函数的奇偶性公开课教案
函数的奇偶性教案
![函数的奇偶性教案](https://img.taocdn.com/s3/m/1740767f59fb770bf78a6529647d27284b73373b.png)
函数的奇偶性教案一、教学目标1. 知识与技能:(1)理解函数奇偶性的概念;(2)学会判断函数的奇偶性;(3)能够运用函数的奇偶性解决实际问题。
2. 过程与方法:(1)通过观察、分析、归纳,探索函数的奇偶性;(2)利用函数的奇偶性进行函数图像的变换。
3. 情感态度与价值观:(1)培养学生的逻辑思维能力;(2)激发学生对数学的兴趣,提高学习积极性。
二、教学重点与难点1. 教学重点:(1)函数奇偶性的概念及其判断方法;(2)函数奇偶性在实际问题中的应用。
2. 教学难点:(1)函数奇偶性的判断方法;(2)函数奇偶性在实际问题中的应用。
三、教学过程1. 导入新课:(1)复习已学过的函数性质,如单调性、周期性等;(2)提问:同学们,你们知道函数还有其他的性质吗?2. 探究新知:(1)介绍函数奇偶性的概念;(2)通过示例,让学生观察、分析、归纳函数的奇偶性;(3)引导学生掌握判断函数奇偶性的方法。
3. 典例分析:(1)分析函数f(x)=x^3的奇偶性;(2)分析函数f(x)=|x|的奇偶性;(3)分析函数f(x)=sinx的奇偶性。
4. 练习巩固:(2)运用函数的奇偶性解决实际问题。
四、课堂小结本节课,我们学习了函数的奇偶性,掌握了判断函数奇偶性的方法,并能够在实际问题中运用。
希望大家能够继续努力学习,不断提高自己的数学能力。
五、课后作业2. 运用函数的奇偶性解决实际问题:已知函数f(x)=x^2+1的图像关于y轴对称,求函数f(x)在x=-1时的值;3. 探究函数的奇偶性与单调性的关系。
六、教学活动设计1. 小组讨论:让学生分组讨论函数奇偶性的性质,以及如何判断一个函数的奇偶性。
2. 案例分析:通过具体的函数例子,让学生理解并掌握函数奇偶性的判断方法。
3. 互动提问:教师提出问题,引导学生思考并回答,以检查学生对函数奇偶性的理解和掌握程度。
七、教学评价1. 课堂问答:通过提问学生,检查他们对函数奇偶性的概念和判断方法的理解。
函数的奇偶性公开课优秀教案比赛课教案
![函数的奇偶性公开课优秀教案比赛课教案](https://img.taocdn.com/s3/m/8681321476232f60ddccda38376baf1ffd4fe37f.png)
函数的奇偶性公开课优秀教案比赛课教案导语:
函数的奇偶性是数学中的重要概念,对于学生来说,理解和应用函数的奇偶性是提高数学思维能力的关键。
本节课将以公开课及教案比赛形式进行,旨在通过互动式授课和示例分析,引导学生深入了解函数的奇偶性,提高他们的数学思维和解题能力。
本教案将详细介绍课程的教学目标、教学重点、教学过程和教学评价等方面的内容。
一、教学目标:
通过本节课的学习,学生应能够:
1. 理解函数的奇偶性的概念和性质;
2. 掌握判断函数奇偶性和解题的基本方法;
3. 能够运用函数的奇偶性进行数学问题的分析和解决;
4. 培养学生的逻辑思维和数学推理能力。
二、教学重点:
1. 函数的奇偶性的定义和性质;
2. 奇函数和偶函数的判断和性质;
3. 运用奇偶性解决实际问题。
三、教学过程:
1.导入(5分钟)
通过引入一个具体的生活例子,让学生了解函数的奇偶性在实
际生活中的应用。
例如,举一个关于温度变化和时间的例子,引导
学生思考温度随时间的变化是否为奇函数或偶函数。
2.概念解释(10分钟)
给出函数的奇偶性的定义,并解释函数如果满足奇函数的定义,其函数图像是否关于y轴对称;如果满足偶函数的定义,其函数图
像是否关于原点对称。
3.奇函数和偶函数的判定方法(15分钟)。
函数的奇偶性省赛一等奖公开课教学设计x
![函数的奇偶性省赛一等奖公开课教学设计x](https://img.taocdn.com/s3/m/81f5b2908ad63186bceb19e8b8f67c1cfad6eed7.png)
函数的奇偶性省赛一等奖公开课教学设计x一、教学内容本节课的教学内容选自人教版小学数学五年级下册第97页至99页,第四章第一节“函数的奇偶性”。
这部分内容主要让学生理解函数的奇偶性概念,掌握判断函数奇偶性的方法,并能够运用奇偶性解决实际问题。
二、教学目标1. 学生能够理解函数的奇偶性概念,掌握判断函数奇偶性的方法。
2. 学生能够运用函数的奇偶性解决实际问题,提高解决问题的能力。
3. 培养学生的逻辑思维能力和团队合作精神,提高学生的数学素养。
三、教学难点与重点重点:函数的奇偶性概念的理解和判断方法。
难点:如何运用函数的奇偶性解决实际问题。
四、教具与学具准备教具:多媒体课件、黑板、粉笔。
学具:笔记本、尺子、圆规、直尺。
五、教学过程1. 实践情景引入:教师展示一个实际问题:某商店举行打折活动,商品原价分别为100元、150元和200元,打折后的价格分别为80元、120元和180元,请问哪种商品打折力度更大?2. 自主学习:学生自主探究,尝试解决上述问题。
教师巡回指导,帮助学生理解函数的奇偶性概念。
3. 课堂讲解:教师讲解函数的奇偶性概念,通过示例讲解如何判断函数的奇偶性。
4. 例题讲解:教师出示例题,讲解如何运用函数的奇偶性解决实际问题。
例题1:判断函数f(x)=x^3的奇偶性。
例题2:已知函数f(x)=2x1,求函数的奇偶性。
5. 随堂练习:学生独立完成随堂练习,教师巡回指导。
练习1:判断函数f(x)=x^2的奇偶性。
练习2:已知函数f(x)=3x^2+2,求函数的奇偶性。
6. 课堂小结:7. 作业布置:布置作业1:判断函数f(x)=x^32的奇偶性。
布置作业2:已知函数f(x)=2x1,求函数的奇偶性。
六、板书设计板书内容:函数的奇偶性奇偶性的定义:若对于函数f(x)的定义域内任意一个x,都有f(x)=f(x),则称f(x)为奇函数。
若对于函数f(x)的定义域内任意一个x,都有f(x)=f(x),则称f(x)为偶函数。
函数的奇偶性教案2篇
![函数的奇偶性教案2篇](https://img.taocdn.com/s3/m/49e7a620640e52ea551810a6f524ccbff121cab4.png)
函数的奇偶性教案第一篇:函数的奇偶性教案目标:1. 了解函数的奇偶性的定义和性质。
2. 判断函数的奇偶性。
3. 通过练习题加深对函数的奇偶性的理解。
预计完成时间:1课时教学步骤:步骤一:引入话题(10分钟)教师可以用一个简单的问题引入话题,例如:你知道什么是函数的奇偶性吗?为什么需要关注函数的奇偶性?学生可以自由发言,激发学生们的兴趣。
步骤二:讲解奇偶性的概念(10分钟)教师简要讲解函数的奇偶性的概念,可以借助一些例子来说明。
奇函数和偶函数是对称的关系,奇函数关于y轴对称,而偶函数关于原点对称。
步骤三:奇偶性的判断方法(15分钟)教师讲解奇偶性的判断方法。
一般来说,对于一元函数,可以通过以下两种方法判断函数的奇偶性。
方法1:使用函数的定义式。
对于奇函数,f(-x)=-f(x)成立;对于偶函数,f(-x)=f(x)成立。
方法2:使用函数的图象。
对于奇函数,其图象关于原点对称;对于偶函数,其图象关于y轴对称。
步骤四:练习题(15分钟)教师提供一些练习题,让学生在纸上完成,然后进行讲解和讨论。
例如:1. 判断函数f(x)=x^3+3x^2-5x是否为奇函数。
2. 判断函数g(x)=2x^2-4是否为偶函数。
3. 利用函数的奇偶性,简化函数h(x)=5x^3-x^2+2x-1的图象。
步骤五:总结(10分钟)教师对本节课内容进行总结,并强调函数的奇偶性的重要性和应用。
第二篇:函数的奇偶性教案(续)目标:1. 掌握奇函数和偶函数的一些常见函数的性质。
2. 进一步加深对函数的奇偶性的理解。
3. 练习函数的奇偶性的判断和应用。
预计完成时间:1课时教学步骤:步骤一:引入话题(10分钟)教师可以复习上节课的内容,然后提问学生,你还记得什么是奇函数和偶函数吗?奇函数和偶函数有哪些性质?步骤二:常见函数的性质(15分钟)教师讲解一些常见函数的性质,例如:1. 幂函数:对于非负整数n,当n为奇数时,函数f(x)=x^n是奇函数;当n为偶数时,函数f(x)=x^n是偶函数。
2024年函数的奇偶性省赛一等奖公开课教学设计
![2024年函数的奇偶性省赛一等奖公开课教学设计](https://img.taocdn.com/s3/m/084da66fcdbff121dd36a32d7375a417876fc167.png)
26
2024/2/29
05
CHAPTER
学生自主探究环节
27
2024/2/29
指导学生运用数学语言描述奇偶性与周期性的关系,并尝试进行证明。
鼓励学生自主构造满足特定奇偶性和周期性条件的函数,以深化理解。
引导学生通过具体函数实例,观察奇偶性与周期性之间的联系。
28
2024/2/29
29
2024/2/29
18
2024/2/29
VS
已知函数 $f(x)$ 是奇函数,且当 $x > 0$ 时,$f(x) = x^2 - 2x$,求 $f(-1)$ 的值。
解析
由于 $f(x)$ 是奇函数,根据奇函数的性质 $f(-x) = -f(x)$,我们可以得到 $f(-1) = -f(1)$。将 $x = 1$ 代入 $f(x) = x^2 - 2x$,得到 $f(1) = 1^2 - 2 times 1 = -1$,因此 $f(-1) = -(-1) = 1$。
$f(-x) = f(x)$
32
2024/2/29
奇偶性的图像特征
奇函数图像关于原点对称
偶函数图像关于y轴对称
33
2024/2/29
判断函数奇偶性的方法
定义法
图像法
34
2024/2/29
典型例题的解析与讨论
通过具体例子加深对奇偶性的理解
35
2024/2/29
01
04
05
06
03
02
练习题
判断下列函数的奇偶性:$f(x) = x^3, g(x) = x^2, h(x) = sin x$
21
2024/2/29
解析
(1) 由于 $f(x)$ 是奇函数,当 $x < 0$ 时,$-x > 0$,因此 $f(-x) = (-x)^2 + 2(-x) = x^2 - 2x$。由于 $f(x)$ 是奇函数,所以 $f(-x) = -f(x)$,即 $-f(x) = x^2 - 2x$,因此当 $x < 0$ 时,$f(x) = -x^2 + 2x$。综合以上结果,得到 $f(x)$ 的解析式为
函数的性质奇偶性教案(3篇)
![函数的性质奇偶性教案(3篇)](https://img.taocdn.com/s3/m/a7c123d5970590c69ec3d5bbfd0a79563d1ed404.png)
第1篇课时:2课时年级:高一教材:人教版高中数学必修1教学目标:1. 理解函数奇偶性的概念,掌握判断函数奇偶性的方法。
2. 通过实例,感受函数奇偶性与现实生活中的对称性之间的联系。
3. 培养学生的逻辑思维能力和抽象思维能力。
教学重点:1. 函数奇偶性的概念及判断方法。
2. 函数奇偶性与图像对称性之间的关系。
教学难点:1. 理解函数奇偶性的定义。
2. 正确运用函数奇偶性的定义判断函数的奇偶性。
教学过程:第一课时一、导入1. 回顾函数的概念,引导学生思考函数与对称性之间的关系。
2. 展示生活中具有对称性的实例,如建筑物、花卉等,激发学生的学习兴趣。
二、新课讲授1. 介绍函数奇偶性的概念,强调奇函数、偶函数、非奇非偶函数的定义。
2. 通过实例分析,让学生理解函数奇偶性的几何意义。
3. 讲解判断函数奇偶性的方法,包括定义法、图像法、解析式法等。
三、课堂练习1. 学生独立完成教材中的例题,巩固所学知识。
2. 教师选取一些具有代表性的题目,进行讲解和指导。
四、总结1. 总结本节课所学内容,强调函数奇偶性的定义和判断方法。
2. 强调函数奇偶性与图像对称性之间的关系。
第二课时一、复习1. 复习上一节课所学内容,检查学生对函数奇偶性的理解程度。
2. 学生分享自己解决函数奇偶性问题的经验。
二、新课讲授1. 讲解函数奇偶性的性质,包括奇函数、偶函数的性质。
2. 通过实例分析,让学生理解函数奇偶性在解决实际问题中的应用。
三、课堂练习1. 学生独立完成教材中的练习题,巩固所学知识。
2. 教师选取一些具有挑战性的题目,进行讲解和指导。
四、总结1. 总结本节课所学内容,强调函数奇偶性的性质和应用。
2. 鼓励学生在生活中发现具有对称性的现象,运用所学知识进行分析。
教学评价:1. 通过课堂练习和课后作业,了解学生对函数奇偶性的掌握程度。
2. 关注学生在解决问题时的思维过程,培养其逻辑思维能力和抽象思维能力。
教学反思:1. 本节课的教学目标是否达成?2. 教学方法是否合理?是否激发了学生的学习兴趣?3. 学生在学习过程中遇到的问题有哪些?如何改进教学方法?4. 如何将函数奇偶性与现实生活中的问题相结合,提高学生的应用能力?第2篇一、教学目标1. 知识与技能:理解函数奇偶性的概念,掌握判断函数奇偶性的方法,并能利用奇偶性解决实际问题。
函数的奇偶性_教案(3篇)
![函数的奇偶性_教案(3篇)](https://img.taocdn.com/s3/m/ba96e6404a73f242336c1eb91a37f111f0850d05.png)
课时安排:2课时教学目标:1. 知识与技能:- 理解函数奇偶性的概念,掌握判断函数奇偶性的方法。
- 能运用函数的奇偶性分析函数的性质,解决实际问题。
- 能识别并描述奇函数和偶函数的图像特征。
2. 过程与方法:- 通过观察函数图像,培养学生的观察能力和分析能力。
- 通过小组讨论和合作学习,提高学生的交流能力和团队协作精神。
- 通过实际问题解决,培养学生的应用能力和创新思维。
3. 情感态度与价值观:- 体验数学的对称美,激发学生对数学学习的兴趣。
- 培养学生严谨求实的科学态度和勇于探索的精神。
教学重点:- 函数奇偶性的定义及判断方法。
- 奇函数和偶函数的图像特征。
教学难点:- 理解函数奇偶性的概念,并能灵活运用。
- 分析和解决实际问题。
教学准备:- 多媒体课件- 函数图像教学过程:第一课时一、导入1. 展示生活中对称的实例,如建筑、艺术作品等,引导学生思考对称在数学中的意义。
2. 引入函数的概念,介绍函数的图像及其在数学中的重要性。
二、新课讲解1. 函数奇偶性的定义:- 偶函数:对于函数f(x),若对于定义域内的任意x,都有f(-x) = f(x),则称f(x)为偶函数。
- 奇函数:对于函数f(x),若对于定义域内的任意x,都有f(-x) = -f(x),则称f(x)为奇函数。
2. 判断函数奇偶性的方法:- 通过观察函数图像,判断函数是否关于y轴或原点对称。
- 利用定义法,将x替换为-x,观察f(-x)与f(x)的关系。
三、课堂练习1. 观察下列函数图像,判断其奇偶性:- y = x^2- y = x^3- y = x^4- y = x^52. 利用定义法判断下列函数的奇偶性:- f(x) = x^2 + 2x + 1- f(x) = |x|四、课堂小结1. 总结函数奇偶性的概念和判断方法。
2. 强调奇函数和偶函数的图像特征。
第二课时一、复习导入1. 回顾上一节课的内容,提问学生函数奇偶性的定义和判断方法。
函数的奇偶性公开课教案(比赛课教案)
![函数的奇偶性公开课教案(比赛课教案)](https://img.taocdn.com/s3/m/10443b9efc0a79563c1ec5da50e2524de518d0fc.png)
函数的奇偶性公开课教案(比赛课教案)《函数的奇偶性》教案一、教材分析“奇偶性”是人教版必修1中第一章“集合与函数概念”的第3节“函数的基本性质”的第2小节。
函数的奇偶性是函数的一条重要性质,教材从学生熟悉的初中学过的的一些轴对称图形入手,体会到数形结合思想,初步学会用数学的眼光看待事物,感受数学的对称美。
尝试画出f(x)=x2和f(x)=|x|的图像,从特殊到一般,从具体到抽象,比较系统地介绍了函数的奇偶性.从知识结构看,奇偶性既是函数概念的拓展和深入,又是为以后研究基本初等函数奠定了基础。
因此,本节课起着承上启下的重要作用。
二、学情分析从学生的认知基础看,学生在初中已经研究了轴对称图形和中心对称图形,并且有了一定数量的简单函数的储备。
同时,上节课研究了函数单调性,积累了研究函数的基本方法与初步经验。
三、教学目标【知识与技能】1.理解奇函数、偶函数的概念及其几何意义;2.能从定义、图像特征、性质等多种角度判断函数的奇偶性,学会函数的应用。
[过程和方法]通过例题观察、具体函数分析、数形结合、定性定量变换,让学生体验建立函数奇偶性概念的全过程,体验研究数学概念的方法,积累数学研究的经验。
[情感、态度和价值观]1.在经历概念形成的过程中,培养学生内容、归纳、抽象、概括的能力;2.通过自主探索,体验数形结合的思想,感受数学的对称美。
四。
教学重点和难点重点:函数奇偶性的概念和函数图像的特点。
难点:利用函数奇偶性的概念和图像的对称性,证明或判断函数的奇偶性。
五、教学方法发现法是主要方法,直观演示法和类比法是辅助方法。
六、教学手段PPT课件。
七。
教学过程(1)情境导入和图像观察出示一组轴对称和中心对称的图片。
设计意图:通过图片引起学生的兴趣,培养学生的审美观,激发研究兴趣。
师:“同学们,这是我们生活中常见的一些具有对称性的物体,你能说出它们有什么特点吗?”生:“它们的共同点都是关于某一地方是对称的。
”老师:“对,而且我们今天要学的函数图像也有类似的对称图像。
函数奇偶性的教案
![函数奇偶性的教案](https://img.taocdn.com/s3/m/e0ff72557dd184254b35eefdc8d376eeafaa1712.png)
函数奇偶性的教案第一章:函数奇偶性的概念引入教学目标:1. 理解函数奇偶性的基本概念;2. 学会判断函数的奇偶性;3. 理解奇偶性在数学中的应用。
教学内容:1. 引入函数的概念;2. 介绍奇偶性的定义;3. 举例说明奇偶性的判断方法。
教学活动:1. 引导学生回顾函数的定义,强调函数的输入输出关系;2. 引入奇偶性的概念,解释奇偶性的含义;3. 通过具体例子,让学生学会判断函数的奇偶性;4. 练习判断一些简单函数的奇偶性;5. 引导学生思考奇偶性在数学中的应用,如物理中的对称性等。
教学评价:1. 检查学生对函数奇偶性概念的理解;2. 评估学生判断函数奇偶性的能力;3. 考察学生对奇偶性应用的理解。
第二章:偶函数的性质教学目标:1. 理解偶函数的定义及其性质;2. 学会运用偶函数的性质解决问题;3. 掌握偶函数图像的特点。
教学内容:1. 偶函数的定义及其性质;2. 偶函数图像的特点;3. 偶函数在实际问题中的应用。
教学活动:1. 引导学生回顾上一章所学的内容,强调奇偶性的概念;2. 引入偶函数的定义,解释偶函数的含义;3. 通过具体例子,让学生学会运用偶函数的性质解决问题;4. 练习运用偶函数性质解决一些实际问题;5. 引导学生思考偶函数图像的特点,分析偶函数在实际问题中的应用。
教学评价:1. 检查学生对偶函数定义及其性质的理解;2. 评估学生运用偶函数性质解决问题的能力;3. 考察学生对偶函数图像特点的认识。
第三章:奇函数的性质教学目标:1. 理解奇函数的定义及其性质;2. 学会运用奇函数的性质解决问题;3. 掌握奇函数图像的特点。
教学内容:1. 奇函数的定义及其性质;2. 奇函数图像的特点;3. 奇函数在实际问题中的应用。
教学活动:1. 引导学生回顾前两章所学的内容,强调奇偶性的概念;2. 引入奇函数的定义,解释奇函数的含义;3. 通过具体例子,让学生学会运用奇函数的性质解决问题;4. 练习运用奇函数性质解决一些实际问题;5. 引导学生思考奇函数图像的特点,分析奇函数在实际问题中的应用。
函数奇偶性教案6篇
![函数奇偶性教案6篇](https://img.taocdn.com/s3/m/d59b92936e1aff00bed5b9f3f90f76c661374c83.png)
函数奇偶性教案6篇(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如演讲致辞、条据文书、合同协议、规章制度、应急预案、心得体会、总结报告、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays for everyone, such as speeches, documents, contracts and agreements, rules and regulations, emergency plans, experiences, summary reports, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!函数奇偶性教案6篇教案要遵循教学大纲和课程标准,确保教学的质量和一致性,教案的修改应该基于对学生实际学习情况的观察和分析,本店铺今天就为您带来了函数奇偶性教案6篇,相信一定会对你有所帮助。
函数的奇偶性公开课优秀教案比赛课教案
![函数的奇偶性公开课优秀教案比赛课教案](https://img.taocdn.com/s3/m/6d4fc4251fd9ad51f01dc281e53a580216fc50ed.png)
函数的奇偶性公开课优秀教案比赛课教案一、教学背景和目标函数的奇偶性是高中数学中的重要概念,理解和掌握函数的奇偶性对于解题和深入学习函数的性质具有重要意义。
本节课旨在通过比较和讨论,培养学生分析和判断函数奇偶性的能力,提高学生的数学思维能力和解题技巧。
二、教学内容和重点本节课的教学内容主要包括:1. 函数的奇偶性的定义和性质;2. 如何通过函数的表达式判断其奇偶性;3. 利用奇偶性求函数图像关于坐标轴的对称性。
本节课的重点是:1. 理解和掌握函数的奇偶性的定义和性质;2. 掌握根据函数表达式判断其奇偶性的方法;3. 利用奇偶性求函数图像关于坐标轴的对称性。
三、教学过程1. 导入新知识(约5分钟)通过回顾与函数奇偶性相关的基本概念,如奇数、偶数等,引导学生思考函数的奇偶性与数学中其他概念的联系,并激发学生对于学习函数奇偶性的兴趣。
2. 引入新概念(约10分钟)通过举一些简单的例子,引导学生发现函数的奇偶性的规律,如对于奇函数,当自变量取相反数时,函数值也取相反数;对于偶函数,当自变量取相反数时,函数值保持不变。
3. 学习奇函数和偶函数的定义(约10分钟)讲解奇函数和偶函数的数学定义,即奇函数的特点是f(-x)=-f(x),偶函数的特点是f(-x)=f(x)。
通过一些具体的例子,帮助学生理解奇偶函数的定义,并引导学生归纳总结奇函数和偶函数的性质。
4. 规律归纳(约10分钟)组织学生分组,进行讨论并归纳总结关于奇函数和偶函数的常见规律和性质。
每个小组选取一个具体的函数形式进行分析,并将归纳的结果进行汇报和讨论。
5. 练习和巩固(约15分钟)通过一些练习题,巩固学生对于函数奇偶性的理解和判断能力。
练习题应涵盖不同难度和复杂度的情况,让学生能够灵活运用奇偶性的知识解题,并对不同情况进行分析和判断。
6. 拓展与应用(约15分钟)引导学生拓展奇函数和偶函数的应用场景,如在几何中判断图形的对称性,或在物理中研究一些对称的物理现象。
2024版函数的奇偶性公开课优秀教案(比赛课教案)
![2024版函数的奇偶性公开课优秀教案(比赛课教案)](https://img.taocdn.com/s3/m/cd83b5c3690203d8ce2f0066f5335a8102d266ff.png)
关于原点对称,可能穿过原点。
偶函数图像
关于y轴对称,可能不穿过原点。
2024/1/26
组合图像
当两个函数分别具有奇偶性时,它ቤተ መጻሕፍቲ ባይዱ的组合图像可能呈现出复杂的对称性。例如,两个奇函 数的乘积将是一个偶函数,其图像关于y轴对称。
10
03
判别函数奇偶性方法
2024/1/26
11
定义法判别奇偶性
01 定义阐述
分组讨论
学生分组进行讨论,每组选择一个代表来阐述自己对于 问题的理解和答案。
展示成果
每组代表上台展示自己组的讨论成果,包括对于问题的 回答、举例说明等。
2024/1/26
21
教师点评和总结
教师点评
教师对学生的讨论和展示进行点评,指出其中的 优点和不足,引导学生深入思考。
总结归纳
教师对本节课的知识点进行总结归纳,强调函数 的奇偶性在数学学习中的重要性,并给出一些相 关的练习题供学生巩固所学知识。
2024/1/26
30
作业布置针对本节课知识点进行练习和巩固
$f(x) = frac{1}{x}$
思考题:已知函数$f(x)$是奇函数,且当$x > 0$时,$f(x) = x^2 - 2x + 3$,求 $f(x)$的解析式。
2024/1/26
拓展题:证明:若函数$f(x)$和$g(x)$分别是奇函数和偶函数,则$f(x) cdot g(x)$ 是奇函数。
8
偶函数定义及性质
定义:对于所有$x$,若 $f(-x) = f(x)$,则称 $f(x)$为偶函数。
偶函数的图像关于y轴对 称。
偶函数与奇函数之积为奇 函数。
01
函数的奇偶性精品一等奖教学设计
![函数的奇偶性精品一等奖教学设计](https://img.taocdn.com/s3/m/865194b0fbb069dc5022aaea998fcc22bcd143d8.png)
数学学习网站推荐
函数奇偶性练习题
教师整理和编写的练习题集,包含多种题型和难度层次,适合学生课后巩固和提高。
函数奇偶性教学视频
教师录制的教学视频,对函数奇偶性的知识点进行了深入浅出的讲解,适合学生自学和复习。
函数奇偶性PPT课件
教师自制的教学课件,详细讲解了函数奇偶性的定义、性质和判断方法,适合课堂教学使用。
作业正确率
分析学生作业的正确率,找出易错点和难点,为后续教学提供参考。
作业态度
评估学生对待作业的态度是否认真,作业是否整洁、规范。
作业完成情况评价
统计班级平均分,了解班级整体掌握情况。
平均分
统计及格率和优秀率,了解学生在不同层次上的分布情况。
及格率和优秀率
对测试中的错题进行详细分析,找出错误原因和解决方法。
01
02
03
04
巩固练习:例题演练,提升能力
回顾本节课所学内容,梳理知识脉络。
引导学生总结归纳奇偶性的规律和解题方法。
强调奇偶性的重要性和应用价值。
布置课后作业,巩固所学知识。
课堂小结:总结归纳,回顾重点
04
CHAPTER
学生活动设计
将学生分成若干小组,每组讨论函数的奇偶性相关概念和性质。
分组讨论
《中学数学教学参考书系》
相关数学书籍推荐
03
网易公开课
国内外知名高校和机构的公开课程,也有数学相关的课程,可以寻找到有关函数性质的讲解。
01
慕课网
提供大量在线数学课程,包括初等数学、数学分析等,可以搜索到与函数奇偶性相关的课程。
02
Bilibili
拥有众多数学爱好者上传的数学视频,可以搜索到针对函数奇偶性的讲解视频。
函数的奇偶性教案(3篇)
![函数的奇偶性教案(3篇)](https://img.taocdn.com/s3/m/4ba9e975c381e53a580216fc700abb68a882ad30.png)
第1篇一、教学目标1. 知识与技能:(1)理解函数奇偶性的概念;(2)掌握奇函数、偶函数的图像特征;(3)学会判断简单函数的奇偶性。
2. 过程与方法:(1)通过设置问题情景,培养学生判断、推断能力;(2)通过学生分组讨论,培养学生主动交流的合作精神。
3. 情感态度与价值观:(1)通过优美的函数图像陶冶学生的情操;(2)使学生认识事物由特殊到一般的过程,以及数形结合思想和类比的思想。
二、教学重点与难点1. 教学重点:(1)函数奇偶性的概念及其图像特征;(2)简单函数奇偶性的判断。
2. 教学难点:(1)理解奇偶性概念与函数奇偶性的判断;(2)理解奇函数、偶函数的定义域。
三、教学方法与手段1. 教学方法:(1)探究法:引导学生主动探究函数奇偶性的概念、图像特征和判断方法;(2)类比教学法:通过类比已知函数的性质,帮助学生理解新函数的性质。
(1)多媒体课件:展示函数图像,便于学生观察和理解;(2)实物教具:如正方体、球等,帮助学生理解对称性;(3)课堂讨论:鼓励学生积极参与,提高课堂氛围。
四、教学过程1. 创设情景,导入新课(1)展示生活中常见的对称图形,如正方体、球等,引导学生思考对称性在数学中的应用。
(2)提出问题:如何判断一个函数的奇偶性?引入函数奇偶性的概念。
2. 新授(1)讲解函数奇偶性的定义,结合图像展示奇函数、偶函数的特点。
(2)举例说明如何判断简单函数的奇偶性,如f(x) = x^2、f(x) = x^3等。
(3)引导学生通过观察函数图像,发现函数奇偶性与图像对称性之间的关系。
3. 巩固练习(1)布置课堂练习题,让学生判断函数的奇偶性。
(2)教师巡视指导,解答学生疑问。
4. 课堂讨论(1)分组讨论:如何利用函数奇偶性解决实际问题?(2)各小组汇报讨论成果,教师点评并总结。
5. 总结与反思(1)总结本节课所学内容,强调函数奇偶性的概念、图像特征和判断方法。
(2)鼓励学生在日常生活中发现数学之美,提高数学素养。
函数的奇偶性公开课优秀教案(比赛课教案)x
![函数的奇偶性公开课优秀教案(比赛课教案)x](https://img.taocdn.com/s3/m/8e740db9f80f76c66137ee06eff9aef8941e48ba.png)
课程背景及意义函数的奇偶性是数学中的重要概念,对于理解函数的性质和应用具有重要意义。
通过对函数奇偶性的学习,可以培养学生的逻辑思维能力和数学分析能力。
函数的奇偶性在数学、物理、工程等领域都有广泛的应用,因此掌握这一概念对于学生未来的学习和职业发展都具有重要意义。
知识目标能力目标情感目标030201教学目标与要求教学内容与方法教学内容教学方法奇函数与偶函数定义奇函数偶函数奇偶性判断方法图像法奇偶性定义法通过观察函数图像是否关于原点或$y$轴对称来判断函数的奇偶性。
代数法常见奇偶函数举例奇函数举例偶函数举例非奇非偶函数举例奇偶性与对称性关系奇函数图像关于原点对称01偶函数图像关于y轴对称02既是奇函数又是偶函数的函数03周期性对奇偶性影响周期函数可能具有奇偶性周期函数不具有奇偶性的情况复合函数奇偶性判断两个奇函数的复合函数是偶函数两个偶函数的复合函数是偶函数奇函数和偶函数的复合函数不具有确定的奇偶性图形绘制根据函数的奇偶性,可以简化图形绘制过程,例如只绘制一半图形然后通过对称性得到另一半。
对称性判断利用函数的奇偶性,可以判断图形是否关于原点或y 轴对称。
面积计算在某些情况下,可以利用函数的奇偶性简化面积计算过程。
在几何图形中应用在实际问题中应用数据分析在处理具有周期性或对称性的数据时,可以利用函数的奇偶性进行分析和预测。
物理建模在描述某些物理现象时,例如波动、振动等,可以利用函数的奇偶性建立数学模型。
工程设计在涉及对称性或平衡性的工程设计中,可以利用函数的奇偶性进行优化设计。
在其他领域应用数学研究计算机科学经济学分组讨论与展示成果分组讨论学生分成若干小组,每组4-6人,围绕“函数的奇偶性定义、性质、判断方法”等主题展开讨论。
教师巡视各组,倾听学生的讨论,给予必要的指导和建议。
展示成果每个小组选派一名代表,向全班展示本组的讨论成果。
可以通过举例、讲解、演示等方式,展示对函数奇偶性的理解和应用。
其他小组可以提出问题和建议,进行互动交流。
函数奇偶性教案(3篇)
![函数奇偶性教案(3篇)](https://img.taocdn.com/s3/m/4bd9a3656d85ec3a87c24028915f804d2a168701.png)
第1篇教学目标1. 知识与技能:理解函数奇偶性的概念,掌握判断函数奇偶性的方法,能够运用函数的图象和定义来判断函数的奇偶性。
2. 过程与方法:通过小组讨论、观察函数图像等方式,培养学生的观察、分析和解决问题的能力。
3. 情感态度与价值观:让学生体会数学的对称美,激发学习兴趣,培养学生的合作精神和创新意识。
教学重点与难点- 重点:理解函数奇偶性的概念,掌握判断函数奇偶性的方法。
- 难点:理解函数的奇偶性,掌握奇函数和偶函数的图像特征。
教学准备- 教学课件- 函数图像- 教材相关内容教学过程一、导入1. 展示生活中的对称图形,如蝴蝶、镜子等,引导学生思考对称与数学的关系。
2. 提问:生活中有哪些对称现象?这些对称现象在数学中有什么应用?二、新课讲授1. 概念探究:- 介绍轴对称图形和中心对称图形的概念。
- 通过画图,让学生观察函数 \( y = x^2 \) 和 \( y = x^3 \) 的图像,分析它们的对称性。
- 引导学生总结出奇函数和偶函数的定义。
2. 概念深化:- 强调定义中的“任意”二字,说明奇偶性是函数在定义域上的整体性质。
- 说明奇函数和偶函数的定义域关于原点对称。
- 分析奇函数和偶函数图像的对称性。
3. 题型一:判定函数的奇偶性:- 通过例题,让学生掌握用定义判断函数奇偶性的步骤。
- 练习教材第49页,练习A第1题。
4. 题型二:利用奇偶性求函数解析式:- 通过例题,让学生掌握利用奇偶性求函数解析式的方法。
- 练习教材相关内容。
三、巩固练习1. 学生独立完成教材中的练习题,教师巡视指导。
2. 针对学生的错误,进行个别辅导。
四、课堂小结1. 回顾本节课所学内容,总结函数奇偶性的概念、判断方法和应用。
2. 强调函数奇偶性的对称美,激发学生的学习兴趣。
五、作业布置1. 完成教材中的练习题。
2. 思考:如何利用函数的奇偶性解决实际问题?教学反思本节课通过生活中的对称现象引入,让学生体会数学的对称美,激发学习兴趣。
函数奇偶性公开课教案
![函数奇偶性公开课教案](https://img.taocdn.com/s3/m/0c263c00d15abe23492f4d7a.png)
(1)完成课本P36-2
(2)设 为奇函数,且在 上为减函数,则 的图象【 】
A.关于y轴对称,且在 上为增函数B. 关于原点对称,且在 上为增函
C. 关于y轴对称,且在 上为减函数D. 关于原点对称,且在 上为减函数
3、情感态度与价值观:
在函数奇偶性的学习过程中,体验数学的科学价值和应用价值,培养善于观察、勇于探索的良好习惯和严谨的科学态度。
二、教学重难点:
教学重点:函数奇偶性概念及其判断方法。
教学难点:对函数奇偶性的概念的理解及如何判定函数奇偶性
三.学法
学生通过阅读教材,自主学习.思考.交流.讨论和概括,从而更好地完成本节课的教学目标.
则 _______
例2设函数 为奇函数,则
变式练习1:若 是偶函数,则
变式练习2:已知函数 是奇函数,且 ,则 _________; __________;
§1.1.1函数奇偶性------ 第二课时
知识点三:利用函数奇偶性求函数解析式
例1.
变式练习1.已知函数 是定义在 上的偶函数.当 时, ,则当 时,
四.学习过程
(一)自主探究
一、阅读教材34、35两页,完成下列各题。
(1) 与
共同点:
两个函数的图象都关于对称,并且有 , 。可推得
,我们把这样的函数叫做偶函数。
(2) 与
共同点:两个函数的图象都关于对称,并且有 , 。可推得 ,我们把这样的函数叫做奇函数。
二、讲授新课
知识点一:奇偶函数定义
1、偶函数:如果对于函数 的定义域内一个x,都有,那么,函数 就叫做偶函数,图象关于对称。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《函数的奇偶性》教案授课教师授课时间:授课班级:教材:广东省中等职业技术学校文化基础课课程改革实验教材《数学》(广东高等教育出版社出版)教材主要特点:这本教材注意与初中有关知识紧密衔接,注重基础,增加弹性,使用教材可以根据有关专业的特点,选用相关的章节,教学要求和练习内容分A、B两档,适应分层教学。
练习A的题目主要是基础练习,供全体学生学习,也是最低的要求;练习B的题目为拓展延伸的练习,供学有余力并且准备进一步深造的学生学习。
教学要求:教师在授课时主要是探究用奇、偶函数的定义判断函数的奇、偶性,奇、偶函数的性质(课本不要求证明)是作为拓展延伸的内容,以学生自学为主,教师适当给予辅导。
教材已经分层编写,有利于实施分层教学时可以不分班教学。
任教班级特点:会计072班共有学生62人,男生6人,女生56人。
学生数学平均入学成绩为分,上课纪律良好,学生上课注意力比较集中,使用了这本教材后,绝大多数学生喜欢学数学,学生的学习成绩越来越好。
【教学过程】:一、创设情境,引入新课[设计意图:从生活中的实例出发,从感性认识入手,为学生认识奇偶函数的图像特征做好准备]对称性在自然界中的存在是一个普遍的现象.如美丽的蝴蝶是左右对称的(轴对称)。
现实生活中有许多以对称形式呈现的事物,如汽车的车前灯、音响中的音箱,汉字中也有诸如“双”、“林”等对称形式的字体,这些都给以对称的感觉。
函数里也有这样的现象。
提出问题让学生回答:1、中心对称图形的概念(提醒学生:中心对称——图形绕点旋转180度);2、轴对称图形的概念(提醒学生:轴对称——图形沿轴翻折180度)。
数学中,对称也是函数图象的一个重要特征,下面展示的是五个函数的图像,请你说出下面的图像是中心对称图形还是轴对称图形或者两者都不是?[教学说明:图像(1)、(4)是以坐标原点为对称中心的中心对称图形;图像(2)、(3)是以y 轴为对称轴的轴对称图形;图像(5)既不是中心对称图形也不是轴对称图形。
下面继续研究具有(1)、(2)、(3)、(4)图像特征的函数]二、师生互动,探索新知[设计说明:下列活动,从具体函数入手,学生通过具体的画图像的操作,辩认图像的对称性来判断函数的奇偶性,从感性认识入手比较符合学生的实际,最大限度地使学生能参与到知识的探究中,较多的后进生学习起来就有信心.]活动1:让学生画出函数2()f x x 的图像,说出图像的特征。
解:(1)列表(2)描点(学生完成) (3)连线(学生完成)即得到书本P98的图4-12活动2:让学生画出函数3()f x x =的图像,说出图像的特征。
解:(1)列表(2)描点(学生完成) (3)连线(学生完成)即得到书本P98图4-13[教学说明:用多媒体展示活动1、2的图像,学生通过画图从形的角度认识两种函数 各自的特征:活动1的图像是以y 轴为对称轴的轴对称图形,活动2的图像是以坐标原点为对称中心的中心对称图形]活动3:活动1给出的函数:2()f x x =,找出当11x x =-=与时函数图像上的点,看有什么规律?师生共同完成:当x 取1-与1(两个互为相反数)时,则对应的函数值(1)(1)f f -与都取1,即:(1)(1)f f -=。
同理得:(2)(2)f f -=。
教师提问学生:自变量代入两个互为相反的数:x x -与,得到的对应函数值()()f x f x -与是什么关系?学生:222()(),()f x x x f x x -=-==,()()f x f x -与的值相等,即:()()f x f x -=。
活动4:活动2给出的函数:3()f x x =,找出当11x x =-=与时函数图像上的点,看有什么规律?师生共同完成:当x 取1-与1(两个互为相反数)时,则对应的函数值(1)(1)f f -与分别都取1-与1即:(1)(1)f f -=-。
同理得:(2)(2)f f -=-。
教师提问学生:自变量代入两个互为相反的数:x x -与,得到的对应函数值()()f x f x -与是什么关系?学生:333()(),()f x x x f x x -=-=-=,()()f x f x -与的值相反,即:()()f x f x -=-。
[活动3、4的设计意图:让学生计算相应的函数值,引导学生发现规律,总结规律。
然后学生通过观察和运算逐步发现两个函数具有的不同特性。
通过代入特殊值让学生认识两个函数各自的对称性的实质;是自变量互为相反数时,函数值互为相反数或相等的关系,从而自然引入奇、偶函数的概念图像性质。
]引入:概念1:如果对于函数()f x 的定义域(对应的区间关于原点对称)内的任意一个x ,都有()()f x f x -=,则称这个函数为偶函数。
概念2:如果对于函数()f x 的定义域(对应的区间关于原点对称)内的任意一个x ,都有()()f x f x -=-,则称这个函数为奇函数。
[教学说明:概念1、2揭示函数是否是奇、偶函数必须具备两个条件:①定义域对应的区间必须关于坐标原点对称的;②若()()f x f x -=-,则()f x 为奇函数,若()()f x f x -=,则()f x 为偶函数。
]从奇函数和偶函数图象的对称性得到性质:如果函数()y f x =的图象是以坐标原点为对称中心的中心对称图形,则称函数()y f x =是奇函数;反之若函数()y f x =是奇函数,则它的图象以坐标原点为对称中心的中心对称图形.2、如果函数()y f x =的图象是以y 轴为对称轴的轴对称图形,则称函数()y f x =是偶函数;反之若函数()y f x =是偶函数,则它的图象是以y 轴为对称轴的轴对称图形.3、如果函数()y f x =的图象既不是以坐标原点为对称中心的中心对称图形也不是以y 轴为对称轴的轴对称图形,则称函数()y f x =既不是奇函数也不是偶函数(即是非奇非偶函数);反之亦然。
[教学说明:职校生的推理能力较弱,从观察具体奇、偶函数的图像推出奇、偶函数的性质]三、巩固提高,熟练技能例:判断下列函数不是是奇、偶函数:(1)3()1f x x =+ ; (2)2()2f x x =+; (3)26(),f x x x =+ [2,4]x ∈-,(4)2()f x x x =+.[分析]: 奇、偶函数的性质分别为: ()()f x f x -=-、 ()()f x f x -=,这提示我们验证函数奇偶性的步骤:(1) 看函数定义域对应的区间是否关于坐标原点对称(2)先求出()f x -的值;(3)看()()f x f x -与间的关系;(4)判断:若()()f x f x -=-,则()f x 为奇函数,若()()f x f x -=,则()f x 为偶函数.解:(师生共同完成)(1) 因为函数3()1f x x =+的定义域是R (关于原点对称),又因为3()()1f x x -=-+31x =-+,()(),()()f x f x f x f x -≠--≠,所以3()1f x x =+不是奇函数也不是偶函数.(学生尝试完成)(2)因为函数2()2f x x =+的定义域是R(关于原点对称),又因为2()()2f x x -=-+22x =+,()()f x f x -=,所以2()2f x x =+是偶函数.(师生共同完成)(3)因为函数26()f x x x =+的定义域是[2,4]-(关于原点不对称),所以26(),f x x x =+ [2,4]x ∈-是非奇非偶函数.(学生完成)(4) [教学说明:(1)、(2)、(4)题让学生先求出()f x -的值,养成学习的良好习惯:解题尝试一步一步去做,(3)用说明的方法,点到即止。
]学生继续完成书本P100:练习A3(1)、(2),4(1)、(2)四、拓展延伸[设计意图:让学生尝试灵活运用两种方法判断函数的奇偶性,反过来知道函数的奇偶性,让学生画出对称的另一部分图像]问题1:函数21y x =+的图象如下图,①判断函数的对称性;②判断函数21y x =+是偶函数还是奇函数.解:①函数21y x =+的图象是以y 轴为对称轴的轴对称图形;②函数21y x =+是偶函数.问题2:函数21y x =+,[1,)x ∈-+∞的图象如下图,①判断函数的对称性;②判断函数21y x =+是偶函数还是奇函数.解:①函数21y x =+,[1,)x ∈-+∞的图象不是以y 轴为对称轴的轴对称图形;②函数21y x =+,[1,)x ∈-+∞ 不是偶函数。
问题3:函数()2f x x =的图象如下图所示,①判断函数图像的对称性;②判断函数()2f x x =的奇偶性。
① 像的对称性: 函数()2f x x =的图象是以坐标原点为对称中心的中心对称图形;② 函数的奇偶性: 函数()2f x x =是奇函数.问题4:判断函数2()f x x =的奇偶性,函数2()f x x =在y 轴右边部分的图象如下图 ,用描点法画出函数另一部分的图象[教学说明:问题3函数的图像是一条直线,本来只需要描两个点,要求多描一个点,对称性的效果更加直观,如果学生难以判断对称性时,就可以提醒学生把图形绕原点旋转180度,看是否重叠就可以,另外为下一步的知识的拓展延伸作准备。
通过四个例子,结合直观的图形,充分发挥数形结合思想的功能,使学生的感性认识提高到理性认识]五、方法、规律总结判断或证明函数奇偶性的常用方法1、“定义域”条件法:若函数定义域不是关于坐标原点对称的,则函数是非奇非偶函数;若函数的定义域是关于坐标原点对称的,再用图像法或验证法.2、图像法.3、验证法:(1)若()()-=,则函数为偶函数.f x f xf x f x-=-,则函数为奇函数;(2)若()()六、作业:课本P122:二、填空题1(3)、(4)、(5);课本P123:三、解答题1,4。
七、教学反思一、这节课成功的经验和感受:(1)探究式学习让学生学会学习。
学习是一个动态过程,认识是一种积极主动的建构过程,学习是内部的建构活动,让学生亲自画图像,增强感性认识,让学生求函数值,让学生体会函数的对称性,比教师直接讲给学生听,效果会好得多。
(2)处理好学生、教师之间的关系,建立新型师生关系,形成良好的课堂教学气氛,以取得良好的课堂教学效果。
(3)探讨小组合作学习教学方法。
小组合作学习有助于约束学生,调动每个学生的学习积极性。
二、不足和今后在教学中应注意的方面:(1)小组合作学习这种学习方式虽然很好,但一个班的学生人数太多,容易乱,如果这节课不是公开课,如果没有很多老师、领导坐在教室后面,课堂教学能井然有序吗?(2)适当给学生压力。
有压力才有动力,没有压力的课堂是一盘散沙。