七年级数学期末考试试题 (1)

合集下载

人教版七年级数学第二学期七年级期末质量检测试题及答案一

人教版七年级数学第二学期七年级期末质量检测试题及答案一

人教版七年级数学第二学期七年级期末质量检测试题及答案一、选择题:本题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.(4分)下列调查中,适宜采用普查方式的是()A.调查综艺节目《极限挑战》的收视率B.调查莆田小学生对莆仙戏表演艺术的喜爱程度C.调查某社区居民对莆田旅游景区的知晓率D.调查我国首艘货运飞船“天舟一号”的零部件质量2.(4分)下面几个数:﹣1,3.14,0,,,π,,其中无理数的个数有()个.A.1B.2C.3D.43.(4分)若点P在y轴负半轴上,则点P的坐标有可能是()A.(﹣1,0)B.(0,﹣2)C.(3,0)D.(0,4)4.(4分)已知直线m∥n,将一块含30°角的直角三角板ABC按如图方式放置(∠ABC=30°),其中A,B两点分别落在直线m,n上,若∠1=20°,则∠2的度数为()A.20°B.30°C.45°D.50°5.(4分)如图天平右盘中的每个砝码的质量都是1g,则物体A的质量m(g)的取值范围在数轴上可表示为()A.B.C.D.6.(4分)如图,是做课间操时,小明,小刚和小红三人的相对位置,如果用(4,5)表示小明的位置,(2,4)表示小刚的位置,则小红的位置可表示为()A.(0,0)B.(0,1)C.(1,0)D.(1,2)7.(4分)如图是一块矩形ABCD的场地,AB=102m,AD=51m,从A、B两处入口中的路宽都为1m,两小路汇合处路宽为2m,其余部分种植草坪,则草坪的面积为()A.5050m2B.4900m2C.5000m2D.4998m28.(4分)已知x、y满足方程组,则x+y的值是()A.3B.5C.7D.99.(4分)某班有48位同学,在一次数学检测中,分数只取整数,统计其成绩,绘制出频数分布直方图(横半轴表示分数,把50.5分到100.5分之间的分数分成5组,组距是10分,纵半轴表示频数)如图所示,从左到右的小矩形的高度比是1:3:6:4:2,则由图可知,其中分数在70.5~80.5之间的人数是()A.9B.18C.12D.610.(4分)下列命题真命题的个数有()①经过一点有且只有一条直线与已知直线平行②直线外一点与直线上各点连接的所有线段中,垂线段最短③若a>b,则c﹣a>c﹣b④同位角相等A.3个B.2个C.1个D.0个二、填空题:本题共6小题,每小题4分,共24分.11.(4分)比较大小:2(填“<”、“=”、“>”).12.(4分)9的平方根是.13.(4分)如图,直线AB、CD相交于点O,射线OM平分∠AOC,∠MON=90°.若∠BON=50°,则∠BOD 的度数为.14.(4分)若方程组的解是一个直角三角形的两条直角边,则这个直角三角形的面积为.15.(4分)莆田市计划在荔城区投放一批“共享单车”,这批单车分为A,B两种不同款型,其中A型车单价1000元,B型车单价800元.在“共享单车”试点,投放A,B两种款型的单车共100辆,总价值88000元.试问本次试点投放的A型车与B型车各多少辆?设本次试点投放的A型车x辆、B型车y辆.根据题意,可列方程组.16.(4分)把长方形ABCD沿着直线EF对折,折痕为EF,对折后的图形EHGF的边FG恰好经过点C,若∠AFE =55°,则∠CEB'=.三、解答题17.(8分)计算:++|1﹣|18.(8分)解不等式组并将解集在数轴上表示出来.19.(8分)如图,点F在线段AB上,点E,G在线段CD上,FG∥AE,∠1=∠2.(1)求证:AB∥CD;(2)若BC平分∠ABD,∠D=112°,求∠C的度数.20.(8分)在平面直角坐标系中,△ABC的位置如图所示,把△ABC先向右平移3个单位,再向下平移4个单位可以得到△A'B'C'.(1)画出平移后的图形△A′B′C′;(2)请写出平移后A′B′C′的各个顶点A′,B′,C′的坐标.21.(8分)典典同学学完统计知识后,随机调查了她所在辖区若干名居民的年龄,将调查数据绘制成如下扇形和条形统计图:请根据以上不完整的统计图提供的信息,解答下列问题:(1)典典同学共调查了名居民的年龄,扇形统计图中a=,b=;(2)补全条形统计图;(3)若该辖区年龄在0~14岁的居民约有3500人,请估计年龄在15~59岁的居民的人数.22.(10分)已知关于xy的方程组的解满足x≥0,y<1(1)求m的取值范围;(2)在m的取值范围内,当m取何整数时,关于x的不等式2x﹣mx>2﹣m的解集为x<1?23.(10分)为了丰富学生的课外活动,学校决定购进5副羽毛球拍和m只羽毛球,已知一副羽毛球拍的价格是一只羽毛球的价格的15倍,用50元可以买一副羽毛球拍和10只羽毛球;(1)一副羽毛球拍和一只羽毛球的价格各是多少元?(2)甲乙两商店举行促销活动,甲商店给出的优惠是:所有商品打八折;乙商店的优惠是:买一副羽毛球拍送n只羽毛球,通过调查发现,如果只到一个商店购买5副羽毛球拍和26只羽毛球时,到甲商店更划算;若只购买一副羽毛球拍和n只羽毛球,则乙商店更划算.求n的值.(3)在(2)的条件下,当m=30时,学校购买这批羽毛球拍和羽毛球最少需要元(直接写出结果).24.(12分)阅读材料:关于x,y的二元一次方程ax+by=c有一组整数解则方程ax+by=c的全部整数解可表示为(t为整数).问题:求方程7x+19y=213的所有正整数解.小明参考阅读材料,解决该问题如下:解:该方程一组整数解为则全部整数解可表示为(t为整数).因为解得.因为t为整数,所以t=0或﹣1.所以该方程的正整数解为.(1)方程3x﹣5y=11的全部整数解表示为:(t为整数),则θ=;(2)请你参考小明的解题方法,求方程2x+3y=24的全部正整数解;(3)方程19x+8y=1908的正整数解有多少组?请直接写出答案.25.(14分)新定义:在平面直角坐标系中,过一点分别作坐标轴的垂线,若与坐标轴围成的长方形的周长与面积相等,则这个点叫做“和谐点”.例如,如图①,过点P分别作x轴、y轴的垂线,与坐标轴围成长方形OAPB 的周长与面积相等,则点P是“和谐点”.(1)点M(1,2)“和谐点”(填“是”或“不是”);若点P(a,3)是第一象限内的一个“和谐点”,是关于x,y的二元一次方程y=﹣x+b的解,求a,b的值.(2)如图②,点E是线段PB上一点,连接OE并延长交AP的延长线于点Q,若点P(2,3),S△OBE﹣S△EPQ =2,求点Q的坐标.(3)如图③,连接OP,将线段OP向右平移3个单位长度,再向下平移1个单位长度,得到线段O1P1.若M 是直线O1P1上的一动点,连接PM、OM,请画出图形并写出∠OMP与∠MPP1,∠MOO1的数量关系.参考答案与试题解析一、选择题:本题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.(4分)下列调查中,适宜采用普查方式的是()A.调查综艺节目《极限挑战》的收视率B.调查莆田小学生对莆仙戏表演艺术的喜爱程度C.调查某社区居民对莆田旅游景区的知晓率D.调查我国首艘货运飞船“天舟一号”的零部件质量【分析】普查和抽样调查的选择.调查方式的选择需要将普查的局限性和抽样调查的必要性结合起来,具体问题具体分析,普查结果准确,所以在要求精确、难度相对不大,实验无破坏性的情况下应选择普查方式,当考查的对象很多或考查会给被调查对象带来损伤破坏,以及考查经费和时间都非常有限时,普查就受到限制,这时就应选择抽样调查.【解答】解:A、调查综艺节目《极限挑战》的收视率,应用抽样调查,故此选项不合题意;B、调查莆田小学生对莆仙戏表演艺术的喜爱程度,应用抽样调查,故此选项不合题意;C、调查某社区居民对莆田旅游景区的知晓率,应用抽样调查,故此选项不合题意;D、调查我国首艘货运飞船“天舟一号”的零部件质量,适合采用全面调查方式,故此选项符合题意.故选:D.2.(4分)下面几个数:﹣1,3.14,0,,,π,,其中无理数的个数有()个.A.1B.2C.3D.4【分析】根据无理数是无限不循环小数,可得答案.【解答】解:﹣1,0,,是整数,属于有理数;3.14是有限小数,属于有理数;是分数,属于有理数;无理数有:,π共2个.故选:B.3.(4分)若点P在y轴负半轴上,则点P的坐标有可能是()A.(﹣1,0)B.(0,﹣2)C.(3,0)D.(0,4)【分析】直接利用y轴负半轴上点的坐标特点得出答案.【解答】解:∵点P在y轴负半轴上,∴点P的坐标有可能是:(0,﹣2).故选:B.4.(4分)已知直线m∥n,将一块含30°角的直角三角板ABC按如图方式放置(∠ABC=30°),其中A,B两点分别落在直线m,n上,若∠1=20°,则∠2的度数为()A.20°B.30°C.45°D.50°【分析】根据平行线的性质即可得到结论.【解答】解:∵直线m∥n,∴∠2=∠ABC+∠1=30°+20°=50°,故选:D.5.(4分)如图天平右盘中的每个砝码的质量都是1g,则物体A的质量m(g)的取值范围在数轴上可表示为()A.B.C.D.【分析】根据图示,可得不等式组的解集,可得答案.【解答】解:由图示得A>1,A<2,故选:A.6.(4分)如图,是做课间操时,小明,小刚和小红三人的相对位置,如果用(4,5)表示小明的位置,(2,4)表示小刚的位置,则小红的位置可表示为()A.(0,0)B.(0,1)C.(1,0)D.(1,2)【分析】根据已知两点的坐标确定坐标系;再确定点的坐标.【解答】解:根据题意:由(4,5)表示小明的位置,(2,4)表示小刚的位置,可以确定平面直角坐标系中x 轴与y轴的位置,则小红的位置可表示为(1,2).故选:D.7.(4分)如图是一块矩形ABCD的场地,AB=102m,AD=51m,从A、B两处入口中的路宽都为1m,两小路汇合处路宽为2m,其余部分种植草坪,则草坪的面积为()A.5050m2B.4900m2C.5000m2D.4998m2【分析】本题要看图解答.从图中可以看出剩余部分的草坪正好可以拼成一个长方形,然后根据题意求出长和宽,最后可求出面积.【解答】解:由图片可看出,剩余部分的草坪正好可以拼成一个长方形,且这个长方形的长为102﹣2=100m,这个长方形的宽为:51﹣1=50m,因此,草坪的面积=50×100=5000m2.故选:C.8.(4分)已知x、y满足方程组,则x+y的值是()A.3B.5C.7D.9【分析】方程组两方程左右两边相加,即可求出x+y的值.【解答】解:,①+②得:3(x+y)=15,则x+y=5.故选:B.9.(4分)某班有48位同学,在一次数学检测中,分数只取整数,统计其成绩,绘制出频数分布直方图(横半轴表示分数,把50.5分到100.5分之间的分数分成5组,组距是10分,纵半轴表示频数)如图所示,从左到右的小矩形的高度比是1:3:6:4:2,则由图可知,其中分数在70.5~80.5之间的人数是()A.9B.18C.12D.6【分析】由频数分布直方图上的小长方形的高为频数,即高之和为总数,知道高度比,即可算出个范围的频数,即各个范围的人数.【解答】解:由图形可知,从左到右的小矩形的高度比是1:3:6:4:2,且总数为48,即各范围的人数分别为3,9,18,12,6.所以分数在70.5~80.5之间的人数是18人.故选:B.10.(4分)下列命题真命题的个数有()①经过一点有且只有一条直线与已知直线平行②直线外一点与直线上各点连接的所有线段中,垂线段最短③若a>b,则c﹣a>c﹣b④同位角相等A.3个B.2个C.1个D.0个【分析】分别根据平行线的判定与性质以及垂线段和不等式的性质分别判断得出即可.【解答】解:①经过一点有且只有一条直线与已知直线平行,必须是同一平面内,过直线外一点,经过一点有且只有一条直线与已知直线平行,原命题是假命题;②直线外一点与直线上各点连接的所有线段中,垂线段最短,是真命题;③若a>b,则c﹣a<c﹣b,原命题是假命题;④两直线平行,同位角相等,原命题是假命题;故选:C.二、填空题:本题共6小题,每小题4分,共24分.11.(4分)比较大小:2>(填“<”、“=”、“>”).【分析】利用的取值范围进而比较得出即可.【解答】解:∵1<<2,∴2>.故答案为:>.12.(4分)9的平方根是±3.【分析】直接利用平方根的定义计算即可.【解答】解:∵±3的平方是9,∴9的平方根是±3.故答案为:±3.13.(4分)如图,直线AB、CD相交于点O,射线OM平分∠AOC,∠MON=90°.若∠BON=50°,则∠BOD 的度数为80°.【分析】首先根据余角的性质可得∠AOM=90°﹣50°′=40°,再根据角平分线的性质可算出∠AOC=40°×2=80°,再根据对顶角相等可得∠BOD的度数,【解答】解:∵∠MON=90°.∠BON=50°,∴∠AOM=90°﹣50°′=40°,∵射线OM平分∠AOC,∴∠AOC=40°×2=80°,∴∠BOD=∠AOC=80°.故答案为:80°.14.(4分)若方程组的解是一个直角三角形的两条直角边,则这个直角三角形的面积为.【分析】先用加减消元法求出x的值,再用代入消元法求出y的值,根据三角形的面积公式即可得出结论.【解答】解:,②﹣①得,x=3,把x=3代入②得,y=,故此方程组的解为,∴这个直角三角形的面积为=.故答案为:.15.(4分)莆田市计划在荔城区投放一批“共享单车”,这批单车分为A,B两种不同款型,其中A型车单价1000元,B型车单价800元.在“共享单车”试点,投放A,B两种款型的单车共100辆,总价值88000元.试问本次试点投放的A型车与B型车各多少辆?设本次试点投放的A型车x辆、B型车y辆.根据题意,可列方程组.【分析】根据在“共享单车”试点,投放A,B两种款型的单车共100辆,总价值88000元,A型车单价1000元,B型车单价800元,可以列出相应的方程组,本题得以解决.【解答】解:由题意可得,,故答案为:.16.(4分)把长方形ABCD沿着直线EF对折,折痕为EF,对折后的图形EHGF的边FG恰好经过点C,若∠AFE =55°,则∠CEB'=70°.【分析】根据折叠前后两图形全等和内角和进行解答即可.【解答】解:如图,在长方形ABCD中,AD∥BC,则∠FEC=∠AFE=55°.∴∠BEF=180°﹣55°=125°.根据折叠的性质知:∠B′EF=∠BEF=125°.∴∠CEB'=∠B′EF﹣∠FEC=125°﹣55°=70°.故答案是:70°.三、解答题17.(8分)计算:++|1﹣|【分析】原式利用平方根、立方根性质,以及绝对值的代数意义计算即可求出值.【解答】解:原式=﹣++﹣1=﹣1.18.(8分)解不等式组并将解集在数轴上表示出来.【分析】分别求出各不等式的解集,再求出其公共解集,并在数轴上表示出来即可.【解答】解:由①得,x≥﹣2,由②得,x<,在数轴上表示为:故此不等式组的解集为:﹣2≤x<.19.(8分)如图,点F在线段AB上,点E,G在线段CD上,FG∥AE,∠1=∠2.(1)求证:AB∥CD;(2)若BC平分∠ABD,∠D=112°,求∠C的度数.【分析】(1)根据平行线的判定与性质即可进行证明;(2)根据BC平分∠ABD,∠D=112°,即可求∠C的度数.【解答】解:(1)证明:∵FG∥AE,∴∠FGC=∠2,∵∠1=∠2,∴∠1=∠FGC,∴AB∥CD;(2)∵AB∥CD,∴∠ABC+∠D=180°,∵∠D=112°,∴∠ABD=180°﹣112°=68°,∵BC平分∠ABD,∴∠ABC=ABD=34°,∵AB∥CD,∴∠C=∠ABC=34°.所以∠C的度数为34°.20.(8分)在平面直角坐标系中,△ABC的位置如图所示,把△ABC先向右平移3个单位,再向下平移4个单位可以得到△A'B'C'.(1)画出平移后的图形△A′B′C′;(2)请写出平移后A′B′C′的各个顶点A′,B′,C′的坐标.【分析】(1)首先确定A、B、C三点平移后的位置,再连接即可;(2)根据平面直角坐标系可确定A′,B′,C′的坐标.【解答】解:(1)如图所示,△A′B′C′即为所求;(2)A′(3,1),B′(0,﹣4),C′(5,﹣2).21.(8分)典典同学学完统计知识后,随机调查了她所在辖区若干名居民的年龄,将调查数据绘制成如下扇形和条形统计图:请根据以上不完整的统计图提供的信息,解答下列问题:(1)典典同学共调查了500名居民的年龄,扇形统计图中a=20%,b=12%;(2)补全条形统计图;(3)若该辖区年龄在0~14岁的居民约有3500人,请估计年龄在15~59岁的居民的人数.【分析】(1)根据“15~40”的百分比和频数可求总数,进而求出b的值,最后求出a;(2)利用总数和百分比求出频数再补全条形图;(3)用样本估计总体即可.【解答】解:(1)根据“15到40”的百分比为46%,频数为230人,可求总数为230÷46%=500,a=×100%=20%,b=×100%=12%;故答案为:20%;12%;(2);(3)在扇形图中,0~14岁的居民占20%,有3500人,则年龄在15~59岁的居民占(1﹣20%﹣12%)=68%,人数为3500×=11900.22.(10分)已知关于xy的方程组的解满足x≥0,y<1(1)求m的取值范围;(2)在m的取值范围内,当m取何整数时,关于x的不等式2x﹣mx>2﹣m的解集为x<1?【分析】(1)求出方程组的解,根据不等式组即可解决问题;(2)根据不等式即可解决问题;【解答】解:方程组的解为,∵x≥0,y<1∴,解得﹣≤m<4.(2)2x﹣mx>2﹣m,∴(2﹣m)x>2﹣m,∵解集为x<1,∴2﹣m<0,∴m>2,又∵m<4,m是整数,∴m=3.23.(10分)为了丰富学生的课外活动,学校决定购进5副羽毛球拍和m只羽毛球,已知一副羽毛球拍的价格是一只羽毛球的价格的15倍,用50元可以买一副羽毛球拍和10只羽毛球;(1)一副羽毛球拍和一只羽毛球的价格各是多少元?(2)甲乙两商店举行促销活动,甲商店给出的优惠是:所有商品打八折;乙商店的优惠是:买一副羽毛球拍送n只羽毛球,通过调查发现,如果只到一个商店购买5副羽毛球拍和26只羽毛球时,到甲商店更划算;若只购买一副羽毛球拍和n只羽毛球,则乙商店更划算.求n的值.(3)在(2)的条件下,当m=30时,学校购买这批羽毛球拍和羽毛球最少需要166元(直接写出结果).【分析】(1)设一副羽毛球拍的价格是x元,一只羽毛球的价格是y元,根据“一副羽毛球拍的价格是一只羽毛球的价格的15倍,用50元可以买一副羽毛球拍和10只羽毛球”列出方程组并解答;(2)利用(1)中求得的数据,结合优惠条件列出不等式组并解答;(3)当m=30时,分别求得在两商店的消费额,然后比较大小,从而得到答案.【解答】解:(1)设一副羽毛球拍的价格是x元,一只羽毛球的价格是y元,则.解得.答:一副羽毛球拍的价格是30元,一只羽毛球的价格是2元;(2)依题意得:.解不等式组,得3.75<n<4.04.因为n是正整数,所以n=4;(3)当m=30时,甲商店消费额:0.8×(5×30+2×30)=168(元)乙商店消费额:5×30+2×(30﹣20)=170(元)甲、乙混买①:(4×30+26×2)×0.8+30=167.6(元)甲、乙混买②:10×2×0.8+5×30=166(元)因为166<167.6<168<170所以当m=30时,学校购买这批羽毛球拍和羽毛球最少需要166元.故答案是:166.24.(12分)阅读材料:关于x,y的二元一次方程ax+by=c有一组整数解则方程ax+by=c的全部整数解可表示为(t为整数).问题:求方程7x+19y=213的所有正整数解.小明参考阅读材料,解决该问题如下:解:该方程一组整数解为则全部整数解可表示为(t为整数).因为解得.因为t为整数,所以t=0或﹣1.所以该方程的正整数解为.(1)方程3x﹣5y=11的全部整数解表示为:(t为整数),则θ=﹣1;(2)请你参考小明的解题方法,求方程2x+3y=24的全部正整数解;(3)方程19x+8y=1908的正整数解有多少组?请直接写出答案.【分析】(1)把x=2代入方程3x﹣5y=11得,求得y的值,即可求得θ的值;(2)参考小明的解题方法求解即可;(3)参考小明的解题方法求解后,即可得到结论.【解答】解:(1)把x=2代入方程3x﹣5y=11得,6﹣6y=11,解得y=﹣1,∵方程3x﹣5y=11的全部整数解表示为:(t为整数),则θ=﹣1,故答案为﹣1;(2)方程2x+3y=24一组整数解为,则全部整数解可表示为(t为整数).因为解得﹣3<t<2.因为t为整数,所以t=﹣2,﹣1,0,1.(3)方程19x+8y=1908一组整数解为,则全部整数解可表示为(t为整数).因为,解得﹣<t<12.5.因为t为整数,所以t=0,1,2,3,4,5,67,8,9,10,11,12,∴方程19x+8y=1908的正整数解有13组.25.(14分)新定义:在平面直角坐标系中,过一点分别作坐标轴的垂线,若与坐标轴围成的长方形的周长与面积相等,则这个点叫做“和谐点”.例如,如图①,过点P分别作x轴、y轴的垂线,与坐标轴围成长方形OAPB 的周长与面积相等,则点P是“和谐点”.(1)点M(1,2)不是“和谐点”(填“是”或“不是”);若点P(a,3)是第一象限内的一个“和谐点”,是关于x,y的二元一次方程y=﹣x+b的解,求a,b的值.(2)如图②,点E是线段PB上一点,连接OE并延长交AP的延长线于点Q,若点P(2,3),S△OBE﹣S△EPQ =2,求点Q的坐标.(3)如图③,连接OP,将线段OP向右平移3个单位长度,再向下平移1个单位长度,得到线段O1P1.若M 是直线O1P1上的一动点,连接PM、OM,请画出图形并写出∠OMP与∠MPP1,∠MOO1的数量关系.【分析】(1)根据题意即可得到结论;因为P(a,3)是和谐点,所以根据题意得3×|a|=2×(|a|+3).①当a >0时,②当a<0时,列方程即可得到结论;(2)设E(m,3),由△BEO∽△PEQ可求得PQ=,再根据S△OBE﹣S△EPQ=2列出方程,求出m的值即可解决问题;(3)根据题意画出图形,再过M点作MF∥PP1,根据平行线的性质可得结论.【解答】解:(1)M不是和谐点.根据题意,对于M而言,面积为1×2=2,周长为2×(1+2)=6,所以M不是和谐点;因为P(a,3)是和谐点,所以根据题意得3×|a|=2×(|a|+3).①当a>0时,3a=2(a+3),解得a=6,将(6,3)代入y=﹣x+b得3=﹣6+b,解得b=9.②当a<0时,﹣3a=2(﹣a+3),﹣3a=﹣2a+6,解得a=﹣6,将(﹣6,3)代入y=﹣x+b得3=6+b,解得b=﹣3.所以a=6,b=9或a=﹣6,b=﹣3.(2)∵P(2,3),∴BP=2,P A=3,故设E(m,3),则BE=m,PE=2﹣m,∵∠OBP=∠QPE=90°,∠BEO=∠PEQ,∴△BOE∽△PQE,∴,即,解得,,∵S△OBE﹣S△EPQ=2,∴,解得,,∴PQ=1,∴Q(2,4);(3)如图所示,过M作MF∥PP1交OP于点F,由平移的性质得,PP1∥OO1,∴MF∥OO1,由MF∥PP1得∠FMP=∠MPP1;由MF∥OO1得∠FMQ=∠MOO1;∵∠PMO=∠PMF+∠O1OM,∴∠PMO=∠MPP1+∠O1OM.。

西安市高新一中2023-2024学年度第一学期去七年级数学期末考试试题附参考答案

西安市高新一中2023-2024学年度第一学期去七年级数学期末考试试题附参考答案

西安市高新一中2023-2024学年度第一学期期末考试试题七年级数学一、选择题(共10小题,每小题3分,计30分) 1.下列运算结果为负数的是 A.|-2|B.(-2)2C.-(-2)D.-(-2)22.某种流行性感冒病毒是依靠飞沫和直接接触传播,直接接触我们可以通过及时清洗和杀毒避免,飞沫的直径一般是在0.000003米左右.将0.000003用科学记数法表示为 A.30×10-7B.3×10-6C.3×10-5D.0.3×10-63.下列调查方式中,采用合适的是A.为了解全市中学生每周体育锻炼的时闻,选择普查方式B.调查西安市“骑电动车”头盔佩戴率,选择抽样调查方式C.神舟十七号飞船发射前的零件检查,选择抽样调查方式D.调查某批次医用外科口罩的合格率,选择普查方式4.如图是由6个相同的小正方体拼成的几何体,从左边看,得到的平面图形是5.下列等式的变形中,正确的是 A.如果|a|=|b|,那么a=b B.如果a c =bc ,那么a=bC.如果a x =ay ,那么x =yD.如果m=n ,那么mc 2−4=nc 2−46.已知一个多项式与3x 2+9x 的和等于3x 2+4x -1,则这个多项式是 A.-5x -1B.5x +1C.13x -1D.6x 2+13x -17.下列说法:①若a 、b 互为相反数,则a b=-1;②若a b>0,且a+b <0,则|a|+|b|=第4题图-a -b ;③一个数的立方是它本身,则这个数为1或0;④若-1<a <0,则a 的倒数小于-1.其中正确的个数是 A.1个B.2个C.3个D.4个8.如图,矩形纸片ABCD ,M 为AD 边的中点,将纸片沿BM 、CM 折叠,使A 点落在A 1处,D 点落在D 1处,若∠1=30°,则∠BMC= A.75°B.150°C.120°D.105°9.我国古代数学著作《增删算法统宗》记载“绳索量竿”问题:“一条竿子一条索,索比竿子长一托.折回索子却量竿,却比竿子短一托.”其大意为:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.设绳索长x 尺,则符合题意的方程是 A.12x =(x -5)-5B.12x =(x +5)+5C.2x =(x -5)-5D.2x =(x +5)+510.如图,点C 是线段AB 上一点,且3AC=2AB ,D 是AB 的中点,E 是CB 的中点,DE=6,则线段AB 的长是A.18B.20C.12D.24二、填空题(共7小题,每小题3分,计21分)11.多项式-2x 3y 2-3x 2y 3+x y 2-1的次数是_____,常数项是_______. 12.若2x =5,2y =3,则22x+y =_______.13.我们中午休息结束的时间是1点50分,此时钟面上时针与分针所成的夹角是第10题图第8题图ABDCM A 1D 11_______.14.关于x 的方程3-3a−x 2=0与方程2x -5=1的解相同,则常数a 是_______.15.如图是正方体的平面展开图,若AB=8,则该正方体A 、B 两点间的距离为_______. 16.如果x 2-(m+1)x +16是完全平方式,则实数m 的值是_______.17.如图,有一根木棒MN 放置在数轴上,它的两端M 、N 分别落在点A 、B 处.将木棒在数轴上水平移动,当MN 的中点移动到点B 时,点N 所对应的数为17,当MN 的三等分点移动到点A 时,点M 所对应的数为6,则木棒MN 的长度为_______.三、解答题(共8小题,计69分) 18.(14分)计算(1)-42+[32÷(-2)3-16×40](2)(-3x y 2)2·(-6x 3y)(3)先化简再求值:(3a+b)2-(b+3a)(3a -b)-6b 2,其中a=-13,b=-2. 19.(8分)解方程 (1)0.5x -0.7=6.5-1.3x(2)x+32-2=-2x−2520.(6分)如图,已知平面上四个点A ,B ,C ,D ,请按要求画图并回答问题. (1)连接AB ,延长AB 到E ,使BE=AB. (2)分别画直线AC 、射线AD.(3)在射线AD 上找点P ,使PC+PB 最小,此画图的依据是________.第15题图AB第17题图21.(7分)高新区某中学为了丰富学生的校园体育锻炼生活,决定根据学生的兴趣爱好采购一批体育用品供学生课后锻炼使用,因此学校随机抽取了部分同学就兴趣爱好进行调查,将收集的数据整理并绘制成如图所示两幅统计图,请根据图中的信息,完成下列问题.(1)设学校这次调查共抽取了n 名学生,则n=________. (2)请你补全条形统计图.(3)设该校共有学生2400名,请你估计该校有多少名学生喜欢跳绳?22.(7分)某商店用3135元购进了两种新型玻璃保温杯共60个,这两种玻璃保温杯的进价、标价如表所示.(1)这两种玻璃保温杯各购进多少个?(2)若A 型玻璃保温杯按标价的9折出售,B 型玻璃保温杯按标价的8.5折出售,且篮球跳绳足球 羽毛球 乒乓球 25%20%20% 25% 10%AB D在运输过程中有2个A 型、1个B 型玻璃保温杯不慎损坏,不能进行销售,请问这批玻璃保温杯全部售出后,该商店共获利多少元?23.(7分)如图所示数表,由从1开始的连续自然数组成,观察规律并完成下列各题: (1)第六排从左往右第1个数为_______;第七排从左往右第1个数为________. (2)第a 排第1个数可以表示为_______.(用含a 的式子表示)(3)若第n 排的一个数和第(n+1)排的两个连续自然数能够放入如图所示的等边三角形中,则称该三角形为“数字三角形”,里面三个数字之和称为该数字三角形的“数字和”. 若第n 排和第(n+1)排中总共有39个“数字三角形”,其中一个“数字三角形”的“数字和”为2371,则该“数字三角形”中的三个数字分别为多少?24.(8分)如图所示,纸片甲、乙分别是长方形ABCD 和正方形EFGH ,将甲、乙纸片沿对角线AC ,EG 剪开,不重叠无空隙地拼接起来,其中间部分恰好可以放入一张正方形纸片OPQR ,与甲、乙纸片一起组成纸片丙的四边形NALM ,设AD=a ,AB=b.(1)求纸片乙的边长(用含字母a 、b 的代数式表示).A甲乙EH丙L3 26 54 7 8 9 10 1112 13 1415……1 第一排 第二排 第三排 第四排 第五排(2)探究纸片乙、丙面积之间的数量关系.25.(12分)如图,将两个完全一样的等腰直角三角尺如图叠放,∠B=∠D=90°,∠AOB=∠DOC=45°,使公共顶点与直线OF 上的点O 重合,∠DOF=10°,∠AOD=70°. (1)∠BOF=________.(2)若三角尺AOB 绕点0以每秒10°的速度顺时针旋转一周,设旋转时间为t 秒,在旋转的过程中,直线OA 恰好平分∠COF ,求t 的值.(3)在(2)的条件下另一个三角尺OCD 也绕点O 以每秒5°的速度顺时针旋转.当三角尺AOB 的边OA 平分∠COD 时,求t 的值?(自行画图分析)西安市高新一中2023-2024学年度第一学期期末考试试题七年级数学参考答案一、选择题(共10小题,每小题3分,计30分) 1.下列运算结果为负数的是 A.|-2|B. (-2)2C.-(-2)D.-(-2)21.解:|-2|=2,(-2)2=4,-(-2)=2,-(-2)2=-4,故选D 。

青岛版七年级下册数学期末试卷 (1)

青岛版七年级下册数学期末试卷 (1)

青岛版七年级下册数学期末试卷一、选择题(共12小题,每小题3分,在每小题给出的四个选项中,只有一项符合题目要求)1.(3分)在平面直角坐标系中,点P(﹣3,1)所在的象限是( )A.第一象限B.第二象限C.第三象限D.第四象限2.(3分)已知是方程x+ay=3的一个解,那么a的值为( )A.1B.﹣1C.2D.﹣23.(3分)2020年1月12日,世界卫生组织正式将2019新型冠状病毒命名为2019﹣nCoV.该病毒的直径约0.00000006米﹣0.00000012米,将0.00000012用科学记数法表示为a×10n 的形式,则n为( )A.﹣8B.﹣7C.7D.84.(3分)如图,将一个三角板60°角的顶点与另一个三角板的直角顶点重合,∠1=27°40′,则∠2的度数是( )A.27°40′B.62°20′C.57°40′D.58°205.(3分)已知a=(﹣3)0,b=,c=(﹣2)﹣2,那么a,b,c的大小关系为( )A.a>b>c B.c>b>a C.b>a>c D.c>a>b6.(3分)(﹣5a2+4b2)( )=25a4﹣16b4,括号内应填( )A.5a2+4b2B.5a2﹣4b2C.﹣5a2﹣4b2D.﹣5a2+4b2 7.(3分)下列计算中正确的是( )A.2a6÷a3=2a3B.(2ab2)2=2a2b4C.2a2+3a2=5a4D.(a2)3=a58.(3分)《孙子算经》中有一道题,原文是:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺,木长几何?”意思是:用一根绳子去量一根长木,绳子还剩余4.5尺;将绳子对折再量长木,长木还剩余1尺,问长木多少尺?如果设长木长x尺,绳长y尺,则可以列方程组( )A.B.C.D.9.(3分)如图,△ABC中,D,E分别是BC,AD的中点,若△ABC的面积是10,则△ABE的面积是( )A.B.3C.D.510.(3分)已知a=2b﹣5,则代数式a2﹣4ab+4b2﹣5的值是( )A.20B.0C.﹣10D.﹣3011.(3分)如图,五边形ABCDE是正五边形,若l1∥l2,则∠1﹣∠2的值为( )A.120°B.108°C.90°D.72°12.(3分)如图,在平面直角坐标系中,放置半径为1的圆,圆心到两坐标轴的距离都等于半径,若该圆向x轴正方向滚动2017圈(滚动时在x轴上不滑动),此时该圆圆心的坐标为( )A.(2018,1)B.(4034π+1,1)C.(2017,1)D.(4034π,1)二、填空题(本题共5个小题,每小题3分,共15分,只要求写出最后结果13.(3分)已知方程3x+2y=6,用关于y的代数式表示x,则x= .14.(3分)在平面直角坐标系中,已知点A(2,﹣1),过点A作AB∥x轴,且AB=3,则点B的坐标是 .15.(3分)已知二次三项式x2+px+q因式分解的结果是(x﹣3)(x﹣5),则p+q= .16.(3分)已知点A(0,0),B(4,2),C(2,5),则△ABC的面积是.17.(3分)一机器人在平地上按如图设置的程序行走,则该机器人从开始到停止所行走的路程为 .三、解答题(本大题共8小题,共69分.解答要写出必要的文字说明、证明过程或演算步骤.)18.(5分)解方程组:.19.(12分)计算:(1)(﹣x)5•x÷(﹣x2);(2)(﹣2x)3(x2﹣12x+1);(3)﹣x(2x+1)﹣(2x+3)(1﹣x).20.(12分)分解因式:(1)(m+n)2﹣6(m+n)+9;(2)x3﹣x;(3)(a﹣b)(5a+2b)﹣(a+6b)(a﹣b).21.(8分)如图,在△ABC中,D是BC边上的一点,∠B=45°,∠BAD=30°,将△ABD 沿AD折叠得到△AED,AE与BC交于点F.(1)求∠AFC和∠EDF的度数;(2)若∠E:∠C=3:2,问:DE∥AC吗,请说明理由.22.(6分)如图所示,小刚家门口的商店在装修,他发现工人正在一块半径为R的圆形板材上,冲去半径为r的四个小圆,小刚测得R=6.8dm,r=1.6dm,他想知道剩余阴影部分的面积,你能利用所学过的因式分解的知识帮助小刚计算吗?请写出求解过程(结果保留π).23.(8分)已知:a﹣b=6,a2+b2=20,求下列代数式的值:(1)ab;(2)﹣a3b﹣2a2b2﹣ab3.24.(8分)阅读例题的解答过程,并解答(1)(2)两个问题.例:计算(a﹣2b+3)(a+2b﹣3)=[a﹣(2b﹣3)][a+(2b﹣3)]①=a2﹣(2b﹣3)2②=a2﹣4b2+12b﹣9③(1)例题求解过程中,利用了整体思想,其中①→②的变形依据是,②→③的变形依据是.(填整式乘法公式的名称)(2)用此方法计算:(a+2x﹣y﹣b)(a﹣2x+y﹣b).25.(10分)某中学七年级数学课外兴趣小组在探究:“n边形(n>3)共有多少条对角线”这一问题时,设计了如下表格,请在表格中的横线上填上相应的结果:应用得到的结果解决以下问题:①求十二边形有多少条对角线?②过多边形的一个顶点的所有对角线条数与这些对角线分多边形所得的三角形个数的和可能为2016吗?若能,请求出这个多边形的边数;若不能,请说明理由.参考答案与试题解析一、选择题(共12小题,每小题3分,在每小题给出的四个选项中,只有一项符合题目要求)1.【分析】根据点的横纵坐标的符号可得所在象限.【解答】解:∵﹣3<0,1>0,∴点P(﹣3,1)所在的象限是第二象限,故选:B.2.【分析】把x=2,y=﹣1代入方程x+ay=3得出方程2﹣a=3,再求出方程的解即可.【解答】解:∵x=2,y=﹣1是方程x+ay=3的一个解,∴2﹣a=3,解得:a=﹣1,故选:B.3.【分析】绝对值小于1的数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负整数指数幂,指数n由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.00000012=1.2×10﹣7,∴n=﹣7.故选:B.4.【分析】根据∠BAC=60°,∠1=27°40′,求出∠EAC的度数,再根据∠2=90°﹣∠EAC,即可求出∠2的度数.【解答】解:∵∠BAC=60°,∠1=27°40′,∴∠EAC=32°20′,∵∠EAD=90°,∴∠2=90°﹣∠EAC=90°﹣32°20′=57°40′;故选:C.5.【分析】根据负整数幂的意义以及零指数幂的意义即可求出答案.【解答】解:a=1,b=3,c=,∴c<a<b,故选:C.6.【分析】根据平方差公式的逆用找出这两个数写出即可.【解答】解:∵(﹣5a2+4b2)(﹣5a2﹣4b2)=25a4﹣16b4,∴应填:﹣5a2﹣4b2.故选:C.7.【分析】直接利用整式的除法运算法则以及积的乘方运算法则、合并同类项法则、幂的乘方运算法则分别计算得出答案.【解答】解:A.2a6÷a3=2a3,故此选项符合题意;B.(2ab2)2=4a2b4,故此选项不合题意;C.2a2+3a2=5a2,故此选项不合题意;D.(a2)3=a6,故此选项不合题意;故选:A.8.【分析】直接利用“绳长=木条+4.5;绳子=木条﹣1”分别得出等式求出答案.【解答】解:设木条长x尺,绳子长y尺,那么可列方程组为.故选:D.9.【分析】设△ABE的面积为x.利用三角形中线的性质推出△ABC的面积为4x,由此构建方程,可得结论.【解答】解:设△ABE的面积为x.∵E是AD的中点,∴AE=DE,∴S△ABE=S△BDE=x,∵D是BC的中点,∴BD=CD,∴S△ABD=S△ADC=2x,∴S△ABC=4x=10,∴x=,故选:C.10.【分析】首先根据a=2b﹣5,可得:a﹣2b=﹣5;然后把代数式a2﹣4ab+4b2﹣5化成(a﹣2b)2﹣5,求出算式的值即可.【解答】解:∵a=2b﹣5,∴a﹣2b=﹣5,∴a2﹣4ab+4b2﹣5=(a﹣2b)2﹣5=(﹣5)2﹣5=25﹣5=20.故选:A.11.【分析】过点B作直线BF∥l1,利用平行线的性质推导出∠1+∠3=180°,∠2+∠3=108°,两个式子相减即可.【解答】解:过点B作直线BF∥l1,∵l1∥l2,∴BF∥l2,∴∠2=∠4,∠1+∠3=180°①,∵正五边形的内角度数为:=108°,∴∠3+∠4=∠ABC=108°,∴∠2+∠3=108°②,①﹣②得∠1﹣∠2=180°﹣108°=72°.故选:D.12.【分析】由已知可得开始时该圆的圆心坐标为(1,1),在圆向右滚动时纵坐标不变,当该圆向x轴正方向滚动2017圈后,横坐标增加2017×2π,从而得到该圆向x轴正方向滚动2017圈后的圆心坐标.【解答】解:∵半径为1的圆,与两坐标轴相切,∴开始时该圆的圆心坐标为(1,1),∵圆的周长为2π,该圆向x轴正方向滚动2017圈,∴圆心的横坐标为1+2π×2017,纵坐标为1,即该圆的圆心坐标为(4034π+1,1).故选:B.二、填空题(本题共5个小题,每小题3分,共15分,只要求写出最后结果13.【分析】将y看作已知数,求出x即可.【解答】解:3x+2y=6,解得:x=.故答案为:.14.【分析】在平面直角坐标系中与x轴平行,则它上面的点纵坐标相同,可求B点纵坐标;与x轴平行,相当于点A左右平移,可求B点横坐标.【解答】解:∵AB∥x轴,∴点B纵坐标与点A纵坐标相同,为﹣1,又∵AB=3,可能右移,横坐标为2+3=5;可能左移横坐标为2﹣3=﹣1,∴B点坐标为(5,﹣1)或(﹣1,﹣1),故答案为:(5,﹣1)或(﹣1,﹣1).15.【分析】直接利用多项式乘多项式运算法则得出p,q的值,进而得出答案.【解答】解:∵x2+px+q=(x﹣3)(x﹣5),∴x2+px+q=x2﹣8x+15,故p=﹣8,q=15,则p+q=﹣8+15=7.故答案为:7.16.【分析】利用分割法把三角形面积看成矩形面积减去周围三个三角形面积即可.【解答】解:如图,S△ABC=4×5﹣×2×4﹣×2×3﹣×2×5=8,故答案为:8.17.【分析】该机器人所经过的路径是一个正多边形,利用360°除以45°,即可求得正多边形的边数,即可求得周长,即所行走的路程.【解答】解:该机器人所经过的路径是一个正多边形,360°÷45°=8,则所走的路程是:4×8=32(m).故答案为:32m.三、解答题(本大题共8小题,共69分.解答要写出必要的文字说明、证明过程或演算步骤.)18.【分析】方程组整理后,利用加减消元法求出解即可.【解答】解:方程组整理得:,①+②得:﹣6y=6,解得:y=﹣1,把y=﹣1代入②得:x﹣2=1,解得:x=3,则方程组的解为.19.【分析】(1)原式利用幂的乘方与积的乘方运算法则,以及单项式乘除单项式法则计算即可得到结果;(2)原式利用幂的乘方与积的乘方运算法则,以及单项式乘多项式法则计算即可得到结果;(3)原式利用单项式乘多项式法则,以及多项式乘多项式法则计算即可得到结果.【解答】解:(1)原式=﹣x5•x÷(﹣x2)=﹣x6÷(﹣x2)=x4;(2)原式=﹣8x3(x2﹣12x+1)=﹣8x5+96x4﹣8x3;(3)原式=(﹣2x2﹣x)﹣(2x﹣2x2+3﹣3x)=﹣2x2+x﹣2x+2x2﹣3+3x=2x﹣3.20.【分析】(1)把(m+n)看成一个整体,运用完全平方公式;(2)先提取公因式x,再用平方差公式;(3)先提取公因式,再写成幂的形式.【解答】解:(1)原式=[(m+n)﹣3]2=(m+n﹣3)2;(2)原式=x(x2﹣1)=x(x+1)(x﹣1);(3)原式=(a﹣b)(5a+2b﹣a﹣6b)=(a﹣b)(4a﹣4b)=4(a﹣b)2.21.【分析】(1)根据折叠求出∠BAD=∠DAF,根据三角形外角性质求出∠AFC的度数,由三角形内角和定理求出∠ADB,求出∠ADE,根据三角形外角性质求出∠ADF,即可求∠EDF的度数;(2)由题意可得∠C=∠EDF=30°,即可证DE∥AC.【解答】解:(1)∵△ABD沿AD折叠得到△AED,∴∠BAD=∠DAF,∵∠B=45°,∠BAD=30°,∴∠AFC=∠B+∠BAD+∠DAF=105°;∵∠B=45°,∠BAD=30°,∴∠ADB=180°﹣45°﹣30°=105°,∠ADC=45°+30°=75°,∵△ABD沿AD折叠得到△AED,∴∠ADE=∠ADB=105°,∴∠EDF=∠ADE﹣∠ADC=105°﹣75°=30°.(2)DE∥AC理由如下:∵△ABD沿AD折叠得到△AED,∴∠B=∠E=45°∵∠E:∠C=3:2∴∠C=30°∴∠C=∠EDF=30°∴DE∥AC22.【分析】根据剩余部分的面积=圆形板材的面积﹣四个小圆的面积,即可求解【解答】解:根据题意有:剩余部分的面积=圆形板材的面积﹣四个小圆的面积.剩余部分的面积=πR2﹣4πr2=π(R2﹣4r2)=π(R+2r)(R﹣2r),将R=6.8dm,r=1.6dm代入上式得:剩余部分的面积=π(R+2r)(R﹣2r)=π(6.8+3.2)(6.8﹣3.2)=36π(dm2).答:剩余部分的面积为:36πdm223.【分析】(1)把a﹣b=6两边平方,展开,即可求出ab的值;(2)先分解因式,再整体代入求出即可.【解答】解:(1)∵a﹣b=6,a2+b2=20,∴(a﹣b)2=36,∴a2﹣2ab+b2=36,∴﹣2ab=36﹣20=16,∴ab=﹣8;(2)∵a2+b2=20,ab=﹣8,∴﹣a3b﹣2a2b2﹣ab3=﹣ab(a2+2ab+b2)=﹣(﹣8)×(20﹣16)=32.24.【分析】(1)利用平方差公式,以及完全平方公式判断即可;(2)原式结合后,利用平方差公式,以及完全平方公式化简即可.【解答】解:(1)例题求解过程中,利用了整体思想,其中①→②的变形依据是平方差公式,②→③的变形依据是完全平方公式;(2)原式=(a﹣b)2﹣(2x﹣y)2=a2﹣2ab+b2﹣4x2+4xy﹣y2.故答案为:(1)平方差公式,完全平方公式.25.【分析】①由表格探求的n边形对角线的总条数:得出最终结果;②根据从n边形的一个顶点出发可引(n﹣3)条对角线,这些对角线分多边形所得的三角形个数为(n﹣2).【解答】解:①把n=12代入得,=54.∴十二边形有54条对角线.②不能.由题意得,n﹣3+n﹣2=2016,解得n=.∵多边形的边数必须是正整数,∴过多边形的一个顶点的所有对角线条数与这些对角线分多边形所得的三角形个数的和不可能为2016.。

2024届河北省石家庄市裕华区数学七年级第一学期期末学业水平测试试题含解析

2024届河北省石家庄市裕华区数学七年级第一学期期末学业水平测试试题含解析

2024届河北省石家庄市裕华区数学七年级第一学期期末学业水平测试试题注意事项:1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。

2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。

3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。

4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

一、选择题(每小题3分,共30分)1.下列四个选项的代数式表示中,其中错误的是( )A .m 与n 的2倍的和是2m n +B .m 与n 的和的2倍是()2m n +C .a 与b 的2倍的和是()2a b +D .若a 的平方比甲数小2,则甲数是22+a2.一个多项式与2x 2+2x -1的和是x +2,则这个多项式为( )A .x 2-5x +3B .-x 2+x -1C .-2x 2-x +3D .x 2-5x -133.如图,将一副三角板如图放置,∠COD=28°,则∠AOB 的度数为( )A .152°B .148°C .136°D .144°4.如图,在正方形ABCD 中,E 为DC 边上一点,沿线段BE 对折后,若∠ABF 比 ∠EBF 大15°,则∠EBC 的度数是()A .15度B .20度C .25度D .30度5.已知3x =是关于x 的方程()5132x a --=-的解,则a 的值是A .-4B .4C .6D .-66.观察如图所示的几何体,从左面看到的图形是( )A .B .C .D .7.下列各对数中,数值相等的是 ( )A .23和32B .(﹣2)2和﹣22C .2和|﹣2|D .和8.已知有理数1a ≠,我们把11a -称为a 的差倒数,如:2的差倒数是1112=--,-2的差倒数是111(2)3=--.如果14a =-,2a 是1a 的差倒数,3a 是2a 的差倒数,4a 是3a 的差倒数,…以此类推,则123461a a a a a ++++⋯+的值是( )A .-55B .55C .-65D .659.取一个自然数,若它是奇数,则乘以3加上1,若它是偶数,则除以2,按此规则经过若干步的计算最终可得到1.这个结论在数学上还没有得到证明,但举例验证都是正确的.例如:取自然数5,经过下面5步运算可得1,即:如图所示.如果自然数m 恰好经过7步运算可得到1,则所有符合条件的m 的值有( )A .6个B .5个C .4个D .3个 10.如图,∠AOC =∠BOD =80°,如果∠AOD =138°,那么∠BOC 等于( )A .22°B .32°C .42°D .52°二、填空题(本大题共有6小题,每小题3分,共18分)11.已知关于x 的一元一次方程mx =5x ﹣2的解为x =2,则m 值为_____.12.实数16 800 000用科学计数法表示为______________________.13.计算:70°39′=______°;比较大小:52°52′_____52.52°.(选填“>”、“<”或“=”)14.若单项式253x y 与1312m n x y ---是同类项,则n m =________.15.在时刻8:30时,时钟上时针和分针的夹角为 度. 16.计算:22°16′÷4=___________.(结果用度、分、秒表示)三、解下列各题(本大题共8小题,共72分)17.(8分)星期日早晨8:00学校组织共青团员乘坐旅游大巴去距离学校100km 的雷锋纪念馆参观,大巴车以60/km h 的速度行驶,小颖因故迟到10分钟,于是她乘坐出租车以80/km h 前往追赶,并且在途中追上了大巴车. ()1小颖追上大巴车用了多长时间?()2小颖追上大巴车时,距离雷锋纪念馆还有多远?18.(8分)解方程: 641152x x +--= 19.(8分)计算:(﹣1)2018÷2×(﹣12)3×16﹣|﹣2| 20.(8分)某种商品进货后,零售价定为每件900元,为了适应市场竞争,商店按零售价的九折降价,并让利40元销售,仍可获利10%,问这种商品的进价为多少元?21.(8分)(1)已知22231A x xy y B x xy =++-=-,,若()2230x y ++-=,求2A B -的值; (2)已知多项式2212x my +-与 多项式236nx y -+的差中不含有2,x y ,求m n mn ++的值. 22.(10分)已知212()02x y ++-=,先化简再求32322212x 2x x 3x y 5xy 7-5xy 33y -++++的值. 23.(10分)解关于x 的分式方程:223242kx x x x +=--+ 24.(12分)综合题如图1,O 为直线AB 上一点,过点O 作射线OC ,30AOC ∠=︒,将一直角三角板(30D ∠=︒)的直角顶点放在点O 处,一边OE 在射线OA 上,另一边OD 与OC 都在直线AB 的上方.(1)将图1中的三角板绕点O 以每秒5︒的速度沿顺时针方向旋转一周,如图2,经过t 秒后,OD 恰好平分BOC ∠.①此时t 的值为______;(直接填空)②此时OE 是否平分AOC ∠?请说明理由.(2)在(1)问的基础上,若三角板在转动的同时,射线OC 也绕O 点以每秒8︒的速度沿顺时针方向旋转一周,如图3,那么经过多长时间OC 平分DOE ∠?请说明理由;(3)在(2)问的基础上,经过多长时间OC 平分DOB ∠?参考答案一、选择题(每小题3分,共30分)1、C【分析】逐一对选项进行分析即可.【题目详解】A . m 与n 的2倍的和是2m n +,故该选项正确;B . m 与n 的和的2倍是()2m n +,故该选项正确;C . a 与b 的2倍的和是2+a b ,故该选项正确;D . 若a 的平方比甲数小2,则甲数是22+a ,故该选项正确;故选:C .【题目点拨】本题主要考查列代数式,掌握列代数式的方法及代数式的书写形式是解题的关键.【分析】直接利用整式的加减运算法则计算,设这个多项式是A ,则A+(2x 2+2x-1)= x +2,求出A 的表达式即可得出答案.【题目详解】解:设这个多项式是A ,∵这个多项式与2x 2+2x -1的和是x +2,∴A+(2x 2+2x-1)= x +2,即A=(x+2)-(2x 2+2x-1)=﹣2x 2-x+3,故选:C .【题目点拨】本题考查的是整式的加减,熟知整式的加减实质上就是合并同类项是解答此题的关键.3、A【分析】根据三角板的性质得90AOD BOC ∠=∠=︒,再根据同角的余角相等可得62AOC BOD ==︒∠∠,即可求出∠AOB 的度数.【题目详解】∵这是一副三角板∴90AOD BOC ∠=∠=︒∵28COD =︒∠∴62AOC BOD ==︒∠∠∴62+28+62=152AOB AOC COD BOD =++=︒︒︒︒∠∠∠∠故答案为:A .【题目点拨】本题考查了三角板的度数问题,掌握三角板的性质、同角的余角相等是解题的关键.4、C【分析】根据折叠角相等和正方形各内角为直角的性质即可求得∠EBF 的度数.【题目详解】解:∵∠FBE 是∠CBE 折叠形成,∴∠FBE=∠CBE ,∵∠ABF-∠EBF=15°,∠ABF+∠EBF+∠CBE=90°,∴∠EBF=∠EBC= 25°,故选C .【题目点拨】本题考查了折叠的性质,考查了正方形各内角为直角的性质,本题中求得∠FBE=∠CBE 是解题的关键.【分析】把x=3代入方程得出关于a 的方程,求出方程的解即可.【题目详解】把x=3代入方程5(x-1)-3a=-2得:10-3a=-2,解得:a=4,故选B .【题目点拨】本题考查了一元一次方程的解,解一元一次方程等知识点,解题的关键是能得出关于a 的一元一次方程. 6、C【分析】从左面只看到两列,左边一列3个正方形、右边一列1个正方形,据此解答即可.【题目详解】解:观察几何体,从左面看到的图形是故选:C .【题目点拨】本题考查了简单组合体的三视图,从左边看得到的图形是左视图.7、C【解题分析】选项A ,,数值不相等;选项B ,(﹣2)2=4,﹣22=﹣4,数值不相等;选项C ,|﹣2|=2,数值相等;选项D , , ,数值不相等,故选C. 点睛:解决此类题目的关键是熟记有理数的乘方法则.负数的奇数次幂是负数,负数的偶数次幂是正数;正数的任何次幂都是正数.8、A【分析】利用规定的运算方法,分别算得a 1,a 2,a 3,a 4…找出运算结果的循环规律,利用规律解决问题.【题目详解】∵a 1=-4a 2=111111(4)5a ==---, a 3=211511415a ==--, a 4=31145114a ==---, …数列以-4,15,三个数依次不断循环,∴45658512360619115514,45420a a a a a a a =.a a a a ..++=+++=+=-++=-==- ∴12346112351()20(4)20(4)5520a a a a a a a a =⨯+-++++⋯+++=-⨯+-=- 故选:A.【题目点拨】此题考查规律型:数字的变化类,倒数,解题关键在于掌握运算法则找到规律.9、C【分析】首先根据题意,应用逆推法,用1乘以2,得到2;用2乘以2,得到4;用4乘以2,得到8;用8乘以2,得到16;然后分类讨论,判断出所有符合条件的m 的值为多少即可.【题目详解】定义新运算故答案为C【题目点拨】本题考查逆推法,熟练掌握计算法则是解题关键.10、A【分析】根据题意先计算出∠COD 的度数,然后进一步利用∠BOD −∠COD 加以计算求解即可.【题目详解】∵∠AOC =∠BOD =80°,∠AOD =138°,∴∠COD=∠AOD −∠AOC=58°,∴∠BOC=∠BOD −∠COD=80°−58°=22°,【题目点拨】本题主要考查了角度的计算,熟练掌握相关方法是解题关键.二、填空题(本大题共有6小题,每小题3分,共18分)11、1【分析】直接把x 的值代入进而得出答案.【题目详解】解:∵关于x 的一元一次方程mx =5x ﹣2的解为x =2,∴2m =10﹣2,解得:m =1.故答案为:1.【题目点拨】本题主要考查了一元一次方程的解得知识点,准确计算是解题的关键.12、1.68×1 【解题分析】分析:用科学记数法表示较大的数时,一般形式为a×10n ,其中1≤|a|<10,n 为整数,据此判断即可. 详解:16800000=1.68×1. 故答案为1.68×1. 点睛:此题主要考查了用科学记数法表示较大的数,一般形式为a×10n ,其中1≤|a|<10,确定a 与n 的值是解题的关键.13、70.65°> 【分析】将角的度数换算成度分秒的形式,再进行比较即可得出结论.【题目详解】70°39′=70°+39′÷60=70°+0.65°=70.65°,∵0.52×60=31.2,0.2×60=12, ∴52.52°=52°31′12″, 52°52′>52°31′12″,故答案为:70.65°;>.【题目点拨】本题考查的度分秒的换算以及角的大小比较,解题的关键是将角的度数换算成度分秒的形式,再进行比较. 14、1【分析】根据同类项的定义:所含字母相同,并且相同字母的指数也相同,可得出m 、n 的值. 【题目详解】解:单项式253x y 与1312m n x y ---是同类项,12m ∴-=,315n -=,解得:1m =-,2n =,故()211n m =-=,故答案为:1.【题目点拨】本题考查了同类项的定义,关键是掌握同类项定义中的两个“相同”:(1)所含字母相同;(2)相同字母的指数相同.15、1.【分析】根据时针与分针相距的份数乘以每份的度数,可得答案.【题目详解】解:8:30时,时钟上时针和分针相距2+1522=份, 8:30时,时钟上时针和分针的夹角为30×52=1°.故答案为1.考点:钟面角.16、5°34′【解题分析】22°16′÷4=(20÷4)°(136÷4)′=5°34′, 故答案是:5°34′.三、解下列各题(本大题共8小题,共72分)17、(1)12时;(2)60km . 【分析】(1)设小颖追上队伍用了x 小时,根据题意列出方程,求解即可;(2)总距离减去小颖追上大巴车所走的路程,即为此时距离雷锋纪念馆的距离.【题目详解】(1)设小颖追上队伍用了x 小时.依题意得1060()8060x x += 解得12x = 答:小颖追上队伍用了12小时 (2)小颖追上队伍时.距离雷锋纪念馆: 100-80×12=60(km )【题目点拨】本题考查了一元一次方程的实际应用,掌握解一元一次方程的方法是解题的关键.3【分析】去分母、去括号、移项、合并同类项、系数化1即可.【题目详解】解: 641152x x +--= 去分母,得()()2645110x x +--=.去括号,得1285510x x +-+=.移项、合并同类项,得73x =-.系数化1,得37x =-【题目点拨】此题考查的是解一元一次方程,掌握解一元一次方程的一般步骤是解决此题的关键.19、-1【分析】先进行指数幂运算,再进行乘除运算,最后进行加法运算.【题目详解】解:原式=1÷2×(-18)×16-2 =-1-2=-1.【题目点拨】本题考查有理数的混合运算,熟练掌握运算法则和运算顺序是解题的关键.20、700【分析】首先设进价为每件x 元,根据题意得选题关系:(1+利润率)×进价=原售价×打折-让利,代入相应数值列出方程,解方程即可.【题目详解】设进价为每件x 元,由题意得(1+10%)x=900×90%-40 解得:x=700,答:这种商品的进价为700元21、(1)10-;(2)7-【分析】(1)根据题意求得x 和y 的值,然后将2A B -化简,化简后代入x 、y 的值运算即可;(2)先求出两个多项式的差,不含有2x ,y 代表含有2x ,y 项的系数为0,求出m 和n 的值代入原式即可求解.【题目详解】(1)∵()2230x y ++-=∴2x =-,3y =2A B -=()222312x xy y x xy ++---=2223122x xy y x xy ++--+=331xy y当2x =-,3y =时,原式=()323331⨯-⨯+⨯-=10-(2)()2221236x my nx y +---+=()()22318n x m y -++- ∵两多项式的差中不含有2x ,y∴20n -=,30m +=∴2n =,3m =-当2n =,3m =-时,原式=()3232-++-⨯=7-故答案为(1)10-;(2)7-.【题目点拨】本题考查了整数的加减混合运算,绝对值的非负性,偶次方的非负性,整式的意义,多项式中不含有某项,令该项的系数为0即可.22、327x x y ++,1【分析】先根据两个非负数的和等于0,得到20x +=,102y -=,可求出x 、y 的值,再化简代数式,把x 、y 的值代入化简后的代数式计算即可. 【题目详解】解:∵21202x y ⎛⎫++-= ⎪⎝⎭,∴2x =-,12y =, 323222122357533x x y x x y xy xy -++++- 327x x y =++()()3212272=-+-⨯+ 827=-++67=-+1=【题目点拨】本题考查了整式的化简求值、非负数的性质.熟练掌握整式的运算法则是解题的关键.23、当k=1或k=-4或k=6时,原方程无解;当k ≠-4或k ≠6时,x=101k --是原方程的解. 【分析】根据解分式方程的步骤解得即可,分情况讨论,检验【题目详解】解:两边同时乘以(x+2)(x-2)得:2(x+2)+kx=3 (x-2)移项合并得:(k-1)x=−10,当k-1=0时,即k=1时,方程无解,当k-1≠0时,即k ≠1时, x= 101k -- 检验:当x=101k --=±2时,即k=-4或k=6时,则(x+2)(x-2)=0, ∴当k=-4或k=6时,原方程无解;当k ≠-4或k ≠6时,则(x+2)(x-2)≠0,∴当k ≠-4或k ≠6时,x=101k --是原方程的解. 【题目点拨】此题主要考查了解分式方程,正确地分情况讨论是解决问题的关键.24、(1)①3;②是,理由见解析;(2)经过5秒或69秒时,OC 平分DOE ∠;(3)经过21011秒时,OC 平分DOB ∠. 【分析】(1)①先求出0t =时的DOC ∠的度数,再求出当OD 恰好平分BOC ∠时DOC ∠,最后根据旋转的角度等于前后两次所求DOC ∠度数的差列出方程即得.②在①中求出的t 的条件下,求出此时的COE ∠的度数即可.(2)先根据OC 平分DOE ∠可将OC 旋转度数与三角板旋转度数之差分为15︒、375︒和345︒三种情况,然后以OC 平分DOE ∠为等量关系列出方程即得.(3)先根据OC 旋转速度与三角板旋转速度判断OC 平分DOB ∠应该在两者旋转过OB 之后,然后用t 分别表示出COB ∠与DOB ∠的度数,最后依据OC 平分DOB ∠为等量关系列出方程即可.【题目详解】(1)①当0t =时∵30AOC ∠=︒,90AOD ∠=︒∴60∠=∠-∠=︒DOC AOD AOC当直角三角板绕O 点旋转t 秒后∴60+5∠=︒DOC t∵30AOC ∠=︒,+180∠∠=︒BOC AOC∴150BOC ∠=︒∵OD 恰好平分BOC ∠∴12∠=∠DOC BOC ∴60+575︒=︒t∴3t =.②是,理由如下:∵转动3秒,∴15AOE ∠=︒,∴15COE AOC AOE ∠=∠-∠=︒,∴COE AOE ∠=∠,即OE 平分AOC ∠.(2)直角三角板绕O 点旋转一周所需的时间为360725=(秒),射线OC 绕O 点旋转一周所需的时间为 360458=(秒), 设经过x 秒时,OC 平分DOE ∠,由题意:①854530x x -=-,解得:5x =,②853603045x x -=-+,解得:12572x =>,不合题意,③∵射线OC 绕O 点旋转一周所需的时间为360458=(秒),45秒后停止运动, ∴OE 旋转345︒时,OC 平分DOE ∠, ∴345695x ==(秒), 综上所述,5x =秒或69秒时,OC 平分DOE ∠.(3)由题意可知,OD 旋转到与OB 重合时,需要90518÷=(秒),OC 旋转到与OB 重合时,需要3(18030)8184-÷=(秒), 所以OD 比OC 早与OB 重合,设经过x 秒时,OC 平分DOB ∠. 由题意:18(18030)(590)2x x --=-, 解得:21011x =, 所以经过21011秒时,OC 平分DOB ∠. 【题目点拨】本题考查角的和与差的综合问题中的动态问题,弄清运动情况,将动态问题静态化是解题关键,根据等量关系确定所有满足条件的状态是难点也是容易遗漏点,在解题过程中一定要检验每一种情况是否符合题目条件,做到不重不漏的分类讨论.。

七年级第一学期期末考试(数学)试题含答案

七年级第一学期期末考试(数学)试题含答案

七年级第一学期期末考试(数学)(考试总分:120 分)一、单选题(本题共计16小题,总分42分)1.(3分)下列运算结果是a2的是( )A.a+aB.a+2C.a•2D.a•a2.(3分)如图,射线OA表示的方向是( )A.北偏东65°B.北偏西35°C.南偏东65°D.南偏西35°3.(3分)我国渤海、黄海、东海、南海的海水中含有不少化学元素,其中铝、锰元素总量均约为8×106吨.用科学记数法表示铝、锰元素总量的和约是( )A.8×106吨B.1.6×107吨C.16×106吨D.16×1012吨4.(3分)已知x=5是方程2x−3+a=4的解,则a的值是( )A.3B.2C.-3D.-25.(3分)下列说法不正确...的是( )①a3b的系数是3,次数是3;①近似数304.16精确到了十分位;①多项式−5x+6x2−1是二次三项式;①射线AB与射线BA是同一条射线;①一个角的补角不是锐角就是钝角A.①①①①B.①①①C.①①①D.①①①6.(3分)下列变形不正确...的是( )A.如果a=b,那么a+5=b+5B.如果a=b,那么a−c=b−cC.如果ac=bc,那么a=bD.如果ac =bc,那么a=b7.(3分)已知x3-2m y2与2xy n是同类项,则m−n= ( )A.-1B.0C.1D.28.(3分)如图,数轴上三个点所对应的数分别为a,b,c,则下列结论正确的是( )A.a+b > 0B.a-c > 0C.ac > 0D.|a| > |b|x的值为6,则2x2-5x+6的值为( )9.(3分)已知整式x2−52A.9B.12C.18D.2410.(3分)下列图形中,可能..是如图所示的正方体展开图的是( )A.B.C.D.11.(2分)已知|a|=3,|b|=2,|a−b|=a−b,则a+b=( )A.5或−5B.1或5C.5或−1D.−5或112.(2分)互联网"微商"经营已成为大众创业新途径,某微商将一件商品按进价上调50%标价,再以标价的八折售出,仍可获利30元,则这件商品的进价为( )A.80元B.100元C.130元D.150元13.(2分)如图,将一副三角板叠在一起使直角顶点重合于点O(两块三角板可以在同一平面内自由转动),下列结论一定..成立的是( )A.①BOA > ①DOCB.①BOA+① DOC=180°C.①BOA−①DOC=90°D.①BOC≠①DOA14.(2分)如图,点C是线段AB上一点,点M是线段AB的中点,点N是线段AC的中点,若线段MN的长为4,则线段BC的长度是( )A.4B.6C.8D.1015.(2分)在某市奥林匹克联赛中,实验一中学子再创辉煌,竞赛成绩全市领先.某位同学连续答题40道,答对一题得5分,答错一题扣2分(不答同样算作答错),最终该同学获得144分.请问这位同学答对了多少道题?下面共列出4个方程,其中正确的有( )①设答对了x道题,则可列方程:5x−2(40−x)=144;①设答错了y道题,则可列方程:5(40−y)−2y=144;①设答对题目总共得a分,则可列方程:a5+a−1442=40;①设答错题目总共扣b分,则可列方程:144−b5-b2=40.A.4个B.3个C.2个D.1个16.(2分)在学校温暖课程数字兴趣课中,嘉淇同学将一个边长为a的正方形纸片(如图1)剪去两个相同的小长方形,得到一个""的图案(如图2),将剪下的两个小长方形刚好拼成一个"T"字形(如图3),则"T"字形的外围周长(不包括虚线部分)可表示为( )图1 图2图3A.3a−5bB.5a−8bC.5a−7bD.4a−6b二、填空题(本题共计3小题,总分12分)17.(4分)植树时只要定出两棵树的位置,就能确定这一行树所在的直线,原因是__________.18.(4分)对有理数a,b规定运算"①"的意义为a①b=a+2b,比如:5①7=5+2×7,则方程3x①14=2−x的解为__________ .19.(4分)如图,某花园护栏是用直径为80厘米的半圆形条钢组制而成,且每增加一个半圆形条钢,护栏长度就增加a厘米(相邻两个条钢之间都有交叉,a为正整数),设半圆形条钢的总个数为x(x为正整数).(1).当a=50,x=2时,护栏总长度为__________厘米;(2).当a=60时,护栏总长度为__________厘米(用含x的式子表示,结果要求化简);(3).若护栏的总长度为15米,为尽量减少条钢用量,a的值应为__________厘米.三、解答题(本题共计7小题,总分66分)20.(8分)按要求解答下列各小题.(1).计算:(-1)2021+(-18)×|-29|-4÷(-2);(2).化简:5a2+3b2+2(a2−b2)−(5a2−3b2).21.(8分)嘉淇正在解关于x的方程A:x−2m=−3x+4.(1).用含m的式子表示方程A的解;(2).嘉淇妈妈问:"若方程A与关于x的方程B:m=4-x2的解互为相反数,那么此时方程A的解为多少?"请你帮嘉淇解决妈妈提出的问题.22.(9分)已知A=by2−ay−1,B=2y2+3ay−10y+3.(1).若多项式2A−B的值与字母y的取值无关,求a,b的值;(2).在1的条件下,求(2a2b+2ab2)−[2(a2b−1)+3a2b+2]的值.23.(9分)阅读下列材料:计算:124÷(13−14+112).解法一:原式=124÷13−124÷14+124÷112=124×3−124×4+124×12=1124.解法二:原式=124÷(412−312+112)=124÷212=124×6=14.解法三:原式的倒数=(13−14+112)÷124=(13−14+112)×24=13×24−14×24+112×24=4原式=14 .(1).上述得到的结果不同,你认为解法________是错误的; (2).计算:(12−14+16)×36=________;(3).请你选择合适的解法计算:(−1210)÷(37+215−310−521)24.(10分)已知点O 是直线AB 上一点,①COE=60°,OF 是①AOE 的平分线. (1).如图,当①BOE=80°时,求①COF 的度数;(2).当①COE 和射线OF 在如图所示的位置,且题目条件不变时.①求①COF 与①AOE 之间的数量关系; ①直接写出①BOE-2①COF 的值.25.(10分)甲、乙两城相距800千米,一辆客车从甲城开往乙城,车速为a(0<a <100)千米/小时,同时一辆出租车从乙城开往甲城,车速为90千米/小时,设客车行驶时间为t (小时). (1).当t =5时,客车与乙城的距离为______千米(用含a 的式子表示);(2).已知a =70,丙城在甲、乙两城之间,且与甲城相距260千米,当客车和出租车在甲、乙之间的M 处相遇时,出租车乘客小王突然接到开会通知,需要立即返回,此时小王有两种返回乙城的方案:方案一:继续乘坐出租车到丙城,加油后立刻返回乙城(出租车加油时间忽略不计); 方案二:在M 处换乘客车返回乙城.假设客车和出租车的行驶速度始终不变,试通过计算,分析小王选择哪种方案能更快返回到乙城?26.(12分)如图,已知点M是线段AB上一定点,AB=12cm,C,D两点分别从M,B出发,以1cm/s,2cm/s的速度沿直线AB向左运动(C在线段AM上,D在线段BM上).(1).若AM=4cm,当点C,D运动了2s时,AC=______.DM=______.(2).若点C,D运动时,总有MD=2AC,求AM的长;的值。

2024届山东省菏泽市鄄城县数学七年级第一学期期末经典试题含解析

2024届山东省菏泽市鄄城县数学七年级第一学期期末经典试题含解析

2024届山东省菏泽市鄄城县数学七年级第一学期期末经典试题注意事项:1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。

2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。

3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。

4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

一、选择题(每小题3分,共30分)1.将一副三角板按如图所示的方式放置,则AOB ∠的大小为( )A .80︒B .75︒C .60︒D .45︒2.下列各组数中,互为倒数的是( )A .-2与2B .-2与∣-2∣C .-2与1 2D .-2与-123.有一个两位数,个位数字是n ,十位数字是m ,则这个两位数可表示为( ) A .mn B .10m n + C .10n m +D .m n + 4.实数a ,b ,c ,d 在数轴上对应点的位置如图所示,正确的结论是( )A .a > cB .b +c > 0C .|a |<|d |D .-b <d5.已知下列结论:①若0a b +=,则a 、b 互为相反数;②若0ab >,则0a >且0b >;③+=+a b a b ;④绝对值小于10的所有整数之和等于0;⑤3和5是同类项.其中正确的结论的个数为( )A .2B .3C .4D .56.下列说法:①一个有理数不是整数就是分数;②有理数是正数和小数的统称;③到原点距离相等的点 所示的数相等;④相反数、绝对值都等于它本身的数只有 0;⑤数轴上的点离原点越远,表示的数越大;⑥有最小的正整数但没有最小的正有理数.其中正确的个数有( )A .2 个B .3 个C .4 个D .5 个7.已知M =x 2+2xy +y 2,N =x 2﹣2xy +y 2,则M ﹣N 等于( )A .4xyB .﹣4xyC .2y 2D .4xy +2y 28.下列各数中,相反数是12-的是()A.12-B.12C.2-D.29.下列各组数中,相等的一组是()A.-2和-(-2)B.-|-2|和-(-2)C.2和|-2| D.-2和|-2|10.如图,下列说法中正确的是()(选项)A.∠BAC和∠DAE不是同一个角B.∠ABC和∠ACB是同一个角C.∠ADE可以用∠D表示D.∠ABC可以用∠B表示二、填空题(本大题共有6小题,每小题3分,共18分)11.整理一批图书,甲、乙两人单独做分别需要6小时、9小时完成.现在先由甲单独做1小时,然后两人合作整理这批图书要用_____小时.12.比较大小:-12____23-(填“>”,“<”或“=”)13.用相等长度的火柴棒搭成如下图所示的一组图形,按照此规律,用含n的代数式表示搭第n个图形要用的火柴棒的根数是___________________14.一件工作,甲单独做需6天完成,乙单独做需12天完成,若甲,乙一起做,则需_____天完成.15.已知数轴上三点M,O,N对应的数分别是-1,0,3,点P为数轴上任意点,其对应的数为x.如果点P以每分钟1个单位长度的速度从点O向左运动,同时点M和点N分别以每分钟2个单位长度和每分钟3个单位长度的速度也向左运动.设t分钟时P点到点M、点N的距离相等,则t的值为_______.16.若a、b是互为倒数,则2ab﹣5=_____.三、解下列各题(本大题共8小题,共72分)17.(8分)长方形的面积是2390m,如果将长延长至原来的2倍,且长方形面积保持不变,那么宽会比原来少13m,求原来长方形的长.18.(8分)有个填写运算符号的游戏:在“1269”中的每个□内,填入+⨯÷,﹣,,中的某一个(可重复使用),然后计算结果.(1)计算:1269+﹣﹣;(2)若请推算12696÷⨯=﹣,□内的符号;(3)在“1269﹣”的□内填入符号后,使计算所得数最小,直接写出这个最小数.19.(8分)如图,直线AB、CD相交于点O,过点O作两条射线OM、ON,且∠AOM=∠CON=90°(1)若OC平分∠AOM,求∠AOD的度数.(2)若∠1=14∠BOC,求∠AOC和∠MOD.20.(8分)如图1直角三角板的直角顶点O在直线AB上,OC,OD是三角板的两条直角边,射线OE平分∠AOD.(1)若∠COE=40°,则∠BOD=.(2)若∠COE=α,求∠BOD(请用含α的代数式表示);(3)当三角板绕O逆时针旋转到图2的位置时,其它条件不变,试猜测∠COE与∠BOD之间有怎样的数量关系?并说明理由.21.(8分)阅读材料,解决下面的问题:(1)如图2,连接正六面体中相邻面的中心,可得到一个柏拉图体. ①它是正 面体,有 个顶点, 条棱;②已知该正多面体的体积与原正方体体积的比为1:6,若原正方体的棱长为3cm ,该正多面体的体积为 cm 3; (2)如图3,用6个棱长为1的小正方体搭成一个几何体.小明要再用一些完全相同的小正方体搭一个几何体.若要使新搭的几何体恰好能与原几何体拼成一个无空隙的正六面体,则小明至少需要 个小正方体,他所搭几何体的表面积最小是 ;(3)小华用4个棱长为1的小正四面体搭成一个如图4所示的造型,可以看做是一个不完整的大四面体.小华发现此造型中间空缺部分也是一个柏拉图体!请写出该柏拉图体的名称: .22.(10分)按要求画图及填空:在由边长为1个单位长度的小正方形组成的网格中建立如图所示平面直角坐标系,原点O 及△ABC 的顶点都在格点上. (1)点A 的坐标为 ;(2)将△ABC 先向下平移2个单位长度,再向右平移5个单位长度得到△A 1B 1C 1,画出△A 1B 1C 1.(3)△A 1B 1C 1的面积为 .23.(10分)用方程解答下列问题(1)一个角的余角比它的补角的12还少15°,求这个角的度数. (2)几个人共同搬运一批货物,如果每人搬运8箱货物,则剩下7箱货物未搬运;如果每人搬运12箱货物,则缺13箱货物,求参与搬运货物的人数.24.(12分)如图1,150AOD ∠=︒,50AOB ∠=︒,30COD ∠=︒,把AOB ∠绕O 点以每秒20︒的速度逆时针方向旋转一周,同时COD ∠绕O 点以每秒10︒的速度逆时针方向旋转,当AOB ∠停止旋转时COD ∠也随之停止旋转.设旋转后的两个角分别记为11AOB ∠、11C OD ∠,旋转时间为t 秒.(1)如图2,直线MN 垂直于OA ,将COD ∠沿直线MN 翻折至''C OD ∠,请你直接写出BOD '∠的度数,不必说明理由;(2)如图1,在旋转过程中,若射线1OB 与1OC 重合时,求t 的值;(3)如图1,在旋转过程中,当1120B OC ∠=︒时,直接写出t 的值,不必说明理由.参考答案一、选择题(每小题3分,共30分)1、B【分析】根据直角三角板的度数计算即可.【题目详解】解:根据题意得∠AOB =45°+30°=75°,故选:B .【题目点拨】本题考查了角度的简单运算,熟知直角三角板中的角度是解题的关键2、D【分析】根据倒数的定义:乘积为1的两个数互为倒数便可求出.【题目详解】2241,-⨯=-≠∴A 错误;222241,-⨯-=-⨯=-≠∴B 错误; 1211,2-⨯=-≠∴C 错误;121,2⎛⎫-⨯-=∴ ⎪⎝⎭D 正确. 【题目点拨】本题考查了倒数的定义,正确计算两个数的乘积是否等于1是解题的关键.3、B【分析】因为m 代表十位这个数字的大小,根据代数式的表示即可.【题目详解】解:m 代表十位数字的大小,n 代表个位数字的大小,所以这个两位数为10m+n故选B【题目点拨】本题考查了用字母表示数及列代数式,解题的关键是掌握代数式的表达方式.4、D【解题分析】解:由数轴上点的位置,得:-5<a <﹣1<-2<b <-1<0<c <1<d=1.A .a <c ,故A 不符合题意;B .b +c <0,故B 不符合题意;C .|a |>1=|d |,故C 不符合题意;D .-b <d ,故D 符合题意;故选D .点睛:本题考查了实数与数轴,利用数轴上点的位置关系得出a ,b ,c ,d 的大小是解题关键.5、B【分析】①根据相反数的定义判断;②根据有理数的乘法法则判断;③根据绝对值的定义判断;④根据绝对值的定义判断;⑤根据同类项的定义判断.【题目详解】解:①若a+b=0,则a 、b 互为相反数,故①的结论正确;②若ab >0,则a >0且b >0或a <0且b <0,故②的结论错误;③当a 与b 异号时,|a+b|≠|a|+|b|,故③的结论错误;④绝对值小于10的所有整数之和等于0,故④的结论正确;⑤3和5是同类项,故⑤的结论正确.综上所述,正确的有①④⑤共3个.故选:B .【题目点拨】本题主要考查了相反数的定义,绝对值的定义以及同类项的定义,熟记相关定义是解答本题的关键.6、B【分析】根据有理数的分类、数轴表示数、绝对值、相反数的意义,逐个进行判断,得出答案,【题目详解】整数和分数统称为有理数,因此①是正确的,无限不循环小数就不是有理数,因此②不正确,到原点距离相等的点所示的数相等或互为相反数,因此③不正确,相反数等于它本身的数是0、绝对值都等于它本身的数是非负数,因此相反数、绝对值都等于它本身的数只有0,因此④是正确的,数轴上,在原点的左侧离原点越远,表示的数越小,因此⑤不正确,最小的正整数是1,没有最小的正有理数,因此⑥是正确的,因此正确的个数为3,故选:B.【题目点拨】考查数轴表示数、绝对值、相反数、以及有理数的分类,准确理解这些概念是正确判断的前提.7、A【分析】把M与N代入M﹣N中,去括号合并即可得到结果.【题目详解】∵M=x2+2xy+y2,N=x2﹣2xy+y2,∴M﹣N=x2+2xy+y2﹣x2+2xy﹣y2=4xy,故选:A.【题目点拨】本题考查了整式的加减问题,掌握整式加减的运算法则是解题的关键.8、B【分析】根据只有符号不同的两个数是互为相反数,求出−12的相反数,然后选择即可.【题目详解】∵12的相反数是−12,∴相反数等于−12的是12.故选:B.【题目点拨】本题考查了相反数的定义,熟记定义是解题的关键.9、C【分析】根据有理数的运算法则先计算出各个选项的最简数值,然后再根据有理数的大小比较规律求解.【题目详解】解:A、-(-2)=2≠-2,故本项不正确;B、-|-2|=-2,-(-2)=2,-2≠2,故本项不正确;C 、|-2|=2,故本项正确;D 、|-2|=2≠-2,故本项不正确.【题目点拨】题主要考查有理数大小的比较.规律总结:正数大于负数;如果两数都是正数,则绝对值大的大,绝对值小的小;如果两数都是负数,则绝对值大的数反而小.10、D【解题分析】A 、∠BAC 和∠DAE 两边相同,顶点相同,故是同一个角,说法错误;B 、由∠ABC 和∠ACB 顶点不同即可判断二者并非同一角,说法错误;C 、由于以点D 为顶点的角有三个,故不可用∠D 表示,说法错误;D 、点D 处只有一个角,故∠ABC 可以用∠B 表示,说法正确.二、填空题(本大题共有6小题,每小题3分,共18分)11、1.【分析】设他们合作整理这批图书的时间是x h ,根据总工作量为单位“1”,列方程求出x 的值即可得出答案.【题目详解】解:设他们合作整理这批图书的时间是x h ,根据题意得:111()1669x ++= 解得:x =1,答:他们合作整理这批图书的时间是1h .故答案是:1.【题目点拨】本题主要考查一元一次方程的应用,掌握工程问题的解法是解题的关键.12、>.【分析】比较的方法是:两个负数,绝对值大的其值反而小.【题目详解】∵|12-|12=,|23-|23=,而1223<, ∴1223->-. 故答案为:>.【题目点拨】本题考查了有理数的大小比较,解题时注意:正数都大于0,负数都小于0,正数大于一切负数.两个负数比较大小,绝对值大的反而小.13、8n +4【分析】设第n个图形要用的火柴棒的根数为a n(n为正整数),根据各图形中火柴棒根数的变化,可找出变化规律“a n =8n+4(n为正整数)”,此题得解.【题目详解】解:设第n个图形要用的火柴棒的根数为a n(n为正整数).观察图形,可知:a1=12=8×1+4,a2=20=8×2+4,a3=28=8×3+4,a4=36=8×4+4,…,∴a n=8n+4(n为正整数).故答案为:(8n+4).【题目点拨】本题考查了规律型:图形的变化类,根据各图形中火柴棒根数的变化找出变化规律“a n=8n+4(n为正整数)”是解题的关键.14、4【解题分析】设甲,乙一起做,需x天完成,根据等量关系“甲,乙一起做x天的工作量=总工作量1”列出方程,解方程即可求解.【题目详解】设需x天完成,根据题意可得,x()=1,解得x=4,故需4天完成.故答案为:4.【题目点拨】本题考查了一元一次方程的应用,列方程解应用题的关键是正确找出题目中的相等关系,用代数式表示出相等关系中的各个部分,把列方程的问题转化为列代数式的问题.15、23或2.【解题分析】分别根据①当点M和点N在点P同侧时;②当点M和点N在点P异侧时,进行解答即可.【题目详解】设运动t分钟时,点P到点M,点N的距离相等,即PM=PN.点P对应的数是-t,点M对应的数是-2-2t,点N对应的数是3-3t.①当点M和点N在点P同侧时,点M和点N重合,所以-2-2t=3-3t,解得t=2,符合题意.②当点M和点N在点P异侧时,点M位于点P的左侧,点N位于点P的右侧(因为三个点都向左运动,出发时点M 在点P左侧,且点M运动的速度大于点P的速度,所以点M永远位于点P的左侧),故PM=-t-(-2-2t)=t+2.PN=(3-3t)-(-t)=3-2t.所以t+2=3-2t,解得t=23,符合题意.综上所述,t的值为23或2.【题目点拨】此题主要考查了数轴的应用以及一元一次方程的应用,根据M,N位置的不同进行分类讨论得出是解题关键.16、-1.【分析】根据互为倒数的两数之积为1,得到ab=1,再代入运算即可.【题目详解】解:∵a、b是互为倒数,∴ab=1,∴2ab﹣5=﹣1.故答案为﹣1.【题目点拨】本题考查了倒数的性质,掌握并灵活应用倒数的性质是解答本题的关键.三、解下列各题(本大题共8小题,共72分)17、15厘米【分析】设原来长方形的长是x厘米,则新长方形的长是2x厘米,长方形面积保持不变,根据题意列出方程即可.【题目详解】解:设原来长方形的长是x厘米,则新长方形的长是2x厘米.390390132x x-=解得15x=经检验,15x=是原方程的解,且符合题意.答:原长方形的长是15厘米.【题目点拨】本题考查了分式方程,长方形的面积=长⨯宽,长方形面积保持不变是突破点.18、(1)-12;(2)-;(3)-1,理由详见解析.【分析】(1)根据有理数的加减法法则解答即可;(2)根据题目中式子的结果,可以得到□内的符号;(3)先写出结果,然后说明理由即可.【题目详解】(1)1+2﹣6﹣9=3﹣6﹣9=﹣3﹣9=﹣12;(2)∵1÷2×6□9=﹣6,∴112⨯⨯6□9=﹣6,∴3□9=﹣6,∴□内的符号是“﹣”;(3)这个最小数是﹣1,理由:∵在“1□2□6﹣9”的□内填入符号后,使计算所得数最小,∴1□2□6的结果是负数即可,∴1□2□6的最小值是1﹣2×6=﹣11,∴1□2□6﹣9的最小值是﹣11﹣9=﹣1,∴这个最小数是﹣1.【题目点拨】本题考查了有理数的混合运算,明确有理数混合运算的计算方法是解答本题的关键.19、(1) 135°;(2)∠AOC=60°;∠MOD=150°.【分析】(1)根据OC平分∠AOM,易得∠1=∠AOC=45°,再由平角可求出∠AOD的度数(2)由题目中给出的∠1=14∠BOC和∠AOM=90°,可求出∠1的度数,进而再求出∠AOC和∠MOD的度数.【题目详解】(1)∠AOM=∠CON=90°,OC平分∠AOM ∴∠1=∠AOC=45°∴∠AOD=180°-∠AOC=180°-45°=135°;(2)∵∠AOM=90°∴∠BOM=180°-90°=90°∵∠1=14∠BOC∴∠1=13∠BOM=30°∴∠AOC=90°-30°=60°,∠MOD=180°-30°=150°.故答案是:(1)∠AOD=135°;(2)∠AOC=60°;∠MOD=150°.【题目点拨】本题主要考察角度的计算,合理分析角度之间的关系是解题的关键.20、(1)80°;(2)2α;(3)∠BOD+2∠COE=360°,理由见详解.【解题分析】(1)先根据直角计算∠DOE的度数,再根据角平分线的定义计算∠AOD的度数,最后利用平角的定义可得结论;(2)先根据直角计算∠DOE的度数,再根据角平分线的定义计算∠AOD的度数,最后利用平角的定义可得结论;(3)设∠BOD=β,则∠AOD=180°-β,根据角平分线的定义表示∠DOE,再利用角的和差关系求∠COE的度数,可得结论.【题目详解】解:(1)若∠COE=40°,∵∠COD=90°,∴∠EOD=90°﹣40°=50°,∵OE平分∠AOD,∴∠AOD=2∠EOD=100°,∴∠BOD=180°﹣100°=80°;(2)∵∠COE=α,∴∠EOD=90﹣α,∵OE平分∠AOD,∴∠AOD=2∠EOD=2(90﹣α)=180﹣2α,∴∠BOD=180°﹣(180﹣2α)=2α;(3)如图2,∠BOD+2∠COE=360°,理由是:设∠BOD=β,则∠AOD=180°﹣β,∵OE平分∠AOD,∴∠EOD=12∠AOD=1802β︒-=90°﹣12β,∵∠COD=90°,∴∠COE=90°+(90°﹣12β)=180°﹣12β,即∠BOD+2∠COE=360°.故答案为:(1)80°;(2)2α;(3)∠BOD+2∠COE=360°,理由见详解.【题目点拨】本题考查余角的定义,角平分线的定义和平角的定义,以及角的和差关系,解题的关键是熟练掌握平角和余角的定义,并注意利用数形结合的思想.21、(1)①八;6;12;②92;(2)21;50;(3)正八面体【分析】(1)①根据图2的特点即可求解;②先求出原正方体的体积,根据比值即可求出该正多面体的体积;(2)根据题意需搭建为3×3的正方体,根据几何体的特点即可求解;(3)根据这个柏拉图体有6个顶点即可得到为正八面体.【题目详解】(1)如图2,连接正六面体中相邻面的中心,可得到一个柏拉图体.①它是正八面体,有6个顶点,12条棱;②已知该正多面体的体积与原正方体体积的比为1:6,若原正方体的棱长为3cm,则原正方体的体积为33=27∴该正多面体的体积为1927=62⨯cm3;(2)如图,新搭的几何体俯视图及俯视图上的小正方体的个位数如下,则至少需要1+2×4+3×4=21个小正方体,他所搭几何体的表面积最小是2×9+2×8+2×8=50;(3)由图可知这个柏拉图体有6个顶点,故为正八面体;故答案为:(1)①八;6;12;②92;(2)21;50;(3)正八面体.【题目点拨】此题主要考查立方体的特点及性质,解题的关键是根据题意理解柏拉图体的特点、三视图的应用.22、(1)(﹣4,2);(2)见解析;(3)2.2.【分析】(1)直接利用平面直角坐标系得出A点坐标;(2)直接利用平移的性质得出对应点位置进而得出答案;(3)利用△A1B1C1所在的矩形的面积减去四周三个小直角三角形的面积,列式计算即可得解.【题目详解】(1)如图所示:点A的坐标为(﹣4,2);故答案为:(﹣4,2);(2)如图所示:△A1B1C1,即为所求;(3)△A1B1C1的面积为:3×4﹣12×1×3﹣12×2×3﹣12×1×4=2.2.故答案为:2.2.【题目点拨】本题主要考查了坐标与图形-平移变换以及三角形面积求法,正确得出对应点位置是解题关键.23、(1)30°;(2)1人【解题分析】试题分析:(1)首先根据余角与补角的定义,设这个角为x°,则它的余角为(90°-x),补角为(180°-x),再根据题中给出的等量关系列方程即可求解.(2)设参与搬运货物的有y人,则用含y的代数式表示第一次搬运的箱数是8y+7,表示第二次搬运的箱数是12y﹣13,根据表示的箱数相同列方程即可.解:(1)设这个角的度数为x,根据题意得:90°﹣x=(180°﹣x)﹣11°,解得:x=30°.答:这个角的度数为30°.(2)设参与搬运货物的有y 人,根据题意得:8y +7=12y ﹣13,解得:y=1.答:参与搬运货物的有1人.点睛:本题考查了列一元一次方程解决问题,一般步骤是: ①审题,找出已知量和未知量;②设未知数,并用含未知数的代数式表示其它未知量;③找等量关系,列方程;④解方程;⑤检验方程的解是否符合题意并写出答案.24、(1)20︒ ;(2)7s ;(3)5秒或9秒【分析】(1)根据轴对称的性质求出∠MOD=MOD ′=60°, 根据角的和差求出∠MOB ,进而可求出BOD ′的值; (2)求出∠BOC=70°,然后根据射线1OB 与1OC 重合时,射线1OB 比1OC 多走了70°列方程求解即可; (3)分相遇前和相遇后两种情况列方程求解即可.【题目详解】解:(1)如图2,∵150AOD ∠=︒,90AOM ∠=︒,30COD ∠=︒,∴∠MOD=MOD ′=150°-90°=60°, ∠MOB=90°-50°=40°,∴BOD ′=60°-40°=20°;(2)∵150AOD ∠=︒,50AOB ∠=︒,30COD ∠=︒,∴∠BOC=70°.由题意得20t-10t=70,∴t=7;(3)①相遇前,由题意得20t-10t=70-20,∴t=5;②相遇后,由题意得20t-10t=70+20,∴t=9;综上可知,当1120B OC ∠=︒时,t 的值是5秒或9秒.【题目点拨】本题考查的是用方程的思想解决角的旋转的问题,以及分类讨论的数学思想,找准等量关系,正确列出一元一次方程是解题的关键.。

西安西工大附中2023-2024学年第一学期七年级数学期末考试试卷附详细答案

西安西工大附中2023-2024学年第一学期七年级数学期末考试试卷附详细答案

西安西工大附中2023-2024学年第一学期期末考试七年级数学试题一、选择题(共10小题,每小题3分,计30分) 1.计算2-1的结果是( ) A.-2B.2C.-12D.122.如图所示的几何体的左视图是( )3.如图,已知点B 在点A 的北偏东65°方向,点C 在点A 的南偏西20°方向,则∠BAC 的度数为( ) A.135°B.130°C.125°D.120°4.下列计算,正确的是( ) A.a 2·a 3=a 6B.a 2+a 3=a 5C.(-a 2)3=-a 6D.a 6÷(-a)3=-a 25.点O 、A 、B 、C 在数轴上的位置如图所示,其中点A 、B 到原点O 的距离相等,点A 、C 之间的距离为2.若点C 表示的数为x ,则点B 所表示的数为( ) A.x +2B.x -2C.-x +2D.-x -26.已知a 是两位数,b 是三位数,把b 直接写在a 的右面,就成为一个五位数,这个五位数用代数式可表示成( )第3题图第5题图D.C.B.A. 第2题图A.abB.100a+bC.a+100bD.1000a+b7.若M(5x -y 2)=y 4-25x 2,那么代数式M 应为( ) A.5x 2-y 2B.5x +y 2C.-y 2+5xD.-5x -y 28.《孙子算经》中有一道题,原文是:今有三人共车,二车空;二人共车,九人步,问人与车各几何?译文为:今有若干人乘车,每3人共乘一车,最终剩余2辆车;若每2人共乘一车,则最终剩余9个人无车可乘,问共有多少人,多少辆车?设共有x 人,则可列方程为( ) A.x+23=x 2-9B.x 3+2=x−92C.x 3-2=x+92D.x−23=x 2+99.计算24046×(-0.25)2024的结果为() A.-22022B.22022C.14D.-1410.有理数a 、b 、c 所对应的点在数轴上的位置如图所示,化简|a -b|-|2c -a|+|c -b|的结果是( ) A.cB.3c -2bC.2a -3cD.-3c二、填空题(共6小题,每小题3分,计18分)11.西安市冬季里某一天的气温为-7℃~-1℃,这一天西安市的温差是____℃. 12.科学家可以使用冷冻显微术以高分辨率测定溶液中的生物分子结构,使用此技术测定细菌蛋白结构的分辨率达到0.22纳米,即0.00000000022米.将0.00000000022用科学记数法表示为________.13.小明用若干根等长的小木棒设计出如图所示的图形,则第n 个图形中有小木棒____根.第13题图第3个图形第1个图形第2个图形第4个图形…第10题图14.已知m 、n 为有理数,且4x 2+m x +9=(2x +n)2,则m+n 的值为____.15.如图,∠AOB=126°,射线OC 在∠AOB 外,且∠BOC=2∠AOC ,若OM 平分∠BOC ,ON 平分∠AOC ,则∠MON=____°.16.在如图所示的三阶幻方中,填写了一些数、代数式和汉字(其中每个代数式或汉字都表示一个数),若每一横行,每一竖列,以及每条对角线上的3个数之和都相等,则“诚实守信”这四个字表示的数之和为____. 三、解答题(共7小题,计52分) 17.计算题(每小题4分,共12分) (1)-14÷(-5)2×(-53)-|0.8-1|(2)(-2x 2)3+ x 2·x 4-(-3x 3)2(3)解方程:3+x−12=x -x+1418.(5分)先化简,再求值:[(x -2y)2-(x +3y)(x -3y)+3y 2]÷(-4y),其中x =2023,y=-14.19.(6分)列方程解决下面问题.甲、乙两人分别从A ,B 两地同时出发、沿同一条路线相向匀速行驶,已知出发后3h 两人相遇.乙的速度比甲快20km/h ,相遇后乙再经1h 到达A 地.求甲、乙两人的速度. 20.(6分)如图,B 、C 两点把线段AD 分成2︰5︰3三部分,M 为AD 的中点,BM=6,求CM 的长度.第20题图ABM C D第15题图AN BC MO0 信实守诚-8-11 x +1 -x -3第16题图21.(6分)为了解某校七年级学生数学期中考试情况,小亮随机抽取了部分学生的数学成绩(成绩都为整数)为样本,分为A(100~90分)、B(89~80分)、C(79~60分)、D(59~0分)四个等级进行统计,并将统计结果制成如下统计图,请根据图中信息解答以下问题.(1)这次抽样调查的样本容量为_____. (2)请补全条形统计图.(3)这个学校七年级共有学生1200人,若分数为80分(含80分)以上为优秀,估计这次七年级学生期中数学考试成绩为优秀的学生人数大约有多少?22.(7分)如图①,点O 为直线AB 上一点,过点O 作射线0C ,使∠AOC=60°,将一把直角三角尺的直角顶点放在点O 处,一边OM 在射线OB 上,另一边ON 在直线AB 的下方.(1)将图①中的三角尺绕点O 逆时针旋转至图②,使得点N 在OC 的反向延长线上,求∠MOB 的度数.(2)将图①中的三角尺绕点O 顺时针旋转至图③,使ON 在∠AOC 的内部,请探究∠AOM 与∠NOC 之间的数量关系,并说明理由.第21题图A B C D 25%50%10%CD 等级23.(10分)探究与实践 问题发现(1)用四个长为a ,宽为b 的长方形拼成如图所示的正方形ABCD ,由此可以得到(a+b)2、(a -b)2、ab 的等量关系是_____. 问题探究(2)如图②,将边长为a 的正方形APCD 和边长为b 正方形BPEF 拼在一起,使得A 、P 、B 共线,点E 落在PC 上,连接AB.若AB=8,△APE 的面积为7.5,求CE 的长度. 问题解决(3)如图③,某小区物业准备在小区内规划设计一块休闲娱乐区,其中BE 、CF 为两条互相垂直的道路,且BG=CG ,EG=FG ,四边形ABGF 与四边形CDEG 为长方形,现计划在两个三角形区域种植花草,两个长方形区域铺设塑胶地面,按规划要求,道路BE 的长度为80米.若种值花草每平方米需要100元,铺设塑胶地面每平方米需要30元,若物业为本次修建休闲娱乐区筹集了25万元,请你通过计算说明该物业筹集的资金是否够用?(道路的宽度均不计)第22题图图①B 图②BN 图③BM西安西工大附中2023-2024学年第一学期期末考试七年级数学试题参考答案一、选择题(共10小题,每小题3分,计30分) 1.计算2-1的结果是( ) A.-2B.2C.-12D.121.解:2-1=121=12,故选D 。

湖北省武汉市部分学校2023-2024学年第一学期七年级期末考试数学试卷(word版含答案)

湖北省武汉市部分学校2023-2024学年第一学期七年级期末考试数学试卷(word版含答案)

2023-2024学年度第一学期七年级期末调研考试数 学 试 卷亲爱的同学,在答题前,请认真阅读下面的注意事项:1. 本试卷由第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分组成,三大题,24小题,全卷共6页,考试时间120分钟,满分120分.2. 试卷选择题及非选择题答案均写在答题卡上,写在试卷上无效.预祝你取得优异成绩!第Ⅰ卷(选择题 共30分)一、选择题(每小题3分,共30分)本题共10小题,每小题均给出A ,B ,C ,D 四个选项,有且只有一个答案是正确的,请将正确答案的代号填在答题卡上,填在试题卷上无效.1.数轴上表示的点在原点的左侧,距离原点( )个单位长度.(A )0(B )1(C )2(D )32.下列立体图形,其中圆柱体是( ).(A ) (B ) (C ) (D )3.下列计算正确的是( ).(A ) (B ) (C )(D )4.如图,学校A 在小红家B 南偏西25°的方向上,点C 表示超市所在的位置,∠ABC =90°,则超市C 在小红家B 的( ).(A )南偏东65°的方向上 (B )南偏东55°的方向上(C )北偏东65°的方向上 (D )北偏东55°的方向上5.若是关于x 的一元一次方程,则k 的值不可能是( ).(A )(B )0 (C )2 (D )6.如图,OB 平分∠AOC ,下列结论错误的是( ).3-532a a -=-32a a a -+=232a a a -=235a b ab+=()210k x -+=1-2-D东(A )∠AOB =∠BOC (B )∠COD +∠AOC =∠BOD (C )∠AOD -∠BOC =∠BOD (D )∠BOC +∠AOD =2∠BOD 7.下列变形正确的是( ).(A )若,则 (B )若,则(C )若,则(D )若,则8.我国古代数学著作《增删算法统宗》中记载“绳索量竿”问题:“一条竿子一条索,索比竿子长一托.折回索子却量竿,却比竿子短一托”.其大意为:有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.设竿子的长为尺,依题意可列方程为( ).(A ) (B ) (C )(D )9.如图,点C ,D 在线段上AB ,O 为AB 上方一点,∠OAB =90°,连接OC ,OD ,OB ,下列结论:①图中互余的角有3对;②图中共有线段10条;③图中共有8个锐角;④若AC =CD =5,BD =3,P 为线段AB 上一点,则点P 到点A,C ,D ,B 的距离之和最小为18.其中正确的说法有( ).(A )①②④(B )③④ (C )①②③ (D )①③④10.如图,张老师要在足够大的磁性黑板上展示数张形状、大小均相同的长方形作业,将这些作业排成一个长方形(作业不完全重合).现需要在每张作业的四个角落都放上磁性贴,如果作业有角落相邻,那么相邻的角落共享一枚磁性贴(例如,4张作业可用9枚磁性贴固定在磁性黑板上).若有25枚磁性贴可供选用,则最多可以展示( )张作业.(A )12(B )14(C )15(D )1612a b =11a b -=+12a b +-=3a b =+a b =22a c b c -=-a b =11a b c c =--x ()15252x x +=-()1552x x +=-1552x x +=-()1552x x -=+(第9题)OD C BA第Ⅱ卷(非选择题 共90分)二、填空题(每小题3分,共18分)下列各题不需要写出解答过程,请将结果直接填写在答题卡指定的位置.11.冬季某一天的温差是3℃,这天最低气温是-2℃,最高气温是℃.12.如图,正方体纸盒上相对两个面上的数互为相反数,则正方体纸盒六个面上的数中,最小的是.13.已知m ,n 为正整数,若多项式合并同类项后只有两项,则的值为.14.数轴上点A 表示的数为,点B ,C 表示的数分别为,,若点B 为线段AC的中点,则的值为.15.如图,P的边BC 上一点,将∠ABP ,∠DCP 分别沿AP ,DP 向上折叠,点B 落在点处,点C 恰好落在AD 边上的处,.下列说法:①∠BPD=135°;②;③若平分,则;④若,则.其中一定正确的结论有(填序号即可).16.从如图1(边长为a )的正方形纸片上剪去两个相同的小长方形,得到如图2的图案(横向、纵向的宽度均为b ),再将剪下的两个小长方形拼成一个新长方形(如图3),若,则图3中新长方形的周长为.三、解答题(共8小题,共72分)下列各题需要在答题卡指定的位置写出文字说明、证明过程、演算步骤或画出图形.17.(本题8分)计算:(1); (2).232123m n a b a b a b --+m n +1-35m -1m +m B 'C 'B PD α'∠=22.52APC α'∠=︒+PC 'APB '∠15α=︒108APD B PC ''∠+∠=︒9α=︒23a b -=902832'︒-︒()()321113232⎛⎫⎡⎤---÷⨯-- ⎪⎣⎦⎝⎭(第15题)P C /B /DBCA18.(本题8分)解方程:(1);(2).19.(本题8分)先化简,再求值.已知,其中,,.20.(本题8分)根据图中的信息解答下面的问题(单位:cm ).(1)放入一个大球水面升高_____cm ,放入一个小球水面升高_____cm ;(2)若放入大球、小球共8个后水面高度为27 cm ,大球、小球各放入多少个?21.(本题8分)对于有理数a ,b 满足,我们称使等式成立的一对有理数a ,b为“相伴有理数对”,记为(a ,b ).如(,2)满足:;(2,)满足:;所以数对(,2),(2,)都是“相伴有理数对”.(1)数对(,1),(1,0)中,是“相伴有理数对”是________;(2)若(,3)是“相伴有理数对”,求x 的值;(3)若(,)是“相伴有理数对”,则的值为 .的312x x -=+121132x x +--=()()22222322a b ab a b ab a b ab ⎡⎤-+---⎣⎦1a =2b =-1a b ab -=+3-32321--=-⨯+131122133-=⨯+3-131-21x -m n ()1372n mn mn m n ⎡⎤-+-+⎣⎦的3放入体积相同的22.(本题10分)某校组织趣味数学知识竞赛,共设20道选择题,各题分值相同.下表记录了4位参赛者的答题及得分情况.参赛者答题总数答对题数答错题数总得分A 20200100B 2019193C 1714364D1311251(1)从上表可以看出:答对1题得 分,答错1题得 分,未作答1题得 分;(2)参赛者E 完成18道答题得69分,他答对了多少道题?(3)参赛者F 得了67分,请直接写出他答对题;答错题;未作答题.23.(本题10分)如图,已知∠COD =∠AOB=,射线OM 平分∠COD ,ON 平分∠AOD .(1)如图1,若OC 与OB 重合,,请补全图形并直接写出∠MON 的度数为 °;(2)如图2,若∠MON=55°,求∠AOC 的度数;(3)若,将∠COD 从图1的位置以每秒5°的速度绕点O 逆时针方向旋转一周,经过秒能使∠MON=45°(直接写出结果).12α20α=︒25α=︒图1ODB (C )A图2NBM AODC备用图ABO24.(本题12分)数轴上A ,B 三个点表示的数分别是a ,b ,且满足,动点P 从点A 出发,以每秒3个单位长度的速度向右移动秒.(1)直接写出a = ,b = ;(2)如图1,若M 为PA 的中点,N 为PB 的中点,试判断在P 点运动的过程中,线段MN的长度是否发生变化,请说明理由;(3)对于数轴上的点P ,Q ,给出如下定义:记点P 到点A 的距离为m ,点Q 到P的距离为n ,如果,那么称点Q 是点P 的“关联点”.①若m =1,直接写出点P 的“关联点”Q 在数轴上对应的数为 ;②若,试求的值.数学参考答案一、选择题:题号12345678910答案DCBACDCBAD二、填空题:11.1; 12.; 13.6或4; 14.2;15.①②③④;16.12.(说明:13题对一空2分,15题1~2个正确都给1分,3个正确2分)第10题提示:①若所有作业展示成一排,则:……1,最多11张作业;()2620a b ++-=t 2n m -==2BQ BP t 3-()252211-÷=图1备用图②若所有作业展示成两排,则:……1,最多张作业;③若所有作业展示成三排,则:……1,最多张作业;④若所有作业展示成四排,则:……1,最多张作业; ⑤若所有作业展示成五排,则:……1,最多张作业…… 故最多可展示16张作业.第15题提示:依题意,∠BPC=45°,即∠BPD=135°;②因为,,所以;③依题意,,则;④由,又∠BPC=45°,,即∠BPC++45°=108°,所以.第16题提示:新长方形长为:,宽为:,因为,所以新长方形长为:.三、解答题:17.(1)原式=, ……3分= ;……4分(2)原式, ……6分……7分. ……8分18.(1),……3分解得; ……4分(2)去分母,得 ……6分()25337-÷=7214⨯=()25445-÷=5315⨯=()25554-÷=4416⨯=()25663-÷=3515⨯=B PD α'∠=()113567.522APB B PD α'∠=︒-∠=︒-22.52APC α'∠=︒+22.5452APC B PC αα'''∠=∠=︒+=︒-15α=︒108APD B PC ''∠+∠=︒67.5APB α∠=︒-67.52APB α∠=︒-9α=︒a b -3a b -23a b -=()()23424312a b a b a b -+-=-=⨯=89602832''︒-︒6128'︒()111723=--⨯⨯-716=-+16=23x =32x =22636x x +-+=……7分解得 . ……8分19.化简得,……3分=, ……5分=……6分……8分20.(1)2.5,1.5; ……4分(2)设放入大球个,依题意列方程,, ……6分解得;8-5=5. 答:放入大球3个,小球5个.……8分21.(1)(1,0);……3分(2)依题意列方程得,……5分解得; ……6分(3). ……8分22.(1)5,,0;……3分(2)依题意,设参赛者E 答对了道题,依题意列方程得:,……5分解得,,……6分答:设参赛者E 答对了15道题;……7分(3)15,4,1. ……10分23.(1)20°;(正确画图1分)……4分(2)∵OM 平分∠COD ,ON 平分∠AOD ,∠COD =∠AOB=,41x -=14x =-222223222a b ab a b ab a b ab ⎡⎤-+--+⎣⎦2222a b ab a b ⎡⎤-+⎣⎦22ab -()22128-⨯⨯-=-x ()2.5 1.582712x x +-=-3x =()2133211x x --=-+12x =-12-2-x ()521869x x ⨯--=15x =12α∴∠COM =∠DOM =,∠AON =∠DON , ……5分又∠MON=55°,∴∠CON =∠MON -∠COM =, ……6分∴∠AON =∠DON =,……7分∴∠AOC =∠AON+∠CON=+=;……8分(3)8或44……10分依题意∠AON =∠DON ,∠COM =∠DOM =,又∠MON=45°,①如图1,∠CON =∠MON -∠COM =32.5°,∴∠AON =∠DON =45°+12.5°=57.5°,∴∠BON =57.5°-50°=7.5°,∴旋转过的角度∠BOC =∠BON+∠CON =32.5°+7.5°=40°,(秒);②如图2,∴∠AON =∠DON=∠MON -∠DOM =45°-12.5°=32.5°,∴∠BOC =∠COD+∠DON +∠AON+∠AOB =140°,∴旋转过的角度为:360°-140°=220°,(秒).24.(1),2;……2分(2)依题意,AB=8,AP=3t ,,∵M 为PA 的中点,N 为PB 的中点,2α552α︒-552α︒+552α︒+552α︒-110︒12.5︒4058÷=220544÷=6-()23683BP t t =--=-DOM CNBA图1COA BNMD图2,,①如图1,当点P 在AB 之间时,,; ……4分②如图2,当点P 在AB 延长线上时,,;综上所述,线段MN 的长度保持不变. ……6分(说明:学生用绝对值方程分类讨论相应给分)(3)①或;……8分②依题意,,点P 表示的数为,又,即点Q 到P 的距离为,Ⅰ当点Q 在P 的左侧时,点Q 表示的数为; ……9分,,由得,,解得或; ……10分Ⅱ当点Q 在P 的右侧时,点Q 表示的数为;……11分,,由得,, 解得;1322t MP AM AP ===118322PN BN BP t ===-83BP t =-()3183422t MN MP BN t =+=+-=38BP t =-()3138422t MN MP NP t =-=--=2-8-3m t =36t -2n m -=232n m t =+=+()36328t t --+=-10BQ =()23683BP t t =--=-=2BQ BP 28310t -=1t =133t =()363264t t t -++=-()26466BQ t t =--=-()23683BP t t =--=-=2BQ BP 66283t t -=-116t =图1图2七年级数学试卷第11页 (共6页)综上所述,、或. ……12分1t =133t =116t =。

人教版2024-2025学年度第一学期七年级期末数学试卷

人教版2024-2025学年度第一学期七年级期末数学试卷

人教版2024-2025学年度第一学期七年级期末数学试卷(本试卷三个大题,25个小题。

满分150分,考试时间 120分钟。

)一、选择题(本题共12个小题,每小题3分,共36分;每个小题A、B、C、D四选项,只有一项符合题意。

)1. 若|m−3|+(n+2)²=0,则m+2n的值为( )A. - 1B. 1C. - 4D. 42. 多项式2x⁵+4xy³−5x²−1的次数和常数项分别是( )A. 5, - 1B. 5, 1C. 10, - 1D. 11, - 13. 若|m|=9. |n|=2, 且m+n<0, 则m+n的值为( )A. 7或-7B. - 7或-11C. 11D. 74. 在12x+1,−3xy2,12x⋅−8, m中,单项式的个数是( )A. 1B. 2C. 3D. 45. 如图,数轴上点A、B、C分别表示数a、b、c,则下列结论不成立的是( ).A. abc<0B. a-c<0C. a+b>0D. |a|<|b|6. 定义一种新运算:则3⊗(-1)⊗5的结果是 ( )A. 15B. - 1C. 1D. 127.如图所示为由4个大小相同的正方体组成的几何体,则从正面看到的平面图形是( )8. a,b是有理数,它们在数轴上的对应点的位置如图. 把a,-a,b,-b按照从小到大的顺序排列,正确的是()A. - a<-b<a<bB. - b<-a<a<bC. b<-a<a<-bD. - b<a<-a<b9. 下列7个数: 54, 1.010010001, - 43, 0, - 2π, 3.3, - 3.141441444… (每两个1之间一次多一个4), 其中有理数有( )个.A. 5B. 4C. 3D. 610. 观察下列算式: 31 =3 ,32=9,33=27,34=81、35=243,36=729,37=2187,32=6561⋯,通过观察,用你所发现的规律确定32025的个位数字是( ) A. 3 B. 9 C. 7D. 111. 甲、乙、丙三家超市为标价相同的同一种商品接促销活动, 甲超市一次性降价40%, 乙超市连续两次降价20%。

初一数学试题]]新人教版初一数学上册期末考试(含答案)[1]

初一数学试题]]新人教版初一数学上册期末考试(含答案)[1]

人教版2022-2023学年七上期末数学试卷一、选择题(共10小题,每小题3分,共30分)1.截至2021年12月8日,31个省(自治区、直辖市)和新疆生产建设兵团累计报告接种新冠病毒疫苗超过3600000000剂次.用科学记数法表示3600000000是( )A .3.6×109B .0.36×109C .3.6×1010D .0.36×10102.下列各组单项式中,是同类项的是( )A .5a ,3abB .4mn ,﹣nmC .﹣2x 2y ,3xy 2D .3ab ,﹣5ab 23.如图,直线AB 、CD 相交于点O ,则推导出“∠AOD =∠BOC ”,下列依据中,最合理的是( )A .同角的余角相等B .等角的余角相等C .同角的补角相等D .等角的补角相等4.已知关于x 的方程2x ﹣a +5=0的解是x =1,则a 的值为( )A .6B .7C .8D .95.下面四个几何体中,从左面看到的图形是四边形的几何体共有几个?( )A .1个B .2个C .3个D .4个6.若一个角的余角比它的这个角大20°,则这个角等于( )A .25°B .35°C .45°D .55°7.下列说法中错误的是( )A .数字0是单项式B .单项式b 的系数与次数都是1C .12x 2y 2是四次单项式D .−2πab 3的系数是−238.《孙子算经》中有一道题,原文是:今有三人共车,二车空:二人共车,九人步,问人与车各几何?译文为:今有若干人乘车,每3人共乘一车,最终剩余2辆车;若每2人共乘一车,最终剩余9个人无车可乘,问共有多少人?设共有x 人,则( )A .x+23=x 2−9B .x 3+2=x−92C .x 3−2=x+92D .x−23=x 2+99.(3分)如图,已知∠AOB =∠COD =90°,OB 平分∠DOE ,图中有m 对互余的角;图中有n 对互补的角,则m ,n 的值分别为( )A .m =1,n =2B .m =2,n =3C .m =2,n =5D .m =3,n =610.观察下列等式找出规律①13=12;②13+23=32;③13+23+33=62;④13+23+33+43=102;…,则(﹣5)3+(﹣6)3+(﹣7)3+…+(﹣15)3的值是( )A .14400B .﹣14400C .14300D .﹣14300二、填空题(共6小题,每小题3分,共18分)将答案直接写在答题卡指定的位置上.11.计算:(﹣7)﹣(+5)+(+13)= .12.亚贸广场某件农服的售价为240元,若这件衣服的利润率为50%,则该衣服的进价为 元.13.计算72°﹣29°18′33″的结果是 .14.若方程(k +2)x |k +1|+6=0是关于x 的一元一次方程,则k +2023= .15.已知线段AB =16,直线AB 上有一点C ,且BC =4,点M 是线段AC 的三等分点,则AM 的长是 .16.如图,已知∠AOB =90°,∠COD 在∠AOB 内部且∠COD =45°.下列说法:①如果∠AOC =∠BOD ,则图中有两对互余的角;②如果作OE 平分∠BOC ,则∠AOC =2∠DOE ;③如果作OM 平分∠AOC ,ON 在∠AOB 内部,且∠MON =45°,则OD 平分∠BON ;④如果在∠AOB 外部分别作∠AOC 、∠BOD 的余角∠AOP 、∠BOQ ,则∠AOP+∠BOQ ∠COD =3;其中正确的有 .三、解答题(共8小题,共72分)在答题卡指定的位置上写出必要的演算过程或证明过程.17.(8分)计算.(1)(5a ﹣3b )+5(a ﹣2b );(2)﹣2×(﹣3)2﹣(﹣2)3÷4.18.(8分)解方程.(1)5(x +2)=14+3x ;(2)x−45+1=x−53.19.(8分)七(31)班有43名志愿者,由于疫情每人捐7个医用口罩或5个抗原检测试剂.现把3个口罩和4个检测试剂配成一套健康包,有意思的是该班捐赠的口罩和抗原试剂刚好配套成整套的健康包,试求该班捐赠口罩和抗原试剂的志愿学生各多少名?20.(8分)按要求完成作图及作答:(1)如图1,请用适当的语句表述点M 与直线l 的关系: ;(2)如图1,画射线PM ;(3)如图1,画直线QM ;(4)如图2,平面内三条直线交于A 、B 、C 三点,将平面最多分成7个不同的区域,点M 、N 是平面内另外两点,若分别过点M 、N 各作一条直线,则新增的两条直线使得平面内最多新增 个不同的区域.21.(8分)如图,∠AOB =110°,OD 平分∠BOC ,∠EOC =3∠AOE .(1)若∠AOD =95°,求∠AOE 的度数.(2)作OF 平分∠EOB ,若∠DOE =65°,求∠FOB 的度数.22.(10分)双十一期间,各大商场进行促销活动,其中“大洋百货”推出了如下活动:活动一:每满300元减50元;活动二:若标价不超过600元时,打九折,若标价超过600元时,则不超过600元的部分打九折,超过600元的部分打六折.设某一商品的标价为x元:(1)x=720时,按方式二应该付多少钱?(2)当300<x<900时,两种方式如何选择才更优惠?23.(10分)如图,数轴上线段AB=2(单位长度),线段CD=4(单位长度),点A在数轴上表示的数是﹣12,点C在数轴上表示的数是14.若线段AB以每秒2个单位长度的速度向右匀速运动,同时线段CD以每秒1个单位长度的速度向左匀速运动.设运动时间为ts.(1)当点B与点C相遇时,点A,D在数轴上表示的数分别为,;(2)当t为何值时,点B刚好与线段CD的中点重合;(3)当运动到BC=9(单位长度)时,求出此时点B在数轴上表示的数.24.(12分)已知∠AOB=120°,OC为∠AOB内部的一条射线,∠BOC=30°.(1)如图1,若OE平分∠AOB,OD为∠BOC内部的一条射线,∠BOD=5∠COD,求∠DOE的度数;(2)如图2,若射线OM绕着O点从OA开始以12度/秒的速度顺时针旋转至OB结束,在旋转过程中,ON 平分∠AOM,试问2∠BON﹣∠BOM是否为定值,若不是,请说明理由;若是,请求出其值;(3)如图3,若射线OE绕着O点从OA开始以15度/秒的速度顺时针旋转至OB结束、OF同时绕着O点从OB开始以3度/秒的速度逆时针旋转至OA结束,运动时间为t秒,当∠EOC=∠FOC时,求t的值.参考答案与试题解析一、选择题(共10小题,每小题3分,共30分)1.【解答】解:3600000000=3.6×109.故选:A .2.【解答】解:由“所含的字母相同,且相同字母的指数也相同”可得,选项B 的两个单项式是同类项,故选:B .3.【解答】解:∵∠AOD 与∠BOC 都是∠AOC 的补角,∴∠AOD =∠BOC (同角的补角相等).故选:C .4.【解答】解:把x =1代入方程2x ﹣a +5=0中得:2﹣a +5=0,解得:a =7.故选:B .5.【解答】解:因为圆柱的左视图是矩形,四棱锥的左视图是等腰三角形,圆锥的左视图是等腰三角形,正方体的左视图是正方形,所以,左视图是四边形的几何体是圆柱和正方体;故选:B .6.【解答】解:设这个角等于x °,则它的余角是(90﹣x )°,根据题意得:(90﹣x )°﹣x °=20°,解得:x =35.故这个角等于35°.故选:B .7.【解答】解:A 、数字0是单项式,本选项说法正确,不符合题意;B 、单项式b 的系数与次数都是1,本选项说法正确,不符合题意;C 、12x 2y 2是四次单项式,本选项说法正确,不符合题意;D 、−2πab 3的系数是−2π3,故本选项说法错误,符合题意;故选:D .8.【解答】解:由题意可得:x 3+2=x−92, 故选:B .9.【解答】解:∵OB 平分∠DOE ,∴∠EOB =∠DOB ,∵∠AOB =∠COD =90°,∴∠AOD =∠COB ,∴∠AOE 和∠BOE 互余,∠AOE 和∠BOD 互余,∠BOE 和∠BOD 互余,即m =3;∴∠AOE 和∠AOC 互补,∠AOE 和∠BOC 互补,∠BOE 和∠AOC 互补,∠BOE 和∠BOC 互补,∠AOC 和∠BOD 互补,∠BOC 和∠BOD 互补,即n =6.故选:D .10.【解答】解:∵①13=12;②13+23=32;③13+23+33=62;④13+23+33+43=102;…,∴(﹣5)3+(﹣6)3+(﹣7)3+…+(﹣15)3=﹣(53+63+73+ (153)=﹣[13+23+33+…+153﹣(13+23+33+43)]=﹣(1202﹣102)=﹣14300,故选:D .二、填空题(共6小题,每小题3分,共18分)将答案直接写在答题卡指定的位置上.11.【解答】解:(﹣7)﹣(+5)+(+13)=﹣7﹣5+13=﹣12+13=1.故答案为:1.12.【解答】解:设该衣服的进价是x 元,依题意有:(1+50%)x =240,解得x =160.高该衣服的进价为160元.故答案为:160.13.【解答】解:72°﹣29°18′33″=71°59′60″﹣29°18′33″=42°41′27″.故答案为:42°41′27″.14.【解答】解:∵方程(k +2)x |k +1|+6=0是关于x 的一元一次方程,∴{k +2≠0|k +1|=1, 解得:k =0,∴k +2023=0+2023=2023.故答案为:2023.15.【解答】解:当点C 在线段AB 上时,∵AB =16,BC =4,∴AC =AB ﹣BC =12,∵点M 是线段AC 的三等分点,∴AM =13AC =4或AM =23AC =8,当点C 在线段AB 的延长线上时,∵AB =16,BC =4,∴AC =AB +BC =20,∵点M 是线段AC 的三等分点,∴AM =13AC =203或AM =23AC =403,∴AM 的长是4或8或203或403. 故答案为:4或8或203或403.16.【解答】解:∵∠AOB =90°,∠COD =45°,∴∠AOC +∠BOD =∠AOB ﹣∠COD =45°.①∵∠AOC =∠BOD ,∠AOC +∠BOD =45°,∴∠AOC =∠BOD =22.5°,∴∠AOD =∠COB =67.5°,∴∠AOD +∠COB =90°,∠BOC +∠AOC =90°,∴图中有两对互余的角,故①正确;②设∠AOC =x ,则∠BOD =45°﹣x ,∴∠BOC =∠BOD +∠COD =45°﹣x +45°=90°﹣x .∵OE 平分∠BOC ,∴∠BOE =12∠BOC =45°−12x ,∴∠DOE=∠BOE﹣∠BOD=(45°−12x)﹣(45°﹣x)=12x,∴∠AOC=2∠DOE,故②正确;③设∠AOC=x,则∠BOD=45°﹣x,∵OM平分∠AOC,∴∠COM=12∠AOC=12x.∴∠CON=∠MON﹣∠COM=45°−12x,∴∠DON=∠COD﹣∠CON=45°﹣(45°−12x)=12x,∴∠BOD不一定等于∠DON,即ON不是∠BOD的平分线,故③错误;④设∠AOC=x,则∠BOD=45°﹣x,∠AOP=90°﹣x,∠BOQ=90°﹣(45°﹣x)=45°+x,∴∠AOP+∠BOQ=90°﹣x+45°+x=135°,∵∠COD=45°,∴∠AOP+∠BOQ∠COD=3,故④正确.故答案为:①②④.三、解答题(共8小题,共72分)在答题卡指定的位置上写出必要的演算过程或证明过程.17.【解答】解:(1)(5a﹣3b)+5(a﹣2b)=5a﹣3b+5a﹣10b=10a﹣13b;(2)﹣2×(﹣3)2﹣(﹣2)3÷4=﹣2×9﹣(﹣8)÷4=﹣18﹣(﹣2)=﹣16.18.【解答】解:(1)去括号得:10x +10=14+3x ,移项得:10x ﹣3x =14﹣10,合并同类项得:7x =4,解得:x =74;(2)去分母得:3(x ﹣4)+15=5(x ﹣5),去括号得:3x ﹣12+15=5x ﹣25,移项得:3x ﹣5x =12﹣15﹣25,合并同类项得:﹣2x =﹣28,解得:x =14.19.【解答】解:设捐赠口罩的有x 人,则捐赠抗原试剂的有(43﹣x )人, 根据题意得:7x 3=5(43−x)4,即28x =15(43﹣x ),解得x =15,∴43﹣x =43﹣15=28,答:该班捐赠口罩的志愿学生有15名,捐赠抗原试剂的志愿学生有28名.20.【解答】解:(1)点M 与直线l 的关系:M 在直线l 外;故答案为:M 在直线l 外;(2)如图1,直线PM 即为所求;(3)如图1,射线QM 即为所求;(4)如图2,新增的两条直线使得平面内最多新增7个交点. 故答案为:7.21.【解答】解:(1)∵∠AOD =95°,∠AOB =110°,∴∠BOD =∠AOB ﹣∠AOD =110°﹣95°=15°,又∵OD 平分∠BOC ,∴2∠COD =2∠BOD =∠BOC ,∴∠BOC =15°+15°=30°,∴∠AOC=∠AOB﹣∠BOC=110°﹣30°=80°,又∵∠EOC=3∠AOE,∴∠AOE=14∠AOC=14×80°=20°;(2)∵∠DOE=65°,∠AOB=110°,∴∠AOE+∠BOD=∠AOB﹣∠DOE=110°﹣65°=45°,设∠AOE=x°,则∠EOC=3x°,又∵OD平分∠BOC,∴∠BOD=∠COD=(45﹣x)°,∵∠EOC+∠COD=∠DOE=65°,∴3x+(45﹣x)°=65°,∴x=10°,∵OF平分∠EOB,∴∠FOB=12∠EOB=12(∠AOB﹣∠AOE)=12×(110﹣10)=50°.22.【解答】解:(1)(720﹣600)×0.6+600×0.9=612(元);(2)①当300<x<600时,活动一可以优惠50元,活动二标价50÷(1﹣0.9)=500元;当x<500时,活动一更优惠;当x=500时,两种方式优惠一样;当500<x<600时,活动二更优惠;②当x=600时,∵活动一优惠50×2=100元,活动二优惠600×0.1=60元,∴活动一更优惠;③当600<x<900时活动一可以优惠50×2=100元,活动二标价600×0.9+100÷(1﹣0.6)=700元;当x <700时,活动一更优惠;当x =700时,两种方式优惠一样;当700<x <900时,活动二更优惠.23.【解答】解:(1)点A 表示的数是4,点D 表示的数是10,故答案为:4,10;(2)由题意可知点B 表示的数是﹣10,线段CD 的中点在数轴上表示的数是16, (2+1)t =16﹣(﹣10),t =263,答:当t =263时,点B 刚好与线段CD 的中点.(3)①当点B 在点C 的左侧时,(2+1)t +9=14﹣(﹣10),t =5,﹣10+2×5=0;②当点B 在点C 的右侧时,(2+1)t =14﹣(﹣10)+9,t =11,﹣10+2×11=12;答:点B 在数轴上表示的数是0或12.24.【解答】解:(1)∵∠BOC =30°,∠BOD =5∠COD ,∴∠BOD =30°×51+5=25°, 又∵∠AOB =120°,OE 平分∠AOB ,∴∠BOE =120°÷2=60°∴∠DOE =60°﹣25°=35°;(2)2∠BON ﹣∠BOM 为定值,理由如下:设OM 运动t 秒,则∠BOM =120﹣12t ,∠AOM =12t ,∵ON 平分∠AOM ,∴∠NOM =12t ÷2=6t ,∠BON =120﹣12t +6t =120﹣6t ,∴2∠BON ﹣∠BOM =2×(120﹣6t )﹣(120﹣12t )=120°,∴2∠BON ﹣∠BOM 为定值;(3)当OE 在∠AOC 内部时,∵∠EOC =∠FOC ,∴120﹣30﹣15t =30﹣3t ,解得t =5,当OE 与OF 重合时,15t +3t =120°,解得t =203,综上所述,当∠EOC =∠FOC 时,t =5秒或203秒。

北师大版七年级上学期期末考试数学试卷(含答案)一

北师大版七年级上学期期末考试数学试卷(含答案)一

北师大版七年级数学第一学期期末考试试题及答案本试题分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷共2页,满分为48分;第Ⅱ卷共4页,满分为102分.本试题共6页,满分为150分.考试时间为120分钟.答卷前,考生务必用0.5毫米黑色墨水签字笔将自己的考点、姓名、准考证号、座号填写在答题卡上和试卷规定的位置上.考试结束后,将本试卷和答题卡一并交回.本考试不允许使用计算器.第I 卷(选择题共48分)注意事项:第Ⅰ卷为选择题,每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号.答案写在试卷上无效.一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.﹣12的相反数是( )A .12B .121C .121-D .﹣12 2.下列各图中,表示“射线CD ”的是( )A .B .C .D .3.下列图形中,不是正方体表面展开图的是( )A .B .C .D .4.小明投掷一枚硬币100次,出现“正面朝上”51次,则“正面朝上”的频率为( )A .49B .51C .0.49D .0.515.由5个相同的小正方体组成的几何体如图所示,从正面看该几何体得到的平面图形是( )A .B .C .D .6.世界文化遗产﹣﹣长城的总长约为2100000m ,数据2100000用科学记数法可表示为( )A .0.21×107B .2.1×105C .2.1×106D .21×1057.下列各选项中不是同类项的是( )A .﹣3与13B .2a 与2bC .5x 2y 与﹣2x 2yD .﹣xy 与2yx8.下列调查中最适合采用全面调查的是( )A .调查七(1)班学生定制校服的尺寸B .调查市场上奶制品的质量情况C .调查黄河水质情况D .调查全市《习语近人》节目的观看情况9.若x =1是关于x 的方程2x +a =0的解,则a 的值为( )A .﹣1B .﹣2C .1D .210.一幢房子一面墙的形状由一个长方形和一个三角形组成(如图),若把该墙面设计成长方形形状,面积保持不变,且底边长仍为a ,则这面墙的高度应该为( )A .2b +hB .h b 21C .b +2hD .b +h 11.如图,在正方形ABCD 中,E 为DC 边上一点,沿线段BE 对折后,若∠ABF 比∠EBF 大15°,则∠EBC 的度数是( )A .15°B .20°C .25°D .30°第11题图 第12题图 12.“格子乘法”作为两个数相乘的一种计算方法,最早在15世纪由意大利数学家帕乔利提出,在明代的《算法统宗》一书中被称为“铺地锦”.如图1,计算47×51,将乘数47计入上行,乘数51计入右行,然后以乘数47的每位数字乘以乘数51的每位数字,将结果计入相应的格子中,最后按斜行加起来,得2397.如图2,用“格子乘法”表示两个两位数相乘,则a 的值为( )A .2B .3C .4D .5第Ⅱ卷(非选择题共102分)注意事项:1.第II 卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带.不按以上要求作答的答案无效.2.填空题请直接填写答案,解答题应写出文字说明、证明过程或演算步骤.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.﹣23= .14.五边形的对角线一共有 条.15.在空气的成分中,氮气约占78%,氧气约占21%,其他微量气体约占1%.若要表示以上信息,最合适的统计图是 .16.如图是一个生日蛋糕盒,这个盒子棱数一共有 条.17.下面的框图表示了小明解方程3(x +5)+x =﹣5的流程:其中,步骤“③”的依据是 .18.已知1<x <a ,写一个符合条件的x (用含a 的代数式表示): .三、解答题:(本大题共9个小题,共78分.解答应写出文字说明、证明过程或演算步骤.)19.(本题4分)计算:(﹣3.2)+12.5+(﹣16.8)﹣(﹣2.5).20.(本题4分)化简:(x +2)﹣(3﹣2x ).21.(本题4分)解方程:3x ﹣2=4+x .22.(本题5分)根据下列语句,画出图形.如图,已知四点A ,B ,C ,D .①画直线AB ;②连接AC 、BD ,相交于点O ;③画射线AD ,BC ,交于点P .23.(本题5分)解方程:36231=+--x x24.(本题6分)如图,是由6个大小相同的小立方体块搭建的几何体,其中每个小正方体的棱长为1厘米.请按要求在方格内分别画出从这个几何体的三个不同方向看到的形状图.25.(本题6分)先化简,再求值:xy +2y 2+2(x 2﹣y 2)﹣2(x 2﹣xy ),其中x =﹣3,y =2.26.(本题6分)有8筐白菜,以每筐25千克为标准,超过的千克数记作正数,不足的千克数记作负数,称后的记录如下:(1)与标准重量比较,8筐白菜总计超过或不足多少千克?(2)若白菜每千克售价2元,则出售这8筐白菜可卖多少元?27.(本题8分)某学校计划在八年级开设“折扇”“刺绣”“剪纸”“陶艺”四门校本课程,要求每人必须参加,并且只能选择其中一门课程,为了解学生对这四门课程的选择情况,学校从八年级全体学生中随机抽取部分学生进行问卷调查,并根据调查结果绘制成如图所示的条形统计图和扇形统计图.(部分信息未给出)请你根据以上信息解决下列问题:(1)参加问卷调查的学生人数为名,补全条形统计图(画图并标注相应数据);(2)“陶艺”课程所对应的扇形圆心角的度数是°?(3)若该校八年级一共有1000名学生,试估计选择“刺绣”课程的学生有多少名?28.(本题8分)某校七年级(1)班想买一些运动器材供班上同学大课间活动使用,班主任安排班长去商店买篮球和排球,下面是班长与售货员的对话:班长:阿姨,您好!售货员:同学,你好,想买点什么?根据这段对话,请你求出篮球和排球的单价各是多少元?29.(本题10分)阅读下面材料:数学课上,老师给出了如下问题如图1,∠AOB=80°,OC平分∠AOB,若∠BOD=20°,请你补全图形,并求∠COD的度数.以下是小明的解答过程:解:如图2,因为OC平分∠AOB,∠AOB=80°,所以∠BOC=∠AOB=°.因为∠BOD=20°,所以∠COD=∠BOC + =°.小静说:“我觉得这个题有两种情况,小明考虑的是OD在∠AOB外部的情况,事实上,OD还可能在∠AOB的内部”.完成以下问题:(1)请你将小明的解答过程补充完整;(2)根据小静的想法,请你在图3中画出另一种情况对应的图形,并求出此时∠COD的度数.30.(本题12分)在数学综合实践活动课上,小亮同学借助于两根小木棒m、n研究数学问题:如图,他把两根木棒放在数轴上,木棒的端点A、B、C、D在数轴上对应的数分别为a、b、c、d,已知|a+5|+(b+1)2=0,c=3,d=8.(1)求m和n的长度;(2)小亮把木棒m、n同时沿x轴正方向移动,m、n的速度分别为4个单位/s和3个单位/s,设平移时间为t (s)①若在平移过程中原点O恰好是木棒m的中点,则t=(s);②在平移过程中,当木棒m、n重叠部分的长为2个单位长度时,求t的值.。

湖北省武汉市一初慧泉中学2022-2023学年第一学期期末考试七年级数学试题(含答案)

湖北省武汉市一初慧泉中学2022-2023学年第一学期期末考试七年级数学试题(含答案)

湖北省武汉市一初慧泉中学2022-2023学年第一学期期末考试七年级数学试题一、选择题(共10小题,每小题3分,共30分)下列各题中均有四个各选答案,其中有且只有一个正确,请用2B 铅笔在答题卡上将对应题目正确答案的代号涂黑.1.-3的相反数是A 13B −13. C 3. D -3.2.下列两个单项式不是同类项的是Ax 2y 和m 2n B 12x 2y 和x 2y. C- 2和3 D ab 和-ba.3.方程2x+1=-1的解是A x =−32 Bx =-1 Cx =1 D x =−12 4.如图的几何体是一个工件的立体图,从上面看这个几何体,所看到的平面图形是5.如图是正方体的展开图形,其中汉字“集”相对面写的字是A 汉B 武.C 一D 团.6.把方程2x+3y-1=0改写成含x 的式子表示y 的形式为A.x =12(1-3y ) B .y =13(1-2x ) C. x =2(1-3y ) D y =13(2x-1)7.如图,货轮O 雷达探测到它的北偏西20°方向上有灯塔A ,西南方向有游艇B ,则∠AOB 的大小A65°. B105°. C110°. D115°.8.大于-4.2而小于2.3的整数共有( )个A5个. B6个. C7个. D8个.9.一件夹克衫先按成本价提高50%标价,再将标价打8折出售,结果获利10元,如果设这件夹克衫的成本价是x 元,那么根据题意,所列方程正确的是A 0.8(1+0.5)x =x+10.B 0.8(1+0.5)x =x-10.C 0.8(1+0.5x )=x-10.D 0.8(1+0.5x )=x+10.10.在数轴上表示有理数a ,b ,c 的点如图所示,若ac <0,|b|<|c|,则下列一定成立的是A abc <0.B |a|>|b|. Ca+c >0. Db+c >0.二、填空题(共6小题,每小题3分,共18分)下列各题不需要写出解答过程,请将结果直接填在答题卡指定的位置.11.有理数578000用科学记数法表示为_____.12.多项式2+3x4-4x2y-x3y+6x的项数和次数之积为_____.13.用两个钉子就可以把一根木条固定在墙上,依据的数学原理_____________________.14.若∠P=15°15′,则∠P的余角度数为______.15.如图,∠COD在∠AOB的内部,分别作∠AOC、∠BOD的角平分线OE、 OF,下列结论:①∠AOB+∠COD=∠AOD+∠BOC;②∠AOB=2∠EOF;③ 2∠AOF=∠AOB+∠AOD;④若∠AOB=7∠COD,则∠EOF=4∠COD.其中正确的结论是_______.(填序号)16.在直线l上有A、B、C、D四点,其中点B是线段AD的三等分点,点C是线段AD的中点,点E是线段AD延长线上一点,且AE+BE=2AD,则BE的值为.CE三、解答题(共8小题,共72分)下列各题需要在答题卷指定位置写出文字说明、证明过程、计算步骤或作出图形.17.(本题满分8分)计算:(1)-12-(3-5)+32; (2)6a2+(5a2-2a)-2(a2-3a).18.(本题满分8分)解方程(组)(1)3(x+6)=9-5(1-2x); (2)19.(本题满分8分)如图,已知四点A、B、C、D.(1)请按要求画出图形(不用说明理由):①连接AC;②画直线AB;③连接CD并反向延长;④画点M,使点M既在直线AB上也在直线CD上;(2)若平面内有一动点P,线段AB=a,CD=b,AC=m,BD=n,则PA+PB+PC+PD的最小值为_____.(直接写出结果)20.(本题满分8分)列二元一次方程组解决问题:据统计,甲、乙两种作物的单位面积产量的比是2:3如图所示,现要把一块长200米宽70米的长方形土地ABCD (AB>AD),分为两块小长方形土地,上方小长方形种植甲种作物,下方小长方形种植乙种作物,怎样设计DE和AE的长度,使得甲、乙两种作物的总产量的比是1:2?21.(本题满分8分)已知非零有理数x、y满足|x-2y|=2x+y.(1)若x是方程9x-5=13的解,求y的值;(2)求x+2yx −3xyy的值.22.(本题满分10分)如图,AB、CD交于点O.(1)可得到结论:∠AOC=∠BOD,依据是:(直接填序号:①同角的补角相等,②同角的余角相等);(2)若∠AOE=4∠DOE,∠AOE的余角是∠DOE的2倍,求∠BOC;(3)在(2)的条件下,从点O引出一条射线OP,当∠COP=∠AOE+∠DOP时,∠BOP= .(直接写出结果)23.(本题满分10分)为推动中小学篮球运动,江汉区体卫艺站胡老师集中购买一批指定品牌的篮球和篮球运动服.市场调查发现:A、B两商场的以同样的价格出售两种商品,已知每套篮球运动服比篮球贵60元,2套篮球运动服比3个篮球还要贵30元.(1)求一个篮球和一套篮球运动服的单价;(2)为了促销A、B两商场推出优惠活动:A商场:每购买满10套篮球队服,送一个篮球;B商场:原价购买篮球队服,篮球的价格打八折,若胡老师需要购买篮球m个和篮球运动服150套.①请你用含m的代数式表示在A、B两个商场所需要花费的费用;②如果你是胡老师,你认为到哪个商场购买比较划算?24.(本题满分12分)已知AB=24,DE=10,点C为线段AB的三等分点(BC>AC),点A点B左侧,点D在点E左侧.(1)若线段DE在线段AB上运动.①如图1,当点C为线段DE的中点时,BE=;(直接写出结果)② M为线段AB上一点,且BM=2BE,CE+DM=1AE,求线段CE的长;2(2)若线段DE在射线BA上运动,且2AD+CE=BD,求线段CD的长.。

合肥市包河区2023-2024学年度第一学期七年级数学期末考试试卷附参考答案

合肥市包河区2023-2024学年度第一学期七年级数学期末考试试卷附参考答案

合肥市包河区2023-2024学年度第一学期期末教学质量监测七年级数学试题一、选择题(本大题共10小题,每小题3分,满分30分) 1.-12024的相反数是A.2024B.-2024C.-12024D.120242.2023年初,宣城市常住人口为249.5万人,其中数据“249.5万”用科学记数法表示为 A.24.95×105B.2.495×105C.2.495×106D.0.2495×1073.下列说法正确的是 A.-πx y 系数是-1 B.x 2+x -1的常数项为1 C.23a 2b 的次数是6次D.4x 2-3x +1是二次三项式4.有理数n 在数轴上对应的点如图所示,则n ,-n ,1的大小关系表示正确的是 A.n <1<-nB.n <-n <1C.1<-n <nD.-n <n <15.某校有3000名学生在线观看了“天宫课堂”第二课,并参加了关于“你最喜爱的太空实验”的问卷调查,从中抽取500名学生的调查情况进行统计分析,以下说法错误的是A.3000名学生的问卷调查情况是总体B.500名学生是样本容量C.500名学生的问卷调查情况是样本D.每一名学生的问卷调查情况是个体6.若3x 2-4x +4=6,则代数式6x 2-8x +1的值为 A.-3B.-5C.5D.37.已知关于x 的方程2x +d -8=0的解是x =3,则d 的值为 A.2B.3C.4D.50 第4题图8.如图所示,C ,D 是线段AB 上的两点,D 为AC 的中点,若AB=10cm ,BC=4cm ,则AD 的长等于 A.2cmB.3cmC.4cmD.6cm9.我国元朝朱世杰所著的《算学启蒙》中有这样的记载:“良马日行二百四十里,驽马日行一百五十里,驽马先行一十二日,良马数日追及之”,其大意是:跑得快的马每天走240里,跑得慢的马每天走150里,慢马先走12天,快马几天可以追上慢马?设快马x 天可以追上慢马,则由题意,可列方程为 A.150x =240(x -12) B.150(x -12)=240x C.150x =240(x +12)D.150(x +12)=240x10.如图所示,将三个大小相同的正方形的一个顶点重合放置,则∠1、∠2、∠3三个角的数量关系为 A.∠1+∠2+∠3=90° B.∠1+∠2-∠3=90° C.∠1-∠2+∠3=90°D.∠1+2∠2-∠3=90°二、填空题(本大题共5小题,每小题3分,满分15分) 11.若-x a y 4与4x 3y 4b 的是同类项,则a+b 的值为________. 12.已知∠A=55°34′,则它余角的度数是________. 13.如果3<m <4,那么化简|3-m|+|m -4|等于________.第10题图 1 2 3第8题图C DAB14.观察下面这列数:2,-4,6,-8,10,-12,…,则这一列数的前101项的和为________.15.2024年元旦,小颖在如图所示的一张长方形宣纸上的四个正方形格子中写下了“元旦快乐”的毛笔书法作品,已知宣纸的长为108cm ,正方形格子的边长相等,正方形格子与纸边之间的边空宽相等,相邻两个字的字距相等,且边空宽、字宽、字距之比为3︰6︰2,则这张长方形宣纸的面积为________cm 2.三、解答题(本大题共7小题,满分55分) 16.(5分)计算:-12024-(1-0.5)×13×|3-(-3)2|17.(10分)解方程(组) (1)x+24-2x−36=1;(2){2x +y =7①x +2y =8②.18.(7分)先化简,再求值:(3x 2y -5x y)-[x 2y -2(x y -x 2y)],其中(x +1)2+|y -13|=0.19.(8分)某中学组织七年级师生共480人参加研学活动.学校向租车公司租赁A ,B 两种类型的车辆接送师生往返,若租用A 型车3辆,B 型车6辆,则空余15个座位;若租用A 型车5辆,B 型车4辆,则15人没有座位,求A ,B 两种车型各有多少个座位?20.(7分)已知B 、C 在线段AD 上. (1)如图,图中共有________条线段.(2)如图,若AB ︰BD=2︰3,AC ︰CD=7︰3,且BC=18,求AD 的长度.边空宽21.(8分)文明是一座城市的名片,更是一座城市的底蕴.宣城市某学校积极组织师生参加“创建全国文明城市”活动,其服务项目有“清洁卫生”“敬老服务”“文明宣传”“交通劝导”,每名参加志愿者服务的师生只参加其中一项.为了解各项目参与情况,该校随机调查了参加志愿者服务的部分师生,将调查结果绘制成如下两幅不完整的统计图.根据统计图信息,解答下列问题.(1)本次调查的师生共有________人,请补全条形统计图. (2)在扇形统计图中,求“敬老服务”对应的圆心角度数.(3)该校共有1500名师生,若有80%的师生参加志愿者服务,请你估计参加“文明宣传”项目的师生人数.22.(10分)定义:从∠α(45°<∠α<90)的顶点出发,在角的内部作一条射线,若该射线将∠α分得的两个角中有一个角与∠α互为余角,则称该射线为∠α的“分余线”.(1)如图1,∠AOB=70°,∠AOC=50°,请判断OC 是否为∠AOB 的“分余线”,并说明理由.(2)若OC 平分∠AOB ,且OC 为∠AOB 的“分余线”,则∠AOB=________.第21题图劝导宣传 卫生 服务 劝导文明 宣传清洁卫生 敬老服务交通 劝导20%DBA 第20题图(3)如图2,∠AOB=160°,在∠A0B 内部作射线OC ,0M ,使OM 为∠A0C 的平分线,在 ∠BOC 的内部作射线ON ,使∠BON=2∠CON.当OC 为∠MON 的“分余线”时,求∠BOC 的度数.合肥市包河区2023-2024学年度第一学期期末教学质量监测七年级数学试题参考答案一、选择题(本大题共10小题,每小题3分,满分30分) 1.-12024的相反数是A.2024B.-2024C.-12024D.120241.解:负数的相反数是正数,两者之和为0,故选D 。

2020年精品解析七年级上学期期末考试数学试题(解析版) (1)

2020年精品解析七年级上学期期末考试数学试题(解析版) (1)

上学期期末考试七年级数学学科期末试卷一、选择题(每题4分,共40分)1. 8的相反数是()A. 8B.C. ﹣8D. -【答案】C【解析】【分析】只有符号不同的两个数互为相反数.【详解】8的相反数是-8.故选:C【点睛】本题考核知识点:相反数.解题关键点:理解相反数定义.2. 有统计数据显示,2014年中国人在餐桌上浪费的粮食价值高达2000亿元,被倒掉的食物相当于2亿多人一年的口粮,所以我们要“注意节约,拒绝舌尖上的浪费”.2000亿这个数用科学记数法表示为()A. 2000×108 B. 2×1011 C. 0.2×1012 D. 20×1010【答案】B【解析】【分析】把一个大于10的数记为a×10n的形式(其中1≤| a| <10),这种记数法叫做科学记数法. 【详解】2000亿=2×1011故选:B【点睛】本题考核知识点:科学记数法.解题关键点:理解科学记数法定义.3. 在下列调查中,适宜采用全面调查的是()A. 了解我省中学生的视力情况B. 了解七(1)班学生校服的尺码情况C. 检测一批电灯泡的使用寿命D. 调查安徽卫视《第一时间》栏目的收视率【答案】B【解析】【分析】根据全面调查的意义,逐个分析.【详解】A. 了解我省中学生的视力情况,人数太多,不适宜采用全面调查;B. 了解七(1)班学生校服的尺码情况,人数不多,适宜采用全面调查;C. 检测一批电灯泡的使用寿命,具有破坏性,不适宜采用全面调查;D. 调查安徽卫视《第一时间》栏目的收视率,范围太广,不适宜采用全面调查.故选:B【点睛】本题考核知识点:全面调查.解题关键点:理解全面调查的意义.4. 下列运算中结果正确的是()A. 3a+2b=5abB. 5y﹣3y=2C. ﹣3x+5x=﹣8xD. 3x2y﹣2x2y=x2y【答案】D【解析】试题分析:①所含字母相同,并且相同字母的指数相同,像这样的项是同类项;②合并同类项,系数相加字母不变;③、④合并同类项,系数相加字母和字母的指数不变.解:A、算式中所含字母不同,所以不能合并,故A错误;B、5y﹣3y=2y,合并同类项,系数相加字母不变,故B错误;C、﹣3x+5x=2x,合并同类项,系数相加减,故C错误;D、3x2y﹣2x2y=x2y,合并同类项,系数相加字母和字母的指数不变,故D正确.故选D.考点:合并同类项.5. 已知﹣3x m-1y3与xy m+n是同类项,那么m,n的值分别是()A. m=2,n=﹣1B. m=﹣2,n=﹣1C. m=﹣2,n=1D. m=2,n=1【答案】D【解析】【分析】所含字母相同,并且次数相同的单项式不一定是同类项,只有相同字母的指数相同时才是同类项.据此可以分析.【详解】因为﹣3x m-1y3与xy m+n是同类项,所以,m-1=1,m+n=3所以,m=2,n=1.故选:D【点睛】本题考核知识点:同类项.解题关键点:理解同类项的意义.6. 已知代数式2x2+3y+7的值是8,那么代数式4x2+6y+9的值是()A. 1B. 2C. 11D. 18【答案】C【解析】【分析】【详解】因为2x2+3y+7的值是8,所以,2x2+3y=1,所以,4x2+6y+9=2(2x2+3y)+9=11故选:C【点睛】本题考核知识点:代数式的值.解题关键点:将代数式变形.7. 若方程3x﹣5=x﹣2m的解是x=,则m的值为()A. m=2B. m=C. m=﹣D. m=1【答案】A【解析】本题考查了一元一次方程的解的定义把x=代入方程得出一个关于m的方程,求出方程的解即可.∵x=是关于x的方程3x-5=x-2m的解,代入得:=-2m,解得m=2,故选A.思路拓展:解答本题的关键是根据题意得出一个关于m的方程.8. 直线AB上有一点O,OM⊥AB于O,另有直角∠COD在平角∠AOB内绕O点左右摆动(OC与OA、OD 与OB不重合),在摆动时,始终与∠MOD保持相等的角是()A. ∠BODB. ∠AOCC. ∠COMD. 没有【答案】B【详解】∵OM⊥AB,∴∠AOM=∠BOM=90°.∴∠AOC+∠MOC=90°.∵∠COD是直角∴∠DOM+∠MOC=90°.∴∠DOM=∠AOC.故选:B【点睛】本题利用垂直的定义和同角的余角相等,要注意领会由垂直得直角这一要点.9. 小亮的妈妈用28元钱买了甲、乙两种水果,甲种水果每千克4元,乙种水果每千克6元,且乙种水果比甲种水果少买了2千克,求小亮妈妈两种水果各买了多少千克?设小亮妈妈买了甲种水果x千克,乙种水果y千克,则可列方程组为()A. B. C. D.【答案】B【解析】试题分析:设小亮妈妈买了甲种水果x千克,乙种水果y千克,由题意得.故选A.考点:由实际问题抽象出二元一次方程组.视频10. 下列说法正确的个数有()①射线AB与射线BA表示同一条射线.②若∠1+∠2=180°,∠1+∠3=180°,则∠2=∠3.③一条射线把一个角分成两个角,这条射线叫这个角的平分线.④连结两点的线段叫做两点之间的距离.⑤40°50ˊ=40.5°.⑥互余且相等的两个角都是45°.A. 2个B. 3个C. 4个D. 5个【答案】A【解析】【分析】根据射线的定义,同角的补角相等,角平分线的定义,两点之间的距离的定义,度分秒的换算以及余角的定义对各小题分析判断即可得解.【详解】①射线AB与射线BA不表示同一条射线,因为它们的端点不同,故本小题错误;②若∠1+∠2=180°,∠1+∠3=180°,则∠2=∠3,正确;③应为一条射线把一个角分成两个角相等的角,这条射线叫这个角的平分线,故本小题错误;④应为连结两点的线段的长度叫做两点之间的距离,故本小题错误;⑤40°50′≈40.83°,故本小题错误;⑥互余且相等的两个角都是45°,正确.综上所述,说法正确的有②⑥共2个.故选:A【点睛】本题考核知识点:余角和补角;直线、射线、线段;两点间的距离;度分秒的换算;角平分线的定义.二、填空题(每题5分,共20分)11. 冬季的某日,六安最低气温是3℃,北京最低气温是﹣6℃,这一天六安的最低气温比北京的最低气温高_______℃.【答案】9【解析】【分析】六安最低气温-北京最低气温,可得.【详解】3-(﹣6)=9℃.即这一天六安的最低气温比北京的最低气温高9℃.故答案为:9【点睛】本题考核知识点:有理数减法.解题关键点:掌握减法法则.12. 如果2x n-2﹣y m-2n+3=3是关于x,y的二元一次方程,那么m=___,n=____.【答案】(1). 4(2). 3【解析】【分析】根据二元一次方程的定义,列出关于m、n的方程组,然后解方程组即可.【详解】依题意得,,解得故答案为:(1). 4(2). 3【点睛】本题考核知识点:二元一次方程.解题关键点:理解二元一次方程定义.13. 已知线段AB=5cm,在直线AB上画线段BC,使BC=9cm,则线段AC=_______【答案】14cm或4cm【解析】【分析】由于在直线AB上画线段BC,那么AC的长度有两种可能:①当C在AB延长线上,此时AC=AB+BC;②当C在线段AB的反向延长线上,此时AC=BC-AB.然后代入已知数据即可求出线段AC 的长度.【详解】∵在直线AB上画线段BC,∴CB的长度有两种可能:①当C在AB延长线上,此时AC=AB+BC=5+9=14cm;②当C在线段AB的反向延长线上,此时AC=BC-AB=9-5=4cm.故答案为:14cm或4cm.【点睛】此题主要考查了线段的和差的计算.在未画图类问题中,正确理解题意很重要,本题渗透了分类讨论的思想,体现了思维的严密性,在今后解决类似的问题时,要防止漏解.14. 已知点A在数轴上对应的数为a,点B对应的数为b,且|a+2|+(b﹣1)2=0,A、B之间的距离记作|AB|,定义:|AB|=|a﹣b|.①线段AB的长|AB|=3;②设点P在数轴上对应的数为x,当|PA|﹣|PB|=2时,x=0.5;③若点P在A的左侧,M、N分别是PA、PB的中点,当P在A的左侧移动时|PM|+|PN|的值不变;④在③的条件下,|PN|﹣|PM|的值不变.以上①②③④结论中正确的是_______(填上所有正确结论的序号)【答案】①②④【解析】【分析】(1)根据非负数的和为0,各项都为0;(2)应考虑到A、B、P三点之间的位置关系的多种可能解题;(3)(4)利用中点性质转化线段之间的倍分关系得出.【详解】(1)∵|a+2|+(b-1)2=0,∴a=-2,b=1,∴AB=|a-b|=3,即线段AB的长度为3.(2)当P在点A左侧时,|PA|-|PB|=-(|PB|-|PA|)=-|AB|=-3≠2.当P在点B右侧时,|PA|-|PB|=|AB|=3≠2.∴上述两种情况的点P不存在.当P在A、B之间时,-2≤x≤1,∵|PA|=|x+2|=x+2,|PB|=|x-1|=1-x,∴由|PA|-|PB|=2,得x+2-(1-x)=2.∴解得:x=0.5;(3)由已知可得出:PM=PA,PN=PB,|PM|+|PN|= (PA+PB)= PA+AB所以,|PM|+|PN|的值随P的位置变化而变化.(4) 在(3)条件下,|PN|﹣|PM|=PB-PA=(PB-PA)=AB=综合上述,①②④说法正确.故答案为:①②④.【点睛】此题主要考查了一元一次方程的应用,渗透了分类讨论的思想,体现了思维的严密性,在今后解决类似的问题时,要防止漏解.利用中点性质转化线段之间的倍分关系是解题的关键,在不同的情况下灵活选用它的不同表示方法,有利于解题的简洁性.同时,灵活运用线段的和、差、倍、分转化线段之间的数量关系也是十分关键的一点.三、解答题(共90分)15. 计算:【答案】【解析】【分析】按照实数的运算法则求解即可.【详解】解:原式====【点睛】本题考核知识点:实数运算. 解题关键点:熟记实数运算法则.16. 解方程:【答案】x=3【解析】【分析】按去分母,去括号,移项,合并同类项,系数化为1等步骤求解.【详解】解:去分母得:2x=6 -(x-3)去括号得:2x=6 -x+3移项,合并同类项得:3x=9系数化为1得:x=3【点睛】本题考核知识点:解一元一次方程.解题关键点:掌握解方程一般步骤.17. 化简求值:5a2﹣[a2﹣(2a+5a2)﹣2(a2﹣3a)],其中a=﹣2.【答案】52【解析】试题分析:原式去括号合并得到最简结果,把a的值代入计算即可求出值.解:原式=5a2﹣a2+2a+5a2+2a2﹣6a=11a2﹣4a,18. 如图,平面上有四个点A、B、C、D,根据下列语句画图:(1)画直线AB、CD交于E点;(2)连接线段AC、BD交于点F;(3)连接线段AD,并将其反向延长;(4)作射线BC.【答案】见解析【解析】试题分析:(1)画出直线AB、CD交于E点即可;(2)连接AC、BD交于点F即可;(3)作射线DA即可;(4)作射线BC即可.试题解析:(1)直线AB、CD交于E点,如图;(2)线段AC、BD交于点F,如图;(3)射线DA,如图;(4)射线BC,如图.【点睛】本题考查了直线、射线以及线段的做法,掌握直线、射线以及线段的性质是解题的关键.19. 如图,OC平分∠BOD,∠AOD=110°,∠COD=35°,求∠AOB的度数.【答案】40°【解析】由角平分线的定义,结合角的运算,易求∠AOB的度数.∵OC平分∠BOD,∠COD=35°,∴∠BOD=2∠COD=70°,又∵∠AOD=110°,∴∠AOB=∠AOD-∠BOD=40°.故答案为:40°20. 已知,A、B是线段EF上两点,已知EA:AB:BF=1:2:3,M、N分别为EA、BF的中点,且MN=8cm,求EF的长.【答案】12cm【解析】【分析】由已知设设EA=x,AB=2x,BF=3x,根据线段中点性质得MN=MA+AB+BN=x+2x+x=4x=8,可得EF=EA+AB+BF=6x=12.【详解】解:∵EA:AB:BF=1:2:3,可以设EA=x,AB=2x,BF=3x,而M、N分别为EA、BF的中点,∴MA=EA,NB=BF,∴MN=MA+AB+BN=x+2x+x=4x,∵MN=8cm,∴4x=8,∴x=2,∴EF=EA+AB+BF=6x=12,∴EF的长为12cm.【点睛】本题考核知识点:线段的中点.解题关键点:根据线段中点性质和线段的和差关系列出方程.21. 裕安中学拟组织九年级师生去黄山旅游,下面是师生之间有关租车问题的对话:老师:“好运来客运公司有60座和45座两种型号的客车可供租用,60座客车每辆每天的租金比45座的贵200元.”贾薇:“我们学校八年级师生昨天在这个客运公司租了4辆60座和2辆45座的客车到黄山参观,一天的租金共计5000元.”万凯:“我们九年级师生租用5辆60座和1辆45座的客车正好坐满.”根据以上对话,解答下列问题:(1)好运来客运公司60座和45座的客车每辆每天的租金分别是多少元?(2)按小明提出的租车方案,九年级师生到该公司租车一天,共需租金多少元?【答案】(1)900;700(2)5200【解析】(1)设60座的客车每辆每天租金为x元,45座的客车每辆每天的租金为y元,根据题意,得解得答:平安客运公司60座和45座的客车每辆每天的租金分别是900元,700元.(2)5×900+1×700=5200(元).答:共需租金5200元.视频22. 央视热播节目“朗读者”激发了学生的阅读兴趣.某校为满足学生的阅读需求,欲购进一批学生喜欢的图书,学校组织学生会成员随机抽取部分学生进行问卷调查,被调查学生须从“文史类、社科类、小说类、生活类”中选择自己喜欢的一类,根据调查结果绘制了统计图(未完成),请根据图中信息,解答下列问题:(1)此次共调查了名学生,图2中“小说类”所在扇形的圆心角为度;(2)将条形统计图补充完整;(3)若该校共有学生2500人,估计该校喜欢“社科类”书籍的学生人数.【答案】(1)200,126;(2)见解析(3)300人【解析】【分析】(1)由76÷38%,可得总人数;先算社科类百分比,再求小说百分比,再求对应圆心角;(2)结合扇形图,分别求出人数,再画图;(3)用社科类百分比×2500可得.【详解】解:(1)200,126;(2)(3)由样本数据可知喜欢“社科类”书籍的学生人数占了总人数的12%,∴该校共有学生2500人,估计该校喜欢“社科类”书籍的学生人数:2500×12%=300(人)【点睛】本题考核知识点:数据的整理,用样本估计总体.解题关键点:从统计图获取信息.23. 观察等式找规律:①第1个等式:22﹣1=1×3;②第2个等式:42﹣1=3×5;③第3个等式:62﹣1=5×7;……(1)写出第5个等式:;第6个等式:;(2)写出第n个等式(用字母n表示):;(3)求的值.【答案】(1)102﹣1=9×11;122﹣1=11×13;(2)4n2﹣1=(2n﹣1)(2n+1);(3)【解析】【分析】(1)(2)根据观察总结规律:第n个等式:4n2﹣1=(2n﹣1)(2n+1).分别代入即可.(3)由规律:可得.【详解】解:(1)第5个等式:102﹣1=9×11;第6个等式:122﹣1=11×13;(2)第n个等式:4n2﹣1=(2n﹣1)(2n+1);(3)原式=×(1﹣)+×(﹣)+…+×(﹣)= ×(1﹣+﹣+…+﹣)= ×(1﹣)=【点睛】本题考核知识点:实数运算规律.解题关键点:观察发现规律.。

七年级上学期数学期末考试试题及答案 (1)

七年级上学期数学期末考试试题及答案 (1)

七年级上学期数学期末试卷一. 单项选择题(每小题3 分,共30 分)1. 冰雪节来到了,爸爸、妈妈带着小明去看冰灯。

在一块由冰块铺成的长方形冰面上,小明发现每块冰都是同样大小的正方形,并估计出正方形冰块的边长为40厘米,他又数出整个冰面有20块冰块长、16 块冰块宽,你能估计出这块冰面的面积大约是()A. 28.8 平方米B. 51.2 平方米C. 12.8 平方米D. 32.6 平方米2. 如下图,如果由小头向大头将胡萝卜切成薄片,下列切面面积变化图比较符合的是()。

3. 将三盒糖果包成一包,糖果的尺寸如图,至少需包装纸()平方厘米。

A. 275B. 525C. 1050D. 4504. 1月5日是多多的生日,妈妈买来生日蛋糕,在切蛋糕时爸爸说:“现在一共有7个人,你至少切几刀就能让每个人都分到一块蛋糕?”多多听了马上就切起来,很快每个人都吃上了蛋糕。

同学们,多多应该切()刀。

A. 3B. 4C. 5D. 65. 2005年12月25日是西方的春节(圣诞节),这一天是星期日,2006年1月29日是中国的春节,这一天是()。

A. 星期五B. 星期六C. 星期日D. 星期一6. 寒假快到了,李华全家打算去旅游,爸爸说:“我们要去的城市在重庆的北边,在济南的南边,在成都的东边,在杭州的西边”,请参考下图,李华全家要去()旅游。

A. 石家庄B. 武汉C. 北京D. 济南7. 营养师建议一个12 岁的儿童每日可通过食用200克鱼或180克肉或360克豆腐来摄取蛋白质。

小睿今年12岁,一天他吃了90克豆腐、90 克肉,再吃()克鱼就可以满足一天的蛋白质需求。

A. 100B. 50C. 200D. 258. 一列货运火车从南安站出发,速度逐渐增加,行驶一段时间后开始匀速行驶,过了一段时间,火车到达下一个车站停下,装完货以后,火车行驶速度逐渐增加,一段时间后再次开始匀速行驶,可以近似地刻画出火车在这段时间内的速度变化情况是()9. 在下图中,右边的立体图形最多有()个是由左边的平面图形折叠而成的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

土溪中学2013~2014学年度七年级第一学期期末检测数学试卷 2014.1(时间:90分钟 满分:100分)一、选择题(本题共24分,每小题3分)下面各题均有四个选项,其中只有一个..是符合题意的.请将正确选项前的字母填在表格中相应1.如果水位升高1米记为+1米,那么水位下降2米应记为 A .-1米 B .+1米 C .-2米 D .+2米2.-3的倒数是 A .13 B .13C .3D .-3 3. 为期半年的北京园博会于2013年11月18日圆满落幕,统计显示,自5月18日开幕以来,北京园博会共接待游客6100000余人次,单日最高游客接待量106000人次,均创历届园博会之最.若将106000用科学记数法表示结果为A . 1.06×410 B . 1.06×510 C . 0.106×610 D . 10.6×410 4.单项式-2ab 的系数是 A .1 B .-1 C .2 D . 3 5. 如图是一个正方体的表面展开图,则原正方体中与“中”字所在的面 相对的面上标的字是 A .我 B .的C .梦D .国6.有理数a ,b 在数轴上的位置如图所示,则下列说法正确的是 A .a 大于b B .a 的绝对值小于b 的绝对值 C .a 与b 的和是正数 D . a 与b 的积是负数aO b7. 一个多项式与x y -的和等于23x y +,则这个多项式是A.2x y +B. 4x y +C.32x y +D.4x y -- 8.a 为有理数,定义运算符号▽:当a >-2时,▽a =-a ;当a <-2时,▽a = a ;当a =-2时,▽a = 0.根据这种运算,则▽[4+▽(2-5)]的值为A .-7B .7C .-1D .1二、填空题(本题共12分,每小题3分)9. 已知∠A =40°20,,则它的余角的度数为 .10. 若x =1是关于x 的方程32mx m -=的解,则m 的值为 .11.若23(2)0m n -++=,则m +2n 的值为 .12.如图,点A ,O ,B 在同一条直线上,∠COD =2∠COB若∠COD =40°,则∠AOD 的度数为 .13. 如图,已知C 是线段AB 中点,AB =10,若E 是直线AB 上 一点,且BE =3,则CE = .14.如图所示,用火柴棍摆成第1个图形所需要的火柴棍的根数是4,摆成第2个图形所需要的火柴棍的根数是12,摆成第3个图形所需要的火柴棍的根数是24,按照此类图形的结构规律,摆成第4个图形所需要的火柴棍的根数是 ,摆成第n 个图形所需要的火柴棍的根数是 .(用含n 的式子表示,结果可以不化简)…第1图 第2图 第3图三、解答题(本题共58分,第15 -26题每小题4分,27、28题每小题5分) 15.计算131()8248--⨯. 16.计算()411293⎛⎫-+-÷-+- ⎪⎝⎭.17. 计算()231x x -+.18.解方程351x x +=-. 19.解方程3(12)62(2)x x -=-+.20. 当y 为何值时,314y -的值比576y -的值少1?21.已知22x y -=,求13()[()]23y x x x y x +----的值.22.如图, C 是线段AB 外一点,按要求画图: (1)画射线CB ; (2)反向延长线段AB ;(3)连接AC ,并延长AC 至点D ,使CD =AC .23.如图,C、D是线段AB上的两点,CB=9cm,DB=15cm,D为线段AC的中点,求AB的长.24.一个角的余角比它的补角的13大10゜,求这个角的度数.25.今年元旦,张红用88元钱购买了甲、乙两种礼物,甲种礼物每件12元,乙种礼物每件8元,其中甲种礼物比乙种礼物少1件.问甲、乙两种礼物各买了多少件?26. 如图,OB是∠AOC的平分线,OD是∠EOC的平分线.(1)如果∠AOD=75°,∠BOC=19°,则∠DOE的度数为;(2)如果∠BOD=56°,求∠AOE的度数.解:如图,因为OB是∠AOC的平分线,所以 =2∠BOC.因为OD是∠EOC的平分线,所以 =2∠COD.所以∠AOE=∠AOC+∠COE=2∠BOC+2∠COD=°.27.下表是两种手机套餐的计费方式:如果某人每月的主叫通话时间超过50分钟,但不超过220分钟,要选择省钱的套餐,你认为应如何选择?28.如图,A 、B 、C 是数轴上的三点,O 是原点,BO =3,AB =2BO ,5AO =3CO . (1)写出数轴上点A 、C 表示的数;(2)点P 、Q 分别从A 、C 同时出发,点P 以每秒2个单位长度的速度沿数轴向右匀速运动,点Q以每秒6个单位长度的速度沿数轴向左匀速运动,M 为线段AP 的中点,点N 在线段CQ 上,且CN =23CQ .设运动的时间为t (t >0)秒. ①数轴上点M 、N 表示的数分别是 (用含t 的式子表示); ②t 为何值时,M 、N 两点到原点O 的距离相等?北京市朝阳区2013~2014学年第一学期期末检测七年级数学试卷参考答案及评分标准一、选择题(本题共24分,每小题3分)二、填空题(本题共18分,每小题3分)9. 49°40′ 10. -1 11. -1 12. 120° 13. 2或8 14. 40,222n n +(只答40得1分,只答222n n +得2分).三、解答题(本题共58分,第15 -26题每小题4分,第27、28题每小题5分)15. 解:原式461=-- ……………………………………………………3分3=-. ……………………………………………………………4分16. 解:原式169=-++ ………………………………………………………………3分14=. …………………………………………………………………4分17.解:原式233x x =-- ……………………………………………………………2分3x =--. ………… ………………………………………………………4分18. 解:351x x +=-.351x x -=--. ………………………………………………………………1分 26x =-. ………………………………………………………………3分 3-=x . ………………………………………………………………4分19. 解:3(12)62(2)x x -=-+36624x x -=-- ………………………………………………………2分41x -=-. ………………………………………………………………3分14x =. … ……………………………………………………………4分 20. 解: 根据题意,得3157146y y --=-. ………………………………………………………1分 3(31)2(57)12y y -=--. ……………………………………………………2分 93101412y y -=--. ……………………………………………………3分23y =. …………………………………………………………………4分所以y 的值为23.21. 解:原式3()2y x x x y x =+--+-32y x y x =+--2y x =-. …………………………………………………………………2分因为22x y -=,所以22y x -=-. ……………………………………………………………3分 所以原式=2-. …………………………………………………………4分22.(1) ………………………………………………1分 (2) ………………………………………………2分 (3) ………………………………………………4分23. 解:如图,因为CB =9,DB =15,所以CD = DB -CB=15-9=6. ……………………………………………………………1分因为D 为线段AC 的中点,所以AC = 2CD = 12. …………………………………………………3分 所以AB = AC +CB = 21 cm. ……………………………………………4分24. 解:设这个角的度数是x °,根据题意,得 1(90)(180)103x x -=-+. ………………………………………………2分解这个方程得 30x =. ……………………………………………………4分答:这个角的度数是30°.25. 解:设甲种礼物买了x 件,………………………………………………………1分 根据题意,得 128(1)88x x ++=. ……………………………………………………2分解这个方程得 4x =. …………………………………………………3分 则15x +=.答:甲种礼物买了4件,乙种礼物买了5件. ……………………………4分26.(1)37°. ……………………………………………………………………………1分 (2)∠AOC ,∠COE ,112°. ………………………………………………4分27. 解:设此人每月的主叫通话时间为x 分钟,则按套餐一的计费为﹝66+0.2(x -50)﹞元,按套餐二的计费为96元.当按套餐一与按套餐二计费相等时,得66+0.2(x -50)=96,解得x =200. ………1分 所以,当主叫通话时间等于200分钟时,按套餐一与按套餐二计费相等. ……2分经验证,当主叫通话时间大于50分钟且小于200分钟时,按套餐一的计费少于按套餐二的计费; …………………………………………………………………………3分当主叫通话时间大于200分钟且小于或等于220分钟时,按套餐一的计费多于按套餐二的计费; …………………………………………………………………………4分综上所述,当主叫通话时间大于50分钟且小于200分钟时,选择套餐一省钱; 当主叫通话时间等于200分钟时,选择套餐一与套餐二均可;当主叫通话时间大于200分钟且小于或等于220分钟时,选择套餐二省钱. …5分28. 解:(1)点A 、C 表示的数分别是-9,15; ……………………………………1分 (2)①点M 、N 表示的数分别是9t -,154t -;……………………………………3分②当点M 在原点左侧,点N 在原点右侧时,由题意可知 9154t t -=-.解这个方程,得2t =. …………………………………………………………4分 当点M 、N 都在原点左侧时,由题意可知 9154t t -=-. 解这个方程,得245t =. ………………………………………………………5分 根据题意可知,点M 、N 不能同时在原点右侧.所以当2t =秒或245t =秒时,M 、N 两点到原点O 的距离相等.。

相关文档
最新文档