随机抽样和基于确定性函数的随机调制。学生需 要理解这些方法的原理,掌握其实现过程,并能够根据实际 需求选择合适的方法生成随机信号。

北京理工大学随机信号分析实验报告

北京理工大学随机信号分析实验报告

北京理工大学随机信号分析实验报告本科实验报告实验名称:随机信号分析实验实验一随机序列的产生及数字特征估计一、实验目的1、学习和掌握随机数的产生方法。

2、实现随机序列的数字特征估计。

二、实验原理1、随机数的产生随机数指的是各种不同分布随机变量的抽样序列(样本值序列)。

进行随机信号仿真分析时,需要模拟产生各种分布的随机数。

在计算机仿真时,通常利用数学方法产生随机数,这种随机数称为伪随机数。

伪随机数是按照一定的计算公式产生的,这个公式称为随机数发生器。

伪随机数本质上不是随机的,而且存在周期性,但是如果计算公式选择适当,所产生的数据看似随机的,与真正的随机数具有相近的统计特性,可以作为随机数使用。

(0,1)均匀分布随机数是最最基本、最简单的随机数。

(0,1)均匀分布指的是在[0,1]区间上的均匀分布,即 U(0,1)。

实际应用中有许多现成的随机数发生器可以用于产生(0,1)均匀分布随机数,通常采用的方法为线性同余法,公式如下:)(m od ,110N ky y y n n -=Ny x n n /=序列{}nx 为产生的(0,1)均匀分布随机数。

下面给出了上式的3组常用参数: 1、10N 10,k 7==,周期7510≈⨯;2、(IBM 随机数发生器)3116N 2,k 23,==+周期8510≈⨯;3、(ran0)315N 21,k 7,=-=周期9210≈⨯;由均匀分布随机数,可以利用反函数构造出任意分布的随机数。

定理 1.1 若随机变量 X 具有连续分布函数F X (x),而R 为(0,1)均匀分布随机变量,则有)(1R F X x -=由这一定理可知,分布函数为F X (x)的随机数可以由(0,1)均匀分布随机数按上式进行变换得到。

2、MATLAB 中产生随机序列的函数(1)(0,1)均匀分布的随机序列函数:rand用法:x = rand(m,n)功能:产生m×n 的均匀分布随机数矩阵。

第4章平稳随机信号通过线性系统

第4章平稳随机信号通过线性系统
30
3.3.1 时域分析法 3、输出序列的自相关函数
31
3.3 随机信号通过离散时间系统的分析 3.3.2 频域分析法
• 1、输出序列的功率谱密度 • 2、输出序列的自相关函数 • 3、输出序列的平均功率
32
3.3 随机信号通过离散时间系统的分析 3.3.2 频域分析法
•1、输出序列的功率谱密度
L[ax1(t)+bx2(t)] = aL[x1(t)] + bL[x2(t)]
6
3.1 线性系统的基本理论
什么是线性系统?
x(t)
y(t) = x(t)*h(t)
h(t)
连续时不变线性系统


y ( t ) x ( t ) h () d x () h ( t ) d x ( t ) h ( t )
第四章 随机信号通过线性系统
主要内容
3.1 线性系统基本理论 3.2 随机信号通过连续时间系统 3.3 随机序列通过离散时间系统
2
3.1 线性系统的基本理论
系统可分为: (1)线性系统:线性放大器、线性滤波器 (2)非线性系统:限幅器、平方律检波器
对于线性系统: 已知系统特性和输入信号的统计特性, 可以求出输出信号的统计特性
3 9
的白化滤波器.
解:
SX


2 2
3 9
SX
s
s2 s2
3
9
3s 3s
3s3s
SX
s

s 3 s 3
HsSX 1sss33
43
白噪声通过线性系统分析 设连续线性系统的传递函数为 H() 或 H (s) , 其输入白噪声功率谱密度为 S X ( ) = N 0 ,

第三章随机序列通过离散线性系统分析

第三章随机序列通过离散线性系统分析

MБайду номын сангаас
−k
ak z − k ∑
=
( z − z1 ) L ( z − z M ) ( z − p1 ) L ( z − pM )
G
X
( ω ) = H ( z ) H ( z − 1 )σ
2 W
z = e−

=
∑ ∑
M
2
k =0 N
bk e − ake−
jk ω
jk ω
σ
2 W
k=0
设有ARMA(2,2)模型, ARMA(2,2)模型 例 设有ARMA(2,2)模型, X(n)+1.4X(n-1)+0.5X(n-2)=W(n)-0.2W(n-1)-0.1W(nX(n)+1.4X(n-1)+0.5X(n-2)=W(n)-0.2W(n-1)-0.1W(n-M) 其中W(n)是零均值单位方差的平稳白噪声, 其中W(n)是零均值单位方差的平稳白噪声,求该过程的自 W(n)是零均值单位方差的平稳白噪声 相关函数和功率谱。 相关函数和功率谱。 解 系统的传递函数为
0≤m≤M m>M
由相关函数的偶函数 性质可以得到m<0 m<0的值 性质可以得到m<0的值
ω GX(ω)=σW2| b0+b1e-jω+…+bMeω σ jMω|2 ω
ARMA模型
a0X[n]+a1X[n-1]+…+aNX[n-N] = b0W[n]+ b1W[n-1]+ ....+bNW[n-M]
σ2 = 2(1 + a 2 − a cos ω)
AR模型 推广到 N阶AR模型 X(n)=a1X(n-1)+a2X(n-2)+aNX(n-N)+W(n)

第三章 随机信号通过线性系统分析

第三章 随机信号通过线性系统分析
• 3.2.1 时域分析法
• • • • • 1、输出表达式(零状态响应,因果系统) 2、输出的均值 3、系统输入与输出之间的互相关函数 4、系统输出的自相关函数 5、系统输出的高阶距
x (t ) ► 输入为随机信号X(t)的某个实验结果的一个样本函数,则输 出为:
y (t )

h ( ) x ( t ) d
2012-6-30 3
3.1 线性系统的基本理论
系统可分为: (1)线性系统:线性放大器、线性滤波器 (2)非线性系统:限幅器、平方律检波器 对于线性系统:已知系统特性和输入信号的统计特性,可以求出系统输 出信号的统计特性
2012-6-30
4
• 下面的分析线性系统是单输入单输出(响应)的、连续或离散时不变 的、物理可实现的稳定系统。
证明:已知系统输入随机信号的自相关函数,可以求出系统 输出端的自相关函数
R Y ( t1 , t 2 ) E [ Y ( t1 ) Y ( t 2 )] h ( t1 ) h ( t 2 ) R X ( t1 , t 2 )
R Y ( t1 , t 2 ) E [Y ( t1 )Y ( t 2 )]
R Y X ( t1 , t 2 ) R X ( t1 , t 2 ) * h ( t1 )
2012-6-30 17
3.2 随机信号通过连续时间系统的分析
证明:由于系统的输出是系统输入的作用结果,因此,系统 输入输出之间是相关的,系统输入输出相关函数为
R X Y ( t1 , t 2 ) R X ( t 1 , t 2 ) * h ( t 2 )
时不变线性系统
若输入信号x(t)时移时间C, 输出y(t)也只引起一个相同 的时移,即 y(t-C) = L[x(t-C)]

随机信号分析 第五章随机信号通过线性系统(2)

随机信号分析 第五章随机信号通过线性系统(2)
0
2

0
0
0
FX ( ) N 0
K0

0
N0 K0
0
2

0
0

0
注:“窄带”的定义
1、窄带系统: 系统的中心频率
0
H ( )
系统带宽。


0
0

2,窄带随机信号: 其功率谱密度的中心频率 0 e 等效噪声带宽。
G X ( )
N0 w2 L2 R 2 R 2 jw N RN0 R| |/ L e dw 0 ( ) e 2 R2 w2 L2 2 4L


题3:若图示系统的输入x(t)为平稳随机过程,求输 出的功率谱密度.
解:先求自相关函数,再求功率谱密度
RY ( ) E[Y (t )Y (t )] E{[ X (t ) X (t T )][ X (t ) X (t T )]} E[ X (t ) X (t ) X (t T ) X (t ) X (t ) X (t T ) X (t T ) X (t T )]] 2 R X ( ) R X ( T ) R X ( T )
e 均由系统本身决定。
同一系统的这两个不同参数有着密切联系。


e
e
5.3.2 白噪声通过线性系统
一,输出信号的功率谱密度
N0 G X ( ) 2
FX () N0
GX ( ) FX ( )
N0 GY ( ) | H ( ) |2 , 2 FY ( ) N0 | H ( ) |2 , 0
这等效的限带白噪声带宽 e ←称为实际系统的“等效噪声带宽”。

《随机信号分析基础》总复习题纲

《随机信号分析基础》总复习题纲

概率论基础1.概率空间、概率(条件概率、全概率公式、贝叶斯公式)2.随机变量的定义(一维、二维实随机变量)3.随机变量的描述:⑴统计特性一维、二维概率密度函数、一维二维概率分布函数、边缘分布概率分布函数、概率密度函数的关系⑵数字特征一维数字特征:期望、方差、均方值(定义、物理含义、期望和方差的性质、三者之间的关系)二维数字特征:相关值、协方差、相关系数(定义、相互关系)⑶互不相关、统计独立、正交的定义及其相互关系△雅柯比变换(随机变量函数的变换一维随机变量函数的单值和双值变换、二维随机变量函数的单值变换)5、高斯随机变量一维和二维概率密度函数表达式高斯随机变量的性质△随机变量的特征函数及基本性质、随机信号的时域分析1、随机信号的定义从三个方面来理解①随机过程(),X t ζ是,t ζ两个变量的函数②(),X t ζ是随时间t 变化的随机变量③(),X t ζ可看成无穷多维随机矢量在0,t n ∆→→∞的推广2、什么是随机过程的样本函数?什么是过程的状态?随机过程与随机变量、样本函数之间的关系?3、随机信号的统计特性分析:概率密度函数和概率分布函数(一维、二维要求掌握)4、随机信号的数字特征分析(定义、物理含义、相互关系) 一维:期望函数、方差函数、均方值函数。

(相互关系)二维:自相关函数、自协方差函数、互相关函数、互协方差函数(相互关系) 5、严平稳、宽平稳定义、二者关系、判断宽平稳的条件、平稳的意义、联合平稳定义及判定 6、平稳随机信号自相关函数的性质: 0点值,偶函数,均值,相关值,方差7、两个随机信号之间的“正交”、“不相关”、“独立”。

(定义、相互关系) 8、高斯随机信号定义(掌握一维和二维)、高斯随机信号的性质 9、各态历经性定义、意义、判定条件(时间平均算子、统计平均算子)、平稳性与各态历经性的关系直流分量、直流平均功率、总平均功率、交流平均功率随机信号的频域分析1、随机信号是功率信号,不存在傅里叶变换,在频域只研究其功率谱。

通信原理2-8 随机信号通过线性系统

通信原理2-8    随机信号通过线性系统

本章小结
1、明确通信是一个随机过程; 2、随机过程的描述,数字特征; 平稳随 机过程 自相关函数、功率谱密度;相互关系 3、高斯过程、瑞利分布、Rice分布; 4、窄带随机过程、正弦信号+~; 5、 2 P0 ω =H ω Pi ω () ()() ξ ξ
输出是平稳随机过程!
0 3、输出 ξ(t)的功率谱密度 Pξ (ω )
0
P0 (ω) = ∫ R(τ )e− jωt dt ξ
−∞ ∞

= ∫ dτ ∫ dα∫ [(α)h β)(τ +α − β)e− jωτ ]dβ h ( Ri
−∞ 0 0



τ ′=τ+α+β
∞ jωα 0

∞ − jωβ
0 ∞
a
因果关系示意图 t
绝对 未来
c
绝对 远离
o
绝对 过去
绝对 远离
x
d
b
统计特性分析
ξ(t) ∫ (τ)ξi t − τ)dτ = h ( 0
0 ∞
讨论输出的统计特 性。
输入是平稳随机过程
1、输出随机信号的期望
根据定义,有
E[ξ(t)= E[ ∫ (τ)ξi t − τ)dτ ] = ∫ (τ)E[ξi t − τ) τ ] h ( h ( ]d 0
2-8
随机信号通过线性系统
目的:学习随机信号通过线性系统的 响应特性,数字特征。
前面对随机过程本身的一些特性做了 必要的讨论。 现在我们来讨论随机过程通过线性系 统的情况。随机过程通过线性系统的分 析, 完全是建立在信号通过线性系统的分析原 理的基础之上。
线性系统
(t 等于输入信号 vi (t ) 与冲激响 线性系统响应 v0 ) 应 h(t) 的卷积,即

随机信号通过线性系统

随机信号通过线性系统
• 3. 系统的稳定性与因果性 • 实际应用中的系统,其本身必定是稳定和可实现的,它们应该具有下面
两个共同特点。
上一页 下一页 返回
4.1 线性系统的基本性质
• 1)系统稳定性 • 如果一个线性时不变系统对任意有界输入的响应必然也是有界的,那
么,此系统是稳定的,由式有
• 若输入信号有界,则必存在某正常数M,
• 证明:
• 上式表明,线性系统输出的功率谱密度等于输入功率谱密度乘以系统 的功率传输函数。通过傅里叶反变换可得到线性系统输出的自相关函 数
上一页 下一页 返回
4.2 随机信号通过连续时间系统的分析
• 于是系统输出的均方值或平均功率可表示为 • 将输出信号互相关函数的卷积公式两边取傅里叶变换,有
上一页 下一页 返回
• 如果X (t)为平稳随机过程,则 • 其中H (0)为系统的传递函数在ω=0时的值。 • 2)系统输出的互相关函数
上一页 下一页 返回
4.2 随机信号通过连续时间系统的分析
• 线性系统的输出必定以某种方式依赖于输入,即输入与输出必定是相 关的,其相关性由输入与输出之间互相关函数描述。线性系统输入输 出之间的互相关函数为
• 线性系统既可以用冲激响应描述,也可以用系统传递函数描述,因此,随 机过程通过线性系统的常用分析方法也有两种:冲激响应法(时域分析 法)和频域分析法。
• 4.2.1 时域分析法
• 1. 系统的输出 • 假定随机信号X (t)输入某个(确知的)线性时不变系统h(t),由前面章节
可知X (t)是不确定的,它可以视为很多样本函数的集合,即x(t,ξi),其中ξi 表示它的某种可能结果,i=1,2,3,…,而每一个样本函数都是确知的,当 它输入系统h(t)时,可得出相应响应信号为

随机信号通过线性系统的分析.

随机信号通过线性系统的分析.

(6-83)
由于输入的是随机信号,输出一般也是随机信号。
1.输出的均值
输出序列的均值 my (n) 通过(6-83)式计算,即


my (n) EY (n) h(k)EX (n k) h(k)mx (n k)
k
k
(6-84)
若 X (n) 为平稳随机序列,则 mx (n) mx (n k) mx 为
(一)时域分析
设已知线性时不变离散系统的单位脉冲响应为
在 n 范围内输入随机序列 h(n) ,又设
Y (n) 是 X (n) 通过该系统的输出序列,则X输(n出) 随机 序列为 h(n) 与 X (n) 的卷积和,即

Y (n) h(n) X (n) h(k)X (n k) k
的,则系统输出也是广义平稳的。
3.输入与输出之间的互相关函数
根据互相关函数的定义,有
Rxy (t, t ) EX (t)Y (t )

E

X
(t)

h( 1 ) X (t



1
)d
1



h(
1
)EX
(t)
X
(t


1 )d 1
(6-86)
若X (n)为平稳随机序列,则有

Ryy (m)
h(k)h(i)Rxx (m k i)
k i
Rxx (m) h(m) h(m)
(6-87)
上式说明,输出随机信号Y(n) 的自相关函数只 与时间差m有关。实际上,对于线性时不变系 统而言,如果输入随机信号是平稳的,输出随 机信号也是平稳的,故其概率特性是时不变的, 自相关函数只与时间差有关。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

重点及其要求:

(1)掌握以下五条性质: 1.双侧宽或严平稳随机 信号通过线性系统后的输出仍是宽或严平稳的,且 输入与输出联合宽平稳;2.双侧宽遍历随机信号通 过线性系统后的输出仍是宽遍历的;3.高斯随机信 号通过线性系统后的输出仍然是高斯随机信号;4. 若线性系统的输入随机信号的带宽远大于系统的带 宽,则无论输入信号具有何种概率密度函数,系统 输出的概率密度函数皆近似于高斯分布;5.线性系 统输出的随机信号的相关时间与系统的带宽成反比。
RXY (t1 , t2 ) E[ X (t1 )Y (t2 )] E[ X (t1 ) h(u ) X (t2 u )du]
0
h(u ) E[ X (t1 ) X (t2 u )]du h(u ) RX (t1 , t2 u )du
0 0


RX (t1 , t2 ) h(t2 )
4.2 随机信号通过连续时间系统的分析
2. 若输入X(t)是严平稳的,则输出Y(t)也是严平稳的。
3. 若输入X(t)是宽遍历的,则输出Y(t)也是宽遍历性的。 证明:由X(t)的宽遍历性定义得
X (t ) mX
X (t ) X (t ) RX ( )
1 T 1 T Y (t ) lim Y (t )dt lim [ h(u ) X (t u )du]dt T 2T T T 2T T 0 1 T [lim X (t u )dt] h(u )du m X h(u )du mY 0 T 2T T 0
y(t ) h( ) x(t )d x( )h(t )d
0 t
物理可实现的稳定系统的传递函数H(s)之所有极点都位 于s平面左半面(不包含虚轴)。
4.1 线性系统的基本理论
(三)离散时不变线性系统
离散时不变线性系统输出y(n)与输入x(n)之间的关系是
y(t c) L[ x(t c)]
则称系统为时不变系统。
满足上两式的系统称为线性时不变系统。在无线电设 备中,常遇到的低频RC放大器、线性滤波器等都属于 这一系统。
4.1 线性系统的基本理论
(二)连续时不变线性系统
设x(t)是连续时不变线性系统的输入,则系统输出由卷 积积分得到
y(t ) h( ) x(t )d x( )h(t )d x(t ) h(t )
0 0
mY (t ) mX h( )d
0


RY (t1 , t2 )
0

0


0
h(u)h(v) RX (t2 t1 v u )dudv


0
h(u)h(v) RX ( v u )dudv RY ( )
4.2 随机信号通过连续时间系统的分析
如果系统的单位冲激响应满足
h(n) 0 当n 0时
那么该系统称为因果系统。所以实际运行的物理可实现 系统都是因果的。于是对于物理可实现的系统来说
y ( n) h( k ) x ( n k )
k 0
物理可实现的稳定系统的的极点都位于z平面的单位圆内。 以下分析讨论中,均限定系统是单输入单输出的、连续或离 散时不变的、线性的和物理可实现的稳定系统。
同理可证明
Y (t )Y (t ) RY ( )
4.2 随机信号通过连续时间系统的分析
例4.1 如下图的低通RC电路,已知输入X(t)是宽平稳的双侧 随机信号,自相关函数为 ( N0 2) (t ) 的白噪声,求: (1) 输出的自相关函数; (2)输出的平均功率 ;(3)输入 与输出的互相关函数 RXY ( )与RYX ( ) 。
0 0


0


0
h(u )h(v) E[ X (t1 u ) X (t2 v)]dudv h(u )h(v) RX (t1 u, t2 v)dudv h(t1 ) h(t2 ) RX (t1 , t2 )
0
0
此外还能给出输出自相关函数 RY (t1 , t2 ) 与 RXY (t1 , t2 ) 及 RYX (t1 , t2 ) 之间的关系式,即

如果x(t)和h(t)绝对可积,即
y(t ) | x(t ) | d ,




| h(t ) | d
那么它们的傅立叶变换存在,即
X ( ) x(t )e jt dt

H ( ) h(t )e jt dt

b 1 ( RC)
h(u )du
0


0
N N h(v) 0 ( v u )dv 0 2 2


0
h(u )h( u )du
因此对于白噪声输入情况,输出自相关函数正比于单位冲 击响应函数的卷积。于是有 当 0 时 N 0 bu b (u ) N 0b 2 b 2bu N b RY ( ) be be du e e du 0 e b 0 2 0 2 4
RY (t1 , t2 ) h(t1 ) RXY (t1 , t2 ) h(t2 ) RYX (t1 , t2 )
4.2 随机信号通过连续时间系统的分析
RX (t1 , t2 )
h(t 2 )
RXY (t1 , t2 )
h(t1 )
RY (t1 , t2 )
图4.2 输出输入二阶矩之间的关系
5. 系统输出的高阶矩
下面不加证明地给出输出n阶矩的一般表达式
E[Y (t1 )Y (t2 )Y (tn )] E[ X (t1 ) X (t2 ) X (tn )] h(t1 ) h(t2 ) h(tn )
4.2 随机信号通过连续时间系统的分析
(二)系统输出的平稳性及其统计特性计算
若用卷积形式表示输入与输出的互相关函数及输出 的自相关函数为
RXY ( ) RX ( ) h( )
RYX ( ) RX ( ) h( ) RY ( ) RX ( ) h( ) h( )
RY ( ) RXY ( ) h( )
RY ( ) RYX ( ) h( )
,则有
Y ( z) H ( z) X ( z)
H(z)与h(n)是一对拉氏变换对,即
H ( z)
h( n)
n
h( n) z

n
1 n 1 dz l H ( z) z 2j
式中l表示包含 H ( z ) z n1 所有极点的单位圆。
4.1 线性系统的基本理论
H (s) h(t )est dt

1 j h(t ) H ( s)e st ds 2j j
4.1 线性系统的基本理论
如果系统的单位冲激响应满足
h(t ) 0 当t 0时
那么该系统称为因果系统。所以实际运行的物理可实现 系统都是因果的。于是对于物理可实现的系统来说
y(n)
k
h(k ) x(n k ) x(k )h(n k ) x(n) h(n)
k


如果x(n)和h(n)绝对可和,即
k
| x(k ) |
j

k
| h(k ) |

那么它们的离散傅立叶变换存在(T=1),即
X (e ) H (e )
同理
RYX (t1 , t2 ) RX (t1 , t2 ) h(t1 )
4. 系统输出的自相关函数 已知输入随机信号的自相关函数,求给定系统输 出端的自相关函数。
4.2 随机信号通过连续时间系统的分析
RY (t1 , t2 ) E[Y (t1 )Y (t2 )] E[ h(u ) X (t1 u )du h(v) X (t2 v)dv]
j n
x ( n )e

jn
n
h(n)e jn
4.1 线性系统的基本理论
1 h( n) 2



H (e j )e jn d
设y(ej)是输出y(n)的傅立叶变换,则有
Y (e j ) H (e j ) X (e j )
若在上式中令 z e j
R
X (t )
~
C
RC电路
Y (t )
4.2 随机信号通过连续时间系统的分析
解: (1)有题பைடு நூலகம்得: RX ( )
输出自相关函数为
RY ( ) h(u )du h(v) R X ( v u )dv
0 0
N0 (t ) 2 h(t ) bebtU (t )
4.2 随机信号通过连续时间系统的分析
(一)时域分析方法
1.输出的表达式 如果现在输入为对应于随机信号X(t) 某个实验结果的一个样本函数x(t, ),由于样本函数 是确定性的时间函数,则有
y(t , ) h( ) x(t , )d
0
对于不同的,就可在系统输出端得到一族样本函数, 这族样本函数构成一个新的随机信号,记为Y(t),此时 可将上式写为
(1). 双侧随机信号 在这种情况下,系统相应在t=0时已处于平稳。假设X(t) 具有平稳性和遍历性,则在系统输出端可得到下列几条 重要结论。 1. 若输入X(t)是宽平稳的,则系统输出Y(t)也是宽平稳 的,且输入与输出联合宽平稳。
RXY (t1 , t2 ) h(u) RX (t2 t1 u)du h(u) RX ( u)du RXY ( )
4.2 随机信号通过连续时间系统的分析
由于自相关函数的偶对称性,则当 0 时有
相关文档
最新文档