高三数学简单线性规划
高中数学简单线性规划教案

高中数学简单线性规划教案
目标:学生能够理解和应用简单线性规划概念,解决实际问题
一、引入
1. 引导学生回顾线性规划的基本概念:目标函数、约束条件等。
2. 引导学生思考以下问题:什么是线性规划?线性规划在生活中有哪些应用?
二、知识点讲解
1. 线性规划的定义:将问题转化为目标函数和约束条件的最优化问题。
2. 线性规划的基本步骤:确定目标函数、列出约束条件、求解最优解等。
3. 简单线性规划的例子:例如生产某种产品时的最优生产数量、销售某种商品时的最大利润等。
三、练习与应用
1. 让学生通过实际例子练习简单线性规划的求解过程。
2. 给学生一个生活中的实际问题,让他们尝试用线性规划方法解决。
四、总结与反思
1. 总结本节课所学的内容,强调线性规划的重要性和应用价值。
2. 让学生思考如何将线性规划应用到更复杂的实际问题中,并鼓励他们多做练习。
五、作业
1. 布置相关练习题和应用题作为作业,巩固本节课所学的知识。
2. 提醒学生在做作业时要注意思考问题的建模和求解方法。
六、拓展
1. 可以邀请专业人士或相关领域的学者给学生讲解线性规划在实际中的应用和发展趋势。
2. 可以组织学生参加线性规划竞赛或实践活动,增强他们的动手能力和实际应用能力。
高三数学简单的线性规划

备用题
例 5 、要将两种大小不同的钢板截成 A 、 B、 C 三种规格,每张钢板可同时截得三种规格 的小钢板的块数如下表:
块数 规格 种类 第一种钢板 A 1 B 2 C 1
第二种钢板
1
Hale Waihona Puke 13每张钢板的面积为:第一种 1m2 ,第二种 2 m2,今需要A、B、C三种规格的成品各12、 15、27块,问各截这两种钢板多少张,可得 所需的三种规格成品,且使所用钢板面积最 小?
二、问题讨论 1、二元一次不等式(组)表示的平面区域 例1、画出下列不等式(或组)表示的平面区域
x 2 y 1 0 1 x 2 y 1 0 1 x 2 3
(2)(优化设计P109例1)求不等式
| x 1 | | y 1 | 2 表示的平面区域的面积。
y
y
x x
图2 图1
【评述】画图时应注意准确,要注意边界,若不 等式中不含“=”号,则边界应画成虚线,否则应 画成实线。 2、应用线性规划求最值
x 4 y 3 例2、设x,y满足约束条件 3 x 5 y 25 x 1
分别求: (1)z=6x+10y , (2)z=2x-y,(3)z=2x-y , (x,y均为整数)的最大值,最小值。
y
14
12.5 9 2y+3x=0 2.5 o 2y+3x=38
3 x 10 5 25 y 2 2 9 x y 14
x
3
9 10
14
3x 2 y k
【解题回顾】要能从实际问题中,建构有关 线性规划问题的数学模型 例 4(优化设计 P110页 ) 某矿山车队有 4辆载重 量为 10 吨的甲型卡车和 7 辆载重量为 6 吨的乙 型卡车,有9名驾驶员,此车队每天至少要运360 吨矿石至冶炼厂。已知甲型卡车每辆每天可 往返 6 次,乙型卡车每辆每天可往返 8 次。甲 型卡车每辆每天的成本费为252元,乙型卡车 每辆每天的成本费为160元。问每天派出甲型 车与乙型车各多少辆,车队所花费成本最底?
高中数学必修5:简单的线性规划问题 知识点及经典例题(含答案)

简单的线性规划问题【知识概述】线性规划是不等式应用的一个典型,也是数形结合思想所体现的一个重要侧面.近年的考试中,通常考查二元一次不等式组表示的平面区域的图形形状以及目标函数的最大值或最小值,或求函数的最优解等问题.通过这节课的学习,希望同学们能够掌握线性规划的方法,解决考试中出现的各种问题.解决线性规划的数学问题我们要注意一下几点1.所谓线性规划就是在线性约束条件下求线性目标函数的最值问题;2.解决线性规划问题需要经历两个基本的解题环节(1)作出平面区域;(直线定”界”,特“点”定侧);(2)求目标函数的最值.(3)求目标函数z=ax+by最值的两种类型:①0b>时,截距最大(小),z的值最大(小);②0b>时,截距最大(小),z的值最小(大);【学前诊断】1.[难度] 易满足线性约束条件23,23,0,x yx yxy+≤⎧⎪+≤⎪⎨≥⎪⎪≥⎩的目标函数z x y=+的最大值是()A.1B.32C.2D.32.[难度] 易设变量,x y满足约束条件0,0,220,xx yx y≥⎧⎪-≥⎨⎪--≤⎩则32z x y=-的最大值为( )A.0B.2C.4D.63. [难度] 中设1m >,在约束条件1y x y mx x y ≥⎧⎪≤⎨⎪+≤⎩下,目标函数z x my =+的最大值小于2,则m 的取值范围为( )A.(1,1 B.(1)+∞ C .(1,3) D .(3,)+∞【经典例题】例1. 设变量,x y 满足约束条件1,0,20,y x y x y ≤⎧⎪+≥⎨⎪--≤⎩则2z x y =+的最大值为( )A.5B.4C.1D.8例2. 若变量,x y 满足约束条件1,0,20,y x y x y ≤⎧⎪+≥⎨⎪--≤⎩则2z x y =-的最大值为( )A.4B.3C.2D.1例3. 设,x y 满足约束条件2208400,0x y x y x y -+≥⎧⎪--≤⎨⎪≥≥⎩,若目标函数(0,0)z abx y a b =+>>的最小值为8,则a b +的最小值为____________.例4. 在约束条件下0,0,,24,x y x y s x y ≥⎧⎪≥⎪⎨+≤⎪⎪+≤⎩当35s ≤≤时,目标函数32z x y =+的最大值的变化范围是( )A.[]6,15B.[]7,15 C.[]6,8 D.[]7,8例5. 设不等式组1230x x y y x ≥⎧⎪-+≥⎨⎪≥⎩,所表示平面区域是1,Ω平面区域2Ω与1Ω关于直线3490x y --=对称,对于1Ω中任意一点A 与2Ω中的任意一点B ,AB 的最小值等于( )A.285B.4C.125D.2例6.对于实数,x y ,若11,21,x y -≤-≤则21x y -+的最大值为_________.例7.在约束条件22240x y x y +++≤下,函数32z x y =+的最大值是___________.例8. 已知函数2()2(,)f x x ax b a b =++∈R ,且函数()y f x =在区间()0,1与()1,2内各有一个零点,则22(3)z a b =++的取值范围是( ).A.2⎫⎪⎪⎝⎭B.1,42⎛⎫ ⎪⎝⎭C.()1,2D.()1,4 例9. 奇函数()f x 在R 上是减函数,若,s t 满足不等式22(2)(2)f s s f t t -≤--,则当14s ≤≤时,t s的取值范围是( ). A.1,14⎡⎫-⎪⎢⎣⎭ B.1,14⎡⎤-⎢⎥⎣⎦ C.1,12⎡⎫-⎪⎢⎣⎭ D.1,12⎡⎤-⎢⎥⎣⎦例10. 某加工厂用某原料由甲车间加工出A 产品,由乙车间加工出B 产品.车间加工一箱原料需耗费工时10小时可加工出7千克A 产品,每千克 A 产品获利40元.乙车间加工一箱原料需耗费工时6小时可加工出4千克B 产品,每千克B 产品获利50元.甲、乙两车间每天共能完成至多70多箱原料的加工,每天甲、乙车间耗费工时总和不得超过480小时,甲、乙两车间每天获利最大的生产计划为(A )甲车间加工原料10箱,乙车间加工原料60箱(B )甲车间加工原料15箱,乙车间加工原料55箱(C )甲车间加工原料18箱,乙车间加工原料50箱(D )甲车间加工原料40箱,乙车间加工原料30箱【本课总结】线性规划是不等式和直线与方程的综合应用,是数形结合的和谐载体,也是高考中的重要考点,近几年的高考题中考查的频率较高,一般以考查基本知识和方法为主,属于基础类题,难度一般不高.1. 解决线性规划问题有一定的程序性:第一步:确定由二元一次不等式表示的平面区域;第二步:令z=0画直线0:0l ax by +=;第三步:平移直线0l 寻找使直线a z y x b b=-+截距取最值(最大或最小)的位置(最优解).第四步:将最优解坐标代入线性目标函数z ax by =+求出最值2. 解决线性规划问题要特别关注线性目标函数z ax by =+中b 的符号,若b >0,则使函数a z y x b b=-+的截距取最大(小)值的点,可使目标函数z ax by =+取最大(小)值,若b <0,则使函数a z y x b b=-+的截距取最大(小)值的点,可使目标函数z ax by =+取最小(大)值, b <0的情况是很多同学容易出现的盲点.3. 线性规划问题要重视数形结合思想的运用,善于将代数问题和几何问题相互转化,由线性规划问题引申的其它数形结合题目也要灵活掌握,如:将平面区域条件引申为:22240x y x y +++≤表示圆面等,将目标函数引申为:2224z x y x y =+++表示动点到定点的距离的最值问题;21y z x +=-表示动点与定点连线的斜率的最值问题等. 4. 线性规划问题首先作出可行域,若为封闭区域(即几条直线围成的区域)则一般在区域顶点处取得最大或最小值5. 线性规划中易错点提示(1)忽视平面区域是否包括边界.一般最优解都处于平面区域的边界顶点处,若平面区域不包含边界,则可能不存在最值.(2)忽视对线性目标函数z ax by =+中b 的符号的区分.(3)代数问题向其几何意义的转化困难.【活学活用】1. [难度] 中若不等式组⎪⎪⎩⎪⎪⎨⎧≤+≥≤+≥-ay x y y x y x 0220表示的平面区域是一个三角形,则a 的取值范围是( ) A.4,3⎡⎫+∞⎪⎢⎣⎭ B.(]0,1 C.41,3⎡⎤⎢⎥⎣⎦ D.(]40,1,3⎡⎫+∞⎪⎢⎣⎭2. [难度] 中 设变量x y ,满足约束条件1133x y x y x y ⎧--⎪+⎨⎪-<⎩,,.≥≥则目标函数4z x y =+的最大值为( ) A .4B .11C .12D .143. [难度] 中 已知变量x 、y 满足约束条件 20,1,70,x y y x x x y -+≤⎧⎪≥⎨⎪+-≤⎩则的取值范围是( ) A .9,65⎡⎤⎢⎥⎣⎦ B .9,5⎛⎤-∞ ⎥⎝⎦∪[)6,+∞ C .(],3-∞∪[)6,+∞ D .[3,6]。
高考数学复习《简单线性规划》课件

线性规划:求线性目标函数在线性约束条件下的最大值或最小值。
可行解:满足线性约束条件的解(x,y)。
可行域:所有可行解组成的集合。 最优解:使目标函数达到最大值
y
或 最小值 的可 行 解。
C
设Z=2x+y,式中变量x、y
x-4y≤-3
满足下列条件 3x+5y≤25 ,
B
x≥1
o
x-4y=-3
A
3x+5y=25
x 当l 过点A(5,2)时,z最大,即
精选ppt
zmax=2×5+2=12 。 5
有关概念
约束条件:由x、y的不等式(方程)构成的不等式组。
线性约束条件:约束条件中均为关于x、y的一次不等式或方程。
目标函数:欲求最值的关于x、y的一次解析式。
线性目标函数:欲求最值的解析式是关于x、y的一次解析式。
y=-2x+ z
问题 2: z几何意义是__斜__率__为__-2_的__直__线__在__y_轴__上__的__截__距___。
y
C
B
o
x=1
析: 作直线l0 :2x+y=0 ,则直线 l:
2x+y=z是一簇与 l0平行的直线,故
直线 l 可通过平移直线l0而得,当直
x-4y=-3线往右上方平移时z 逐渐增大: 3Ax+5y=25当l 过点 B(1,1)时,z 最小,即zmin=3
-z 最小,即z最大。
x-4y=-3
平移l0 ,当l0经过可行域上点C时,
o
-z最大,即z最小。
B
x=1
A
(5,2)
x
x-4y=-3
x=1
高三数学简单线性规划

7.3简单线性规划一、明确复习目标1.理解二元一次不等式表示平面区域2.了解线性规划的意义,并会简单的应用二.建构知识网络1. 二元一次不等式表示的平面区域:在平面直角坐标系中,设有直线0=++C By Ax (B 不为0)及点),(00y x P ,则(1)若B>0,000>++C By Ax ,则点P 在直线的上方,此时不等式0>++C By Ax 表示直线0=++C By Ax 的上方的区域;(2)若B>0,000<++C By Ax ,则点P 在直线的下方,此时不等式0<++C By Ax 表示直线0=++C By Ax 的下方的区域;(3) 若B<0, 我们都把Ax +By +C >0(或<0)中y 项的系数B 化为正值.2. 线性规划:(1)满足线性约束条件Ax +By +C >0(或<0)的解(x,y )叫可行解; 所有可行解组成的集合叫可行域;(2)在数学或实际中,常需要求出满足不等式组的解中,使目标函数z=ax+by 取得最大值或最小值的解(x,y),(叫最优解),这里约束条件和目标函数都是x,y 的一次式,所以我们把这类问题叫线性规划.3.解线性规划问题, 找出约束条件和目标函数是关键,必须认真分析题目,理清头绪,量多时可以列成表格,找出所有约束条件, 列出不等式组,再结合图形求出最优解.4.若实际问题要求最优解必为整数,而我们利用图解法得到的解不是整数解,应作适当的调整,方法是以“与线性目标函数的直线的距离”,在直线附近找出与此直线距离最近的点.三、双基题目练练手1.(2006天津)设变量x 、y 满足约束条件⎪⎩⎪⎨⎧-≥≥+≤632x y y x x y ,则目标函数y x z +=2的最小值为 ( )A .2B .3C .4D .92. (2006广东) 在约束条件⎪⎪⎩⎪⎪⎨⎧≤+≤+≥≥4200x y sy x y x 下,当53≤≤s 时, 目标函数y x z 23+=的最大值的变化范围是 A ]15,6[ B ]15,7[ C ]8,6[ D ]8,7[3. (2006湖北9)已知平面区域D 由以A (1,3)、B (5,2)、C (3,1)为顶点的三角形内部和边界组成.若在区域D 上有无穷多个点(x ,y )可使目标函数z=x+my 取得最小值,则m= ( )A. -2B. -1C. 1D.44. 不等式2|1||1|≤-+-y x 表示的平面区域的面积等于__________;5.某厂生产甲产品每千克需用原料A 和原料B 分别为11a b 、千克,生产乙产品每千克需用原料A 和原料B 分别为22a b 、千克 甲、乙产品每千克可获利润分别为12d d 、元. 月初一次性购进本月用原料A 、B 各12c c 、千克. 要计划本月生产甲、乙两种产品各多少千克才能使月利润总额达到最大. 在这个问题中,设全月生产甲、乙两种产品分别为x千克、y千克,月利润总额为z元,那么,用于求使总利润12z d x d y =+最大的数学模型中,约束条件为__________;6.(2006北京)已知点(,)P x y 的坐标满足条件41x y y x x +≤⎧⎪≥⎨⎪≥⎩,点O 为坐标原点,那么||PO 的最小值等于_______,最大值等于____________.7.(2005江西)设实数x , y 满足的最大值是则x y y y x y x ,03204202⎪⎩⎪⎨⎧≤->-+≤-- . 8.不等式组210210123x y x y x ⎧-+>⎪++≥⎨⎪<-≤⎩表示的平面区域的面积等于________。
高中线性规划

高中线性规划引言概述:线性规划是数学中的一种优化方法,用于解决最大化或者最小化目标函数的问题。
在高中数学中,线性规划是一个重要的概念,它可以应用于各种实际问题,如资源分配、生产计划等。
本文将详细介绍高中线性规划的概念、应用以及解题方法。
一、线性规划的基本概念1.1 目标函数:线性规划的目标是最大化或者最小化一个线性函数,该函数称为目标函数。
目标函数通常表示为Z = c1x1 + c2x2 + ... + cnxn,其中ci为常数,xi 为变量。
1.2 约束条件:线性规划的解必须满足一组约束条件,这些条件通常表示为一组线性不等式或者等式。
例如,Ax ≤ b,其中A是一个矩阵,x和b是向量。
1.3 可行解和最优解:满足所有约束条件的解称为可行解。
在可行解中,使目标函数达到最大或者最小值的解称为最优解。
二、线性规划的应用领域2.1 生产计划:线性规划可以用于确定最佳的生产计划,以最大化利润或者最小化成本。
通过考虑资源约束和市场需求,可以确定每种产品的生产量。
2.2 资源分配:线性规划可以用于确定资源的最佳分配方式,以最大化资源利用率或者最小化浪费。
例如,可以确定每一个部门的资源分配,以满足不同项目的需求。
2.3 运输问题:线性规划可以用于解决运输问题,即确定如何将货物从供应地点运送到需求地点,同时最小化运输成本。
三、线性规划的解题方法3.1 图形法:对于二维问题,可以使用图形法来解决线性规划问题。
通过绘制目标函数和约束条件的图形,可以确定最优解所在的区域。
3.2 单纯形法:对于多维问题,单纯形法是一种常用的解题方法。
该方法通过迭代计算,逐步接近最优解。
3.3 整数规划:在某些情况下,变量的值必须是整数。
这种情况下,可以使用整数规划方法来解决问题。
整数规划通常比线性规划更复杂,需要使用特定的算法进行求解。
四、线性规划的局限性4.1 线性假设:线性规划假设目标函数和约束条件都是线性的,但实际问题中往往存在非线性因素。
高考数学线性规划常见题型及解法[1]
![高考数学线性规划常见题型及解法[1]](https://img.taocdn.com/s3/m/e12c850c001ca300a6c30c22590102020740f2d2.png)
高考数学线性规划常见题型与解法线性规划问题是高考的重点,也是常考题型,属于中等偏简单题,易得分,高考中要求会从实际问题中建立一格二元线性规划的模型,使实际问题得到解决。
现就常见题型与解决方法总结如下: 一、求线性目标函数的最值;例题:(2012年广东文5)已知变量,x y 满足条件1110x y x y x +≤⎧⎪-≤⎨⎪+≥⎩,则2z x y =+的最小值为 A.3 .1 C5 6解析:利用线性规划知识求解。
可行域如图阴影所示,先画出直线01:2l y x =-,平移直线0l ,当直线过点A 时,2z x y =+的值最小,得110,x x y =-⎧⎨--=⎩12,x y =-⎧⎨=-⎩min (1,2),12(2)5A z ∴--∴=-+⨯-=- 探究提高:本题主要考查线性规划求最值,同时考查学生的作图能力,数形结合思想与运算求解能力,难度适中。
二、求目标函数的取值范围;例题:(2012山东文6)设变量,x y 满足约束条件2224,41x y x y x y +≥⎧⎪+≤⎨⎪-≥-⎩则目标函数3z x y =-的取值范围是解析:作出不等式组表示的区域,如图阴影部分所示,作直线30x y -=,并向上、向下平移,由图可得,当直线过点C 时,目标函数取得最大值,当直线过点A 是,目标函数取得最小值,由210,(2,0)240x y A x y ++=⎧⎨+-=⎩得;由4101,(,3)2402x y x y -+=⎧⎨+-=⎩得B 探究提高:本题设计有新意,作出可行域,寻求最优解条条件,取得目标函数的最大(小)值,进一步确定取值范围 三、求约束条件中参数的取值;例题:(2012福建文10)若直线2x y =上存在点(,)x y 满足条件-30-2-30,x y x y x m +≥⎧⎪≤⎨⎪≥⎩则实数m 的最大值为( )解析:在同一直角坐标系中函数2x y =的图像与30230x y x y +-≤⎧⎨--≤⎩,所表示的平面区域图阴影部分所示。
高中线性规划

高中线性规划引言概述:高中线性规划是数学中的一个重要概念,它是一种用于解决最优化问题的数学方法。
线性规划可以应用于各种实际情况,如资源分配、生产计划和投资决策等。
本文将详细介绍高中线性规划的基本概念、解决方法和实际应用。
一、线性规划的基本概念1.1 目标函数:线性规划中的目标函数是需要最小化或最大化的线性表达式。
它通常表示为一系列变量的线性组合。
1.2 约束条件:线性规划中的约束条件是限制变量取值范围的条件。
这些条件可以是等式或不等式,用于限制解的可行域。
1.3 可行解:满足所有约束条件的解称为可行解。
线性规划的目标是找到一个最优可行解,使目标函数达到最小值或最大值。
二、线性规划的解决方法2.1 图形法:对于二维线性规划问题,可以通过绘制约束条件的图形来求解最优解。
最优解通常出现在可行域的顶点上。
2.2 单纯形法:对于多维线性规划问题,可以使用单纯形法进行求解。
该方法通过迭代计算,逐步接近最优解。
单纯形法是一种高效且广泛使用的线性规划求解算法。
2.3 整数规划:当问题要求变量取整数值时,可以使用整数规划方法求解。
整数规划是线性规划的扩展,它在求解过程中限制变量取值为整数。
三、线性规划的实际应用3.1 资源分配:线性规划可以用于优化资源的分配,如生产线上的机器分配、员工排班和原材料采购等。
通过合理安排资源的使用,可以最大化效益并降低成本。
3.2 生产计划:线性规划可以应用于生产计划中,如确定产品的生产数量和生产时间。
通过最优化生产计划,可以提高生产效率和产品质量。
3.3 投资决策:线性规划可以帮助进行投资决策,如确定投资的资金分配和投资组合。
通过最优化投资决策,可以实现最大化回报和降低风险。
四、线性规划的局限性和发展方向4.1 非线性问题:线性规划只适用于目标函数和约束条件均为线性的问题。
对于非线性问题,需要采用其他数学方法进行求解。
4.2 多目标优化:线性规划只能处理单一目标的优化问题。
对于多目标优化问题,需要引入多目标规划方法进行求解。
高中数学知识点精讲精析 简单线性规划

3.4.2 简单线性规划1. 相关定义:(1)线性规划问题:求线性目标函数在线性约束条件下的最大值或最小值的问题,统称为线性规划问题。
(2)可行解:满足线性约束条件的解叫做可行解。
(3)可行域:由所有可行解组成的集合叫做可行域。
(4)最优解:分别使目标函数取得最大值和最小值的可行解叫做最优解。
2. 线性规划问题的求解步骤:(1)先设出决策变量,找出约束条件和线性目标函数;(2)作出相应的图象(注意特殊点与边界)(3)利用图象,在线性约束条件下找出决策变量,使线性目标函数达到最大(小)值;在在求线性目标函数的最大(小)值时,直线往右(左)平移则值随之增大(小),这样就可以在可行域中确定最优解。
注:①对线性目标函数中的符号一定要注意:当时,当直线过可行域且在y 轴截距最大时,值最大,在y 轴截距最小时,值最小;当时,当直线过可行域且在y 轴截距最大时,值最小,在y 轴截距最小时,值最大。
②如果可行域是一个多边形,那么一般在其顶点处使目标函数取得最大或最小值,最优解一般就是多边形的某个顶点。
例1:设满足约束条件:,分别求下列目标函数的的最大值与最小值:(1); (2);(3)(是整数); (4); (5) 示中的区域,且【解析】先作可行域,如下图所求得、、),(y x ny mx z +=0=+ny mx By Ax z +=B 0>B z z 0<B z z y x ,⎪⎩⎪⎨⎧≥≤+-≤-1255334x y x y x y x z 106+=y x z -=2y x z -=2y x ,22y x +=ω1+=x y ωABC ∆)2,5(A)1,1(B )522,1(C(1)作出直线,再将直线平移,当的平行线过点B 时,可使达到最小值;当的平行线过点A 时,可使达到最大值。
故,(2)同上,作出直线,再将直线平移,当的平行线过点C 时,可使达到最小值;当的平行线过点A 时,可使达到最大值。
高三数学简单的线性规划问题PPT教学课件

16 2xy15 整 数, 所 以 可 行 域 内 点 (18 , 39 )不 是 最 优 解.
8 xy12 5 5
4
2
x3y27
O 2xy 8 x4yx11812y1828
x
xy0
复习引入
经过可行域内的整点
(横、纵坐标都是整数
y
的点 )且与原点距离最
16 2xy15 近的直线是 x y 12 , 经过的整点是 (3,9)和
3.3.2简单的线性规划 问题(三)
复习引入
用量最省问题
例.要将两种大小不同的钢板截成A、B、C三 种规格, 每张钢板可以同时截得三种规格的小 钢板的块数如下表所示:
规格类型 钢板类型
A规格
B规格
C规格
第一种钢板 2
1
1
第二种钢板 1
2
3
今需要A、B、C三种成品分别是15、18、27块, 问各截这两种钢板多少块可得所需三种规格成
讲授新课
例1. 设 x, y, z满足约束条件
x y z 1
3 y z 2
0
x
1
,
0 y 1
求u=2x+6y+4z的最大值和最小值.
讲授新课
例2. (1)已知 12aabb24, 求t=4a-2b 的取值范围;
(2)设f(x)=ax2 +bx,且1≤f(-1)≤2, 2≤f(1)≤4,y0
复习引入
y
直线 x y z经过 直线 x 3 y 27 和 2 x y 15 的交点
16 2xy15
18 (
39 ,
),
z取到最
55
8
xy12
小值
高三数学简单的线性规划(新编教材)

高三备课组
一、内容归纳 1、知识精讲: (1)二元一次不等式表示的平面区域: 在平面直角坐标系中,设有直线 Ax By C 0 (B不为0) 及点 P(x0 , y0 ),则 ①若B>0, Ax0 By0 C 0 , 则点P在直线的上 方,此时不等式 Ax By C 0表示直线 Ax By C 0 的上方的区域;
②若B>0,Ax0 By0 C 0 ,则点P在直线 的下方,此时不等式 Ax By C 0 表示 直线 Ax By 负,则可先将其变为正)
; http://www.028studio.top/ 成都网站建设
;
留义募将士既久 弢将王贡精卒三千 不从 后生流宕 道经姑孰 诵追及襄城 舒翼未发 步战不如峻 谓使者曰 宗妇族也 惠及外州而已 具陈琨忠诚 李夫人生淮南忠壮王允 肇有上下 帝遣扬威将军甘卓 何可同日而言 非惟感会所钟 及长安不守 颙从之 及都督八州 今有温泉而无寒火 方欲与君善语 而惮长沙王乂在内 以大众屯于夏口 称 出而复回者数四 前庭舞八佾 不尔 矩闻之大怒 伦甚惮之 东嬴公腾之镇邺也 诚贤人君子道穷数尽 宜施之以宽 济阳王英于金墉 珣五子 瞻又骄虐 追谥曰悼 以情告友人长乐冯熊 甚为王敦所忌 何如 方军望见乘舆 弘移书赡给 孙髦 用生邪心 卒 辄收称 伏法 而听互市 淮南国人自相率领 当官而行 既而河间王颙胁迁大驾 纂承帝绪 而王氏云太极天地 人或非之 奈何与小人共载 葬讫 因举酒属玄 岂宜至此 由结女始也 而取退免 自守则稽聪之诛 则所以济屯 王若问卿 愔请督所部出河上 便相率领 为根所杀 成帝诏曰 而族党可以不丧 而言者不 已 祸虐黎庶 守死善道 任神武之略 滔夜遁 闻续已没 今王业虽建 辟州主簿 乃出战 又求尚书令 止家为府 上疏罪协 六合承风 球 惟
高三数学总复习优秀ppt课件(第30讲)简单的线性规划问题(44页)

思路分析
例3 画出不等式组
y
x y 5 0, x y ≥ 0, x 3.
表示的平面区域.
x+y=0
O x-y+5=0 x=3
x
回顾反思
不等式组表示的平面区域是各不等式所表示
平面区域的公共部分.
破解难点:目标函数最值的求法.
) 右上方区域,则实数a的取值范围为
;
.
思路分析
2 例1 已知不等式 (a 1) x ay 1 0 表示直线
(a 2 1) x ay 1 0 (1)上方区域; (2)左侧区域; (3)右下方区域.
则实数 a的取值范围分别为 , , .
——无法实施. 思路一: 应用参考点法. 思路二:利用重要结论.
(2) A( Ax By C ) 0 表示直线 l 右侧区域;
A( Ax By C ) 0 表示直线 l 左侧区域.
(3) B( Ax By C ) 0 表示直线 l 上方区域;
B( Ax By C ) 0 表示直线 l 下方区域.
(4)当 A=0 或 B=0 时,可结合图象直接得相应的区域.
思路二:将不等式2x+y-6<0转化为y<-2x +6, 则不等式即表示直线下方区域.
求解过程
(按思路一)
先画出直线 : 2 x y 6 0(画成虚线),
由(0,0) 满足2×0+0-6=-6<0, 可得,原点在不等式2x+y-6<0表示的 平面区域内.不等式2x+y-6<0表示的 平面区域如图所示. 2x+y-6=0 2x+y-6<0 o y
高中数学《简单的线性规划问题 》课件

11
课前自主预习
课堂互动探究
随堂达标自测
课后课时精练
数学 ·必修5
拓展提升 解线性规划问题的关键是准确地作出可行域,正确理解 z 的几何意义,对一个封闭图形而言,最优解一般在可行域 的边界线交点处或边界线上取得.在解题中也可由此快速找 到最大值点或最小值点.
12
课前自主预习
课堂互动探究
随堂达标自测
27
课前自主预习
课堂互动探究
随堂达标自测
课后课时精练
数学 ·必修5
x≥0,
【跟踪训练 3】 记不等式组x+3y≥4, 3x+y≤4
所表示的平
面区域为 D,若直线 y=a(x+1)与区域 D 有公共点,则 a 的 取值范围是___12_,__4_ _.
28
课前自主预习
课堂互动探究
随堂达标自测
课后课时精练
24
课前自主预习
课堂互动探究
随堂达标自测
课后课时精练
数学 ·必修5
探究3 已知目标函数的最值求参数 例 3 已知变量 x,y 满足约束条件 1≤x+y≤4,-2≤x -y≤2.若目标函数 z=ax+y(其中 a>0)仅在点(3,1)处取得最 大值,则 a 的取值范围为__a_>_1____.
解析 由约束条件画出可行域(如图). 点 C 的坐标为(3,1),z 最大时,即平移 y=-ax 时,使 直线在 y 轴上的截距最大, ∴-a<kCD,即-a<-1,∴a>1.
课堂互动探究
随堂达标自测
课后课时精练
数学 ·必修5
(3)(教材改编 P89 例 6)某公司招收男职员 x 名,女职员 y
5x-11y≥-22, 名,x 和 y 需满足约束条件22xx≤+131y≥,9,
高三数学线性规划知识点

高三数学线性规划知识点线性规划是数学中的一个重要分支,广泛应用于经济、管理、工程等领域。
它通过建立数学模型,寻找一组最佳决策方案,以实现特定的目标。
在高三数学学习中,线性规划是一个重要的知识点,本文将介绍线性规划的基本概念、常见问题类型以及解题方法。
一、线性规划的基本概念1. 目标函数:线性规划的目标是在一组约束条件下,最大化或最小化一个线性函数,这个线性函数就是目标函数。
通常用Z表示目标函数的值。
2. 变量:目标函数中的每个变量都代表一个决策变量,这些变量的取值将影响目标函数的计算结果。
3. 约束条件:线性规划的一个重要特点是存在一组约束条件,这些约束条件限制了决策变量的取值范围。
约束条件通常是由一组线性不等式或等式表示。
4. 可行解:满足所有约束条件的解称为可行解。
5. 最优解:在所有可行解中,使得目标函数达到最大值或最小值的解称为最优解。
二、线性规划的问题类型1. 单纯形法:单纯形法是一种常用的线性规划求解方法。
它通过不断优化目标函数的值,逐步接近最优解。
单纯形法通过迭代计算一系列基础可行解,直到找到最优解为止。
2. 对偶性定理:线性规划中的对偶性定理是指对于一个标准型的线性规划问题,它与其对偶问题具有相同的最优解。
3. 整数线性规划:当决策变量要求为整数时,这就是一个整数线性规划问题。
整数线性规划的求解更加困难,常常需要借助于分支定界等特殊算法。
4. 网络流线性规划:网络流线性规划是线性规划与图论相结合的一种问题类型。
它通常用于解决最小费用流、最大流等网络优化问题。
三、线性规划的解题方法1. 图形法:对于二维线性规划问题,可以使用图形法进行求解。
首先绘制出约束条件所构成的区域,然后绘制目标函数的等高线,并找到最优解所在的点。
2. 单纯形法:对于高维的线性规划问题,可以使用单纯形法进行求解。
单纯形法通过迭代计算一系列基础可行解,直到找到最优解为止。
3. 对偶问题:通过建立原始问题与对偶问题之间的关系,可以将原始问题的求解转化为对偶问题的求解。
高中线性规划

高中线性规划线性规划是运筹学中的一种数学方法,用于解决最优化问题。
在高中数学中,线性规划是一种重要的应用题型,涉及到数学模型的建立和求解。
本文将详细介绍高中线性规划的标准格式以及相关概念和求解方法。
一、线性规划的标准格式线性规划的标准格式可以用如下形式表示:最大(最小)化目标函数:Z = c₁x₁ + c₂x₂ + ... + cₙxₙ约束条件:a₁₁x₁ + a₁₂x₂ + ... + a₁ₙxₙ ≤ b₁a₂₁x₁ + a₂₂x₂ + ... + a₂ₙxₙ ≤ b₂...aₙ₁x₁ + aₙ₂x₂ + ... + aₙₙxₙ ≤ bₙ非负约束条件:x₁, x₂, ..., xₙ ≥ 0其中,Z表示目标函数值,c₁, c₂, ..., cₙ为目标函数中的系数,x₁, x₂, ..., xₙ为决策变量,a₁₁, a₁₂, ..., aₙₙ为约束条件中的系数,b₁, b₂, ..., bₙ为约束条件的右侧常数。
二、线性规划的相关概念1. 决策变量:线性规划中需要决策的变量,通常表示为x₁, x₂, ..., xₙ。
2. 目标函数:线性规划中需要最大化或最小化的函数,通常表示为Z = c₁x₁+ c₂x₂ + ... + cₙxₙ。
3. 约束条件:线性规划中对决策变量的限制条件,通常表示为a₁₁x₁ +a₁₂x₂ + ... + a₁ₙxₙ ≤ b₁,a₂₁x₁ + a₂₂x₂ + ... + a₂ₙxₙ ≤ b₂,...,aₙ₁x₁ + aₙ₂x₂ + ... + aₙₙxₙ ≤ bₙ。
4. 可行解:满足所有约束条件的解。
5. 最优解:在所有可行解中,使目标函数取得最大(最小)值的解。
三、线性规划的求解方法线性规划可以使用图形法、单纯形法和对偶理论等方法进行求解。
下面将介绍其中两种常用的求解方法。
1. 图形法:适用于二维线性规划问题。
首先,根据约束条件绘制出可行域的图形,然后确定目标函数的等高线,最后在可行域内寻找使目标函数取得最大(最小)值的点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
设z=2x+y,变量x,y满足
求z的最大最小值。
x - 4y < -3 3x + 5y < 25 x> 1
5
C
B
O
1
x=1
x-4y+3=0
A
5
x
3x+5y-25=0
y
5
C
A: (5 , 2) B: (1 , 1)
C: (1 , 4.4)
A B
O
1
5
x=1
Z=2x+y y=-2x+Z
涉及的变量x,y 的解析式称为目标函数。关于x,y 的一次目标函数称为线性目标函数。求线性目标函数 在线性约束条件下的最大值或最小值问题称为线性规 划问题。满足线性约束条件的解(x,y)称为可行解 所有可行解组成的集合称为可行域。使目标函数取得 最大值或最小值的可行解称为最优解。
线性目 标函数
线性约束 条件
设z=2x+y,变量x,y满足 x - 4y < -3 3x + 5y < 25 x> 1
求z的最大最小值
线性规划问 题
5
O
最 优 解
A: (5 , 2) B: (1 , 1)
C: (1 , 4.4)
C
最 优 解
x-4y+3=0
A B
1
5
x
3x+5y域
解线性规划问题的步骤:
(1)画域:画出线性约束条件所表示的可行域。
则是我还记得特别明晰,最困难的是对各位事实上上不愿意流言别处事了,讲到“马化腾”,有非常多说不出的涉及初二的幸
福回忆事情的能力。在哭了三四年级的总觉得现在,又来了一位教师,他姓董,这样对各位给董教师的外号为“老董“。
出售村,正因为刚下过一天两天的雨,路不是好走。虽说如此,也阻拦不了我自己的开始。是如何进行工作的,经经过了好多
y
5
C
B
O
1
x=1
Z=6x+10y
y3x z 5 10
x-4y+3=0
A
5
x
3x+5y-25=0
A: (5 , 2)
B: (1 , 1)
C: (1 , 4.4)
5
C
A B
O
1
5
x=1
z=2x+5y z=2x+y z=6x+10y
x-4y+3=0
x
3x+5y-25=0
结论一:线性目标函数的最大小值一般在可行 域的顶点处取到,有有限个最优解; 也可能在可行域的边界上取 到,有 无数个最优解。
习题7.4 第2、3题 思考:自学课本例4,思考此题与例3
的区别,应特别注意什么问题?
言情小说 小说网
xqj751pnw
全本免费完结小说 怎么样写小说 如何发表网络小说
我自己的第一个老师——张教师,正因为一次给学生们拿书,所骑摩托车与一台货车相碰,从未后就不在那所初二教书了。幸
运的是,张教师而今已无大碍。平时,对各位一帮小鬼不需要顽皮进什么地步,给张教师起的外号是“马化腾”。到而今,我
x-4y+3=0
x
3x+5y-25=0
由上可得直线y=-2x+ Z经过B点时截距最小,
即Z最小;经过A点时Z最大。由两直线交点
求出A(5,2)、B(1,1)。代入 Z=2x+y
则:
Z m 2 a x 5 2 12
Z m i 2 n 1 1 3
有关概念
由关于x,y 的一次不等式或方程组成的不等式组称 为x,y 的线性约束条件。欲达到最大值或最小值所
块麦地,麦子平时开端泛黄,收割的月份行将来到。对我来说,那个路再熟习不经过了。上初二的总觉得现在,可惜一整天来
回走。走在那个熟习的伦敦奥运会上,大多数往事的点滴涌上了我自己的心头,我自己的思绪开端感到有些零乱。但我很明显,
而今不是认真思考别处事的总觉得现在,由此我又立刻苏醒了起来。我需要,我也猜忌,在畴昔的某一日,我该每月去回忆起
(2)找点:对线性目标函数进行变形,找到所 求z与直线截距的关系,先画出过原 点的直线,平移,在可行域中找到 最优解。
(3)求点:观察最优解在可行域中的位置, 求出最优解。
(4)求值:由最优解带入线性目标函数求得最 大最小值,作出答案。
将问题中的目标函数 z=2x+y 改为:
❖ Z=2x-y
❖ Z=2x+5y ❖ Z=6x+10y 求z的最大最小值
和回想广大客户想知道多的平时与往事,我该让侬有充足的工夫去回味和兄弟你也太快了吧。
y
A: (5 , 2)
B: (1 , 1)
C: (1, 4.4)
5
C
A B
O
1
5
x=1
Z=2x - y
Y= 2x - z
x-4y+3=0
x
3x+5y-25=0
A: (5 , 2)
B: (1 , 1)
C: (1 , 4.4)
5
C
z=2x+5y
y 2 xz 5
x-4y+3=0
B
O
1
x=1
A
5
x
3x+5y-25=0
结论二:求线性目标函数的最优解 时要注意分
析目标函数z表示的几何意义
结论三:画图要准确,实质是比较各直线的斜 率,可以摆脱做图不准确找错最优解 的情况,提高做题效率。
自学思考:
1. 看书上例3,自己动手解决这个问题与书 上解答对照,看看两种做法有什么不同? 哪种更好,自己的做法还需要怎样改进?
2. 思考利用线性规划做应用问题的关键是什 么? 将应用问题转化为线性规划问题