(最新整理)同济大学大学物理下知识点总结

合集下载

大学物理下册知识点总结

大学物理下册知识点总结

大学物理下册学院:姓名:班级:第一部分:气体动理论与热力学基础一、气体的状态参量:用来描述气体状态特征的物理量。

气体的宏观描述,状态参量:(1)压强p:从力学角度来描写状态。

垂直作用于容器器壁上单位面积上的力,是由分子与器壁碰撞产生的。

单位 Pa(2)体积V:从几何角度来描写状态。

分子无规则热运动所能达到的空间。

单位m 3(3)温度T:从热学的角度来描写状态。

表征气体分子热运动剧烈程度的物理量。

单位K。

二、理想气体压强公式的推导:三、理想气体状态方程:112212PV PV PVCT T T=→=;mPV RTM'=;P nkT=8.31JR k mol=g;231.3810Jk k-=⨯;2316.02210AN mol-=⨯;AR N k=g四、理想气体压强公式:23ktp nε=212ktmvε=分子平均平动动能五、理想气体温度公式:21322ktmv kTε==六、气体分子的平均平动动能与温度的关系:七、刚性气体分子自由度表八、能均分原理:1.自由度:确定一个物体在空间位置所需要的独立坐标数目。

2.运动自由度:确定运动物体在空间位置所需要的独立坐标数目,称为该物体的自由度(1)质点的自由度:在空间中:3个独立坐标在平面上:2 在直线上:1(2)直线的自由度:中心位置:3(平动自由度)直线方位:2(转动自由度)共5个3.气体分子的自由度单原子分子 (如氦、氖分子)3i=;刚性双原子分子5i=;刚性多原子分子6i=4.能均分原理:在温度为T的平衡状态下,气体分子每一自由度上具有的平均动都相等,其值为12kT推广:平衡态时,任何一种运动或能量都不比另一种运动或能量更占优势,在各个自由度上,运动的机会均等,且能量均分。

5.一个分子的平均动能为:2kikTε=五. 理想气体的内能(所有分子热运动动能之和)1.1mol理想气体2iE RT=5.一定量理想气体(2i mE RTMνν'==九、气体分子速率分布律(函数)速率分布曲线峰值对应的速率 v p 称为最可几速率,表征速率分布在 v p ~ v p + d v 中的分子数,比其它速率的都多,它可由对速率分布函数求极值而得。

大学物理下 总结ppt(很详细)

大学物理下 总结ppt(很详细)
23
h
螺距h:
h v //T
一、电动势
电磁感应
小结
把单位正电荷从负极经电源内部移 到正极非静电力所作的功。
L E K dl
二、法拉第电磁感应定律
楞次定律 三、动生电动势 在稳恒磁场中,由于导体的运动 而产生的感应电动势。
i

d m dt
回路内感应电流产生的磁场总是企图阻
d m i L E感 dl dt
感生电场与变化磁场关系
d m i L E感 dl dt
B S dS t
25
五、自

由于回路自身电流产生的磁通量发生变化,而在 回路中激发感应电动势的现象。
自感电动势
自感系数的计算
1 2 b: 计算dV内能量 dWm m dV B dV 2 1 c: 计算总能量 W dV B dV
2 m V m V
2
27
八、位移电流
电流密度 电流强度 位移电流的提出 垂直穿过单位面积的电流强度。
I sdI S j dS
E 0
11
4.两导体板相互靠近直到静电平衡后电荷分布
Q1 Q2 Q1 Q2 1 4 2 3 2s 2s
5.处理静电场中导体问题的基本依据 (1)电荷守恒定律 (2)静电平衡条件(3)高斯定理 六、静电场中的电介质 1. 介质中的电场 2. 介质中的高斯定律
(4) 挖补法 (5) 高斯定理
E挖后 E整个 E补
1 SE ds 0 Σ q内
2
2. 电势
ua
电势零点
a
E dl

同济大学大学物理下知识点总结

同济大学大学物理下知识点总结

普通物理(下)学习总结 第九章——热力学基础章节概述:热力学整章的重点在于理想气体动态方程、热力学两大定律在各种状态下的应用以及卡诺定理用来计算各种热机的效率。

1、 开尔文温度和摄氏温度的换算。

t=T-273.152、 平衡状态、准静态过程和非静态过程的区别。

对于一个孤立系统而言,如果其宏观性质经过充分长的时间后保持不变,即系统的状态参量不再随时间改变,此时系统属于平衡态。

而如果系统在变化过程中,每一个中间状态都无线接近于平衡态,则称之为准静态过程。

3、 理想气体的状态方程:注意玻尔兹曼常量和斯密特常量的定义。

4、 焦耳的实验,定义了热功当量。

如用做功和传热的方式使系统温度升高相同时,所传递的热量和所做的功总有一定的比例关系,即1卡热量=4.18焦耳的功可见,功与热量具有等效性。

做功与传热虽然有等效的一面,但本质上有着区别。

做功:通过物体作宏观位移完成。

作用是机械运动与系统内分子无规则运动之间的转换。

从而改变内能。

传热:通过分子间相互作用完成。

作用是外界分子无规则热运动与系统内分子无规则热运动之间的转换。

从而改变了内能。

5、 对微小过程,即准静态过程,dW dE dQ +=6、 等温等压过程、绝热过程、多方过程中热力学第一定律的应用。

7、 热循环、制冷机与热机的关系、卡诺循环及其效率的计算。

8、热力学第二定律的两种表述(克劳斯修表述和开尔文表述)。

开尔文表述(开氏表述):不可能从单一热源吸取热量,使它完全变为有用功而不引起其它变化。

克劳修斯表述(克氏表述):热量不能自动地从低温物体传到高温物体。

第十章——气体动理论章节概述:本章主要讲述了气体动理论的两个基本公式——压强公式和能量公式,理解分子热运动的原理,能够理解热力学第二定律和熵的意义。

在本章中还大量地运用了统计规律来对分子的热运动进行分析,即通过对微观物理量求统计平均值的方法得到宏观物理量。

1、自然界的一切宏观物体,无论是气体、液体亦或是固体,都是由大量分子或原子构成。

大二下学期物理知识点总结

大二下学期物理知识点总结

大二下学期物理知识点总结一、力学1. 动力学动力学研究物体的运动规律,是力学的一个重要分支。

在大二下学期的物理课程中,我们学习了牛顿运动定律、平抛运动、圆周运动以及万有引力等内容。

牛顿第一定律(惯性定律):物体在外力作用下保持静止或匀速直线运动,直至外力作用终止。

牛顿第二定律(运动定律):物体在外力作用下会发生加速,其加速度大小与外力成正比,与物体的质量成反比,且在同一直线上与外力方向相同。

牛顿第三定律(作用-反作用定律):两个物体相互作用时,彼此之间的作用力与反作用力大小相等、方向相反。

平抛运动是指物体在水平方向做匀速直线运动的同时,竖直方向存在匀加速直线运动的情况。

在学习中,我们掌握了平抛运动的位移、速度、加速度等相关计算方法。

圆周运动是指物体在圆周运动过程中的运动规律,包括圆周运动速度、圆周运动加速度以及向心力等相关内容。

通过学习,我们了解了圆周运动的加速度计算方法,以及向心力与离心力的区别与计算方法。

万有引力是由牛顿在《自然哲学的数学原理》中提出的重要物理学定律。

在大二下学期的物理课程中,我们系统学习了万有引力的大小计算、万有引力与万有引力势能的关系,以及地球表面引力的计算等内容。

2. 动能与功率动能是物体由于运动而具有的能量,其大小与物体的质量以及运动速度有关。

在课程中,我们学习了动能的计算公式,以及与势能的转化关系等内容。

功率是描述单位时间内对物体所做的功或能量转换速率的物理量。

我们学习了功率的计算公式,以及功率与动能、动力的关系,掌握了功率的单位和量纲等内容。

3. 质点系与刚体运动在学习动力学的过程中,我们还系统学习了质点系与刚体运动的相关知识。

质点系的运动规律涉及到多个物体的运动相互影响,我们学习了质点系的动量守恒定律、机械能守恒定律,以及弹性碰撞和非弹性碰撞等内容。

在刚体运动方面,我们学习了刚体的平动运动和转动运动规律,掌握了刚体的绕定轴转动的运动方程、角动量守恒定律等内容。

二、热学1. 热力学基本概念热力学是研究热现象和热能转换的学科,我们在大二下学期的物理课程中系统学习了热力学的基本概念。

大二物理下知识点大全总结

大二物理下知识点大全总结

大二物理下知识点大全总结大二物理是物理学专业学生在本科阶段的第二年学习的课程内容。

在大二物理学习中,学生将深入学习和理解一系列的物理知识点。

本文将对大二物理下的知识点进行全面总结,以帮助学生更好地复习和掌握这些知识。

1. 力学1.1 牛顿运动定律1.2 质点运动1.3 刚体力学1.4 动量定理1.5 能量守恒定律1.6 转动力学2. 热学2.1 理想气体定律2.2 热力学第一定律2.3 热力学第二定律2.4 熵2.5 热传导、传导定律 2.6 热辐射2.7 温度和热量的测量3. 波动光学3.1 波动方程3.2 干涉和衍射现象3.3 光的偏振3.4 光的干涉和衍射装置 3.5 马赫—曾得干涉仪4. 电磁学4.1 静电场和电势4.2 恒定电流和电路4.3 电磁感应4.4 交流电4.5 等效交流电路4.6 电磁波4.7 电磁能量和动量4.8 电磁场的辐射5. 原子物理5.1 原子结构模型5.2 原子光谱5.3 半导体物理5.4 核物理基础5.5 放射性衰变6. 实验室技能6.1 物理实验技巧与操作 6.2 数据处理与误差分析 6.3 仪器仪表的使用6.4 实验安全与环境保护以上仅为大二物理下的知识点大致分类,实际学习中还包括大量的例题和习题训练。

学生需要通过理论学习和实践操作相结合的方式来扎实掌握这些知识点。

在学习过程中,还要注意培养问题解决和实验分析能力。

总结:大二物理的知识点涵盖了力学、热学、波动光学、电磁学、原子物理和实验室技能等方面。

掌握这些知识对于物理学专业学生来说至关重要。

通过不断地学习、练习和实践,学生将能够深入理解这些知识点,并在实际应用中灵活运用。

希望本文的总结对学生们在大二物理学习中有所帮助。

大学物理牛顿运动定律

大学物理牛顿运动定律

大学物理牛顿运动定律一、牛顿第一定律1、内容:一切物体总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种状态。

2、说明:(1)牛顿第一定律是牛顿在前人实验的基础上,根据逻辑推理得出的,是以实验为基础,但又不是完全通过实验得出。

(2)牛顿第一定律说明了两点:①力不是维持物体运动的原因(否定了亚里士多德“力是维持物体运动的原因”的观点);②提出了力是改变物体运动状态的原因。

3、惯性:(1)惯性是物体保持匀速直线运动状态或静止状态的性质。

(2)惯性的大小只与质量有关。

二、牛顿第二定律1、内容:物体的加速度与所受合外力成正比,与物体的质量成反比。

2、说明:(1)公式中的F指物体所受的合外力。

当物体只受一个力时,F就等于该力。

(2)加速度的方向与合力的方向相同。

(3)合力可以改变物体的运动状态,也可以不改变物体的运动状态。

(4)公式适用于任何质点,也适用于物体的一部分(只要这种“部分”可当作质点)。

3、牛顿第二定律的适用范围:低速运动的物体。

由于一般物体的运动速度相对很慢,所以,经典力学适用于低速运动的物体。

目前,牛顿第二定律已广泛用于工程技术中。

特别是汽车、飞机、火箭等现代交通工具的速度非常大,如果我们把这种高速运动的物体当作质点,根据牛顿第一定律,我们可以得出很大的错误结论。

所以,对于高速运动的物体,我们不能把它当作质点来处理。

三、牛顿第三定律31、内容:两个物体之间的作用力和反作用力总是大小相等,方向相反,作用在同一条直线上。

311、说明:要改变一个物体的运动状态,必须有其它物体和它相互作用。

物体之间的相互作用是通过力体现的。

并且指出力的作用是相互的,有作用力必有反作用力。

它们是作用在同一直线上的,大小相等,方向相反。

同时产生、同时消失、同时变化、互为施力物体和受力物体等四条结论。

大学物理牛顿力学一、牛顿力学的基本概念牛顿力学是物理学的一个重要分支,它主要研究物体运动的基本规律。

在牛顿力学中,物体被视为质点,不受力的情况称为静止,受恒定合力的情况称为匀加速运动,而受变力的情况称为变加速运动。

《大学物理下》重要知识点归纳

《大学物理下》重要知识点归纳

《大学物理下》重要知识点归纳第一部分一、简谐运动的运动方程: 振幅A : 取决于初始条件 角频率ω:反映振动快慢,系统属性。

初相位ϕ: 取决于初始条件二、简谐运动物体的合外力: (k : 比例系数) 简谐运动物体的位移:简谐运动物体的速度: 简谐运动物体的加速度: 三、旋转矢量法(旋转矢量端点在x 轴上投影作简谐振动)矢量转至一、二象限,速度为负矢量转至三、四象限,速度为正四、振动动能: 振动势能: 简谐振动总能量守恒.....: 五、平面简谐波波函数的几种标准形式:][)(cos o u x t A y ϕω+= ][2 cos o x t A ϕλπω+=0ϕ:坐标原点处质点的初相位 x 前正负号反映波的传播方向六、波的能量不守恒...! 任意时刻媒质中某质元的 动能 = 势能 !)(cos ϕω+=t A x202)(ωv x A +=Tπω2=mk =2ω)(cos ϕω+=t A x )(sin ϕωω+-==t A dtdxv )(cos 222ϕωω+-==t A dtx d a kxF -=221kx E p=)(cos 21 22 ϕω+=t A k pk E E E +=2 21A k =)(sin 2121 222ϕω+==t kA mv E ka,c,e,g 点: 能量最大! b,d,f 点: 能量最小!七、波的相干条件:1. 频率相同;2. 振动方向相同;3.相位差恒定。

八、驻波:是两列波干涉的结果波腹点:振幅最大的点 波节点:振幅最小的点相邻波腹(或波节)点的距离:2λ相邻波腹与波节的距离:λ九、光程:nr L = n:折射率 r :光的几何路程光程是一种折算..,把光在介质中走的路程折算成相同时间....光在真空中走的路程即光程,所以,与光程或光程差联系在一起的波长永远是真空..中的波长0λ。

十、光的干涉:光程差:),2,1,0(2)12(⋅⋅⋅=⎪⎩⎪⎨⎧→+±→±=∆k k k 干涉相消,暗纹干涉相长,明纹λλ十一、杨氏双缝干涉相邻两条明纹(或暗纹)的间距:λndd x '=∆ d ´: 缝与接收屏的距离 d : 双缝间距 λ:光源波长 n :介质的折射率十二、薄膜干涉中反射光2、3的光程差:*22122)2(sin 2λ+-=∆i n n dd : 膜的厚度等号右侧第二项*)2(λ由半波损失引起,当2n 在三种介质中最大或最小时, 有这一项,否则没有这一项。

大学物理下复习归纳

大学物理下复习归纳

《大学物理》(下)复习资料第二部分:电学基本要求一. 基本概念电场强度, 电势;电势差, 电势能,电场能量。

二.基本定律、定理、公式 1.真空中的静电场: 库仑定律:r r q q F 321041πε=。

=041πε9×109 N·m 2·C -2电场强度定义:0q F=, 单位:N·C -1 ,或V·m -1 点电荷的场强:r q 3041πε=点电荷系的场强:N E E E E +++= 21,(电场强度叠加原理)。

任意带电体电场中的场强:电荷元dq 场中某点产生的场强为: r dqd 3041πε=,整个带电体在该产生的场强为:⎰=E d E电荷线分布dq=,dl λ 电荷面分布dq=dS σ, 电荷体分布dq=dV ρ电通量:S d E Se ⋅=⎰⎰φ=⎰⎰SdS E θcos高斯定理:在真空中的静电场中,穿过任一闭合曲面的电场强度的通量等于该闭合曲面所包围的电荷电量的代数和除以0ε 。

ε∑⎰⎰=⋅iSq S d E 。

物理意义:表明了静电场是有源场注意理解: 是由高斯面内外所有电荷共同产生的。

∑i q 是高斯面内所包围的电荷电量的代数和。

若高斯面内无电荷或电量的代数和为零,则0=•⎰⎰d ,但高斯面上各点的E 不一定为零。

在静电场情况下,高斯定理是普遍成立的。

对于某些具有对称性场强分布问题,可用高斯定理计算场强。

典型静电场:均匀带电球面:=(球面内);r q3041πε=(球面外)。

均匀带电无限长直线:E=r02πελ, 方向垂直带电直线。

均匀带电无限大平面:E=2εσ, 方向垂直带电直线。

均匀带电圆环轴线上: E=2/3220)(4x R qx+πε , 方向沿轴线(R 为圆环半径)。

电场力:q 0= , 电场力的功:A ab =⎰⎰=•ba ba dl E q l d E q θcos 00,特点:积分与路经无关, 说明静电场力是保守力。

大学物理下学期知识点总结

大学物理下学期知识点总结

大学物理下学期知识点总结.docx恒定磁场一、基本公式1)毕奥-萨伐尔定律dB=2)磁场叠加原理3)磁场中高斯定理(S是闭合曲面)4)安培环路定律(真空中)(介质中)H=BrB=HH=B=r-真空磁导率(4_10-7N/A2)r介质磁导率5)安培定律dF=IdlBsin方向判断:右手四指由Idl的方向经小于角转向B的方向,右螺旋前进的方向即为dFma_的方向6)磁通量匀强磁场中通过平面:7)磁矩若多匝线圈8)磁力矩M=PmBsin=BISsin9)洛伦兹力公式带电粒子受电磁力10)运动电荷产生的磁场二、典型结果1、有限长载流直导线在距其为r的一点产生的磁场2、无限长载流直导线在距其为r的一点产生的磁场3、半限无长载流直导线在距其一端距离为r的一点产生的磁场4、载流圆环在环心产生的磁场5、载流圆弧(已知弧长L和圆心角)在弧心产生的磁场6、长直密绕螺线管内磁场第十一章电磁感应电磁场一、基本公式1)电动势定义2)法拉第电磁感应定律作用:计算闭合回路上的大小和方向方向的判断:首先确定回路绕行方向,如果dBdt0,0,则i=-ddt=-SdBdt0,则表明积分路径是沿着非静电性场强的方向进行的,因此B点电势比A点电势低。

4)感生电动势:产生根源(非静电力)为涡旋电场力或感生电场力公式5)自感:自感系数,若为长l,横截面为S,N匝,介质磁导率为的螺线管,B=NlI;L=N2V(其中V为螺线管体积)感生电动势6)互感:互感系数M,互感磁通量,互感电动势21=-d21dt=-MdI1dt12=-d12dt=-MdI2dt7)磁场能量密度磁场能量一个自感为L,通过电流为I的线圈,其中所储存的磁能为Wm=12LI2=12n2I2V(其中V表示长直螺线管的体积)第十二章机械振动1)谐振动方程:谐振子:,,的求解方法:解析法和旋转矢量法2)同方向同频率简谐振动的合成总位移,合振动解析法,3)振动总能量,振动势能振动动能Ek=12mv2=13kA2sin2(t+)第十章机械波1)若已知波源O点振动方程yo=Acos(t+),则该波的波动方程为2)体积元的能量平均能量密度平均能流密度(波动强度)(u 为波速)平均能流(V为介质体积,为介质长度,S为介质侧面积)3)波的干涉条件:振动方向相同,频率相同和位相差恒定=2干涉加强22r2-r1=2kk=0、1、2A=A1+A2干涉减弱22r2-r1=2k+1k=0、1、2A=A1-A24)驻波含义:振幅相同,沿同一直线上相向传播的两列相干波产生的干涉5)以丛波为例,设两列相干波的波动方程为6)相邻波节间各点位相相同,波节两侧点位相相反。

同济 大学物理 下 PPT D.动理论2

同济 大学物理 下 PPT D.动理论2

每个自由度上的平均平动动能
1 2 1 2 1 2 1 vx v y vz kT 2 2 2 2
每个转动和振动自由度上 的平均动能都等于
1 kT 2
由于分子频繁碰撞,动能在各运动形式、各 自由度之间转移,平衡时,各种平均动能按自由 度均分。
能均分定理是统计规律,反映大量分子系统 的整体性质,对个别分子或少数分子不适用。
热力学第二定律的统计意义
孤立系统中,自发进行的过程是不可逆的, 总是沿着系统热力学概率(无序性)增加的方向 进行,也就是由包含微观态数目小的宏观态向包 含微观态多的宏观态的方向进行。
二、玻耳兹曼熵公式
S k ln
* 熵是系统状态的单值函数。
熵的增量与过程无关。
* 熵是系统无序性的量度。
* 熵是系统接近平衡态程度的一种量度。
1 2.14 10 7 m 2 d 2 n
z
v

7.95 109 s 1
选择题
体积恒定时,一定量理想气体的温度 升高,其分子的 (A)平均碰撞频率将增大 (B)平均碰撞频率将减小 (C)平均自由程将增大 (D)平均自由程将减小
[A]
G. 熵增加原理
一、热力学概率
设在容器中有 3 个分子 有 4 个宏观态
第四讲
气体动理论(二)
本讲主要内容
E. 能量均分定理 F. 分子碰撞的统计规律 G. 熵增加原理
E. 能量均分定理
对于理想气体
讨论碰撞问题 —— 将分子看成质点 讨论能量问题 —— 考虑分子内部结构
一、自由度
确定一个物体的空间位置所需的独立坐标数
质点的自由度
( x,y,z )
最多 3 个自由度,受约束 时自由度减少。 飞机 3 轮船 2 火车 1

大一下大学物理知识点总结

大一下大学物理知识点总结

大一下大学物理知识点总结一、力学1. 牛顿运动定律牛顿第一定律:物体静止或匀速直线运动时,合外力为零。

牛顿第二定律:物体加速度与所受合外力成正比,与物体质量成反比。

牛顿第三定律:相互作用力两两相等、方向相反、作用在不同物体上。

2. 动量与能量动量:动量是物体质量和速度乘积,描述物体运动状态的物理量。

动量守恒定律:在没有合外力作用下,系统的总动量保持不变。

动能:物体由于运动而具有的能量,动能与物体质量和速度的平方成正比。

动能定理:物体所做的功等于其动能的增量。

3. 万有引力与运动万有引力定律:两个物体之间的引力与它们质量成正比,与它们距离的平方成反比。

开普勒定律:行星绕太阳运动的轨道呈椭圆形。

水平抛体运动:物体以一定速度和角度从斜面抛出,形成抛体运动。

二、热学1. 热力学基本概念温度、热量、热容、比热容等基本概念的介绍与计算公式。

2. 热传递热传递方式:传导、对流、辐射。

热传导方程:导热系数、温度梯度对热传导的影响。

3. 热力学定律第一定律:能量守恒定律,能量不能被创造或破坏,只能从一种形式转化为另一种形式。

第二定律:热永远不会自发地从热量低的物体传递到热量高的物体。

第三定律:绝对零度无法达到,任何物质在温度接近绝对零度时都会趋于零熵。

三、电磁学1. 电场与电势电荷与电场:电荷间通过电场相互作用。

高斯定律:电场穿过一个闭合曲面的电通量与内部电荷代数和成正比。

电势能:带电粒子在电场中具有的能量。

2. 电流与电阻电流:单位时间内通过导体截面的电荷量。

欧姆定律:电流与电压成正比,与电阻成反比。

电阻:导体阻碍电流通过的程度,与导体材料、形状、长度有关。

3. 磁场与电磁感应磁场:由电荷的运动产生的区域。

洛伦兹力:带电粒子在磁场中受到的力。

法拉第电磁感应定律:磁场的变化会在电路中产生感应电动势。

四、光学1. 几何光学光的反射与折射:根据光的传播规律,解释光的反射与折射现象。

成像:透镜和球面镜成像规律的介绍。

2. 光的波动性光的干涉与衍射:光的波动性引起的干涉和衍射现象。

(完整版)大学物理知识点总结

(完整版)大学物理知识点总结

Br ∆A rB ryr ∆第一章质点运动学主要内容一. 描述运动的物理量 1. 位矢、位移和路程由坐标原点到质点所在位置的矢量r 称为位矢 位矢r xi yj =+,大小 2r r x y ==+运动方程()r r t =运动方程的分量形式()()x x t y y t =⎧⎪⎨=⎪⎩位移是描述质点的位置变化的物理量△t 时间内由起点指向终点的矢量B A r r r xi yj =-=∆+∆△,2r x =∆+△路程是△t 时间内质点运动轨迹长度s ∆是标量。

明确r ∆、r ∆、s ∆的含义(∆≠∆≠∆r r s ) 2. 速度(描述物体运动快慢和方向的物理量)平均速度xyr x y i j ij t t t瞬时速度(速度) t 0r drv limt dt∆→∆==∆(速度方向是曲线切线方向) j v i v j dt dy i dt dx dt r d v y x +=+==,2222yx v v dt dy dt dx dt r d v +=⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛== ds dr dt dt= 速度的大小称速率。

3. 加速度(是描述速度变化快慢的物理量)平均加速度va t ∆=∆ 瞬时加速度(加速度) 220limt d d r a t dt dt υυ→∆===∆△ a 方向指向曲线凹向j dty d i dt x d j dt dv i dt dv dt v d a y x2222+=+== 2222222222⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=+=dt y d dt x d dtdv dt dv a a a y x y x二.抛体运动运动方程矢量式为 2012r v t gt =+分量式为 020cos ()1sin ()2αα==-⎧⎪⎨⎪⎩水平分运动为匀速直线运动竖直分运动为匀变速直线运动x v t y v t gt 三.圆周运动(包括一般曲线运动) 1.线量:线位移s 、线速度dsv dt= 切向加速度t dva dt=(速率随时间变化率) 法向加速度2n v a R=(速度方向随时间变化率)。

大学物理下知识点总结

大学物理下知识点总结

电磁:第一章 库仑定律,点电荷场强及场强叠加原理;电通量;具有对称性的带电体利用高斯定理求场强。

第二章 电势,电势能,静电力做功,点电荷电势及电势叠加原理计算任意带电体的电势,利用电势的定义⎰⋅=电势零点所求点r d E ϕ求解电势问题 。

第三章 静电平衡导体的电荷分布,有导体时电场和电势的计算。

第四章 介质中的高斯定理求解场强、电位移矢量、极化强度、极化面电荷密度;电容器的电容计算,平行板电容器的电容公式一定要掌握,电容器能量,电场能量的计算。

第五章和第六章 磁通量,利用毕奥-萨伐尔定律计算载流导线在周围产生的磁感应强度,另外还需要掌握一些结论,例如:一段载流直导线、无限长直导线、圆弧在圆心处;具有对称性的载流导线利用安培环路定理求解场强。

第七章 磁力,带电粒子在匀强磁场中的圆周运动,带电粒子的螺线型运动规律;霍尔效应;磁场对载流导线的作用力;磁矩,磁场对载流线圈的磁力矩。

第八章 磁介质中的安培环路定律及“磁场强度与磁感应强度的关系”。

第九章 法拉第电磁感应定律求解感应电动势,动生电动势及其计算,感生电动势和感生电场;互感系数和自感系数的计算,自感线圈的能量,磁场的能量的计算。

第十章 位移电流,麦克斯韦方程组的积分形式。

近代物理:第十一章 狭义相对论基本假设--相对性原理和光速不变原理;洛仑兹变换;长度收缩效应、时间延缓和同时性的相对性,相对论质量的公式,相对论意义下的动量和动能,能量-质量关系式,能量-动量关系式。

第十二章 黑体辐射的两个实验定律:斯特蕃定律和维恩位移定律,以及黑体辐射的曲线图;光电效应中,(1)爱因斯坦光电效应方程(2)截止电压满足的零电流方程C m eU mv =221(3)截止频率A h =0ν(4)图ν~C U ,会计算普朗克常数,截止频率,逸出功(5)光的波粒二象性公式;康普顿散射中光子与静止自由电子碰撞满足的能量守恒公式和动量守恒公式,以及?0=-=∆λλλ公式;实物粒子的波粒二象性的公式,德布罗意波(即物质波)是概率波,不确定关系。

(完整版)大学物理(下)知识点总结,推荐文档

(完整版)大学物理(下)知识点总结,推荐文档

大学物理(下)1简谐运动:1.1定义:物体运动位移(或角度)符合余弦函数规律,即:;X =Acos(ωt +φ)1.2特征:;= 令;F =‒kx (F:回复力)a ‒kxm ω2=km1.3简谐运动: =v =‒ωAsin(ωt +φ)a ω2Acos (ωt +φ)1.4描述简谐运动的物理量:I 振幅A :物体离开平衡位置时的最大位移;II频率是单位时间震动所做的次数(周期和频率V :V =1T仅与系统本身的弹性系数和质量有关);III 相位:称为初相,相位决定物体的运动状态ωt +φ"φ“1.5常数A 和的确定:φI解析法:当已知t=0时x 和v; {x =Acos(ωt +φ)v =‒ωAsin(ωt +φ)II旋转矢量法(重点):运用参考圆半径的旋转表示;2单摆和复摆2.1复摆:任意形状的物体挂在光滑水平轴上作微小()的θ<5°摆动。

I 回复力矩;(是物体的转动惯量)M =mglθω2=mglJ J II方程:;θ=θm cos⁡(ωt +φ)2.2单摆:单摆只是复摆的特殊情况所以推导方法相同,单摆的惯性矩J =ml 23求简谐运动周期的方法(1) 建立坐标,取平衡位置为坐标原点;(2) 求振动物体在任一位置所受合力(或合力矩);(3) 根据牛顿第二定律(或转动定律)求出加速度与位移的关系式2a xω=-4简谐运动的能量:4.1简谐运动的动能:;E K =12KA 2sin 2(ωt +φ)4.2简谐运动的势能:;E P =12KA 2cos 2(ωt +φ)4.3简谐运动的总能量:;(说明:①简谐运动强度的标E =12KA 2志是A ②振动动能和势能图像的周期为谐振动周期的一半)5简谐振动的合成5.1解析法:①和振幅②A =A 12+A 22+2A 1A 2cos⁡(φ2‒φ1)tanφ=A 1sinφ1+A 2sinφ2A 1COSφ1+A 2COSφ25.2旋转矢量法:①和振幅②由几何关系求出初A =A 12+A 22+2A 1A 2cos⁡(φ2‒φ1)相φ6波6.1定义:振动在空间的传播过程;分为横波 纵波;6.2波传播时的特点:①沿波传播的方向各质点相位依次落后②各质点对应的相位以波速向后传播;6.3描述波的物理量:I 波长(λ):相位相差2π的两质点之间的距离,反应了波的空间周期性;II周期(T ):波前进一个波长所需要的时间();常用求解周期的方法T =λu III 频率(ν):单位时间内通过某点周期的个数;IV波速(u ):振动在空间中传播的速度;6.4波的几何描述I 波线:波的传播方向;II波面:相同相位的点连成的曲面。

大学物理下册知识点

大学物理下册知识点

大学物理下册知识点【篇一:大学物理下册知识点】《大学物理》下册复习课复习提纲量子物理电磁学电磁场:b的定义,毕奥-萨伐尔定理,安培环路定理及其计算,高斯定理,载流线圈在均匀磁场中受到的磁力矩,安培力的功,洛仑兹力,带电粒子在均匀磁场中的运动,霍尔效应描述磁介质磁化强度的物理量,有磁介质存在时的安培环路定理,铁磁质电磁感应的基本定律,动生电动势,感生电动势和涡旋电流,自感和互感,磁场能量位移电流,麦克斯韦方程组磁感应强度的定义时,dfidl的方向。

b的另外两种定义方法:(1)运动电荷qv,受到的洛仑兹力:f=qvb (2)载流线圈在磁场中受到作用力的力矩:m=p idldf idl df sin回旋半径:vb,qb 和v无关!匀速直线运动。

应用:分析磁场对称性;选定适当的安培环路。

各电流的正、负: i与l呈右手螺旋时为正值;反之为负值。

对于真空中的稳恒磁场:磁通量通过面元:通过曲面:正法线方向由内向外。

对于闭合曲面,规定:磁场的高斯定理总结:描述稳恒磁场的两条基本定律(1)磁场的高斯定理(2)安培环路定理用安培环路定理计算磁场的条件和方法磁场是无源场(涡旋场)正负的确定:规定回路环形方向,由右手螺旋法则定出积分路径或与磁感线垂直,或与磁感线平行.特殊电流磁场(磁场的叠加、方向的判断) cos(cos方向:右手螺旋法则大小:圆心无限长载流圆柱导体已知:i、r 长直载流圆柱面已知:i、r rb bdl 长直载流螺线管已知:i、n 10.环行载流螺线管 r1r2 11.无限大载流导体薄板注意:电流与电流之间的作用力设有两根平行长直导线,分别通有电流i1和i2,二者间距为d,导线直径甚小于d,试求每根导线单位长度线段受另一根电流导线的磁场作用力。

电流i1在i2处产生的磁场为载有电流i2的导线单位长度线段受力为当i1和i2方向相同时,二者相吸;相反时,则相斥!同理,导线i1单位长度线段受电流i2的磁场作用力也等于这一数值电磁感应小结基本理论 1.理解法拉第电磁感应定律和楞次定律。

大学物理下知识点归纳

大学物理下知识点归纳

大学物理下知识点归纳大学物理下知识点归纳静电场知识点:◎掌握库仑定律,掌握电场强度及电场强度叠加原理,掌握点电荷的电场强度公式◎理解电通量的概念,掌握静电场的高斯定理及应用,能计算无限长带电直线、带点平面、带电球面及带电球的场强分布.◎理解静电力做功的特征,掌握电势及电势叠加原理,能计算一些简单电荷分布的电势◎理解电场强度与电势的关系,掌握静电场的环路定理◎理解导体的静电平衡条件,能计算一些简单导体上的电荷分布规律和周围的电场分布◎能进行简单电容器电容的计算(*平行板电容器电容)◎掌握各向同性电介质中D、E的关系及介质中的高斯定理◎掌握平行板电容器储存的静电能的计算重点:叠加原理求电场强度,静电场的高斯定理及应用,电势及电势的计算,静电场的环路定理,简单电容器电容的计算,介质中的高斯定理,电容器储存的静电能稳恒磁场知识点◎掌握毕奥萨伐尔定律,能计算直线电流、圆形电流的磁感应强度◎理解磁通量的概念,掌握稳恒磁场的高斯定理,掌握安培环路定理及其应用◎掌握洛仑兹力和安培力公式,能分析运动电荷在均匀磁场中的受力和运动,了解霍尔效应,掌握载流平面线圈在均匀磁场中的磁矩和力矩计算。

◎掌握磁场强度、各向同性磁介质中H、B的关系及介质中的安培环路定理重点:毕奥萨伐尔定律及计算,安培环路定理及其应用,安培定律及应用,磁力矩,磁介质中的安培环路定理电磁感应知识点:◎掌握法拉第电磁感应定律及应用◎掌握动生电动势及计算、理解感生电场与感生电动势,◎理解自感和互感,能进行简单的自感和互感系数的计算◎掌握磁场能量◎理解位移电流和全电流环路定理◎理解麦克斯韦方程组的积分形式及物理意义重点:法拉第电磁感应定律及应用,动生电动势及计算,磁场能量,麦克斯韦方程组的积分形式扩展阅读:大学物理知识点总结大学物理知识点总结第一章声现象知识归纳1.声音的发生:由物体的振动而产生。

振动停止,发声也停止。

2.声音的传播:声音靠介质传播。

真空不能传声。

大学物理下知识点总结

大学物理下知识点总结

D t
d D Id dt
D t
全电流定律:

L
H d l Ic Id
(2) B
全电流总连续。 Id 与Ic的区别:
Maxwell方程组和电磁波概要
S 0 i
1、Maxwell方程组: (会写会解释)

D dS q B E dl t dS 0 B dS
p nkT
三. 热力学第一定律
Q (E2 E1) A
dQ dE dA
1. 准静态过程系统的功(过程量)
A
V2
V1
pd V
d A pd V
Qp C p (T2 T1 )
1 (dQ ) p Cp dT
(定压摩尔热容)
当电流I的方向与回路l的方向符合右手螺旋关 系时, I为正,否则为负.
4、洛仑兹力与安培力:
Fm qv B
dF Id l B
I nS q v
5、均匀磁场中一段载流导线: (1)直导线: F Il B 与起、止点一样的直导线受力相同 (2)曲导线:

L
B dl o
I
i
i
叠加原理贯穿于以上三种方法。
电流分布 直 电 流 无限长 半无限长 导线所在直线上 圆 电 流 圆心处 弧电流圆心
磁场分布
μ0 I B 2 πa 0 I B 4 a
B0
BO
0 I
2R 0 I BO 2 R 2
长直载流密绕螺线管 载流密绕细螺绕环
mv R qB
2R T v
h v // T
均匀 E 匀变直运动

(完整word版)大学物理下期末知识点重点总结(考试专用)

(完整word版)大学物理下期末知识点重点总结(考试专用)
2、劈尖干涉(出现的是平行直条纹)
1)明、暗条纹的条件:
2)相邻明纹对应劈尖膜的厚度差为
3)相邻明(暗)纹间距为
3、牛顿环(同心环形条纹,明暗环条件同劈尖干涉)
1)明环和暗环的半径:
③相邻明环、暗环所对应的膜厚度差为 。
三、迈克尔逊干涉仪
1)可移动反射镜移动距离d与通过某一参考点条纹数目N的关系为
2)在某一光路中插入一折射率n,厚d的透明介质薄片时,移动条纹数N与n、d的关系为
2、狭义相对论的基本原理与时空的相对性。(1)在所有的惯性系中物理定律的表达形式都相同。(2)在所有的惯性系中真空中的光速都具有相同的量值。(3)同时性与所选择的参考系有关。(4)时间膨胀。在某一惯性参考系中同一地点先后发生的两个事件的时间间隔。(5)长度收缩。在不同的惯性系中测量出的同一物体的长度差。3、当速度足够快时,使用洛伦兹坐标变换和相对论速度变换。但是当运动速度远小于光速时,均使用伽利略变换。
4. 制冷机的制冷系数:
卡诺制冷机的制冷系数:
五. 热力学第二定律
开尔文表述:从单一热源吸取热量使它完全变为有用功的循环过程是不存在的(热机效率为 是不可能的)。
克劳修斯表述:热量不能自动地从低温物体传到高温物体。
两种表述是等价的.
4.机械振动
一. 简谐运动
振动:描述物质运动状态的物理量在某一数值附近作周期性变化。
k=0、1、2、3 称为0级、1级、2级、3级 明纹
3、缺级条件 七、光的偏振
1、马吕斯定律 ( 为入射偏振光的振动方向与偏振片的偏振化方向间的夹角)
2、布儒斯特定律 , 称为布儒斯特角或起偏角。
当入射角为布儒斯特角时,反射光为垂直于入射面的线偏振光,并且该线偏振光与折射光线垂直。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档