二次函数的性质顶点式
二次函数一般式化为顶点式的公式
二次函数一般式化为顶点式的公式二次函数是学习高中数学时非常重要的一个内容,它在几何图形的形状和位置、最大值和最小值、解析式等方面都有着重要的应用。
本文将从二次函数的定义开始,介绍二次函数的一般式和顶点式,并通过举例说明如何将一般式化为顶点式的公式。
希望通过本文的介绍,能够帮助读者更好地理解和应用二次函数。
首先,我们来回顾一下二次函数的定义。
二次函数是一个一般形式为y=ax^2+bx+c的函数,其中a、b、c为实数,且a≠0。
二次函数的图像是一个开口向上或向下的抛物线。
接下来,我们来介绍二次函数的一般式。
一般式的二次函数公式为y=ax^2+bx+c。
其中,a表示二次项系数,b表示一次项系数,c表示常数项。
在一般式中,我们可以通过系数a的正负来判断抛物线的开口向上还是向下。
当a>0时,抛物线开口向上;当a<0时,抛物线开口向下。
然而,一般式的表达方式并不直观,对于确定二次函数的抛物线的顶点、轴对称线等信息并不方便。
因此,我们可以将二次函数一般式进行化简,得到更简洁明了的顶点式。
顶点式的二次函数公式为y=a(x-h)^2+k。
其中,(h,k)表示抛物线的顶点坐标。
顶点式的形式更容易看出抛物线的顶点位置,也可以更方便地推算出抛物线的其他信息。
接下来,我们来介绍如何将一般式的二次函数化为顶点式的公式。
具体的步骤如下:步骤1:将一般式中的一次项化为二次项的系数的两倍的平方。
即将y=ax^2+bx+c变形为y=ax^2+bx+\frac{b^2}{4a^2}-\frac{b^2}{4a^2}+c。
步骤2:将一般式进行平移。
将前一步中得到的式子进行分组,化简。
即将y=ax^2+bx+\frac{b^2}{4a^2}-\frac{b^2-4ac}{4a^2},化简为y=a(x+\frac{b}{2a})^2+\frac{4ac-b^2}{4a^2}。
步骤3:化简得到顶点式。
将上一步中得到的式子进行平移和化简,得到y=a(x-h)^2+k的形式,其中,h=-\frac{b}{2a},k=\frac{4ac-b^2}{4a^2}。
二次函数及其图象和性质
二次函数及其图象和性质(二)一、内容提要(一)二次函数的解析式:1.一般式:y=ax2+bx+c;其中a≠0, a, b, c 为常数2.顶点式:y=a(x-h)2+k;其中a≠0, a, h, k 为常数,(h,k)为顶点坐标。
3.交点式:y=a(x-x1)(x-x2);其中a≠0, a, x1,x2为常数,x1,x2是抛物线与横轴两交点的横坐标。
注:这种形式可以作为了解内容,重点是前两种。
(二)二次函数的图象:抛物线(三)性质:1.对称轴,顶点坐标:2.开口方向:a>0, 抛物线开口向上,并向上无限延伸。
a<0, 抛物线开口向下,并向下无限延伸。
3.增减性:(Ⅰ)a>0时,当x时,y随x增大而减少当x>时,y随x增大而增大(Ⅱ)a<0时,当x时,y随x增大而增大当x>时,y随x增大而减小4.最值:(Ⅰ)a>0时,当x=时,(Ⅱ)a<0时,当x= 时,5.抛物线与y轴交点坐标:(0,C)特别地当C=0时,抛物线过原点,反之也成立。
6.抛物线与x轴的位置关系:(Ⅰ)Δ=b2-4ac<0,抛物线与x轴无交点。
(Ⅱ)Δ=b2-4ac=0,抛物线与x轴只有一个交点,交点坐标为(,0)(Ⅲ)Δ=b2-4ac>0,抛物线与x轴有两个交点,交点坐标为(,0)二、典型例题:例1.已知+3x+6是二次函数,求m的值,并判断此抛物线开口方向,写出顶点坐标及对称轴。
解:由题意得解得 m=-1∴y=-3x2+3x+6=,开口向下,顶点坐标(),对称轴x=。
说明:在y=a(x-h)2+k中,(h,k)是抛物线的顶点坐标,所以一般求抛物线的顶点坐标时,常常利用配方法把解析式转化为上述表达形式,直接写出顶点坐标,对称轴方程,也可以用顶点坐标公式()求得,解题时可根据系数的情况选择适当的方法。
例2.已知抛物线y=ax2+bx+c 如图所示,直线x=-1是其对称轴,(1)确定a,b,c, Δ=b2-4a c的符号,(2)求证:a-b+c>0, (3)当x取何值时,y>0, 当x取何值时y<0。
二次函数的图象和性质(含图)
(h,0) 在对称轴左侧,即 x < h 时, y 随 x 的增大而增大;在 对称轴右侧 ,即 x > h 时, y 随 x 的增大而减小
(h,k) 在对称轴左侧,即 x < h 时, y 随 x 的增大而减小;在 对称轴右侧 ,即 x > h 时, y 随 x 的增大而增大
(h,k) 在对称轴左侧,即 x < h 时, y 随 x 的增大而增大;在 对称轴右侧 ,即 x > h 时, y 随 x 的增大而减小
时,y 最小=
4ac b 2 4a
时,y 最大=
4ac b 2 4a
图像
a 的开口 a 越大 , 抛物线的 a 越大 , 抛物线的 a 越大 , 抛物线的 a 越大 , 抛物线的 程度 开口越小 开口越大 开口越小 开口越大 2 2 当 k>0 时,y=ax +k 由 y=ax 向上平 移∣k∣个单位;当 k<0 时,y=ax2 +k 由 y=ax2 向下平移∣k∣个单位
a 越大 , 抛物线的 a 越大 , 抛物线的 开口越小 开口越大 2 2 当 h>0 时,y=a(x-h) 由 y=ax 向右平 移∣h∣个单位;当 h<0 时,y=a(x-h)2 由 y=ax2 向左平移∣h∣个单位
平移情况
a 越大 , 抛物线的 a 越大 , 抛物线的 a 越大,抛物线的开口越小 开口越小 开口越大 2 ①当 h > 0,k > 0 时, y=a(x-h) +k 由 y=ax2 向右平移∣h∣个单位, 向上平移 ∣ k ∣个单位;②当 h > 0,k < 0 时, 2 2 y=a(x-h) +k 由 y=ax 向右平移∣h∣个 单位,向下平移∣ k ∣个单位;③当 h 4ac b 2 b h=,k= 2 2 <0,k>0 时,y=a(x-h) +k 由 y=ax 向 2a 4a 左平移∣h∣个单位,向上平移∣k∣个 单位; ④当 h<0, k<0 时, y=a(x-h)2+k 2 由 y=ax 向左平移∣h∣个单位,向下 平移∣k∣个单位
二次函数的图像和性质4,即顶点式课件
观察
(-2,2)
1 2 y x 2
x
–5 –4 –3 – 2 –1 O – 1 1 2 y x 2 3 –2 2 –3 (-2,-3) –4
1 2 3 4 5
二次函数y=a(x-h)2+k(a≠0)的图象和性质
抛物线 顶点坐标 对称轴 开口方向 最值
增减性
y=a(x-h)2+k (a>0)
指出下列函数图象的开口方向,对称轴和顶点坐标. 开口 对称轴 顶点坐标
2
1y 2x 3
5
2
向上 向下 向下 向上
直线x=3 直线x= –1 直线x=0 直线x=2
(3,–5) (–1,0)
2 y 0 . 5 x 1
2
3 2 3y x 1 4
2.抛物线的左右平移 (1)把二次函数y=(x+1) 2的图像, 沿x轴向左平移3个单位, 2 y=(x+4) 得到_____________的图像; y=(x+2)2+1 的图像, (2)把二次函数_____________ 沿x轴向右平移2个单位,得到y=x 2+1的图像.
3.抛物线的平移: (1)把二次函数y=3x 2的图像, 先沿x轴向左平移3个单位, 再沿y轴向下平移2个单位, 2-2 y=3(x+3) 得到_____________的图像; 2 y=-3(x+6) (2)把二次函数_____________的图像, 先沿y轴向下平移2个单位, 再沿x轴向右平移3个单位, 得到y=-3(x+3) 2-2的图像.
y
y ( x 2) 的图象。 3
5 x= - 2 4 x= 2 3 2 (-2,0) 1 (2,0) x –52 –4 –3 –2 –1O 1 2 3 4 5 1 1 2 –1 y x 2 y x 2 – 2 3 3 –3 1 2 y x –4 3 –5
数学顶点式
数学顶点式
顶点式是一种表示二次函数的方程形式。
它由一个带有变量的二次项、线性项和常数项组成,其中二次项的系数不能为零。
顶点式的形式为y = a(x - h)² + k,其中(a, h, k)表示顶点的坐标。
顶点式中,参数a决定了二次函数的开口方向和大小。
当a > 0时,函数开口向上;当a < 0时,函数开口向下。
顶点式中,参数(h, k)表示顶点的横纵坐标。
顶点即二次函数的最高点或最低点,是函数图像的关键特征。
使用顶点式可以方便地确定二次函数的顶点及开口方向。
也可以通过顶点式推断二次函数的图像特征,如对称轴、焦点等。
要将一般形式的二次函数转化为顶点式,可以利用配方法或求解完成平方的方式。
顶点式在几何分析、优化问题和物理学等领域中具有广泛的应用。
掌握顶点式有助于对二次函数的性质进行研究和应用。
中考数学知识讲解:二次函数顶点坐标公式
中考数学知识讲解:⼆次函数顶点坐标公式 店铺为您整理“中考数学知识讲解:⼆次函数顶点坐标公式”,欢迎阅读参考,更多有关内容请继续关注本⽹站中考栏⽬。
中考数学知识讲解:⼆次函数顶点坐标公式 ⼀、基本简介 ⼀般地,我们把形如y=ax2+bx+c(其中a,b,c是常数,a≠0)的函数叫做⼆次函数,其中a称为⼆次项系数,b为⼀次项系数,c为常数项。
x为⾃变量,y为因变量。
等号右边⾃变量的最⾼次数是2。
主要特点 “变量”不同于“未知数”,不能说“⼆次函数是指未知数的最⾼次数为⼆次的多项式函数”。
“未知数”只是⼀个数(具体值未知,但是只取⼀个值),“变量”可在⼀定范围内任意取值。
在⽅程中适⽤“未知数”的概念(函数⽅程、微分⽅程中是未知函数,但不论是未知数还是未知函数,⼀般都表⽰⼀个数或函数——也会遇到特殊情况),但是函数中的字母表⽰的是变量,意义已经有所不同。
从函数的定义也可看出⼆者的差别.如同函数不等于函数关系。
⼆次函数图像与X轴交点的情况 当△=b2-4ac>0时,函数图像与x轴有两个交点。
当△=b2-4ac=0时,函数图像与x轴只有⼀个交点。
当△=b2-4ac<0时,函数图像与x轴没有交点。
⼆、⼆次函数图像 在平⾯直⾓坐标系中作出⼆次函数y=ax^2+bx+c的图像,可以看出,⼆次函数的图像是⼀条永⽆⽌境的抛物线。
如果所画图形准确⽆误,那么⼆次函数图像将是由⼀般式平移得到的。
轴对称 ⼆次函数图像是轴对称图形。
对称轴为直线x=-b/2a 对称轴与⼆次函数图像唯⼀的交点为⼆次函数图像的顶点P。
特别地,当b=0时,⼆次函数图像的对称轴是y轴(即直线x=0)。
a,b同号,对称轴在y轴左侧. a,b异号,对称轴在y轴右侧. 顶点 ⼆次函数图像有⼀个顶点P,坐标为P(h,k)即(-b/2a,(4ac-b2/4a). 当h=0时,P在y轴上;当k=0时,P在x轴上。
即可表⽰为顶点式y=a(x-h)2+k。
26.1 二次函数性质和有关符号的判断(2课时)
练一练:
2、已知:二次函数y=ax2+bx+c的图象如图所示, 下列结论中下正确的是 ( ) y A、abc>0 B、b2-4ac>0
C、2a+b>0
D、4a-2b+c<0
-1 o
1 2
x
5.已知:一次函数y=ax+c与二次函数 y=ax2+bx+c,它们在同一坐标系中的大致 图象是图中的( C )
(1) y x 2 x 1 2 (2) y x 4 x 1 2
2
1 2 1 2 函数 能否由函数 例2 、 y x 4x 3 y x 2 2
的图象通过平移得到?若能,请说出平移的 过程。
解决二次函数平移问题口诀:
一提二套三平方 ;一般式化顶点式; 左加右减自变量;上加下减常数项。
分析:本例中自变量χ的取值范围不再是全体实数,因此画 出的图象是有限的一部分,先画出图象,由图象观察出最大 值和最小值.
y
1 O 2 3
解: y=χ2-2χ-3=(χ-1)2-4
∴顶点坐标为(1,-4).
χ
当2≤χ≤3时,由图象知
-4
当χ=2时, y最小值=-3;
当χ=-3时, y最大值=0.
二次函数的增减性应用
过关检测
求函数
y x 6 x 1 的图象可由怎样的
2
抛物线y=ax²(a≠0),经过怎样的平移后得到?
1.增减性
2.最值
二次函数y=ax2+bx+c(a≠0)的性质:
根据函数图象填空: y 抛物线y= -2x2的顶点坐标是 (0,0) ,
0
x 对称轴是 直线x=0 ,在
y轴左 侧,
二次函数顶点坐标公式的推导过程
二次函数顶点坐标公式的推导过程二次函数顶点坐标公式的推导过程二次函数的顶点式:y=a(x-h)2+k k(a≠0,a、h、k为常数),顶点坐标为(h,k)推导过程:y=ax2+bx+cy=a(x2+bx/a+c/a)y=a(x2+bx/a+b2/4a2+c/a-b2/4a2)y=a(x+b/2a)2+c-b2/4ay=a(x+b/2a)2+(4ac-b2)/4a对称轴x=-b/2a顶点坐标(-b/2a,(4ac-b2)/4a)拓展阅读:二次函数的顶点表达式y=a(x-h)²+k(a≠0,a、h、k为常数),顶点坐标为(h,k) [4] ,对称轴为直线x=h,顶点的位置特征和图像的开口方向与函数y=ax²的图像一样,当x=h时,y最大(小)值=k.有时题目会指出让你用配方法把一般式化成顶点式。
例:二次函数y的顶点(1,2)和另一任意点(3,10),求y 的解析式。
解:设y=a(x-1)²+2,把(3,10)代入上式,解得y=2(x-1)²+2。
注意:与点在平面直角坐标系中的平移不同,二次函数平移后的顶点式中,h》0时,h越大,图像的对称轴离y轴越远,且在x轴正方向上,不能因h前是负号就简单地认为是向左平移。
详细可分为下面几种情况:当h》0时,y=a(x-h)²的图像可由抛物线y=ax²向右平行挪动h个单位得到;当h》0时,y=a(x+h)²的图像可由抛物线y=ax²向左平行挪动h个单位得到;当h》0,k》0时,将抛物线y=ax²向右平行挪动h个单位,再向上挪动k个单位,就可以得到y=a(x-h)²+k的图像;当h》0,k》0时,将抛物线y=ax²向左平行挪动h个单位,再向下挪动k个单位,就可以得到y=a(x+h)²-k的图像;。
二次函数的三种表示方式
二次函数的三种表示方式1.二次函数的一般式:y=ax2+bx+c(a≠0);2.二次函数的顶点式:y=a(x+h)2+k (a≠0),其中顶点坐标是(-h,k).除了上述两种表示方法外,它还可以用另一种形式来表示.为了研究另一种表示方式,我们先来研究二次函数y=ax2+bx+c(a≠0)的图象与x轴交点个数.当抛物线y=ax2+bx+c(a≠0)与x轴相交时,其函数值为零,于是有ax2+bx+c=0.①并且方程①的解就是抛物线y=ax2+bx+c(a≠0)与x轴交点的横坐标(纵坐标为零),于是,不难发现,抛物线y=ax2+bx+c(a≠0)与x轴交点个数与方程①的解的个数有关,而方程①的解的个数又与方程①的根的判别式Δ=b2-4ac有关,由此可知,抛物线y=ax2+bx+c(a≠0)与x轴交点个数与根的判别式Δ=b2-4ac存在下列关系:(1)当Δ>0时,抛物线y=ax2+bx+c(a≠0)与x轴有两个交点;反过来,若抛物线y=ax2+bx+c(a≠0)与x轴有两个交点,则Δ>0也成立.(2)当Δ=0时,抛物线y=ax2+bx+c(a≠0)与x轴有一个交点(抛物线的顶点);反过来,若抛物线y=ax2+bx+c(a≠0)与x轴有一个交点,则Δ=0也成立.(3)当Δ<0时,抛物线y=ax2+bx+c(a≠0)与x轴没有交点;反过来,若抛物线y=ax2+bx+c(a≠0)与x轴没有交点,则Δ<0也成立.于是,若抛物线y=ax2+bx+c(a≠0)与x轴有两个交点A(x1,0),B(x2,0),则x1,x2是方程ax2+bx+c=0的两根,所以x 1+x2=,x1x2=,即=-(x1+x2),=x1x2.所以,y=ax2+bx+c=a( )= a[x2-(x1+x2)x+x1x2]=a(x-x1) (x-x2).由上面的推导过程可以得到下面结论:若抛物线y=ax2+bx+c(a≠0)与x轴交于A(x1,0),B(x2,0)两点,则其函数关系式可以表示为y=a(x-x1) (x-x2) (a≠0).这样,也就得到了表示二次函数的第三种方法:3.二次函数的交点式:y=a(x-x1) (x-x2) (a≠0),其中x1,x2是二次函数图象与x轴交点的横坐标.今后,在求二次函数的表达式时,我们可以根据题目所提供的条件,选用一般式、顶点式、交点式这三种表达形式中的某一形式来解题.。
二次函数的变形和性质的推理归纳
二次函数的变形和性质的推理归纳一、二次函数的基本形式1.一般形式:y = ax^2 + bx + c (a ≠ 0)2.顶点式:y = a(x - h)^2 + k3.标准式:y = a(x - m)^2 + n二、二次函数的变形1.横向平移:h → h + p,m → m + p2.纵向伸缩:a → k * a (k > 1 或 0 < k < 1)3.横向拉伸:a → k * a (k > 1 或 0 < k < 1),m → m + p4.旋转:顶点(h, k) → (h + p, k + q)三、二次函数的性质1.开口方向:a > 0 时,开口向上;a < 0 时,开口向下2.顶点坐标:(-b/2a, c - b^2/4a)3.对称轴:x = -b/2a4.判别式:Δ = b^2 - 4ac5.Δ > 0:抛物线与x轴有两个交点6.Δ = 0:抛物线与x轴有一个交点7.Δ < 0:抛物线与x轴无交点四、二次函数的增减性1. a > 0 时:2.x < -b/2a 时,y随x增大而减小3.-b/2a < x < +∞ 时,y随x增大而增大4. a < 0 时:5.x < -b/2a 时,y随x增大而增大6.-b/2a < x < +∞ 时,y随x增大而减小五、二次函数的图像特点1.顶点:最小值(a > 0)或最大值(a < 0)2.开口:a > 0 时,向上;a < 0 时,向下3.交点:Δ > 0 时,与x轴有两个交点;Δ = 0 时,与x轴有一个交点;Δ < 0 时,与x轴无交点4.对称性:以直线x = -b/2a为对称轴六、二次函数的应用1.最值问题:求函数在定义域内的最大值或最小值2.交点问题:求函数与x轴的交点坐标3.范围问题:求函数值域4.几何问题:求抛物线与坐标轴围成的三角形面积等七、二次函数的变换规律1.横向平移:改变顶点横坐标2.纵向伸缩:改变函数值3.横向拉伸:改变顶点横坐标,同时改变函数值4.旋转:改变顶点坐标八、二次函数与现实生活的联系1.抛物线:如投篮、射击、跳伞等运动的轨迹2.二次函数模型:如物体运动、人口增长、商品销售等领域的数学模型以上是对二次函数的变形和性质的推理归纳的知识点总结,希望能对您的学习有所帮助。
二次函数的性质
二次函数的性质
二次函数的性质主要是表现在抛物线的性状上。
下面从二次函数的三种表达式的参数入手,讨论二次函数性质。
1、二次函数y=ax^2+bx+c (a不等于0)中,
(1)a的符合性质决定了抛物线的开口方向;当a>0时,开口向上,函数下凹;当a<0时,开口向下,函数上凸.
(2)a的符合性质又决定了函数的单调性;当a>0时,先减后增;当a<0时,先增后减.
(3)a的绝对值大小解决了抛物线开口的大小,绝对值越大,开口就越大.
(4)c是抛物线与y轴的交点的纵坐标。
即抛物线与y轴交于点(0,c).
(5)抛物线有轴对称性。
其对称轴为y=-b/(2a),顶点坐标是
(-b/(2a),(4ac-b^2)/(4a)).
2、二次函数的顶点式y=a(x-h)^2+k (a不等于0)中,
(1)抛物线的对称轴是y=h;
(2)抛物线的顶点坐标是(h,k).
(3)当a>0时,函数有最小值y=k; 当a<0时,函数有最大值y=k;
(4)当h=0时,函数是偶函数.
3、二次函数的交点式y=a(x-x1)(x-x2) (a不等于0)中,
x1, x2表示抛物线与x轴的两个交点的横坐标,即抛物线与横轴交于点(x1,0)和点(x2,0).
4、二次函数和一元二次方程一样,有判别式b^2-4ac,
(1)当b^2-4ac>0时,抛物线与x轴有两个交点;
(2)当b^2-4ac=0时,抛物线与x轴有一个交点;顶点式中h=0;
(3)当b^2-4ac<0时,抛物线与x轴没有交点;抛物线没有交点式.。
二次函数的顶点式图像与性质教案
二次函数的顶点式图像与性质教案第一章:二次函数的顶点式图像1.1 引入二次函数的一般形式:y = ax^2 + bx + c1.2 解释二次函数的顶点式图像:y = a(x h)^2 + k,其中(h, k)为顶点坐标1.3 探讨顶点式图像的特点:开口方向、对称轴、顶点坐标等1.4 利用顶点式图像分析二次函数的增减性、最大值或最小值等性质第二章:开口方向与a的取值2.1 分析a的取值对开口方向的影响:a > 0时,开口向上;a < 0时,开口向下2.2 利用顶点式图像观察不同开口方向的二次函数特点2.3 引导学生通过观察图像判断开口方向及a的取值范围第三章:对称轴与顶点坐标3.1 解释二次函数的对称轴公式:x = h3.2 探讨对称轴与顶点坐标的关系:对称轴经过顶点3.3 利用顶点式图像分析二次函数的对称性质3.4 引导学生通过图像找到对称轴及顶点坐标第四章:增减性与最值4.1 解释二次函数的增减性:a > 0时,函数在顶点左侧递减,在顶点右侧递增;a < 0时,函数在顶点左侧递增,在顶点右侧递减4.2 探讨最值的求法:当a > 0时,最小值为顶点的y坐标;当a < 0时,最大值为顶点的y坐标4.3 利用顶点式图像观察二次函数的最值及增减性4.4 引导学生通过图像分析二次函数的最值和增减性第五章:实际问题与二次函数的顶点式图像5.1 引入实际问题:如抛物线运动、物体的抛物线轨迹等5.2 解释实际问题中的二次函数顶点式图像与性质的应用5.3 利用顶点式图像解决实际问题,如求物体的最大高度等5.4 引导学生将实际问题与二次函数的顶点式图像和性质相结合,提高解决问题的能力第六章:二次函数图像的平移6.1 回顾一次函数图像的平移规律:上加下减,左加右减6.2 介绍二次函数图像的平移规律:上加下减,左加右减,改变顶点坐标6.3 利用顶点式图像展示二次函数图像的平移过程6.4 引导学生通过实际例子,掌握二次函数图像的平移规律第七章:二次函数图像的叠加7.1 解释二次函数图像的叠加原理:两个函数图像在同一坐标系中绘制,观察交点情况7.2 利用顶点式图像展示两个二次函数图像的叠加情况7.3 探讨二次函数图像的叠加规律:开口方向、对称轴、顶点坐标等7.4 引导学生通过实际例子,理解二次函数图像的叠加原理第八章:二次函数图像与坐标轴的交点8.1 分析二次函数图像与x轴的交点:令y = 0,解方程得到x的值8.2 分析二次函数图像与y轴的交点:令x = 0,解方程得到y的值8.3 利用顶点式图像找出二次函数图像与坐标轴的交点8.4 引导学生通过实际例子,求解二次函数图像与坐标轴的交点第九章:二次函数图像的应用9.1 引入实际应用场景:如抛物线运动、物体的抛物线轨迹等9.2 解释实际应用中二次函数图像的重要性9.3 利用顶点式图像解决实际应用问题,如求物体的最大速度等9.4 引导学生将实际应用与二次函数图像相结合,提高解决问题的能力10.2 强调二次函数图像在实际问题中的应用价值10.3 提出拓展问题,激发学生对二次函数图像与性质的深入研究兴趣10.4 引导学生进行拓展练习,巩固所学知识重点和难点解析一、二次函数的顶点式图像重点和难点解析:理解顶点式图像的开口方向、对称轴、顶点坐标等特点是教学的重点,也是学生理解的难点。
二次函数的顶点式图像与性质教案
二次函数的顶点式图像与性质教案第一章:二次函数的顶点式图像1.1 理解二次函数的一般形式:y = ax^2 + bx + c1.2 引入顶点式的概念:y = a(x h)^2 + k,其中(h, k)为顶点坐标1.3 绘制二次函数的顶点式图像,观察顶点、开口方向、对称轴等特征1.4 探讨顶点式图像与一般形式图像的关系第二章:顶点式图像的性质2.1 理解顶点式图像的顶点坐标对图像的影响2.2 探讨顶点式图像的开口方向与a的关系2.3 分析顶点式图像的对称轴方程:x = h2.4 探讨顶点式图像的增减性:a > 0时,y随x增大而增大;a < 0时,y先增大后减小第三章:二次函数的顶点式与一元二次方程3.1 理解二次函数的顶点式与一元二次方程的根的关系3.2 利用顶点式将二次函数转化为一元二次方程:y = a(x h)^2 + k = 03.3 求解一元二次方程,得出x的值3.4 分析一元二次方程的根与顶点式图像的交点关系第四章:实际问题中的应用4.1 引入实际问题,如:抛物线与坐标轴的交点、物体运动等4.2 利用顶点式图像分析实际问题中的最大值、最小值等4.3 探讨实际问题中对称性的应用4.4 分析实际问题中开口方向与实际情况的关系第五章:总结与拓展5.1 总结二次函数的顶点式图像与性质的主要内容5.2 探讨二次函数的顶点式图像在实际问题中的应用5.3 提出拓展问题,如:二次函数的顶点式图像与线性函数的关系等5.4 鼓励学生自主研究,培养学生的探究能力第六章:对称轴与顶点的关系6.1 回顾顶点式y = a(x h)^2 + k 中对称轴的定义6.2 分析对称轴与顶点坐标的h 值的关系6.3 探讨对称轴在实际问题中的应用,如抛物线射击、几何图形的对称性等6.4 进行对称轴相关的练习题,巩固学生对对称轴的理解第七章:开口方向与二次函数的性质7.1 引入开口方向的概念,分析a 值对开口方向的影响7.2 探讨开口方向与顶点式图像的关系7.3 分析开口方向在实际问题中的应用,如球的体积、光学问题等7.4 进行开口方向相关的练习题,帮助学生理解开口方向的意义第八章:增减性分析8.1 回顾顶点式图像的增减性:a > 0 时,y 随x 的增大而增大;a < 0 时,y 的变化为先增大后减小8.2 分析增减性在实际问题中的应用,如气温变化、经济曲线等8.3 进行增减性相关的练习题,让学生掌握增减性的分析方法8.4 探讨增减性与对称轴、开口方向的关系第九章:实际问题中的二次函数应用9.1 引入复杂的实际问题,如利润最大化、路程优化等9.2 利用二次函数的顶点式图像分析实际问题,求解最优解9.3 探讨实际问题中二次函数的多种应用场景,如物理运动、工程设计等9.4 进行实际问题相关的练习题,提高学生解决实际问题的能力第十章:总结与拓展10.1 回顾本节课的主要内容,总结二次函数的顶点式图像与性质的关键点10.2 鼓励学生进行拓展学习,如研究三次函数、高次函数的图像与性质10.3 提出课程延伸问题,如二次函数的顶点式图像在、大数据等领域的应用10.4 布置课后作业,巩固学生对二次函数顶点式图像与性质的理解和应用重点和难点解析一、顶点式图像的绘制与观察:理解顶点式y = a(x h)^2 + k 并能绘制出相应的图像,观察顶点、开口方向和对称轴等特征。
二次函数公式:顶点式、交点式、两根式
一般地,自变量x和因变量y之间存在如下关系:(1)一般式:y=ax2+bx+c (a,b,c为常数,a0),则称y为x的二次函数。
顶点坐标(-b/2a,(4ac-b^2)/4a)(2)顶点式:y=a(x-h)2+k或y=a(x+m)^2+k(a,h,k为常数,a0)。
(3)交点式(与x轴):y=a(x-x1)(x-x2)(4)两根式:y=a(x-x1)(x-x2),其中x1,x2是抛物线与x轴的交点的横坐标,即一元二次方程ax2+bx+c=0的两个根,a0.说明:(1)任何一个二次函数通过配方都可以化为顶点式y=a(x-h)2+k,抛物线的顶点坐标是(h,k),h=0时,抛物线y=ax2+k的顶点在y轴上;当k=0时,抛物线a(x-h)2的顶点在x轴上;当h=0且k=0时,抛物线y=ax2的顶点在原点。
(2)当抛物线y=ax2+bx+c 与x轴有交点时,即对应二次方程ax2+bx+c=0有实数根x1和x2存在时,根据二次三项式的分解公式ax2+bx+c=a(x-x1)(x-x2),二次函数y=ax2+bx+c可转化为两根式y=a(x-x1)(x-x2)。
(完整版)二次函数图象和性质知识点总结
二次函数的图象和性质知识点总结一、知识点回顾1. 二次函数解析式的几种形式:①一般式:(a 、b 、c 为常数,a ≠0) ②顶点式:(a 、h 、k 为常数,a ≠0),其中(h ,k )为顶点坐标。
③交点式:,其中是抛物线与x 轴交点的横坐标,即一元二次方程的两个根,且a ≠0,(也叫两根式)。
2. 二次函数的图象 ①二次函数的图象是对称轴平行于(包括重合)y 轴的抛物线,几个不同的二次函数,如果a 相同,那么抛物线的开口方向,开口大小(即形状)完全相同,只是位置不同。
②任意抛物线可以由抛物线经过适当的平移得到,移动规律可简记为:[左加右减,上加下减],具体平移方法如下表所示。
③在画的图象时,可以先配方成的形式,然后将的图象上(下)左(右)平移得到所求图象,即平移法;也可用描点法:也是将配成的形式,这样可以确定开口方向,对称轴及顶点坐标。
然后取图象与y 轴的交点(0,c ),及此点关于对称轴对称的点(2h ,c );如果图象与x 轴有两个交点,就直接取这两个点(x 1,0),y ax bx c =++2y a x h k =-+()2y a x x x x =--()()12x x 12,ax bx c 20++=y ax bx c =++2y ax bx c =++2y a x h k =-+()2y ax =2y ax bx c =++2y a x h k =-+()2y ax =2y ax bx c =++2y a x h k =-+()2(x 2,0)就行了;如果图象与x 轴只有一个交点或无交点,那应该在对称轴两侧取对称点,(这两点不是与y 轴交点及其对称点),一般画图象找5个点。
a >0 a <0 a >0 a <0(1)抛物线开口向上,(1)抛物线开口向下,(1)抛物线开口(1)抛物线开4. 求抛物线的顶点、对称轴和最值的方法①配方法:将解析式化为的形式,顶点坐标为y ax bx c =++2y a x h k =-+()2(h ,k ),对称轴为直线,若a >0,y 有最小值,当x =h 时,;若a <0,y 有最大值,当x =h 时,。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
教学目标
1、利用计算机制作动画(让学观察抛物线的形成过程)培养学生以运动变化的观点来观察问题、分析问题、解决问题的意识。
2、会用描点法画出二次函数的图像,能通过图像认识二次函数的性质
3、通过具体例子,在探索二次函数图像和性质的过程中,学会利用配方法将数字系数的二次函数表达式表示成:y=a(x-h)^2+k的形式,从而确定二次函数图像的顶点和对称轴。
用媒体方式呈现,让学生填空,然后提交.
让学生结合老师强调的作图注意事项,再画函数的图图像。然后老师用画函数工具作出的图像。由学生观察作比较。教会学生用画函数工具画图,让学生比较两种画法,弄清学生自己所画的不足之处.
用几何画板呈现已画好的函数图象,让学生观察图象上的点变化的过程,确认函数值随着自变量的变化而变化的规律.
老师作总结.归纳:(1)二次函数的图象是抛物线,并且开口向上;(2)二次函数的图象的对称轴是轴;(3)抛物线与对称轴的交点叫做抛物线的顶点,那么二次函数的顶点坐标是;(4)在对称轴的左边随着的增大而减小;在对称轴的右边随着的增大而增大.
利用画函数图象工具。观察、比较两图象
列函数的图象,并观察图象,说出图象性质:之间的关系。
学生观察、总结、交流
利用画函数图象工具.
利用画函数图象工具.
利用画函数图象工具.
利用画函数图象工具.教师指出就叫抛物线的顶点式。
归纳:由函数的图象沿对称轴向上(下)平移个单位(为向上,为向下),向右(左)平移个单位(为向右,为向左)得到函数的图象.
学生努力把它变形为顶点式
通过网络完成,然后反馈.
牛(3)已知函数是二次函数,它的图象开口,当x时,y随x的增大而增大.
2、会用工具画出、、、这几类函数的小图象,通过比较,了解这几类函数的性质.这几类函数、、、3、熟练掌握二次函数图象间的平移规律.结顶点式的形式,从而确化成4、能通过配方把二次函数
定这类二次函数的性质.
1.在同一直角坐标系中,画出下列函数的图象.作(1)(2)2.填空:(1)抛物线,当x=时,y有最值,是.(2)当m=时,抛物线开口向下.(3)已知函数是二次函数,它的图象开口,当的增大而增大.随xyx时,,求出它的对称轴和顶点坐标,并画出.已知抛物线3函数的图象..利用配方法,把下列函数写成顶点式的形式,并写出4它们的图象的开口方向、对称轴和顶点坐业标.
b.向左平移4个单位,再向下平移1个单位
c.向右平移4个单位,再向上平移1个单位
d.向右平移4个单位,再向下平移1个单位
(8)抛物线可由抛物线向平移个单位,再
向平移个单位而得到.试
(9)二次函数的对称轴是.
(10)二次函数的图象的顶点是,当x时,y随x的增大而减小.
1、会用描点法画出二次函数的图象,概括出图象的特点及函数的性质.
教学方法:
运用问题解决理论指导教学,力求体现“自主学习、动手实践、合作交流”的教学理念。
教学设备:计算机、网络
[教学内容]
步骤教学内容呈现方式
复我们已经学习了一次函数与反比例函数,那么一次函.数,反比例函数的图像分别是、习)二次函数的图象是什么呢?(课前已经做过1)画出图像经过了哪些过程?((2)列表时自变量取了几个数?哪几个数?)找几位同学展示一下自己画的图像。(3(4)想一想,列表时如何合理选值?以什么数为中心?当x取互为相反数的值时,y的值如何?的图象,你能得出什么结论?(2)观察函数探索的图象的性质.让学生归纳函数.利用画函数图象工具在同一直角坐标系下画出下1一、
(4)抛物线的开口,对称轴是,顶点坐标
是,它可以看作是由抛物线向平移个单位得
到的.
(5)函数,当x时,ຫໍສະໝຸດ 数值y随x的增大而减小.当x刀时,函数取得最值,最值y=.
(6)画图填空:抛物线的开口,对称轴是,
顶点坐标是,它可以看作是由抛物线向平
移个单位得到的.
(7)将抛物线如何平移可得到抛物线()
a.向左平移4小个单位,再向上平移1个单位
4、通过一般式与顶点式的互化过程,了解互化的必要性。培养学生认识“事物都是相互联系、相互制约”的辩证唯物主义观点。
5、在经历“观察、猜测、探索、验证、应用”的过程中,渗透从“形”到“数”和从“数”到“形”的转化,培养了学生的转化、迁移能力,实现感性到理性的升华。
教学重点:二次函数的性质
教学难点:通过研究y=ax2、y=ax2+k、y=a(x-h)2、y=a(x-h)2+k这几类函数图像,得出平移规律,并总结概括出二次函数的性质。
经过上面的教学过程,多媒体的应用使得教学更为直观、形象,节约了课堂时间,提高了课堂效率。使学生对于教难理解的二次函数的性质可以在有趣的学习探索过程中轻松的掌握
;实(1).(2)
.练习:利用画函数图象工具在同一直角坐标系下画出2下列函数的图象,并观察图象,说出图象性质:;)(1.)(2.利用画函数图象工具在同一直角坐标系下画出下1二、的图象,并观察图象,说出图象性质,寻找两图列函数象之间的关系:
(1),;(2),..练习:利用画函数图象工具在同一直角坐标系下画出2下列函数的图象:,,观察三条抛物线的相互关系,并分别指出它们的开口方的开口方向向及对称轴、顶点的位置.你能说出抛物线践及对称轴、顶点的位置吗?.利用画函数图象工具在同一直角坐标系下画出下1三、的图象,并观察图象,说出图象性质,寻找三个列函数图象之间的关系:;(1),
(2),;(3),.? 2.不画出图象,你能说明抛物线与之间的关系吗.利用画函数图象工具在同一直角坐标系下画出下四、1的图象,并观察图象,说出图象性质,寻找三个列函数图象之间的关系:,(1),;(2);,,.,,)(3
2.把抛物线向左平移3个单位,再向下平移4个单位,
所得的抛物线的函数关系式为.一讨的图象可由函数怎样平移而得到?二次函数论能否写出它的一般式.1.由二次函数解析式实践的图象怎样画,它的开口方向、对称.讨论二次函数2二轴和顶点坐标分别是什么?y时,x=)抛物线1(,当有最值,是.开口向下.时,抛物线m=)当2(