线面平行典型例题和练习

合集下载

立体几何线面平行垂直、面面平行垂直专题练习(高三党必做)

立体几何线面平行垂直、面面平行垂直专题练习(高三党必做)

立体几何线面平行垂直、面面平行垂直专题一、解答题(本大题共27小题,共324.0分)1.如图,四棱锥P-ABCD中,PA⊥底面ABCD,AD∥BC,AB=AD=AC=3,PA=BC=4,M为线段AD上一点,AM=2MD,N为PC的中点.(1)证明:MN∥平面PAB;(2)求直线AN与平面PMN所成角的正弦值.2.如图,四棱锥P-ABCD中,侧面PAD为等边三角形且垂直于底面ABCD,AB=AD,∠BAD=∠ABC=90°,E是PD的中点.BC=12(1)证明:直线CE∥平面PAB;(2)点M在棱PC上,且直线BM与底面ABCD所成角为45°,求二面角M-AB-D的余弦值.3.如图,在三棱柱ABC-A1B1C1中,BB1⊥平面ABC,∠BAC=90°,AC=AB=AA1,E是BC的中点.(1)求证:AE⊥B1C;(2)求异面直线AE与A1C所成的角的大小;(3)若G为C1C中点,求二面角C-AG-E的正切值.4.如图所示,在四棱锥P-ABCD中,底面四边形ABCD是菱形,AC∩BD=O,△PAC是边长为2的等边三角形,PB=PD=√6,AP=4AF.(Ⅰ)求证:PO⊥底面ABCD;(Ⅱ)求直线CP与平面BDF所成角的大小;(Ⅲ)在线段PB上是否存在一点M,使得CM∥平面BDF如果存在,求BM的值,如果不存在,请说明理BP由.5.如图,在直三棱柱ABC-A1B l C1中,AC=BC=√2,∠ACB=90°.AA1=2,D为AB的中点.(Ⅰ)求证:AC⊥BC1;(Ⅱ)求证:AC1∥平面B1CD:(Ⅲ)求异面直线AC1与B1C所成角的余弦值.6.如图,正三棱柱ABC-A1B1C1中,AB=AA1=2,点P,Q分别为A1B1,BC的中点.(1)求异面直线BP与AC1所成角的余弦值;(2)求直线CC1与平面AQC1所成角的正弦值.7.如图,在四棱锥P-ABCD中,底面ABCD为正方形,平面PAD⊥平面ABCD,点M在线段PB上,PD∥平面MAC,PA=PD=√6,AB=4.(1)求证:M为PB的中点;(2)求二面角B-PD-A的大小;(3)求直线MC与平面BDP所成角的正弦值.8.如图,四棱锥P-ABCD中,底面ABCD为矩形,PA⊥平面ABCD,E为PD的中点.(1)证明:PB∥平面AEC;(2)设AP=1,AD=√3,三棱锥P-ABD的体积V=√3,求A到平面PBC的距4离.9.如图,在四棱锥P-ABCD中,PA⊥底面ABCD,AD⊥AB,AB∥DC,AD=DC=AP=2,AB=1,点E为棱PC的中点.(Ⅰ)证明:BE⊥DC;(Ⅱ)求直线BE与平面PBD所成角的正弦值;(Ⅲ)若F为棱PC上一点,满足BF⊥AC,求二面角F-AB-P的余弦值.10.如图,已知四棱锥P-ABCD,△PAD是以AD为斜边的等腰直角三角形,BC∥AD,CD⊥AD,PC=AD=2DC=2CB,E为PD的中点.(Ⅰ)证明:CE∥平面PAB;(Ⅱ)求直线CE与平面PBC所成角的正弦值.11.如图,正三角形ABE与菱形ABCD所在的平面互相垂直,AB=2,∠ABC=60°,M是AB的中点,N是CE的中点.(I)求证:EM⊥AD;(II)求证:MN∥平面ADE;(III)求点A到平面BCE的距离.12.已知几何体ABCDEF中,AB∥CD,AD⊥DC,EA⊥平面ABCD,FC∥EA,AB=AD=EA=1,CD=CF=2.(Ⅰ)求证:平面EBD⊥平面BCF;(Ⅱ)求点B到平面ECD的距离.13.如图,四棱锥P-ABCD中,底面ABCD为矩形,PD⊥底面ABCD,AD=PD=2,E、F分别为CD、PB的中点.(1)求证:EF∥平面PAD;(2)求证:平面AEF⊥平面PAB;(3)设AB=√2AD,求直线AC与平面AEF所成角θ的正弦值.14.如图,在四棱锥P-ABCD中,底面ABCD是平行四边形,∠ADC=45∘,AD=AC=2,O为AC的中点,PO⊥平面ABCD且PO=6,M为BD的中点.(1)证明:AD⊥平面PAC;(2)求直线AM与平面ABCD所成角的正切值.15.如图,正三棱柱ABC-A1B1C1中,AB=2,AA1=√2,点D为A1C1的中点.(I)求证:BC1∥平面AB1D;(II)求证:A1C⊥平面AB1D;(Ⅲ)求异面直线AD与BC1所成角的大小.16.如图,P-ABD和Q-BCD为两个全等的正棱锥,且A,B,C,D四点共面,其中AB=1,∠APB=90°.(Ⅰ)求证:BD⊥平面APQ;(Ⅱ)求直线PB与平面PDQ所成角的正弦值.17.如图,在三棱柱ABC-A1B1C1中,平面A1ACC1⊥底面ABC,AB=BC=2,∠ACB=30°,∠C1CB=60°,BC1⊥A1C,E为AC的中点,侧棱CC1=2.(1)求证:A1C⊥平面C1EB;(2)求直线CC1与平面ABC所成角的余弦值.18.如图,在三棱锥P-ABC中,平面PAB⊥平面ABC,AB=6,BC=2√3,AC=2√6,D为线段AB上的点,且AD=2DB,PD⊥AC.(1)求证:PD⊥平面ABC;,求点B到平面PAC的距离.(2)若∠PAB=π419.如图,三棱柱ABC-A1B1C1中,A1A⊥平面ABC,△ABC为正三角形,D是BC边的中点,AA1=AB=1.(1)求证:平面ADB1⊥平面BB1C1C;(2)求点B到平面ADB1的距离.20.如图,在三棱锥P-ABC中,点D,E,F分别为棱PC,AC,AB的中点,已知PA⊥平面ABC,AB⊥BC,且AB=BC.(1)求证:平面BED⊥平面PAC;(2)求二面角F-DE-B的大小;(3)若PA=6,DF=5,求PC与平面PAB所成角的正切值.21.如图,在四棱锥P—ABCD中,PD⊥平面ABCD,AD⊥CD,DB平分∠ADC,E为PC的中点,AD=CD=1,DB=2√2.(1)证明PA∥平面BDE;(2)证明AC⊥平面PBD;(3)求直线BC与平面PBD所成的角的正切值.22.如图所示,在四棱台ABCD-A1B1C1D1中,AA1⊥底面ABCD,四边形ABCD为菱形,∠BAD=120°,AB=AA1=2A1B1=2.(Ⅰ)若M为CD中点,求证:AM⊥平面AA1B1B;(Ⅱ)求直线DD1与平面A1BD所成角的正弦值.=√2.23.如图,在直三棱柱ABC−A1B1C1中,∠ACB=90°,E为A1C1的中点,CC1C1E(Ⅰ)证明:CE⊥平面AB1C1;(Ⅱ)若AA1=√6,∠BAC=30°,求点E到平面AB1C的距离.24.如图,在四棱锥E-ABCD中,底面ABCD是边长为√2的正方形,平面AEC⊥平面CDE,∠AEC=90°,F为DE中点,且DE=1.(Ⅰ)求证:BE∥平面ACF;(Ⅱ)求证:CD⊥DE;(Ⅲ)求FC与平面ABCD所成角的正弦值.25.已知:平行四边形ABCD中,∠DAB=45°,AB=√2AD=2√2,平面AED⊥平面ABCD,△AED为等边三角形,EF∥AB,EF=√2,M为线段BC的中点.(1)求证:直线MF∥平面BED;(2)求证:平面BED⊥平面EAD;(3)求直线BF与平面BED所成角的正弦值.26.如图,在四棱锥P-ABCD中,侧面PAD⊥底面ABCD,侧棱PA=PD=√2,底面ABCD为直角梯形,其中BC∥AD,AB⊥AD,AC=√2,AB=BC=1,E为AD中点.(Ⅰ)求证:PE⊥平面ABCD;(Ⅱ)求异面直线PB与CD所成角的余弦值;(Ⅲ)求平面PAB与平面PCD所成的二面角.27.如图,已知多面体ABCA1B1C1,A1A,B1B,C1C均垂直于平面ABC,∠ABC=120°,A1A=4,C1C=1,AB=BC=B1B=2.(1)证明:AB1⊥平面A1B1C1;(2)求直线AC1与平面ABB1所成的角的正弦值.答案和解析1.【答案】(1)证明:法一、如图,取PB 中点G ,连接AG ,NG ,∵N 为PC 的中点, ∴NG ∥BC ,且NG =12BC ,又AM =23AD =2,BC =4,且AD ∥BC , ∴AM ∥BC ,且AM =12BC ,则NG ∥AM ,且NG =AM ,∴四边形AMNG 为平行四边形,则NM ∥AG , ∵AG ⊂平面PAB ,NM ⊄平面PAB , ∴MN ∥平面PAB ; 法二、在△PAC 中,过N 作NE ⊥AC ,垂足为E ,连接ME , 在△ABC 中,由已知AB =AC =3,BC =4,得cos ∠ACB =42+32−322×4×3=23,∵AD ∥BC ,∴cos ∠EAM =23,则sin ∠EAM =√53,在△EAM 中,∵AM =23AD =2,AE =12AC =32,由余弦定理得:EM =√AE 2+AM 2−2AE ⋅AM ⋅cos∠EAM =√94+4−2×32×2×23=32,∴cos ∠AEM =(32)2+(32)2−42×32×32=19,而在△ABC 中,cos ∠BAC =32+32−422×3×3=19,∴cos ∠AEM =cos ∠BAC ,即∠AEM =∠BAC , ∴AB ∥EM ,则EM ∥平面PAB .由PA ⊥底面ABCD ,得PA ⊥AC ,又NE ⊥AC , ∴NE ∥PA ,则NE ∥平面PAB . ∵NE ∩EM =E ,∴平面NEM ∥平面PAB ,则MN ∥平面PAB ;(2)解:在△AMC 中,由AM =2,AC =3,cos ∠MAC =23,得CM 2=AC 2+AM 2-2AC •AM •cos ∠MAC =9+4−2×3×2×23=5.∴AM 2+MC 2=AC 2,则AM ⊥MC , ∵PA ⊥底面ABCD ,PA ⊂平面PAD ,∴平面ABCD ⊥平面PAD ,且平面ABCD ∩平面PAD =AD , ∴CM ⊥平面PAD ,则平面PNM ⊥平面PAD .在平面PAD 内,过A 作AF ⊥PM ,交PM 于F ,连接NF ,则∠ANF 为直线AN 与平面PMN 所成角.在Rt△PAC中,由N是PC的中点,得AN=12PC=12√PA2+PC2=52,在Rt△PAM中,由PA•AM=PM•AF,得AF=PA⋅AMPM =√42+22=4√55,∴sin∠ANF=AFAN =4√5552=8√525.∴直线AN与平面PMN所成角的正弦值为8√525.【解析】本题考查直线与平面平行的判定,考查直线与平面所成角的求法,考查数学转化思想方法,考查了空间想象能力和计算能力,是中档题.(1)法一、取PB中点G,连接AG,NG,由三角形的中位线定理可得NG∥BC,且NG=12BC,再由已知得AM∥BC,且AM=12BC,得到NG∥AM,且NG=AM,说明四边形AMNG为平行四边形,可得NM∥AG,由线面平行的判定得到MN∥平面PAB;法二、证明MN∥平面PAB,转化为证明平面NEM∥平面PAB,在△PAC中,过N作NE⊥AC,垂足为E,连接ME,由已知PA⊥底面ABCD,可得PA∥NE,通过求解直角三角形得到ME∥AB,由面面平行的判定可得平面NEM∥平面PAB,则结论得证;(2)由勾股定理得CM⊥AD,进一步得到平面PNM⊥平面PAD,在平面PAD内,过A作AF⊥PM,交PM于F,连接NF,则∠ANF为直线AN与平面PMN所成角.然后求解直角三角形可得直线AN与平面PMN所成角的正弦值.2.【答案】(1)证明:取PA的中点F,连接EF,BF,因为E是PD的中点,所以EF∥AD,EF=12AD,AB=BC=12AD,∠BAD=∠ABC=90°,∴BC∥AD,EF∥BC,EF=BC,∴四边形BCEF是平行四边形,可得CE∥BF,BF⊂平面PAB,CE⊄平面PAB,∴直线CE∥平面PAB;(2)解:如图所示,取AD中点O,连接PO,CO,由于△PAD为正三角形,则PO⊥AD,因为侧面PAD为等边三角形且垂直于底面ABCD,平面PAD∩平面ABCD=AD,所以PO⊥平面ABCD,所以PO⊥CO. 因为AO=AB=BC=12AD,且∠BAD=∠ABC= 90∘,所以四边形ABCO是矩形,所以CO⊥AD,以O为原点,OC为x轴,OD为y轴,OP为z轴建立空间直角坐标系,不妨设AB=BC=12AD=1,则OA=OD=AB=CO=1.又因为△POC为直角三角形,|OC|=√33|OP|,所以∠PCO=60∘.作MN⊥CO,垂足为N,连接BN,因为PO ⊥CO ,所以MN //PO ,且PO ⊥平面ABCD ,所以MN ⊥平面ABCD ,所以∠MBN 即为直线BM 与平面ABCD 所成的角, 设CN =t ,因为∠PCO =60∘,所以MN =√3t ,BN =√BC 2+CN 2=√t 2+1. 因为∠MBN =45∘,所以MN =BN ,即√3t =√t 2+1,解得t =√22,所以ON =1−√22,MN =√62,所以A (0,−1,0),B (1,−1,0),M (1−√22,0,√62),D (0,1,0),则AB ⃗⃗⃗⃗⃗ =(1,0,0),AD⃗⃗⃗⃗⃗⃗ =(0,2,0),AM ⃗⃗⃗⃗⃗⃗ =(1−√22,1,√62). 设平面MAB 和平面DAB 的法向量分别为n 1⃗⃗⃗⃗ =(x 1,y 1,z 1),n 2⃗⃗⃗⃗ =(x 2,y 2,z 2), 则{AB ⃗⃗⃗⃗⃗ ·n 1⃗⃗⃗⃗ =0AM ⃗⃗⃗⃗⃗⃗ ·n 1⃗⃗⃗⃗ =0,即{x 1=0(1−√22)x 1+y 1+√62z 1=0, 可取z 1=−2,则n 1⃗⃗⃗⃗ =(0,√6,−2), 同理可得n 2⃗⃗⃗⃗ =(0,0,1),所以.因为二面角M -AB -D 是锐角,所以其余弦值为√105.【解析】本题考查直线与平面平行的判定定理的应用,空间向量求二面角夹角,考查空间想象能力以及计算能力,属于中档题.(1)取PA 的中点F ,连接EF ,BF ,通过证明CE ∥BF ,利用直线与平面平行的判定定理证明即可.(2)取AD 中点O ,连接PO ,CO ,作MN ⊥CO ,垂足为N ,以O 为原点,OC 为x 轴,OD 为y 轴,OP 为z 轴建立空间直角坐标系,即可求出二面角M -AB -D 的余弦值.3.【答案】证明:(1)因为BB 1⊥面ABC ,AE ⊂面ABC ,所以AE ⊥BB 1,由AB =AC ,E 为BC 的中点得到AE ⊥BC , ∵BC ∩BB 1=B ,BC 、BB 1⊂面BB 1C 1C , ∴AE ⊥面BB 1C 1C ,,∴AE ⊥B 1C ;解:(2)取B 1C 1的中点E 1,连A 1E 1,E 1C ,则AE ∥A 1E 1, ∴∠E 1A 1C 是异面直线AE 与A 1C 所成的角, 设AC =AB =AA 1=2,则由∠BAC =90°, 可得A 1E 1=AE =√2,A 1C =2√2,E 1C 1=EC =12BC =√2,∴E 1C =√E 1C 12+C 1C 2=√6,∵在△E 1A 1C 中,cos ∠E 1A 1C =2+8−62⋅√2⋅2√2=12, 所以异面直线AE 与A 1C 所成的角为π3;(3)连接AG ,设P 是AC 的中点,过点P 作PQ ⊥AG 于Q ,连EP ,EQ ,则EP ⊥AC ,又∵平面ABC ⊥平面ACC 1A 1,平面ABC ∩平面ACC 1A 1=AC ∴EP ⊥平面ACC 1A 1, 而PQ ⊥AG ∴EQ ⊥AG .∴∠PQE 是二面角C -AG -E 的平面角, 由(2)假设知:EP =1,AP =1, Rt △ACG ∽Rt △AQP ,PQ =CG·AP AG=1√5,故tan ∠PQE =PEPQ =√5,所以二面角C -AG -E 的平面角正切值是√5.【解析】本题考查异面直线的夹角,线线垂直的判定,属于中档题,熟练掌握线面垂直,线线垂直与面面垂直之间的转化及异面直线夹角及二面角的定义,是解答本题的关键,属于较难题.(1)由BB 1⊥面ABC 及线面垂直的性质可得AE ⊥BB 1,由AC =AB ,E 是BC 的中点,及等腰三角形三线合一,可得AE ⊥BC ,结合线面垂直的判定定理可证得AE ⊥面BB 1C 1C ,进而由线面垂直的性质得到AE ⊥B 1C ;(2)取B 1C 1的中点E 1,连A 1E 1,E 1C ,根据异面直线夹角定义可得,∠E 1A 1C 是异面直线A 与A 1C 所成的角,设AC =AB =AA 1=2,解三角形E 1A 1C 可得答案. (3)连接AG ,设P 是AC 的中点,过点P 作PQ ⊥AG 于Q ,连EP ,EQ ,则EP ⊥AC ,由直三棱锥的侧面与底面垂直,结合面面垂直的性质定理,可得EP ⊥平面ACC 1A 1,进而由二面角的定义可得∠PQE 是二面角C -AG -E 的平面角.4.【答案】(Ⅰ)证明:因为底面ABCD 是菱形,AC ∩BD =O ,所以O 为AC ,BD 中点.-------------------------------------(1分)又因为PA =PC ,PB =PD ,所以PO ⊥AC ,PO ⊥BD ,---------------------------------------(3分)所以PO ⊥底面ABCD .----------------------------------------(4分)(Ⅱ)解:由底面ABCD 是菱形可得AC ⊥BD , 又由(Ⅰ)可知PO ⊥AC ,PO ⊥BD .如图,以O 为原点建立空间直角坐标系O -xyz .由△PAC 是边长为2的等边三角形,PB =PD =√6,可得PO =√3,OB =OD =√3.所以A(1,0,0),C(−1,0,0),B(0,√3,0),P(0,0,√3).---------------------------------------(5分)所以CP ⃗⃗⃗⃗⃗ =(1,0,√3),AP ⃗⃗⃗⃗⃗ =(−1,0,√3). 由已知可得OF ⃗⃗⃗⃗⃗ =OA⃗⃗⃗⃗⃗ +14AP ⃗⃗⃗⃗⃗ =(34,0,√34)-----------------------------------------(6分) 设平面BDF 的法向量为n −=(x ,y ,z ),则{√3y =034x +√34z =0令x =1,则z =−√3,所以n ⃗ =(1,0,-√3).----------------------------------------(8分) 因为cos <CP ⃗⃗⃗⃗⃗ ,n ⃗ >=CP ⃗⃗⃗⃗⃗ ⋅n ⃗⃗|CP ⃗⃗⃗⃗⃗ ||n ⃗⃗ |=-12,----------------------------------------(9分) 所以直线CP 与平面BDF 所成角的正弦值为12,所以直线CP 与平面BDF 所成角的大小为30°.-----------------------------------------(10分)(Ⅲ)解:设BMBP =λ(0≤λ≤1),则CM ⃗⃗⃗⃗⃗⃗ =CB ⃗⃗⃗⃗⃗ +BM ⃗⃗⃗⃗⃗⃗ =CB ⃗⃗⃗⃗⃗ +λBP ⃗⃗⃗⃗⃗ =(1,√3(1−λ),√3λ).---------------------------------(11分)若使CM ∥平面BDF ,需且仅需CM −⋅n ⃗ =0且CM ⊄平面BDF ,---------------------(12分) 解得λ=13∈[0,1],----------------------------------------(13分) 所以在线段PB 上存在一点M ,使得CM ∥平面BDF . 此时BM BP =13.-----------------------------------(14分)【解析】(Ⅰ)证明PO ⊥底面ABCD ,只需证明PO ⊥AC ,PO ⊥BD ;(Ⅱ)建立空间直角坐标系,求出直线CP 的方向向量,平面BDF 的法向量,利用向量的夹角公式可求直线CP 与平面BDF 所成角的大小;(Ⅲ)设BMBP =λ(0≤λ≤1),若使CM ∥平面BDF ,需且仅需CM −⋅n ⃗ =0且CM ⊄平面BDF ,即可得出结论.本题考查线面垂直,考查线面平行,考查线面角,考查向量知识的运用,正确求出向量的坐标是关键.5.【答案】解:(I )证明:∵CC 1⊥平面ABC ,AC ⊂平面ABC ,∠ACB =90°, ∴CC 1⊥AC ,AC ⊥BC ,又BC ∩CC 1=C ,∴AC ⊥平面BCC 1,BC 1⊂平面BCC 1, ∴AC ⊥BC 1.(II )证明:如图,设CB 1∩C 1B =E ,连接DE , ∵D 为AB 的中点,E 为C 1B 的中点,∴DE ∥AC 1, ∵DE ⊂平面B 1CD ,AC 1⊄平面B 1CD , ∴AC 1∥平面B 1CD .(III )解:由DE ∥AC 1,∠CED 为AC 1与B 1C 所成的角,在△CDE 中,DE =12AC 1=12√AC 2+CC 12=√62, CE =12B 1C =12√BC 2+BB 12=√62,CD =12AB =12√AC 2+BC 2=1,cos ∠CED =CE 2+DE 2−CD 22×CE×DE=32+32−12×√62×√62=23,∴异面直线AC 1与B 1C 所成角的余弦值为23.【解析】本题考查线线垂直的判定、线面平行的判定、异面直线及其所成的角. (I )先证线面垂直,再由线面垂直证明线线垂直即可; (II )作平行线,由线线平行证明线面平行即可;(III )先证明∠CED 为异面直线所成的角,再在三角形中利用余弦定理计算即可. 6.【答案】解:如图,在正三棱柱ABC -A 1B 1C 1中, 设AC ,A 1C 1的中点分别为O ,O 1, 则,OB ⊥OC ,OO 1⊥OC ,OO 1⊥OB ,故以{OB ⃗⃗⃗⃗⃗⃗ ,OC ⃗⃗⃗⃗⃗ ,OO 1⃗⃗⃗⃗⃗⃗⃗⃗ }为基底, 建立空间直角坐标系O -xyz ,∵AB =AA 1=2,A (0,-1,0),B (√3,0,0), C (0,1,0),A 1(0,-1,2),B 1(√3,0,2),C 1(0,1,2).(1)点P 为A 1B 1的中点.∴P(√32,−12,2),∴BP ⃗⃗⃗⃗⃗ =(−√32,−12,2),AC 1⃗⃗⃗⃗⃗⃗⃗ =(0,2,2). |cos <BP ⃗⃗⃗⃗⃗ ,AC 1⃗⃗⃗⃗⃗⃗⃗ >|=|BP ⃗⃗⃗⃗⃗ ⋅AC 1⃗⃗⃗⃗⃗⃗⃗⃗||BP ⃗⃗⃗⃗⃗ |⋅|AC 1⃗⃗⃗⃗⃗⃗⃗⃗ |=|−1+4|√5×2√2=3√1020.∴异面直线BP 与AC 1所成角的余弦值为:3√1020; (2)∵Q 为BC 的中点.∴Q (√32,12,0)∴AQ ⃗⃗⃗⃗⃗ =(√32,32,0),AC 1⃗⃗⃗⃗⃗⃗⃗ =(0,2,2),CC 1⃗⃗⃗⃗⃗⃗⃗ =(0,0,2),设平面AQC 1的一个法向量为n⃗ =(x ,y ,z ), 由{AQ ⃗⃗⃗⃗⃗ ·n ⃗ =√32x +32y =0AC 1⃗⃗⃗⃗⃗⃗⃗ ·n⃗ =2y +2z =0,可取n⃗ =(√3,-1,1), 设直线CC 1与平面AQC 1所成角的正弦值为θ, sinθ=|cos|=|CC 1⃗⃗⃗⃗⃗⃗⃗ ⋅n ⃗ ||CC 1⃗⃗⃗⃗⃗⃗⃗ |⋅|n⃗ |=2√5×2=√55, ∴直线CC 1与平面AQC 1所成角的正弦值为√55.【解析】本题考查了向量法求空间角,属于中档题.设AC ,A 1C 1的中点分别为O ,O 1,以{OB ⃗⃗⃗⃗⃗⃗ ,OC ⃗⃗⃗⃗⃗ ,OO 1⃗⃗⃗⃗⃗⃗⃗⃗ }为基底,建立空间直角坐标系O -xyz ,(1)由|cos <BP ⃗⃗⃗⃗⃗ ,AC 1⃗⃗⃗⃗⃗⃗⃗ >|=|BP ⃗⃗⃗⃗⃗⃗ ⋅AC 1⃗⃗⃗⃗⃗⃗⃗⃗||BP ⃗⃗⃗⃗⃗⃗ |⋅|AC 1⃗⃗⃗⃗⃗⃗⃗⃗ |可得异面直线BP 与AC 1所成角的余弦值;(2)求得平面AQC 1的一个法向量为n⃗ ,设直线CC 1与平面AQC 1所成角的正弦值为θ,可得sinθ=|cos <CC 1⃗⃗⃗⃗⃗⃗⃗ ,n⃗ >|=|CC 1⃗⃗⃗⃗⃗⃗⃗ ⋅n ⃗⃗ ||CC 1⃗⃗⃗⃗⃗⃗⃗ |⋅|n ⃗⃗ |,即可得直线CC 1与平面AQC 1所成角的正弦值.7.【答案】(1)证明:如图,设AC ∩BD =O ,∵ABCD 为正方形,∴O 为BD 的中点,连接OM ,∵PD ∥平面MAC ,PD ⊂平面PBD ,平面PBD ∩平面AMC =OM , ∴PD ∥OM ,则BOBD =BM BP,即M 为PB 的中点;(2)解:取AD 中点G , ∵PA =PD ,∴PG ⊥AD ,∵平面PAD ⊥平面ABCD ,且平面PAD ∩平面ABCD =AD , ∴PG ⊥平面ABCD ,则PG ⊥AD ,连接OG ,则PG ⊥OG ,由G 是AD 的中点,O 是AC 的中点,可得OG ∥DC ,则OG ⊥AD .以G 为坐标原点,分别以GD 、GO 、GP 所在直线为x 、y 、z 轴距离空间直角坐标系, 由PA =PD =√6,AB =4,得D (2,0,0),A (-2,0,0),P (0,0,√2),C (2,4,0),B (-2,4,0),M (-1,2,√22),DP ⃗⃗⃗⃗⃗ =(−2,0,√2),DB⃗⃗⃗⃗⃗⃗ =(−4,4,0). 设平面PBD 的一个法向量为m ⃗⃗⃗ =(x ,y ,z),则由{m ⃗⃗⃗ ⋅DP ⃗⃗⃗⃗⃗ =0m⃗⃗⃗ ⋅DB ⃗⃗⃗⃗⃗⃗ =0,得{−2x +√2z =0−4x +4y =0,取z =√2,得m ⃗⃗⃗ =(1,1,√2). 取平面PAD 的一个法向量为n ⃗ =(0,1,0).∴cos <m ⃗⃗⃗ ,n ⃗ >=m ⃗⃗⃗ ⋅n ⃗⃗ |m ⃗⃗⃗ ||n ⃗⃗ |=12×1=12. ∴二面角B -PD -A 的大小为60°;(3)解:CM ⃗⃗⃗⃗⃗⃗ =(−3,−2,√22),平面BDP 的一个法向量为m ⃗⃗⃗ =(1,1,√2).∴直线MC 与平面BDP 所成角的正弦值为|cos <CM ⃗⃗⃗⃗⃗⃗ ,m ⃗⃗⃗ >|=|CM ⃗⃗⃗⃗⃗⃗⋅m ⃗⃗⃗|CM ⃗⃗⃗⃗⃗⃗ ||m ⃗⃗⃗ ||=|−2√9+4+12×1|=2√69.【解析】本题考查线面角与面面角的求法,训练了利用空间向量求空间角,属中档题.(1)设AC ∩BD =O ,则O 为BD 的中点,连接OM ,利用线面平行的性质证明OM ∥PD ,再由平行线截线段成比例可得M 为PB 的中点;(2)取AD 中点G ,可得PG ⊥AD ,再由面面垂直的性质可得PG ⊥平面ABCD ,则PG ⊥AD ,连接OG ,则PG ⊥OG ,再证明OG ⊥AD .以G 为坐标原点,分别以GD 、GO 、GP 所在直线为x 、y 、z 轴距离空间直角坐标系,求出平面PBD 与平面PAD 的一个法向量,由两法向量所成角的大小可得二面角B -PD -A 的大小;(3)求出CM⃗⃗⃗⃗⃗⃗ 的坐标,由CM ⃗⃗⃗⃗⃗⃗ 与平面PBD 的法向量所成角的余弦值的绝对值可得直线MC 与平面BDP 所成角的正弦值.8.【答案】解:(Ⅰ)证明:设BD 与AC 的交点为O ,连结EO , ∵ABCD 是矩形, ∴O 为BD 的中点 ∵E 为PD 的中点, ∴EO ∥PB .EO ⊂平面AEC ,PB ⊄平面AEC ∴PB ∥平面AEC ;(Ⅱ)∵AP =1,AD =√3,三棱锥P -ABD 的体积V =√34,∴V =16PA ⋅AB ⋅AD =√36AB =√34,∴AB =32,PB =√1+(32)2=√132.作AH ⊥PB 交PB 于H , 由题意可知BC ⊥平面PAB , ∴BC ⊥AH ,故AH ⊥平面PBC .又在三角形PAB 中,由射影定理可得:AH =PA⋅AB PB=3√1313A 到平面PBC 的距离3√1313.【解析】本题考查直线与平面垂直,点到平面的距离的求法,考查空间想象能力以及计算能力.(Ⅰ)设BD 与AC 的交点为O ,连结EO ,通过直线与平面平行的判定定理证明PB ∥平面AEC ;(Ⅱ)通过AP =1,AD =√3,三棱锥P -ABD 的体积V =√34,求出AB ,作AH ⊥PB 角PB于H ,说明AH 就是A 到平面PBC 的距离.通过解三角形求解即可. 9.【答案】证明:(I )∵PA ⊥底面ABCD ,AD ⊥AB , 以A 为坐标原点,建立如图所示的空间直角坐标系,∵AD =DC =AP =2,AB =1,点E 为棱PC 的中点. ∴B (1,0,0),C (2,2,0),D (0,2,0), P (0,0,2),E (1,1,1)∴BE⃗⃗⃗⃗⃗ =(0,1,1),DC ⃗⃗⃗⃗⃗ =(2,0,0) ∵BE ⃗⃗⃗⃗⃗ •DC ⃗⃗⃗⃗⃗ =0, ∴BE ⊥DC ;(Ⅱ)∵BD ⃗⃗⃗⃗⃗⃗ =(-1,2,0),PB ⃗⃗⃗⃗⃗ =(1,0,-2),设平面PBD 的法向量m⃗⃗⃗ =(x ,y ,z ), 由{m ⃗⃗⃗ ⋅BD ⃗⃗⃗⃗⃗⃗ =0m⃗⃗⃗ ⋅PB ⃗⃗⃗⃗⃗ =0,得{−x +2y =0x −2z =0, 令y =1,则m⃗⃗⃗ =(2,1,1), 则直线BE 与平面PBD 所成角θ满足: sinθ=m⃗⃗⃗ ⋅BE ⃗⃗⃗⃗⃗⃗ |m ⃗⃗⃗ |⋅|BE ⃗⃗⃗⃗⃗⃗ |=2√6×√2=√33, 故直线BE 与平面PBD 所成角的正弦值为√33.(Ⅲ)∵BC⃗⃗⃗⃗⃗ =(1,2,0),CP ⃗⃗⃗⃗⃗ =(-2,-2,2),AC ⃗⃗⃗⃗⃗ =(2,2,0), 由F 点在棱PC 上,设CF⃗⃗⃗⃗⃗ =λCP ⃗⃗⃗⃗⃗ =(-2λ,-2λ,2λ)(0≤λ≤1), 故BF ⃗⃗⃗⃗⃗ =BC ⃗⃗⃗⃗⃗ +CF⃗⃗⃗⃗⃗ =(1-2λ,2-2λ,2λ)(0≤λ≤1), 由BF ⊥AC ,得BF ⃗⃗⃗⃗⃗ •AC ⃗⃗⃗⃗⃗ =2(1-2λ)+2(2-2λ)=0, 解得λ=34,即BF ⃗⃗⃗⃗⃗ =(-12,12,32), 设平面FBA 的法向量为n ⃗ =(a ,b ,c ), 由{n ⃗ ⋅AB ⃗⃗⃗⃗⃗ =0n ⃗ ⋅BF ⃗⃗⃗⃗⃗ =0,得{a =0−12a +12b +32c =0令c =1,则n⃗ =(0,-3,1), 取平面ABP 的法向量i =(0,1,0), 则二面角F -AB -P 的平面角α满足: cosα=|i ⋅n ⃗⃗ ||i|⋅|n ⃗⃗ |=3√10=3√1010,故二面角F -AB -P 的余弦值为:3√1010【解析】本题考查的知识点是空间二面角的平面角,建立空间直角坐标系,将二面角问题转化为向量夹角问题,是解答的关键.(I )以A 为坐标原点,建立空间直角坐标系,求出BE ,DC 的方向向量,根据BE ⃗⃗⃗⃗⃗ •DC ⃗⃗⃗⃗⃗ =0,可得BE ⊥DC ;(II )求出平面PBD 的一个法向量,代入向量夹角公式,可得直线BE 与平面PBD 所成角的正弦值;(Ⅲ)根据BF ⊥AC ,求出向量BF ⃗⃗⃗⃗⃗ 的坐标,进而求出平面FAB 和平面ABP 的法向量,代入向量夹角公式,可得二面角F -AB -P 的余弦值. 10.【答案】证明:(Ⅰ)取AD 的中点F ,连接EF ,CF ,∵E 为PD 的中点,∴EF ∥PA ,EF ∥平面PAB ,在四边形ABCD 中,BC ∥AD ,AD =2DC =2CB ,F 为中点,∴四边形CBAF 为平行四边形,故CF ∥AB ,CF ∥平面PAB ,∵CF ∩EF =F ,EF ∥平面PAB ,CF ∥平面PAB , ∴平面EFC ∥平面ABP , ∵EC ⊂平面EFC , ∴EC ∥平面PAB .解:(Ⅱ)连接BF ,过F 作FM ⊥PB 于M ,连接PF , ∵PA =PD ,∴PF ⊥AD ,∵DF ∥BC ,DF =BC ,CD ⊥AD ,∴四边形BCDF 为矩形,∴BF ⊥AD , 又AD ∥BC ,故PF ⊥BC ,BF ⊥BC ,又BF ∩PF =F ,BF 、PF ⊂平面PBF ,BC ⊄平面PBF , ∴BC ⊥平面PBF ,∴BC ⊥PB ,设DC =CB =1,由PC =AD =2DC =2CB ,得AD =PC =2, ∴PB =√PC 2−BC 2=√4−1=√3, BF =PF =1,∴MF =√12−(√32)2=12,又BC ⊥平面PBF ,∴BC ⊥MF ,又PB ∩BC =B ,PB 、BC ⊂平面PBC ,MF ⊄平面PBC , ∴MF ⊥平面PBC ,即点F 到平面PBC 的距离为12,∵MF =12,D 到平面PBC 的距离应该和MF 平行且相等,均为12, E 为PD 中点,E 到平面PBC 的垂足也为所在线段的中点,即中位线, ∴E 到平面PBC 的距离为14,在△PCD 中,PC =2,CD =1,PD =√2,,故由余弦定理得CE =√2, 设直线CE 与平面PBC 所成角为θ,则sinθ=14CE=√28.【解析】本题考查线面平行的证明,考查线面角的正弦值的求法,考查空间中线线、能力,考查数形结合思想、化归与转化思想,属于中档题.(Ⅰ)取AD的中点F,连结EF,CF,推导出EF∥PA,CF∥AB,从而平面EFC∥平面ABP,由此能证明EC∥平面PAB.(Ⅱ)连结BF,过F作FM⊥PB于M,连结PF,推导出四边形BCDF为矩形,从而BF⊥AD,进而AD⊥平面PBF,由AD∥BC,得BC⊥PB,再求出BC⊥MF,由此能求出sinθ.11.【答案】证明:(Ⅰ)∵EA=EB,M是AB的中点,∴EM⊥AB,∵平面ABE⊥平面ABCD,平面ABE∩平面ABCD=AB,EM⊂平面ABE,∴EM⊥平面ABCD,∵AD⊂平面ABCD,∴EM⊥AD;(Ⅱ)取DE的中点F,连接AF,NF,∵N是CE的中点,∴NF=//12CD,∵M是AB的中点,∴AM=//12CD,∴NF=//AM,∴四边形AMNF是平行四边形,∴MN∥AF,∵MN⊄平面ADE,AF⊂平面ADE,∴MN∥平面ADE;解:(III)设点A到平面BCE的距离为d,由(I)知ME⊥平面ABC,BC=BE=2,MC=ME=√3,则CE=√6,BN=√BE2−EN2=√102,∴S△BCE=12CE⋅BN=√152,S△ABC=12BA×BC×sin60°=√3,∵V A-BCE=V E-ABC,即13S△BCE×d=13S△ABC×ME,解得d=2√155,故点A到平面BCE的距离为2√155.【解析】本题考查线线垂直、线面平行的证明,考查点到平面的距离的求法,涉及到力、数据处理能力,考查数形结合思想,是中档题.(Ⅰ)推导出EM ⊥AB ,从而EM ⊥平面ABCD ,由此能证明EM ⊥AD ;(Ⅱ)取DE 的中点F ,连接AF ,NF ,推导出四边形AMNF 是平行四边形,从而MN ∥AF ,由此能证明MN ∥平面ADE ;(III )设点A 到平面BCE 的距离为d ,由V A -BCE =V E -ABC ,能求出点A 到平面BCE 的距离.12.【答案】(I )证明:∵AB ∥CD ,AD ⊥DC ,AB =AD =1,CD =2,∴BD =BC =√2, ∴BD 2+BC 2=CD 2, ∴BD ⊥BC ,∵EA ⊥平面ABCD ,BD ⊂平面ABCD , ∴EA ⊥BD ,∵EA ∥FC , ∴FC ⊥BD ,又BC ⊂平面BCF ,FC ⊂平面BCF ,BC ∩CF =C , ∴BD ⊥平面FBC , 又BD ⊂平面BDE ,∴平面BDE ⊥平面BCF .(II )解:过A 作AM ⊥DE ,垂足为M , ∵EA ⊥平面ABCD ,CD ⊂平面ABCD , ∴EA ⊥CD ,又CD ⊥AD ,EA ∩AD =A , ∴CD ⊥平面EAD ,又AM ⊂平面EAD , ∴AM ⊥CD ,又AM ⊥DE ,DE ∩CD =D , ∴AM ⊥平面CDE ,∵AD =AE =1,EA ⊥AD ,∴AM =√22,即A 到平面CDE 的距离为√22,∵AB ∥CD ,CD ⊂平面CDE ,AB ⊄平面CDE , ∴AB ∥平面CDE ,∴B 到平面CDE 的距离为√22.【解析】(I )先计算BD ,BC ,利用勾股定理的逆定理证明BD ⊥BC ,再利用EA ⊥平面ABCD 得出AE ⊥BD ,从而有CF ⊥BD ,故而推出BD ⊥平面FBC ,于是平面EBD ⊥平面BCF ;(II )证明AB ∥平面CDE ,于是B 到平面CDE 的距离等于A 到平面CDE 的距离,过A 作AM ⊥DE ,证明AM ⊥平面CDE ,于是AM 的长即为B 到平面CDE 的距离. 本题考查了线面垂直、面面垂直的判定与性质,空间距离的计算,属于中档题. 13.【答案】证明:方法一:(1)取PA 中点G ,连结DG 、FG . ∵F 是PB 的中点, ∴GF ∥AB 且GF =12AB ,又底面ABCD 为矩形,E 是DC 中点, ∴DE ∥AB 且DE =12AB∴GF ∥DE 且GF =DE ,∴EF ∥DG∵DG ⊂平面PAD ,EF ⊄平面PAD , ∴EF ∥平面PAD .(2)∵PD ⊥底面ABCD ,AB ⊂面ABCD ∴PD ⊥AB又底面ABCD 为矩形 ∴AD ⊥AB 又PD ∩AD =D ∴AB ⊥平面PAD ∵DG ⊂平面PAD ∴AB ⊥DG∵AD =PD ,G 为AP 中点 ∴DG ⊥AP又AB ∩AP =A , ∴DG ⊥平面PAB又由(1)知EF ∥DG ∴EF ⊥平面PAB ,又EF ⊂面AEF ∴平面AEF ⊥平面PAB .证法二:(1)以D 为坐标原点,DA 、DC 、DP 所在直线分别为x 轴、y 轴、z 轴,建立如图所示空间直角坐标系.设AB =a . ∵AD =PD =2,∴A (2,0,0),B (2,a ,0),C (0,a ,0),P (0,0,2), ∵E 、F 分别为CD ,PB 的中点 ∴E (0,a2,0),F (1,a2,0).∴EF ⃗⃗⃗⃗⃗ =(1,0,1), ∵DP ⃗⃗⃗⃗⃗ +DA ⃗⃗⃗⃗⃗ =(0,0,2)+(2,0,0)=(2,0,2), ∴EF ⃗⃗⃗⃗⃗ =12(DP ⃗⃗⃗⃗⃗ +DA ⃗⃗⃗⃗⃗ )=12DP ⃗⃗⃗⃗⃗ +12DA ⃗⃗⃗⃗⃗ , 故EF ⃗⃗⃗⃗⃗ 、DP ⃗⃗⃗⃗⃗ 、DA ⃗⃗⃗⃗⃗ 共面, 又EF ⊄平面PAD ∴EF ∥平面PAD .(2)由(1)知EF ⃗⃗⃗⃗⃗ =(1,0,1),AB ⃗⃗⃗⃗⃗ =(0,a ,0),AP⃗⃗⃗⃗⃗ =(−2,0,2). ∴EF ⃗⃗⃗⃗⃗ ⋅AB ⃗⃗⃗⃗⃗ =0,EF ⃗⃗⃗⃗⃗ •AP ⃗⃗⃗⃗⃗ =-2+0+2=0, ∴EF ⃗⃗⃗⃗⃗ ⊥AB ⃗⃗⃗⃗⃗ ,EF ⃗⃗⃗⃗⃗ ⊥AP ⃗⃗⃗⃗⃗ , 又AB ∩AP =A ,∴EF ⊥平面PAB , 又EF ⊂平面AEF ,∴平面AEF ⊥平面PAB , (3)AB =2√2由(1)知,∴AE ⃗⃗⃗⃗⃗ =(-2,√2,0),EF⃗⃗⃗⃗⃗ =(1,0,1)设平面AEF 的法向量n ⃗ =(x ,y ,z),则{n⃗ ⋅AE ⃗⃗⃗⃗⃗ =0n ⃗ ⋅EF ⃗⃗⃗⃗⃗ =0即−2x +√2y =0令x =1,则y =√2,z =-1, ∴n⃗ =(1,√2,-1), 又AC⃗⃗⃗⃗⃗ =(-2,2√2,0), ∴cos <AC⃗⃗⃗⃗⃗ ,n ⃗ >=−2+4+02√12=√36, ∴sinθ=|cos <AC⃗⃗⃗⃗⃗ ,n ⃗ >|=√36.【解析】方法一;(1)取PA 中点G ,连结DG 、FG ,要证明EF ∥平面PAD ,我们可以证明EF 与平面PAD 中的直线AD 平行,根据E 、F 分别是PB 、PC 的中点,利用中位线定理结合线面平行的判定定理,即可得到答案. (2)根据线面垂直的和面面垂直的判断定理即可证明.方法二:(1)求出直线EF 所在的向量,得到EF ⃗⃗⃗⃗⃗ =12(DP ⃗⃗⃗⃗⃗ +DA ⃗⃗⃗⃗⃗ )=12DP ⃗⃗⃗⃗⃗ +12DA ⃗⃗⃗⃗⃗ ,即可证明EF ∥平面PAD .(2)再求出平面内两条相交直线所在的向量,然后利用向量的数量积为0,根据线面垂直的判定定理得到线面垂直,即可证明平面AEF ⊥平面PAB(3)求出平面的法向量以及直线所在的向量,再利用向量的有关运算求出两个向量的夹角,进而转化为线面角,即可解决问题.本题考查了本题考查的知识点是直线与平面平行的判定,面面垂直,直线与平面所成的角,解决此类问题的关键是熟练掌握几何体的结构特征,进而得到空间中点、线、面的位置关系,利于建立空间之间坐标系,利用向量的有关知识解决空间角与空间距离以及线面的位置关系等问题,属于中档题.14.【答案】解:(1)证明:∵PO ⊥平面ABCD ,且AD ⊂平面ABCD , ∴PO ⊥AD , ∵∠ADC =45°且AD =AC =2, ∴∠ACD =45°, ∴∠DAC =90°, ∴AD ⊥AC ,∵AC ⊂平面PAC ,PO ⊂平面PAC ,且AC ∩PO =O , ∴由直线和平面垂直的判定定理知AD ⊥平面PAC . (2)解:取DO 中点N ,连接MN ,AN , 由PO ⊥平面ABCD ,得MN ⊥平面ABCD , ∴∠MAN 是直线AM 与平面ABCD 所成的角, ∵M 为PD 的中点, ∴MN ∥PO ,且MN =12PO =3, AN =12DO =√52,在Rt △ANM 中,tan ∠MAN =MNAN =3√52=6√55, 即直线AM 与平面ABCD 所成角的正切值为6√55.【解析】(1)由PO ⊥平面ABCD ,得PO ⊥AD ,由∠ADC =45°,AD =AC ,得AD ⊥AC ,从而证明AD ⊥平面PAC .(2)取DO 中点N ,连接MN ,AN ,由M 为PD 的中点,知MN ∥PO ,由PO ⊥平面出直线AM 与平面ABCD 所成角的正切值.本题考查直线与平面垂直的证明,考查直线与平面所成角的正切值的求法.解题时要认真审题,仔细解答,注意合理地化空间问题为平面问题. 15.【答案】证明:(I )在三棱柱ABC -A 1B 1C 1中,连接A 1B ,交AB 1于O 点,连接OD∵在△A 1BC 1中,A 1D =DC 1,A 1O =OB , ∴OD ∥BC 1,又∵OD ⊂平面AB 1D ,BC 1⊄平面AB 1D ; ∴BC 1∥平面AB 1D ;(II )在三棱柱ABC -A 1B 1C 1中,A 1A ⊥平面A 1B 1C 1; ∵B 1D ⊂平面A 1B 1C 1; ∴A 1A ⊥B 1D在△A 1B 1C 1中,D 为A 1C 1的中点 ∴B 1D ⊥A 1C 1又∵A 1A ∩A 1C 1=A 1,A 1A ,A 1C 1⊂平面AA 1C 1C , ∴B 1D ⊥平面AA 1C 1C , 又∵A 1C ⊂平面AA 1C 1C , ∴B 1D ⊥A 1C又∵A 1D AA 1=AA1AC =√22∴∠DA 1A =∠A 1AC =90°∴△DA 1A ∽△A 1AC ,∠ADA 1=∠CA 1A∵∠DA 1C +∠CA 1A =90° ∴∠DA 1C +∠ADA 1=90°∴A 1C ⊥AD又∵B 1D ∩AD =D ,B 1D ,AD ⊂平面AB 1D ; ∴A 1C ⊥平面AB 1D ;解:(III )由(I )得,OD ∥BC 1, 故AD 与BC 1所成的角即为∠ADO在△ADO 中,AD =√3,OD =12BC 1=√62,AO =12A 1B =√62,∵AD 2=OD 2+AO 2,OD =AO∴△ADO 为等腰直角三角形故∠ADO =45°即异面直线AD 与BC 1所成角等于45°【解析】(I )连接A 1B ,交AB 1于O 点,连接OD ,由平行四边形性质及三角形中位线定理可得OD ∥BC 1,进而由线面平行的判定定理得到BC 1∥平面AB 1D ;(II )由直棱柱的几何特征可得A 1A ⊥B 1D ,由等边三角形三线合一可得B 1D ⊥A 1C 1,进而由线面垂直的判定定理得到B 1D ⊥平面AA 1C 1C ,再由三角形相似得到A 1C ⊥AD 后,可证得A 1C ⊥平面AB 1D .(III )由(I )中OD ∥BC 1,可得异面直线AD 与BC 1所成角即∠ADO ,解△ADO 可得答案.本题考查的知识点是直线与平面垂直的判定,异面直线及其所成的角,直线与平面平行的判定,(I )的关键是证得OD ∥BC 1,(II )的关键是熟练掌握线面垂直与线线垂直之间的转化,(III )的关键是得到异面直线AD 与BC 1所成角即∠ADO .16.【答案】(Ⅰ)证明:由P -ABD ,Q -BCD 是相同正三棱锥,且∠APB =90°,分别过P 、Q 作PE ⊥平面ABD ,QF ⊥平面BCD ,垂足分别为E 、F ,则E 、F 分别为底面正三角形ABD 与BCD 的中心. 连接EF 交BD 于G ,则G 为BD 的中点,连接PG 、QG ,则PG ⊥BD ,QG ⊥BD ,又PG ∩QG =G ,∴BD ⊥平面PQG ,则BD ⊥PQ , 再由正三棱锥的性质可得PA ⊥BD , 又PQ ∩PA =P ,∴BD ⊥平面APQ ;(Ⅱ)∵正三棱锥的底面边长为1,且∠APB =90°,∴PQ =EF =2EG =2×13AG =2×13×√32=√33, PE =√(√22)2−(√33)2=√66,则V B−PQD =13×12×√33×√66×1=√236.△PDQ 底边PQ 上的高为√(√22)2−(√36)2=√156,∴S △PDQ =12×√33×√156=√512.设B 到平面PQD 的距离为h ,则13×√512ℎ=√236,得h =√105.∴直线PB 与平面PDQ 所成角的正弦值为√105√22=2√55.【解析】(Ⅰ)由题意分别过P 、Q 作PE ⊥平面ABD ,QF ⊥平面BCD ,可得E 、F 分别为底面正三角形ABD 与BCD 的中心.连接EF 交BD 于G ,可得PG ⊥BD ,QG ⊥BD ,由线面垂直的判定及性质可得BD ⊥PQ ,再由正三棱锥的性质可得PA ⊥BD ,则BD ⊥平面APQ ;(Ⅱ)由已知求得PQ ,PE 的长,求得四面体B -PQD 的体积,利用等积法求出B 到平面PQD 的距离,则直线PB 与平面PDQ 所成角的正弦值可求.本题考查直线与平面所成的角,考查线面垂直的判定,考查空间想象能力和思维能力,训练了利用等积法求多面体的体积,是中档题. 17.【答案】(1)证明:如图:∵AB =BC ,E 为AC 的中点,∴BE ⊥AC ,∵平面A 1ACC 1⊥平面ABC ,平面A 1ACC 1∩平面ABC =AC , ∴BE ⊥平面A 1ACC 1,∵A 1C ⊂平面A 1ACC 1,∴BE ⊥A 1C .(2)解:∵面A1ACC1⊥面ABC,∴C1在面ABC上的射影H在AC上,∴∠C1CA为直线C1C与面ABC所成的角.过H作HM⊥BC于M,连C1M,在Rt△C1CM中,CM=CC1cos∠C1CM=2cos60°=1.在Rt△CMH中,CH=CMcos∠ACB =2√33.∴在Rt△C1CH中,cos∠C1CH=CHCC1=23√32=√33.∴直线C1C与面ABC所成的角的余弦值为√33.【解析】(1)证明BE⊥平面A1ACC1,可得BE⊥A1C,即可证明:A1C⊥平面C1EB;(2)判断∠C1CA为直线C1C与面ABC所成的角.过H作HM⊥BC于M,连C1M,即可求直线CC1与平面ABC所成角的余弦值.本题考查线面垂直的判定与性质,考查线面角,考查学生分析解决问题的能力,属于中档题.18.【答案】证明:(1)连接CD,据题知AD=4,BD=2,∵AC2+BC2=AB2,∴∠ACB=90°,∴cos∠ABC=2√36=√33,∴CD2=4+12−2×2×2√3cos∠ABC=8,∴CD=2√2,∴CD2+AD2=AC2,∴CD⊥AB,又∵平面PAB⊥平面ABC,平面PAB∩平面ABC=AB,CD⊂平面ABC,∴CD⊥平面PAB,∵PD⊂平面PAB,∴CD⊥PD,∵PD⊥AC,CD∩AC=C,CD、AC⊂平面ABC,∴PD⊥平面ABC.解:(2)∵∠PAB=π4,∴PD=AD=4,∴PA=4√2,在Rt△PCD中,PC=√PD2+CD2=2√6,∴△PAC是等腰三角形,∴S△PAC=8√2,设点B到平面PAC的距离为d,由V B-PAC=V P-ABC,得13S△PAC×d=13S△ABC×PD,∴d==3,故点B到平面PAC的距离为3.【解析】本题考查线面垂直的证明,考查点到平面的距离的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题.(1)连接CD,推导出CD⊥AB,CD⊥PD,由此能证明PD⊥平面ABC.(2)设点B到平面PAC的距离为d,由V B-PAC=V P-ABC,能求出点B到平面PAC的距离.19.【答案】解:(1)证明:∵ABC-A1B1C1中,A1A⊥平面ABC,又BB 1⊂平面BB 1C 1C , ∴平面BB 1C 1C ⊥平面ABC ,∵△ABC 为正三角形,D 为BC 的中点, ∴AD ⊥BC ,又平面BB 1C 1C ∩平面ABC =BC , ∴AD ⊥平面BB 1C 1C , 又AD ⊂平面ADB 1,∴平面ADB 1⊥平面BB 1C 1C ;(2)由(1)可得△ADB 1为直角三角形, 又AD =√32,B 1D =√52,∴S △ADB 1=12×AD ×B 1D =√158,又S △ADB =12S △ABC =√38,设点B 到平面ADB 1的距离为d , 则V B−ADB 1=V B 1−ADB , ∴13S △ADB 1⋅d =13S △ADB ⋅BB 1, ∴点B 到平面ADB 1的距离d =S △ADB ⋅BB 1S △ADB 1=√3√15=√55.【解析】本题考查面面垂直的证明,考查点到平面的距离的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,考查数形结合思想,是中档题.(1)推导出BB 1⊥平面ABC ,从而平面BB 1C 1C ⊥平面ABC ,推导出AD ⊥BC ,从而AD ⊥平面BB 1C 1C ,由此能证明平面ADB 1⊥平面BB 1C 1C ;(2)设点B 到平面ADB 1的距离为d ,由V B−ADB 1=V B 1−ADB ,能求出点B 到平面ADB 1的距离.20.【答案】证明:(1)∵PA ⊥平面ABC ,BE ⊂平面ABC , ∴PA ⊥BE .∵AB =BC ,E 为AC 的中点, ∴BE ⊥AC ,又PA ⊂平面PAC ,AC ⊂平面PAC ,PA ∩AC =A , ∴BE ⊥平面PAC ,又BE ⊂平面BED , ∴平面BED ⊥平面PAC .(2)∵D ,E 是PC ,AC 的中点, ∴DE ∥PA ,又PA ⊥平面ABC ,∴DE ⊥平面ABC ,∵EF ⊂平面ABC ,BE ⊂平面ABC , ∴DE ⊥EF ,DE ⊥BE .∴∠FEB 为二面角F -DE -B 的平面角.∵E ,F 分别是AC ,AB 的中点,AB =AC , ∴EF =12BC =12AB =BF ,EF ∥BC .又AB ⊥BC ,∴BF ⊥EF ,∴△BEF 为等腰直角三角形,∴∠FEB =45°. ∴二面角F -DE -B 为45°.∴PA⊥BC,又BC⊥AB,PA⊂平面PAB,AB⊂平面PAB,PA∩AB=A,∴BC⊥平面PAB.∴∠CPB为直线PC与平面PAB所成的角.∵PA=6,∴DE=12PA=3,又DF=5,∴EF=√DF2−DE2=4.∴AB=BC=8.∴PB=√PA2+AB2=10.∴tan∠CPB=BCPB =4 5.【解析】(1)通过证明BE⊥平面PAC得出平面BED⊥平面PAC;(2)由DE∥PA得出DE⊥平面ABC,故DE⊥EF,DE⊥BE,于是∠FEB为所求二面角的平面角,根据△BEF为等腰直角三角形得出二面角的度数;(3)证明BC⊥平面PAB得出∠CPB为所求角,利用勾股定理得出BC,PB,即可得出tan∠CPB.本题考查了线面垂直,面面垂直的判定,空间角的计算,做出空间角是解题关键,属于中档题.21.【答案】解:(1)证明:设AC∩BD=H,连接EH,在△ADC中,因为AD=CD,且DB平分∠ADC,所以H为AC的中点,又有题设,E为PC的中点,故EH∥PA,又HE⊂平面BDE,PA⊄平面BDE,所以PA∥平面BDE(2)证明:因为PD⊥平面ABCD,AC⊂平面ABCD,所以PD⊥AC由(1)知,BD⊥AC,PD∩BD=D,故AC⊥平面PBD(3)由AC⊥平面PBD可知,BH为BC在平面PBD内的射影,所以∠CBH为直线与平面PBD所成的角.由AD⊥CD,AD=CD=1,DB=2√2,可得DH=CH=√22,BH=3√22在Rt△BHC中,tan∠CBH=CHBH =13,所以直线BC与平面PBD所成的角的正切值为13.【解析】(1)欲证PA∥平面BDE,根据直线与平面平行的判定定理可知只需证PA与平面BDE内一直线平行,设AC∩BD=H,连接EH,根据中位线定理可知EH∥PA,而又HE⊂平面BDE,PA⊄平面BDE,满足定理所需条件;(2)欲证AC⊥平面PBD,根据直线与平面垂直的判定定理可知只需证AC与平面PBD内两相交直线垂直,而PD⊥AC,BD⊥AC,PD∩BD=D,满足定理所需条件;(3)由AC⊥平面PBD可知,BH为BC在平面PBD内的射影,则∠CBH为直线与平面PBD所成的角,在Rt△BHC中,求出此角即可.本小题主要考查直线与平面平行.直线和平面垂直.直线和平面所成的角等基础知识,考查空间想象能力、运算能力和推理能力.。

立体几何中线面平行的经典方法+经典题(附详细解答)

立体几何中线面平行的经典方法+经典题(附详细解答)

DB A 1高中立体几何证明平行的专题(基本方法)立体几何中证明线面平行或面面平行都可转化为 线线平行,而证明线线平行一般有以下的一些方法: (1)通过“平移”。

(2)利用三角形中位线的性质。

(3)利用平行四边形的性质。

(4)利用对应线段成比例。

(5)利用面面平行,等等。

(1) 通过“平移”再利用平行四边形的性质1.如图,四棱锥P -ABCD 的底面是平行四边形,点E 、F 分 别为棱AB 、 PD 的中点.求证:AF ∥平面PCE ;分析:取PC 的中点G ,连EG.,FG ,则易证AEGF 是平行四边形2、如图,已知直角梯形ABCD 中,AB ∥CD ,AB ⊥BC ,AB =1,BC =2,CD =1+3,过A 作AE ⊥CD ,垂足为E ,G 、F 分别为AD 、CE 的中点,现将△ADE 沿AE 折叠,使得DE ⊥EC. (Ⅰ)求证:BC ⊥面CDE ; (Ⅱ)求证:FG ∥面BCD ;分析:取DB 的中点H ,连GH,HC 则易证FGHC 是平行四边形3、已知直三棱柱ABC -A 1B 1C 1中,D, E, F 分别为AA 1, CC 1, AB 的中点, M 为BE 的中点, AC ⊥BE. 求证:(Ⅰ)C 1D ⊥BC ; (Ⅱ)C 1D ∥平面B 1FM. 分析:连EA ,易证C 1EAD 是平行四边形,于是MF//EA(第1题图)4、如图所示, 四棱锥P -ABCD 底面是直角梯形,,,AD CD AD BA ⊥⊥CD=2AB, E 为PC 的中点, 证明: //EB PAD 平面;分析::取PD 的中点F ,连EF,AF 则易证ABEF 是平行四边形(2) 利用三角形中位线的性质5、如图,已知E 、F 、G 、M 分别是四面体的棱AD 、CD 、BD 、BC 的中点,求证:AM ∥平面EFG 。

分析:连MD 交GF 于H ,易证EH 是△AMD 的中位线6、如图,ABCD 是正方形,O 是正方形的中心,E 是PC 的中点。

直线与平面平行的判定和性质经典练习及详细答案

直线与平面平行的判定和性质经典练习及详细答案

直线、平面平行的判定及其性质羄1.2.下列命题中,正确命题的是④ . 薂①若直线l上有无数个点不在平面内,则l∥; ??肇②若直线l与平面平行,则l与平面内的任意一条直线都平行;??芆③如果两条平行直线中的一条直线与一个平面平行,那么另一条直线也与这个平面平莁行;④若直线l与平面平行,则l与平面内的任意一条直线都没有公共点. ??3.4.下列条件中,不能判断两个平面平行的是(填序号). 芀①一个平面内的一条直线平行于另一个平面肇②一个平面内的两条直线平行于另一个平面蚆③一个平面内有无数条直线平行于另一个平面膃④一个平面内任何一条直线都平行于另一个平面答案①②③聿5.6.对于平面和共面的直线m、n,下列命题中假命题是(填序号). ?膇①若m⊥,m⊥n,则n∥??肇②若m∥,n∥,则m∥n??薁③若m,n∥,则m∥n???膂④若m、n与所成的角相等,则m∥n 答案①②④?芇7.8.已知直线a,b,平面,则以下三个命题:?膄①若a∥b,b,则a∥; ???芃②若a∥b,a∥,则b∥;??袁.③若a∥,b∥,则a∥b. ??莆其中真命题的个数是 . 答案 0 薅9.??bMMaMabb直线直线,//是平面// 的条件. ,那么10.//羅A.充分而不必要B.必要而不充分C.充要D.不充分也不必要蚀11.?a平行的条件是与平面12.能保证直线蒆???,a//b?b,b?b,aa?// B. A.肆??,a//b,a,c////cb? C. 蒃?,A?a,B?a,C?b?b,D?bAC?BD且D.葿13.?a,则平行于平面14.如果直线薆??aa平行内无数条直线与 A.平面B.内有且只有一直线与平面平行蒇??aa都平行内的任意直线与直线D.平面平面内不存在与平行的直线 C.膅15.??b aab的位置关系则 ,且∥平面与16.如果两直线,∥蒂?????bb?b//b//或 C. D A.相交 B.. 蚆17.18.下列命题正确的个数是薄19.l l∥αα内,则(20.1)若直线上有无数个点不在平面蚃ll与平面α内的任意一直线平行平行,则α2()若直线与平面芁那么另一条也与这个平面平行,)两条平行线中的一条直线与一个平面平行3(蚆.ab平行,则a内一直线∥α(4)若一直线和平面α羅D.3个 B.1个 C.2个A.0个莄 21.bb22.是α外的一条直线,下列条件中可得出α∥是平面罿α内的两条直线不相交B.b与与bα内的一条直线不相交 A.肀α内的所有直线不相交.b与内的无数条直线不相交D bC.与α莅 23.baab的位置关系与,α∥平面α24.已知两条相交直线,则、螂?相交与α∥α或bC.bbαD.ααA.b∥ B.b与相交肂25.SABSG为△SB=SC,S26.如图所示,已知是正三角形ABC所在平面外的一点,且SA=膀的位置关系,并与平面DEFSC的中点,试判断SG、F分别是AC、BC、E上的高,D、. 给予证明,证明如下:SG∥平面DEF解螆示.交CGDE于点H,如图所方法一:三角形中位线连薄ABC的中位线,∵DE是螁. AB∴DE芀的中点,D是AC在△ACG中膇. DH∥AG羂. CG的中点∴H薀FH是△SCG的中位线,艿. SG∥∴F芄平面,平面SG又DEFFHDEF,?蚄∴SG∥平面DEF.荿方法二:平面平行的性质荿. SBEF∥EF为△SBC的中位线,∴∵蚅SAB,SAB,SB平面∵EF平面??膂. ∥平面SAB∴EF莂F,EF∩DF=同理可证,DF∥平面SAB,葿. ∥平面DEFSAB,∴SG∴平面SAB∥平面DEF,又SG平面?肆 27.、BC、CCF、G、H分别是C28.如图所示,在正方体ABCD—ABD中,E、袄11111求证:A的中点.CD、A膁111;∥HD(1)BF蕿1;DD2)EG∥平面BB(蒇11. H∥平面)平面BDFBD(莁11平行四边形的性质,平行线的传递性证明袀. MC是平行四边形,∴HD∥)如图所示,取BB的中点M,易证四边形HMCD1虿11111 . BF∥HD又∵MC∥BF,蚄111OE ,DC,连接2)取BD的中点OEO,DO,则(肃121DOEG,G 又DDC,∴蚈112. DOGE∴四边形OEGD是平行四边形,∴∥蝿11.EGDDBB平面O又D,∴∥平面DBBD?肄11111.(3)由(1)知DH∥BF,又BD∥BD,BD、HD平面HBD,BF、BD平面BDF,且??蒁11111111. HBDB,∴平面BDF∥平面∩HD=D,DB∩BF=BD111111 29.. B的中点分别是BC和A—ABC中,M、N30.如图所示,在三棱柱ABC螁11111 C. AAC求证:MN∥平面衿11方法一:平行四边形的性质证明蒅FC,,连接NF,设AC中点为F膃11中点,为AB∵N蒀111C,BC,且NF=B∴NF∥衿11112 BC,BC又由棱柱性质知袆11的中点,又M是B蚁NF MC∴,艿. ∴四边形NFCM为平行四边形羈C. C平面AAC,∴MN∥平面AAMNCF∴MN∥CF,又平面AAC,?芇111111方法二:三角形中位线的性莃P,连接A,P交连接AM CC于节11,BC是∵MBC的中点,且MC肈11点,B∴M是P的中莄1又∵N为AB中点,肅11C.MN,∴C平面MN,C平面P APAMN∴∥,又AAAA∥平面CAA??肁11111111方法三:平面平行的性质膈MQ,中点为CQ,连接NQ,设B螅11BC、B C的中点,∵M、Q是薃11C,AAC C, MQ平面AAC∴平面MQ CC,又CC??袀111111.C C∴MQ∥平面AA芈 11的中点,B、B C∵N、Q是A膆1111C,C,NQ平面AAC∴C NQ AC,又A平面AAC??芅11111111 . C C∴NQ∥平面AA蕿 11MNQ∥平面AAC C,又∵MQ∩NQ=B,∴平面莈11C. ∴MN∥平面AAC又MN平面MNQ薇1131.上分BCAB,D32.如图所示,正方体ABCD—ABC中,侧面对角螂111111. CFE别有两点E,F,且B=11. ∥平面ABCD求证:E蚁方法一:平行四边形的性蒈于BC T,F∥作ESBB交AB于S,过作FT∥BB交过螃11ESAEFTBF连接ST,则,且??蒄BBABCBCC1111AE=BF B=C,∴AFE∵B=C,B莀1111FTES∴,∴ES=FT ?蒈CCBB11. BBES又∵∥∥E,∴四边形FT FTS为平行四边形膄1∴EF∥ST,又ST平面ABCD,EF平面ABCD,∴EF∥平面ABCD.??袂相似三角形的性质方法二:腿,,连接AQ交BC于点Q连接B F薈1FCBF,∴∥BCC∵B11?薅11BQCB11FEBB,∴BCF,BA=C∵BE=11?薄1111QDBB11. ABCD,∴EF∥平面平面AQ 平面ABCD,EFABCD∴EF∥AQ,又??膂平面平行的性质方法三:蚇于G,EG∥AB交BB作过E羆1GEBB11,,则连接GF肂BABB11,CBA=B∵BE=CF,羁1111GBCE11,C∥BC,∴FG∴∥B?螇11BBCB11=B,G,AB∩BC=又EG∩FG莇EFG,∥平面ABCD,而EF平面∴平面EFG?螄. ABCD∴EF∥平面螀33.的中点,设是DDO中,为底面ABCD的中心,PDB如图所示,在正方体34.ABCD—AC袇11111∥平面PAO?D上的点,问:当点Q是CCQ在什么位置时,平面BQ11解面面平行的判蒄Q当为CC的中点时节1.平面DBQ∥平面PAO. 葿1∵Q为CC的中点,P为DD的中点,∴QB∥PA. 羇11∵P、O为DD、DB的中点,∴DB∥PO. 袅11又PO∩PA=P,DB∩QB=B,羄1DB∥平面PAO,QB∥平面PAO,薂1∴平面DBQ∥平面PAO. 肇1直线与平面平行的性质定理芆35.36.如图所示,四边形EFGH为空间四边形ABCD的一个截面,若截面为平行四边形. 莁. EFGH,CD∥平面(1)求证:AB∥平面EFGH芀. 周长的取值范围=6,求四边形EFGH)若AB=4,CD(肇. HGEF∥证明∵四边形EFGH为平行四边形,∴(1蚆. ABDEF∥平面HG平面ABD,∴∵膃AB,ABD∩平面ABC=ABC∵EF平面,平面聿. ∥平面EFGHAB.∴AB∴EF膇. ∥平面EFGH同理可证,C肇为平行四边形,),由于四边形EFGH(0<x<4 (2)解设EF=薁3x?CFCFxFGBFBC周长的边形EFGH∴.=1-从∴而FG=6-.四则.==x膂24BCBC4CB63,8∴四边形EFGH周长的取值范围是(12,l84,x0.)=12-+6-xl=2(x又<<则有<<x2. )12 37.38.如图所示,平面∥平面,点A∈,C∈,点B∈,D∈,点E,F分别在线??????芇段AB,CD上,且AE∶EB=CF∶FD.(1)求证:EF∥;?膄(2)若E,F分别是AB,CD的中点,AC=4,BD=6,且AC,BD所成的角为60°,求EF芃的长.两个平行平面同时与第三个平面相交,则交线平行;平行证明(1)袁线分线段成比例CD在同一平面内时,当AB,方法①莆,ABDC=AC∩平面由∥,平面???薅,∴AC∥BD,平面∩平面ABDC=BD?羅,EF∥BD,∴∵AE∶EB=CF∶FD蚀,,BD∴EF∥. 又EF????蒆CD异面时,当AB与方法肆. ,且DH=AC=设平面ACD∩DH蒃AC,ACDH∵∥,∩平面=??葿AC∴∥DH,∴四边形ACDH是平行四边形,薆FD,∶∶,使AGGH=CF上取一点在AH蒇BH,∥∥∶∶又∵AEEB=CFFD,∴GFHD,E膅. ∩又EGGF=G∥平面,∴平面EFG蒂. EF.∥,∴平面EF∵EFGEF综上,∥??蚆(解2)三角形中位薄.,MF如图所示,连接AD,取AD的中点M,连接ME蚃CD的中点,∵E,F分别为AB,芁,,∴ME∥BDMF∥AC蚆11BD=3,MF=AC=2,且ME=羅22,AC∴∠EMF为与BD所成的角(或其补角)莄°,∴∠EMF=60°或120罿EFM中由余弦定理得,∴在△肀12222==EF=,613?EMF?cos?MF2?MEME?MF??22?32??3?莅2=. EF即EF =或197螂39.40.正方形ABCD与正方形ABEF所在平面相交于AB,在AE、BD上各有一点P、Q,且AP=DQ. 肂求证:PQ∥平面BCE. 膀,M交BE于∥平行四边形的性质如图所示,作PMAB证明方法一螆 .N,连接MN∥AB交BC于QN作. BDAE=和正方形ABEF有公共边AB,∴∵正方形ABC薄QB,DQ,∴PE=又∵AP螁,AB∥QN∥又∵P芀QNBQQNPEPMPM,,∴,∴PM QN, 膇DCBDABDCAEAB. 为平行四边形,∴∴四边形PMNQPQ∥M羂又MN平面BCE,PQ平面BCE, 薀. ∥平面BCE∴PQ艿EK,于K,连接方法二:相似三角形的性质如图所示,连接AQ,并延长交BC芄∵AE=BD,AP=DQ,蚄∴PE=BQ,荿DQAP∴=①荿PEBQDQAQ②又∵AD∥BK,∴ =蚅QKBQAQAP,∴PQ∥由①②得=EK. 膂PEQKBCE,BCE,EK平面又PQ平面?莂. ∥平面BCE∴P葿作P如图所示,在平面ABEF内,过点平面平行的性质方法三:肆,AB于点MPM∥BE,交. QM连袄,平面BCE∥BE,PMPM∵膁BCE,即PM∥平蕿AMAP①∴蒇PEMB,BQ,∴PE=DQ又∵AP=莁DQAP② =∴袀PEBQ.DQAM=,∴MQ∥AD,由①②得虿MBBQ∴MQ∥BC,又∵MQ平面BCE,∴MQ∥平面BCE. ?蚀又∵PM∩MQ=M,∴平面PMQ∥平面BCE,肀PQ平面PMQ,∴PQ∥平面BCE.?螅41.42.如图所示,正四棱锥P—ABCD的各棱长均为13,M,N分别为PA,BD上的点,且PM∶螅MA=BN∶ND=5∶8.;∥平面PBC(1)求证:直线MN肁. MN的长)求线段(2薇相似三角形的性质(1)证明:方法一:螈Q,并延长交BC于AN连袅. PQ,如图所示连蒂,AND∽△QNBAD∵∥BQ,∴艿8ADANDN∴,==薆NB5BQNQPM5BN,=又∵羅ND8MA8AMAN PQ,,∴==MN∴∥袂5MPNQ平面PBC,,PQ又∵平面PBCMN??螇PBC∥平面.MN∴莅平行四边形的性质方法二:肅.如图所示,作MQ∥AB交P B于Q,作NR∥AB交BC于R,连接QR. 芃∵MQ∥AB∥NR,葿PMMQNRBN,,∴??莈PAABDCBDPMBN?,又∵,∴MQ NR膅NDMAQR. ∥MNRQ为平行四边形,∴MN∴四边形蒀BC,MN P BC,平面P又QR平面??膁. P BC∴MN∥平面膇平面平行的性质方法三:芄,,交BAB于点O如图所示,在平面ABP内,过点M作MN∥袁ON. 连蕿BC PB平面P B P,MO平面P BC,∵MO∥?袆P BC,即MO∥平芄AOAM∴ = 节ABAPPM5BN ==,又∵莁ND8MADNAO , ∴= 蚅DBAB,∴NO∥AD莄.BC P∥平面BC BC平面NO BCNO∴∥,又∵P,NO∴BC P平面??蚃.又∵MO∩NO=O,∴平面MNO∥平面P BC,蝿MN平面MNO,∴MN∥平面P BC.?蚈(2)解在等边△PBC中,∠PBC=60°,蒄PBQ中由余弦定理知PQ=PB+BQ-2PB·BQ cos∠PBQ螀222在△228181659165??2××13-2=,∴PQ=,×=13+??蒁888642?? 918×=7. =MN13=8∶,∥∵MNPQMNPQ∶,∴蒇138。

空间直线、平面的平行 高中数学例题课后习题详解

空间直线、平面的平行 高中数学例题课后习题详解

8.5空间直线、平面的平行8.5.1直线与直线平行例1如图8.5-3,空间四边形ABCD 中,E ,F ,G ,H 分别是边AB ,BC ,CD ,DA 的中点.求证:四边形EFGH 是平行四边形.分析:要证明四边形EFGH 是平行四边形,只需证明它的一组对边平行且相等.而EH ,FG 分别是ABD △和CBD 的中位线,从而它们都与BD 平行且等于BD 的一半.应用基本事实4,即可证明EH FG .证明:连接BD .∵EH 是ABD △的中位线,∴//EH BD ,且12EH BD =.同理//FG BD ,且12FG BD =.∴EH FG ∴四边形EFGH 为平行四边形.练习1.如图,把一张矩形纸片对折几次,然后打开,得到的折痕互相平行吗?为什么?【答案】互相平行,理由见解析【解析】【分析】根据对折可知:每对折一次,把矩形纸片分成的部分翻倍,形状还是全等的矩形,即可得到结论.【详解】互相平行,因为根据对折可知:每对折一次,把矩形纸片分成的部分翻倍,形状还是全等的矩形,所有的折痕都与矩形的边平行,故打开后所有折痕是互相平行.【点睛】本题考查了图形的变化,解题的关键是:根据对折把矩形纸片分成的部分翻倍,形状还是矩形,属于基础题.2.如图,在长方体ABCD A B C D ''''-中,与棱AA '平行的棱共有几条?分别是什么?【答案】共3条,分别是,,BB CC DD '''.【解析】【分析】根据图形,AA '是长方体的高的棱,找出其它的表示高的棱即可.【详解】如图,与棱AA '平行的棱有,,BB CC DD ''',共3条.【点睛】本题考查了对长方体的认识,明确表示长的棱,表示宽的棱,表示高的棱是解题的关键,属于基础题.3.如图,,,AA BB CC '''不共面,且//AA BB '',//BB CC '',求证:'ABC A B C ''≅ .【答案】证明见解析【解析】【分析】由已知条件推导出四边形ABB A ''是平行四边形,四边形ACC A ''为平行四边形,由此能证明ABC A B C '''∆≅∆.【详解】//AA '' ,∴四边形ABB A ''是平行四边形,AB A B ''∴=.同理'BC B C '=.'//,//AA BB BB CC ''' .//AA CC ''∴.,AA BB BB CC ''''== .AA CC ''∴=.∴四边形ACC A ''是平行四边形,AC A C ''∴=,ABC A B C '''∴∆≅∆.【点睛】本题考查三角形全等的证明,解题时要认真审题,注意空间思维能力的培养,属于基础题.4.如图,在四面体A BCD -中,E F G ,,分别为AB AC AD ,,上的点.若//EF BC ,//FG CD ,则EFG 和BCD △有什么关系?为什么?【答案】EFG BCD ∽,证明见解析【解析】【分析】利用线线平行,再利用等角定理即可得到EFG BCD ∆∆∽.【详解】EFG BCD ∽,证明如下://EF BC ,AE AF EF AB AC BC∴==.//FG CD ,AF AG FG AC AD CD ∴==,AE AG AB AD∴=,//EG BD ∴.由等角定理可得,,EFG BCD FGE CDB GEF DBC ∠=∠∠=∠∠=∠,EFG BCD ∴ ∽.【点睛】本题考查线线平行,平行线分线段成比例,属于基础题.8.5.2直线与平面平行例2求证:空间四边形相邻两边中点的连线平行于经过另外两边的平面.已知:如图8.5-7,空间四边形ABCD 中,E ,F 分别是AB ,AD 的中点.求证://EF 平面BCD .证明:连接BD .∵AE EB =,AFFD =,∴//EF BD .又EF ⊄平面BCD ,BD ⊂平面BCD ,∴//EF 平面BCD .例3如图8.5-10(1)所示的一块木料中,棱BC 平行于面A C ''.(1)要经过面A C ''内的一点P 和棱BC 将木料锯开,在木料表面应该怎样画线?(2)所画的线与平面AC 是什么位置关系?分析:要经过面A C ''内的一点P 和棱BC 将木料锯开,实际上是经过BC 及BC 外一点P 作截面,也就需要找出所作的截面与相关平面的交线.我们可以依据直线与平面平行的性质定理、基本事实4和推论1画出所需要的线段.解:(1)如图8.5-10(2),在平面A C ''内,过点P 作直线EF ,使//EF B C '',并分别交棱A B '',DC '于点E ,F ,连接BE ,CF ,则EF ,BE ,CF 就是应画的线.(2)因为棱BC 平行于平面A C '',平面BC '与平面A C ''相交于B C '',所以//BC B C '''.由(1)知,//EF B C '',所以//EF BC .而BC 在平面AC 内,EF 在平面AC 外,所以//EF 平面AC .显然,BE ,CF 都与平面AC 相交.练习5.如图,在长方体ABCD A B C D ''''-的六个面所在的平面中,(1)与AB 平行的平面是______;(2)与AA '平行的平面是______;(3)与AD 平行的平面是______.【答案】①.平面A B C D '''',平面DCC D ''②.平面BCC B '',平面DCC D ''③.平面A B C D '''',平面BCC B ''【解析】【分析】(1)根据线面平行的判定定理填写出正确结论.(2)根据线面平行的判定定理填写出正确结论.(3)根据线面平行的判定定理填写出正确结论.【详解】(1)由于''//AB A B ,AB ⊂/平面''''A B C D ,''A B ⊂平面''''A B C D ,所以//AB 平面''''A B C D .同理证得//AB 平面''DCC D .(2)由于''//AA BB ,'AA ⊂平面''BCC B ,'BB ⊂平面''BCC B ,所以'//AA 平面''BCC B .同理证得'//AA 平面''DCC D .(3)由于''//AD A D ,AD ⊂平面''''A B C D ,''A D ⊂平面''''A B C D ,所以//AD 平面''''A B C D .同理证得//AD 平面''BCC B .故答案为:(1).平面A B C D '''',平面DCC D '';(2).平面BCC B '',平面DCC D '';(3).平面A B C D '''',平面BCC B ''.【点睛】本小题主要考查线面平行的判定定理,属于基础题.6.如图,在正方体1111ABCD A B C D -中,E 为1DD 的中点,判断1BD 与平面AEC 的位置关系,并说明理由.【答案】1//BD 平面AEC .见解析【解析】【分析】通过三角形的中位线以及线面平行的判定定理,证得1//BD 平面AEC .【详解】1//BD 平面AEC 理由如下:如图,在正方体1111ABCD A B C D -中,连接BD 交AC 于点F ,则F 为BD 中点.连接EF ,又∵E 为1DD 的中点,∴EF 是1B D D ∆的中位线,1//EF BD ∴.1BD ⊄ 平面AEC ,EF ⊂平面AEC ,1//BD ∴平面AEC .【点睛】本小题主要考查线面平行的证明,考查空间想象能力和逻辑推理能力,属于基础题.7.判断下列命题是否正确,正确的在括号内画“√”,错误的画“×”.(1)如果直线//a b ,那么a 平行于经过b 的任何平面.()(2)如果直线a 与平面α满足//a α,那么a 与α内的任何直线平行.()(3)如果直线a b ,和平面α满足//a α,//b α,那么//a b .()(4)如果直线a b ,和平面α满足//a b ,//a α,b α⊄,那么//b α.()【答案】①.×②.×③.×④.√【解析】【分析】(1)根据“a 在以,a b 确定的平面内”,由此判断(1)错误.(2)根据a 与α内直线可能异面,判断(2)错误.(3)根据,a b 可能平行、相交或异面,判断(3)错误.(4)根据线面平行的性质定理和判定定理,以及平行公理,证得//b α,由此判断(4)正确.【详解】(1)α不平行于同时过a b ,这两条直线的平面.(2)a 与α内的直线有平行和异面两种位置关系.(3)a 与b 可能出现三种位置关系:平行、相交、异面.(4)已知//a α,//a b ,b α⊄,过a 作平面β交α于直线c ,则//a c ,所以//b c ,所以//b a .故答案为:(1)×(2)×(3)×(4)√【点睛】本小题主要考查线线、线面平行的有关命题真假性的判断,属于基础题.8.如图,a αβ⋂=,b α⊂,c β⊂,//b c ,求证////a b c .【答案】见解析【解析】【分析】首先根据线面平行的判定定理,证得b β//;再根据线面平行的性质定理证得//b a ,由平行公理证得//a c ,从而证得////a b c .【详解】,b a ααβ⊂⋂= ,b β∴⊄.//,,//b c c b ββ⊂∴ ,,b a ααβ⊂⋂=,//,//b a a c ∴∴,////a b c ∴.【点睛】本小题主要考查线面平行的判定定理和性质定理,考查平行公理,属于基础题.8.5.3平面与平面平行例4已知正方体1111ABCD A B C D -(图8.5-16),求证:平面11//AB D 平面1BC D .证明:∵1111ABCD A B C D -为正方体,∴1111D C A B ,11AB A B .∴11D C AB .∴四边形11D C BA 为平行四边形.∴11//D A C B .又1D A ⊄平面1BC D ,1C B ⊂平面1BC D ,∴1//D A 平面1BC D .同理11//D B 平面1BC D .又1111D A D B D ⋂=,∴平面11//AB D 平面1BC D .例5求证:夹在两个平行平面间的平行线段相等.如图8.5-19,//αβ,//AB CD ,且A α∈,C α∈,B β∈,D β∈,求证AB CD =.证明:过平行线AB ,CD 作平面γ,与平面α和β分别相交于AC 和BD .∵//αβ,∴//BD AC .又//AB CD ,∴四边形ABDC 是平行四边形.∴AB CD =.练习9.判断下列命题是否正确.若正确,则说明理由;若错误,则举出反例.(1)已知平面,αβ和直线m n ,,若m α⊂,n ⊂α,//m β,//n β则//αβ.(2)若一个平面α内两条不平行的直线都平行于另一个平面β,则//αβ.(3)平行于同一条直线的两个平面平行.(4)平行于同一个平面的两个平面平行.(5)一条直线与两个平行平面中的一个相交,则必与另一个相交.【答案】(1)×(2)√(3)×(4)√(5)√.【解析】【分析】(1)缺少条件:m n P = ;(2)符合判定定理;(3)两个平面也可以相交;(4)(5)均符合.【详解】解:(1)已知平面,αβ和直线m n ,,若m α⊂,n ⊂α,//m β,//n β则//αβ,缺少条件:m n P = ,故错误;(2)若一个平面α内两条不平行的直线都平行于另一个平面β,则//αβ,符合平面与平面平行的判定定理,故正确;(3)平行于同一条直线的两个平面平行,次两个平面也可以相交,故错误;(4)平行于同一个平面的两个平面平行,正确;(5)一条直线与两个平行平面中的一个相交,则必与另一个相交;正确.【点睛】本题主要考查直线与平面平行的判定与性质、平面与平面平行的判定与性质,注意灵活运用定理进行判断.10.平面α与平面β平行的充分条件可以是()A.α内有无穷多条直线都与β平行B.直线//a α,//a β,且直线a 不在α内,也不在β内C.直线a α⊂,直线b β⊂,且//a β,//b αD.α内的任何一条直线都与β平行【答案】D【解析】【分析】利用平面与平面平行的判定定理一一进行判断,可得正确答案.【详解】解:A 选项,α内有无穷多条直线都与β平行,并不能保证平面α内有两条相交直线与平面β平行,这无穷多条直线可以是一组平行线,故A 错误;B 选项,直线//a α,//a β,且直线a 不在α内,也不在β内,直线a 可以是平行平面α与平面β的相交直线,故不能保证平面α与平面β平行,故B 错误;C 选项,直线a α⊂,直线b β⊂,且//a β,//b α,当直线a b ∥,同样不能保证平面α与平面β平行,故C 错误;D 选项,α内的任何一条直线都与β平行,则α内至少有两条相交直线与平面β平行,故平面α与平面β平行;故选:D.【点睛】本题主要考查平面与平面平行的判断,解题时要认真审题,熟练掌握面与平面平行的判定定理,注意空间思维能力的培养.11.如图所示,正方体1111ABCD A B C D -中,M 、N 、E 、F 分别是棱11A B 、11A D 、11B C 、11C D 的中点.求证:平面//AMN 平面EFDB .【答案】证明见解析.【解析】【分析】连接MF ,由线面平行的判定可得//AM 平面EFDB ,同理可得//AN 平面EFDB ,再由面面平行的判定即可得证.【详解】证明:连接MF ,如图,∵M 、F 是11A B 、11C D 的中点,四边形1111D C B A 为正方形,∴11//MF A D 且11MF A D =,又11//A D AD 且11A D AD =,∴//MF AD 且MF AD =,∴四边形AMFD 是平行四边形.∴//AM DF .∵DF ⊂平面EFDB ,AM ⊄平面EFDB ,∴//AM 平面EFDB ,同理//AN 平面EFDB ,又AM ⊂平面ANM ,AN ⊂平面ANM ,AM AN A = ,∴平面//AMN 平面EFDB .12.如图,平面//,,,,//a b c c b αβγαγββ⋂=⋂=⊂.判断c 与a ,c 与α的位置关系,并说明理由.【答案】见解析.【解析】【分析】由题意//,,,,a b c αβγαγββ⋂=⋂=⊂,由平面与平面平行的性质定理可得//a b ,由//c b 可得//c a ,由直线与平面平行的判定定理可得//c α.【详解】解://,//c a c α.理由如下:∵平面//,,,//a b a b αβγαγβ⋂=⋂=∴.又//,//c b c a ∴.又,,//a c c ααα⊂⊄∴.【点睛】本题主要考查平面与平面平行的性质定理及直线与平面平行的判定定理,需注意定理的灵活运用.习题8.5复习巩固选择题13.若直线a 不平行于平面,则下列结论成立的是A.内的所有直线都与直线a 异面 B.内不存在与a 平行的直线C.内的直线都与a 相交D.直线a 与平面有公共点【答案】D【解析】【详解】试题分析:直线不平行于,包括两种情况:或,当时,内的所有直线都与直线共面,A 错;当时,内必然有直线与直线平行,B 错;从而C 也错;当,直线和平面有无数个公共点,当,直线与平面有唯一公共点,D 正确.考点:直线和平面的位置关系.14.已知直线l 和平面α,若l ∥α,P ∈α,则过点P 且平行于l 的直线()A.只有一条,不在平面α内B.只有一条,且在平面α内C.有无数条,一定在平面α内D.有无数条,不一定在平面α内【答案】B【解析】【分析】通过假设过点P 且平行于l 的直线有两条m 与n ,由平行公理可得//m n ,这与m n P = 矛盾.【详解】假设过点P 且平行于l 的直线有两条m 与n ,∴//m l 且//n l ,由平行公理得//m n ,这与两条直线m 与n 相交与点P 相矛盾.故选:B .15.已知平面,αβ和直线a ,b ,c ,////,,,a b c a b c αββ⊂⊂⊂,则α与β的位置关系是________.【答案】平行或相交【解析】【分析】可通过对两平面α,β位置关系分类讨论,研究符合题意的位置关系.【详解】若α//β,可以保证存在直线a ,b ,c ,且a //b //c ,a ⊂α,b ,c ⊂β,故平行关系有可能;若α∩β=l ,且a //b //c //l ,此种情况下也能保证存在直线a ,b ,c ,且a //b //c ,a ⊂α,b ,c ⊂β,故两面相交也有可能,由上讨论知,在题设条件下,α与β的关系是平行或相交,故答案为:平行或相交.【点睛】本题主要考查平面与平面的位置关系的判断,考查了分类讨论思想与空间想象能力,属于基础题.16.如图,在长方体木块1111ABCD A B C D -中,面11A C 上有一点P ,怎样过点P 画一条直线与棱CD 平行?【答案】见解析【解析】【分析】根据平行公理,只需在面11A C 内,过点P 作直线11//EF C D 即可.【详解】在面11A C 内,过点P 作直线EF ,使11//EF C D ,分别交棱1111,A D B C 于点E ,F ,因为11//CD C D ,所以//CD EF ,即EF 就是过点P 与棱CD 平行的直线.【点睛】本题主要考查平行公理的应用,考查了空间想象能力,意在考查灵活应用所学知识解答问题的能力,属于基础题.17.如图,在长方体ABCD A B C D ''''-中,E ,F 分别是AB ,BC 的中点,求证//''EF A C .【答案】见解析【解析】【分析】根据平行四边形的性质证明//A C AC '',根据三角形中位线证明//,EF AC 再由平行公理可得结论.【详解】连接AC .∵在长方体ABCD A B C D ''''-中,//AA CC ''.∴四边形ACC A ''为平行四边形.//A C AC ''∴.又∵E ,F 分别是AB ,BC 的中点,//,//EF AC EF A C ''∴∴.【点睛】本题主要考查长方体的性质,考查了平行公理的应用,意在考查对基础知识的掌握情况,属于基础题.18.如图,在四面体D -ABC 中,E ,F ,G 分别是AB ,BC ,CD 的中点,求证:(1)//BD 平面EFG ;(2)//AC 平面EFG .【答案】(1)证明见解析(2)证明见解析【解析】【分析】(1)由三角形中位线的性质可得//FG BD ,再由线面平行的判定定理可得结论;(2)由三角形中位线的性质可得//EF AC ,再由线面平行的判定定理可得结论.【详解】(1)F ,G 分别是BC ,CD 的中点,//FG BD ∴.BD ⊄ 平面EFG ,FG ⊂平面EFG ,//BD ∴平面EFG .(2)E .F 分别是AB ,BC 的中点,//EF AC ∴,AC ⊄ 在平面EFG ,EF ⊂平面EFG ,//AC ∴平面EFG .【点睛】证明线面平行的常用方法:①利用线面平行的判定定理,使用这个定理的关键是设法在平面内找到一条与已知直线平行的直线,可利用几何体的特征,合理利用中位线定理、线面平行的性质或者构造平行四边形、寻找比例式证明两直线平行.②利用面面平行的性质,即两平面平行,在其中一平面内的直线平行于另一平面.19.如图,a ,b 是异面直线,画出平面α,使a α⊂,且//b α,并说明理由.【答案】见解析【解析】【分析】在直线a 上取一点O ,过点O 作'//b b ,则由a 与'b 确定的平面α即为所求,利用线面平行的判定定理可证明结论.【详解】在直线a 上取一点O ,过点O 作'//b b ,则由a 与b '确定的平面α即为所求.理由:如答图,,,//a b b b αα''⊂⊂且b α⊄,所以//b α.【点睛】本题主要考查作图能力,考查了线面平行的判定定理,意在考查灵活应用所学知识解答问题的能力,属于基础题.20.如图,,,,//CD EF AB AB αβαγβγα⋂=⋂=⋂=,求证//CD EF .【答案】证明见解析【解析】【分析】直接利用线面平行的性质定理证明//AB CD ,//AB EF ,再利用平行公理可得结论.【详解】证明:,AB AB βγβ⋂=∴⊂ .//,,//AB CD AB CD αβα⋂=∴ .同理//AB EF ,于是//CD EF .【点睛】本题主要考查线面平行的性质定理以及平行公理的应用,意在考查对基本定理掌握的熟练程度,属于中档题.21.如图,直线,,AA BB CC '''相交于点O ,',,AO AOBO B O CO C O ''===,求证:平面ABC //平面A B C '''.【答案】证明见解析【解析】【分析】利用全等三角形的性质以及平行线的判定定理可得//''AC A C ,从而由线面平行的判定定理可得//AC 平面'''A B C ,同理可证AB //平面'''A B C ,进而由面面平行的判定定理可得结论.【详解】AA ' 与'CC 相于点O ,''AOC AOC ∴∠=∠.又'',,AO AO CO C O OAC OAC ''==∴≅ .'''',//CAO C AO AC AC ∴∠=∠∴.又AC ⊄平面'''A B C ,''AC ⊂平面'''A B C .//AC ∴平面'''A B C .同理可证AB //平面'''A B C .又AB Ì平面ABC ,AC ⊂平面ABC ,AB AC A ⋂=,∴平面//ABC 平面'''A B C .【点睛】本题主要考查线面平行的判断、面面平行的判断,解答过程中一定要注意线面平行的判定定理与面面平行的判定定理的应用条件,本题属于中档题.综合运用22.如图,,'E E 分别为长方体ABCD A B C D ''''-的棱AD ,A D ''的中点,求证BEC B E C '''∠=∠.【答案】证明见解析【解析】【分析】分别利用平行四边形的性质可证明''//,//BE B E CE C E ',结合BEC B E C '''∠=∠方向相同,从而可得结论.【详解】证明:连接'EE ',E E ∵分别是,AD A D ''的中点,''//EE AA ∴.又在长方体''''ABCD A B C D -中,////AA BB CC '''.'//,//EE BB EE CC '''∴.∴四边形BEE B ''与''CEE C 都是平行四边形.'''//,//BE B E CE C E '∴.又因为BEC B E C '''∠=∠方向相同,'BEC B E C ''∴∠=∠.【点睛】本题主要考查长方体的结构特征,考查了等角定理的应用,同时考查了空间想象能力,属于基础题.23.如图//,//,,AB AC BD C D ααα∈∈,求证AC BD =.【答案】证明见解析【解析】【分析】连接CD ,则平面ABDC CD α⋂=,由线面平行的性质定理可得//AB CD ,从而得四边形ABDC 是平行四边形,进而可得结果.【详解】如图,连接CD .//,,,,AC BD A B C D ∴ 共面,C ∴∈面ABDC ,D ∈平面ABDC ,CD ⊂平面ABDC .,,C D CD ααα∈∈∴⊂ ,∴平面ABDC CD α⋂=.//,//AB AB CD α∴ ,∴四边形ABDC 是平行四边形.AC BD∴=【点睛】本题主要考查线面平行的性质定理的应用,属于基础题.应用线面平行的性质定理时,一定要注意线面平行与线线平行的转换.24.如果平面外的两条平行直线中的一条直线平行于这个平面,那么另一条直线也平行于这个平面.【答案】详见解析【解析】【分析】根据题意,利用线面平行的性质,得到线线平行,再利用线面平行的判定,可得线面平行.【详解】过两条平行直线中的一条直线a 作平面β,与平面α交于直线c .//a α ,//a c ∴.//a b ,//b c ∴.b α⊄ ,c α⊂,//b α∴【点睛】本题考查了线面平行的性质定理和判定定理,解决相关问题时,我们常利用辅助平面把空间问题转化为平面问题.25.一木块如图所示,点P 在平面VAC 内,过点P 将木块锯开,使截面平行于直线VB 和AC ,应该怎样画线?【答案】画线见解析.【解析】【详解】试题分析:利用线面平行的判定定理去确定.试题解析:过平面内一点作直线,交于,交于;过平面内一点作直线,交于,则,所确定的截面为所求.考点:棱锥的结构特征,线面平行的判定和实际应用.26.如图,////αβγ,直线a 与b 分别交,,αβγ于点A ,B ,C 和点D ,E ,F ,求证AB DEBC EF=.【答案】见解析【解析】【分析】连接AF 交β于点M ,连接MB ,CF ,ME ,AD ,由面面平行的性质定理可得BM CF //,所以AB AM BC MF =,同理可得AM DEMF EF=,从而可得结果.【详解】证明:如图,连接AF 交β于点M ,连接MB ,CF ,ME ,AD .因为//,βγβ⋂平面ACF BM =,γI 平面ACF CF =,所以BM CF //,所以AB AMBC MF=.同理//ME AD ,且AM DEMF EF=,所以AB DEBC EF=.【点睛】本题主要考查面面平行的性质定理的应用,考查了空间想象能力,证明过程要注意线面平行的性质定理应用的条件,本题属于中档题.拓广探索27.如图,a b ,是异面直线,,//,,//a a b b αββα⊂⊂,求证://αβ.【答案】证明见解析【解析】【分析】如图,过直线b 作平面γ,平面γ与α相交于直线c ,c 与a 交于点P .先证明//c β,又//a β且,a c P ⋂=所以//αβ得证.【详解】如图,过直线b 作平面γ,平面γ与α相交于直线c ,c 与a 交于点P .,,//,//c b b b c αγβγα⋂=⋂=∴ .又b ⊂平面,c β⊄平面β,//c β∴.又//a β且,//a c P αβ⋂=∴.【点睛】本题主要考查空间直线平面平行位置关系,意在考查学生对这些知识的理解掌握水平.28.如图,透明塑料制成的长方体ABCD﹣A 1B 1C 1D 1内灌进一些水,固定容器底面一边BC 于水平地面上,再将容器倾斜,随着倾斜度不同,有下面五个命题:①有水的部分始终呈棱柱形;②没有水的部分始终呈棱柱形;③水面EFGH 所在四边形的面积为定值;④棱A1D1始终与水面所在平面平行;⑤当容器倾斜如图(3)所示时,BE•BF是定值.其中所有正确命题的序号是____.【答案】①②④⑤【解析】【分析】根据题意,结合棱柱的特征进行判断,观察即可得到答案.【详解】根据棱柱的定义知,有两个面是互相平行且是全等的多边形,其余每相邻两个面的交线也互相平行,而这些面都是平行四边形,所以①②正确;因为水面EFGH所在四边形,从图2,图3可以看出,有两条对边边长不变而另外两条对边边长随倾斜度变化而变化,所以水面四边形EFGH的面积是变化的,③不对;因为棱11A D始终与BC平行,BC与水面始终平行,所以④正确;因为水的体积是不变的,高始终是BC也不变,所以底面积也不会变,即BE•BF是定值,所以⑤正确;综上知①②④⑤正确,故填①②④⑤.【点睛】本题主要考查了棱柱,棱柱的几何特征,线面平行,棱柱体积,属于中档题.变式练习题29.如图,E,F分别是长方体ABCD-A1B1C1D1的棱A1A,C1C的中点.求证:四边形B1EDF为平行四边形.【答案】证明见解析【解析】【分析】结合线线平行以及平行四边形的知识来证得结论成立.【详解】由于,E F 分别是长方体1111ABCD A B C D -的中点,设G 是1DD 的中点,连接1C G ,根据长方体的性质可知1B E DF ==且11////B E C G DF ,所以四边形1B EDF 是平行四边形.30.如图所示,OA ,OB ,OC 为不共面的三条线段,点1A ,1B ,1C 分别是OA ,OB ,OC 上的点,且111OA OB OC OA OB OC==成立.求证:111~A B C ABC .【答案】见解析【解析】【分析】根据111OA OB OC OA OB OC==,可得11A B AB ∥,11A C AC ∥,11B C BC ∥进而通过平行线得两个角111C A B CAB ∠=∠和111A B C ABC ∠=∠对应相等,即可证明111~A B C ABC ∆∆.【详解】证明;在OAB 中,因为111OA OB OA OB =,所以11A B AB ∥.同理可证11A C AC ∥,11B C BC ∥.所以111C A B CAB ∠=∠,111A B C ABC ∠=∠.所以111~A B C ABC ∆∆.【点睛】本题考查了通过线段成比例,证明线线平行,根据空间中角的两边分别平行判断两个角的关系,属于基础题.31.如图,在正方体ABCD -A 1B 1C 1D 1中,E ,F ,G 分别是BC ,CC 1,BB 1的中点,求证:EF ∥平面AD 1G.【答案】证明见解析.【解析】【分析】连接BC 1,由四边形ABC 1D 1是平行四边形,可得BC 1∥AD 1,进而EF ∥BC 1,利用线面平行的判定定理证得命题成立.【详解】连接BC 1,则由E ,F 分别是BC ,CC 1的中点,知EF ∥BC 1.又AB //A 1B 1//D 1C 1,所以四边形ABC 1D 1是平行四边形,所以BC1∥AD1,所以EF∥AD1.又EF⊄平面AD1G,AD1⊂平面AD1G,所以EF∥平面AD1G.【点睛】本题考查线面平行的判定定理,考查学生的直观想象能力与逻辑思维能力,属于基础题.32.如图所示,ABCD是平行四边形,点P是平面ABCD外一点,M是PC的中点,AP GH.在DM上取一点G,过G和AP作平面交平面BDM于GH,求证://【答案】见解析【解析】【分析】连接AC交BD与O,可证PA//平面BDM,再利用线面平行的性质定理即可GH AP.证得//【详解】证明:如图,连接AC交BD于点O,连接MO.在△APC 中,MO 是△APC 的中位线,∴MO ∥PA又 PA ⊄平面MBD ,MO ⊂平面MBD,∴PA//平面MBD又 平面GAP∩平面BDM =GH ,PA ⊂平面GAP∴PA//GH33.如图所示,已知正方体ABCD -A 1B 1C 1D 1.(1)求证:平面A 1BD ∥平面B 1D 1C .(2)若E ,F 分别是AA 1,CC 1的中点,求证:平面EB 1D 1∥平面FBD .【答案】(1)见解析;(2)见解析【解析】【详解】试题分析:(1)由11//BB DD ,得11//B D BD ,进而证得平面1//A BD 平面1B CD .(2)由1//AE B G ,得1//B E AG ,再由//AG DF ,则1//B E DF ,进而证得//DF 平EB D,即可得到结论.面11试题解析:BB//DD,所以四边形BB1D1D是平行四边形,(1)因为11所以B1D1∥BD,又BD⊄平面B1D1C,B1D1⊂平面B1D1C,所以BD∥平面B1D1C.同理A1D∥平面B1D1C,又A1D∩BD=D,所以平面A1BD∥平面B1D1C.(2)由BD∥B1D1,得BD∥平面EB1D1,取BB1的中点G,连接AG,GF,易得AE∥B1G,又因为AE=B1G,所以四边形AEB1G是平行四边形,所以B1E∥AG.易得GF∥AD.又因为GF=AD,所以四边形ADFG是平行四边形,所以AG∥DF,所以B1E∥DF,DF⊄平面EB1D1,B1E⊂平面EB1D1,所以DF∥平面EB1D1.又因为BD∩DF=D,所以平面EB1D1∥平面FBD.点睛:本题主要考查了平面与平面平行的判定与证明问题,其中解答中涉及到直线与平面平行的判定定理,平面与平面平行的判定定理的综合应用,此类问题的解答中要证“面面平行”只要证明“线面平行”,只要证“线线平行”,把问题最终转化为线与线的平行问题,着重考查了学生的转化思想的应用.34.如图所示,两条异面直线BA,DC与两平行平面α,β分别交于点B,A和D,MN平面αC,点M,N分别是AB,CD的中点,求证://【答案】证明见解析【解析】【分析】过点A 作//AE CD 交α于点E ,取AE 的中点P ,连接MP ,PN ,BE ,ED ,BD ,AC ,根据面面平行的性质得到//PN α,MP//α,即可得到平面//MPN α,再利用面面平行的性质即可得到//MN 平面α。

高中数学直线与平面平行的判定练习题含答案

高中数学直线与平面平行的判定练习题含答案
高中数学学科
高中数学直线与平面平行的判定练习题含答案
一、基础过关
1.直线 m∥平面α,直线 n∥m,则
()
A.n∥α C.n⊂α
B.n 与α相交 D.n∥α或 n⊂α
2.棱台的一条侧棱所在的直线与不含这条侧棱的侧面所在的平面的位置关系是 ( )
A.平行
B.相交
C.平行或相交
D.不相交
3.已知 a,b 是两条相交直线,a∥α,则 b 与α的位置关系是
AB⊄平面 DCF OF⊂ 平面 DCF ⇒AB∥平面 DCF. AB∥OF 9.A 10.D 11.12 12.证明 取 A′D 的中点 G,连接 GF,GE,
由条件易知 FG∥CD,FG=1CD,BE∥CD,BE=1CD,
2
2
所以 FG∥BE,FG=BE,故四边形 BEGF 为平行四边形, 所以 BF∥EG.因为 EG⊂平面 A′DE,
∴PQ∥平面 BCE.
BF⊄平面 A′DE,
所以 BF∥平面 A′DE.
13.证明 如图所示,连接 AQ 并延长交 BC 于 K,连接 EK. ∵KB∥AD,∴DQ=AQ. BQ QK
∵AP=DQ,AE=BD,
∴BQ=PE. ∴DQ=AP.∴AQ=AP.∴PQ∥EK.
BQ PE QK PE
又 PQ⊄平面 BCE,EK⊂平面 BCE,
C.能作出无数个
D.以上都有可能
11.过平行六面体 ABCD-A1B1C1D1 任意两条棱的中点作直线,其中与平面 DBB1D1 平行的
直线共有________条.
12.如图,在平行四边形 ABCD 中,E 为线段 AB 的中点,将△ADE 沿直线 DE 翻折成△A′DE,
F 为线段 A′C 的中点.求证:BF∥平面 A′DE.

平行线练习题及答案

平行线练习题及答案

平行线练习题及答案平行线练习题及答案在数学中,平行线是指在同一个平面上永远不会相交的两条直线。

平行线在几何学和代数学中有着重要的应用,因此对于学生来说,掌握平行线的性质和判断方法是至关重要的。

本文将为大家提供一些平行线的练习题及答案,帮助大家加深对平行线的理解和运用。

练习题一:判断下列直线是否平行。

1. 直线AB:y = 2x + 3直线CD:y = 2x - 12. 直线EF:2x - 3y = 6直线GH:4x - 6y = 123. 直线IJ:3x + 4y = 8直线KL:6x + 8y = 16答案一:1. 直线AB和直线CD的斜率都为2,且截距不相等,因此直线AB和直线CD不平行。

2. 直线EF和直线GH的斜率都为2,且截距相等,因此直线EF和直线GH平行。

3. 直线IJ和直线KL的斜率都为2,且截距相等,因此直线IJ和直线KL平行。

练习题二:已知直线AB和直线CD平行,点E、F、G分别位于直线AB上,且AE = EF = FG。

若AE = 4,求FG的值。

答案二:由于直线AB和直线CD平行,因此直线AB和直线CD的斜率相等。

设直线AB的斜率为k,点E的坐标为(x1, y1),点F的坐标为(x2, y2),点G的坐标为(x3, y3)。

根据题意可得:y1 = kx1y2 = kx2y3 = kx3又因为AE = EF = FG,所以有:EF = FGy2 - y1 = y3 - y2kx2 - kx1 = kx3 - kx22kx2 = k(x1 + x3)x2 = (x1 + x3) / 2由于AE = 4,可得:y1 = kx1 = 4将x2 = (x1 + x3) / 2和y1 = 4代入直线AB的方程中,可得:4 = k(x1 + x3) / 28 = k(x1 + x3)8 = 4kx2x2 = 2将x2 = 2代入直线AB的方程中,可得:y2 = kx2 = 2k由于EF = FG,可得:y2 - y1 = y3 - y22k - 4 = y3 - 2k4k = y3 + 4y3 = 4k - 4将y3 = 4k - 4代入直线AB的方程中,可得:y3 = kx3 = 4k - 4综上所述,当AE = 4时,FG的值为4k - 4。

直线与平面例题(平行)

直线与平面例题(平行)

直线和平面的位置关系典型例题分析例1设,是两条直线,,是两个平面.下列命题中正确的是().(A)若,,则、是异面直线(B)若,,且,则、是异面直线(C)若,,且,则、是异面直线(D)若,,且,则、是异面直线例2 下列命题中正确的是().(A)一直线和一平面内的一条直线平行,那么这直线与这个平面平行.(B)一直线和一平面内的无数条直线平行,那么这直线与这个平面平行.(C)一直线和一个平面平行,那么这直线与这平面内的任意直线都平行.(D)一直线和一个平面平行,那么这直线与这平面内的无数条直线平行.例3已知,是两个平面,,,是三条直线.,,,,,求证:和是异面直线.分析证明两直线是异面直线,通常多用反证法.反证法是一种从否定欲证的结论开始,经过正确推理,而最终推出矛盾,从而得到欲证结论正确的证明方法.本题否定结论,得和不是异面直线,以此为据的推理有二种思考方向,即可能得到或、相交;也可能得到、共面.不同的思考方向,证明的思路也会稍有差别.证法一:假设、不是异面直线,则有或、相交.(1)若,又,∴,这与相矛盾.∴与不平行.(2)若、相交,设,∴,,∴.∴.于是有和相交,这与相矛盾.∴、不相交.由(l),(2)得,、是异面直线.证法二:假设、不是异面直线,则、共面.于是存在平面,使,(如图)∵,又(因为若,则,都是平面、的交线,而得、是一条直线,这不可能),∴.又,,∴,这与相矛盾.∴、是异面直线.点评证法一是反证法和穷举法的结合.例4、如图1-83,正方体A1B1C1D1—ABCD中,E、F是对角线,A1D、B1D1的中点,试判断直线EF分别与正方体六个面中哪些平面平行,并证明你的结论.解(1)EF∥平面D1C1CD;(2)EF∥平面A1B1BA.证明如下:(1)连接A1C1、C1D,∵E是B1D1的中点,∴E是A1C1的中点,又∵F是A1D的中点,∴EF是△A1C1D的中位线,(2)连接D1A、AB1,同理可证,EF∥平面A1B1BA.评注在使用线面平行的判定定理时要注意两点:①平面外的一条直线一定要平行于平面内的一条直线;②平面内的那一条直线可以是任意的,只要能在平面内找一条与平面外一条直线平行的直线,就可以证明平面外一条直线与平面平行.例5、已知三个平面两两相交,有三条交线,判断这三条交线的位置关系,并予以证明.分析与简证判断这三条交线的位置关系应具有一定的空间想象能力和逻辑推理能力,然后利用平面的基本性质和线面平行的判定定理和性质定理加以证明.设这三个平面为α、β、γ,且α∩β=c,γ∩α=b,β∩γ=a因为b与c共面于α,所以b与c相交于一点或互相平行.(1)若b与c相交于点P,易证P必在β与γ的交线a上,即a、b、c相交于一点.故a∥b∥C.例6 设α、β是两个相交平面,a是一条直线,α∩β=c,a∥α,a∥β,求证:a∥C.分析与简证根据题设,应处理好线面平行与线线平行之间的转化,最后借助于公理4来解决.过直线a作平面γ和δ,使γ∩α=m,δ∩β=n,由a∥α知a∥m,同理a∥n,故m∥n,进而得m∥β.所以a∥C.评注①本题可归纳成一般性的结论:“如果一条直线与两个相交平面都平行,那么这条直线与这两个平面的交线平行.”②在证明线与面、线与线及线与面的位置关系时,应从“看到结论想判定定理,看到条件想性质定理”去分析题意和寻求证明思路。

直线与平面平行的判定和性质经典练习及详细答案

直线与平面平行的判定和性质经典练习及详细答案

平面平行的判定及其性质羄直线、1.2.薂下列命题中,正确命题的是④.;肇①若直线I上有无数个点不在平面:.内,则I // :•芆②若直线I与平面「平行,则I与平面「内的任意一条直线都平行;莁③如果两条平行直线中的一条直线与一个平面平行,那么另一条直线也与这个平面平行;④若直线I与平面「平行,则I与平面:.内的任意一条直线都没有公共点3.4. 芀下列条件中,不能判断两个平面平行的是____________ (填序号)肇①一个平面内的一条直线平行于另一个平面蚆②一个平面内的两条直线平行于另一个平面膃③一个平面内有无数条直线平行于另一个平面聿④一个平面内任何一条直线都平行于另一个平面答案①②③5.5. 腿对于平面和共面的直线m n,下列命题中假命题是________________ (填序号)肇①若mL用,m丄n,贝V n / 、丄薁②若mil :- , n // :•,贝V m// n膂③若m二:z , n// :•,贝U m// n芇④若m n与:•所成的角相等,则m// n 答案①②④7.6. 膄已知直线a, b,平面「,则以下三个命题:芃①若a // b, b二:乂,则a //⑶袁②若a // b, a //芒,贝U b //芒;莆③若 a // :•, b // :-,则 a // b.薅其中真命题的个数是答案09.7. 羅直线a//平面M直线b M那么a// b是b〃M的条件.蚀A.充分而不必要 B.必要而不充分 C.充要 D.不充分也不必要11.12.蒆能保证直线a与平面〉平行的条件是, a// b p bu a, a//b肆A. a 広a, b u a, c//a,a//b,a//c蒃C. b u a£a,C^b, D e b 且AC=BD葿D. b u 口,A^a,B13.14. 薆如果直线a平行于平面?,则 _________a平行 B.平面〉内无数条直线与a平行蒇A.平面?内有且只有一直线与a平行的直线 D.平面〉内的任意直线与直线a都平行膅C.平面〉内不存在与15.15. 蒂如果两直线a// b,且a//平面〉,则b与〉的位置关系__________蚆A.相交B. b〃° c.匕匚口D.b〃°或b u°17.16. 薄下列命题正确的个数是______19.17. 蚃(1)若直线I上有无数个点不在平面a内,则I // al与平面a平行,则l与平面a内的任意一直线平行芁(2)若直线,那么另一条也与这个平面平行蚆(3)两条平行线中的一条直线与一个平面平行a和平面a内一直线b平行,则a // a羅(4 )若一直线莄A.0个 B.1个 C.2个 D.3个21.22. 罿b是平面a外的一条直线,下列条件中可得出b/ a是肀A. b与a内的一条直线不相交 B. b与a内的两条直线不相交莅C.b与a内的无数条直线不相交 D.b与a内的所有直线不相交23.23. 螂已知两条相交直线a、b, a//平面a ,则b与a的位置关系肂A. b / a B.b与a相交 C.b」a D.b/ a或b与a相交25.24. 膀如图所示,已知S是正三角形ABC所在平面外的一点,且SA=SB=SC, SGSAB上的高,D E、F分别是AC BC SC的中点,试判断SG与平面DEF的位置关系,并给予证明.螆解SG//平面DEF证明如下:薄方法一:三角形中位线连接CG交螁••• DE是厶ABC的中位线,芀••• DE// AB.腿在△ ACG中, D是AC的中点,羂且DH// AG薀• H为CG的中点.艿• FH是厶SCG的中位线,芄• FH// SG蚄又SG亿平面DEF FHU平面DEF,荿••• SG//平面DEF荿方法二:平面平行的性质蚅••• EF为厶SBC的中位线,• EF/ SB膂••• EF伉平面SAB SBu平面SAB莂• EF//平面SAB葿同理可证,DF//平面SAB EF A DF=F ,肆.••平面SAB/平面DEF,又SG二平面SAB • SG//平面DEF27.25. 袄如图所示,在正方体ABC—ABC1D1中,E、F、G H分别是BC CG、賺CD、A1A的中点.求证:蕿(1)BF/ HD;蒇(2)EG//平面BBDD;莁(3)平面BDF/平面BDH袀证明平行四边形的性质,平行线的传递性虿(1 )如图所示,取BB的中点M易证四边形蚄又••• MC/ BF,「. BF/ HD.肃(2)取BD的中点0,连接E0, D0,贝U OE^蚈又DG& I DC• OE^ DG2蝿.••四边形OEGD是平行四边形,• GE// DO.肄又D 0-平面BB D D, • EG/平面BBD D.蒁(3)由(1)知DH// BF,又BD// BD, BD、HD =平面HBD, BF、BH 平面BDF,且BD A HD=D, DBA BF=B,「.平面BDF// 平面B D H.29.26. 螁如图所示,在三棱柱ABC-A i B C中,M N分别是BC和A i B i的中点. 衿求证:MN//平面AACC.蒅证明方法一:平行四边形的性质膃设AC中点为F,连接NF, FC,蒀••• N为A i B i中点,衿••• NF// BQ,且NF=^B C i,2祎又由棱柱性质知B i C i庄BC蚁又M是BC的中点,艿• NF MC羈.••四边形NFCM^平行四边形.芇• MIN/ CF,又CF 平面AA C i, MN二平面AA C ,• MIN/平面AAC C. 莃方法二:三角形中位线的性质节连接AM交C C于点P,连接A i P, 肇T M是BC的中点,且MC/ B i C i,莄• M是B i P的中点,肅又••• N为A B中点,肁• MN// A P,又 A PU 平面AA C , MW 平面AAC,:MIN/平面AACC.膈方法三:平面平行的性质 螅设BiG 中点为Q 连接NQ MQ ,薃•••M Q 是BG BG 的中点,袀•••MQ CG ,又 CGu 平面 AAGC, MQ 伉平面 AAGC, 芈•••MQ/平面 AA C i C.膆•••N 、Q 是A B i 、B i C 的中点,芅• NQ 二 AQ ,又 A i C 二平面 AAC C, NQ 二平面 AAC C, 蕿• NQ//平面 AA C i C.莈又••• MQ P NQB ,「.平面 MNQ 平面 AAC C, 薇又MN 二平面MNQ. MIN/平面AA C C.3 i .32.螂如图所示,正方体 ABC — A B i C D 中,侧面对角线 AB , BC 上分 别有两点 E , F ,且B E=C F. 蚁求证: EF //平面 ABCD 蒈方法一:平行四边形的性质螃过E 作ES// BB 交AB 于S,过F 作FT // BB 交BC 于 T ,蒄连接ST ,则-AE 更,且AB i B i B BC i C i C莀T B i E=C F , B A=CB,. AE=BF蒈•••旦,••• ES=FTB i B CC i膄又••• ES// B B// FT ,.四边形 EFTS 为平行四边形Bl ______ G袂•••EF// ST ,又 ST=平面 ABCD EFC :平面 ABCD : EF//平面 ABCD腿方法二:相似三角形的性质 薈连接BF 交BC 于点Q 连接AQ薅••• BQ // BC, • B 1L =圧BQ C 1B膂• EF // AQ 又 AQ=平面 ABCD EF 二平面 ABCD •- EF//平面 ABCD 蚇方法三:平面平行的性质 羆过E 作EG/ AB 交BB 于G,肂连接GF,则B 11史£ ,B 1A B 1B羁 TB i E=C i F , BA=CB ,螇••• C i E =B i G , • FG // B l C i // BC C 1B B i B 莇又 EG A FG P G , AB A BC=B ,螄.••平面 EFG/平面 ABCD 而EF 二平面EFG螀• EF//平面ABCD33.34.袇如图所示,在正方体 ABC — A B i C D 中,O 为底面ABCD 的中心,P 是DD 的中点,设薄T B i E=C i F , BiA=GB,B L E B ,FB 1D B i QQ是CC上的点,问:当点Q在什么位置时,平面DBQ// 平面PAO蒄解面面平行的判定节当Q为CC的中点时,A B葿平面 DBQ//平面PAO羇••• Q 为CG 的中点,P 为DD 的中点,••• QB// PA袅:P 、O 为 DD 、DB 的中点,• DB// PO羄又 PO P PA=P , DB A QB=B , 薂DB //平面PAO QB//平面 PAO 肇.••平面 DBQ//平面PAO芆直线与平面平行的性质定理35.EFGH 为空间四边形ABCD 勺一个截面,若截面为平行四边形芀(1)求证:AB//平面 EFGH CD//平面 EFGH肇(2)若AB=4, CD=6,求四边形EFGH 周长的取值范围 蚆(1)证明•••四边形EFGH 为平行四边形,• EF// HG膃•••HX 平面 ABD • EF//平面 ABD 聿•••EF 平面 ABC 平面 ABD A 平面 ABCAB腿• EF// AB. • AB//平面 EFGH 肇同理可证,CD//平面EFGH薁⑵ 解 设EF=x (O v x v 4),由于四边形 EFGH 为平行四边形,膂•••CF=x 则 FG = B F = B C -C F =1- x .从而 F G=6- 1 2 3x . •••四边形 EFGH 的周长 CB 4 6 BC BC 4 21 =2(x+6-5)=12- x.又0v x v 4,则有8v l v 12, •四边形 EFGH 周长的取值范围是(8,212) 37.36.莁如图所示,四边形 AC38.芇如图所示,平面:• //平面[,点A € :. , C €「,点B € 1 , D € [,点E , F 分别在线 段 AB CD 上,且 AE : EB=CF : FD薆••• AC// DH, •••四边形 ACDH 是平行四边形, 蒇在AH 上取一点 G,使AG : GH=CF : FD,膅又••• AE : EB=CF : FD, • GF// HD EG// BH 蒂又EG A GFG, •平面 EFG//平面-蚆•••EF 平面 EFG •- EF / l 综上,EF// I薄(2)解三角形中位线膄(1)求证:EF / -; :. / :,:.门平面 ACDHAC,蚃 如图所示,连接 AD,取AD 的中点 M 连接 ME MF.芁••• E , F 分别为AB, CD 的中点,蚆••• ME// BD, MF// AC,羅且 M ^Z BGB , MF=LAC=2,2 2莄•••/ EMF 为AC 与BD 所成的角(或其补角),罿EMF=60。

04线面平行与面面平行判定与性质(经典题型+答案)

04线面平行与面面平行判定与性质(经典题型+答案)

线面平行、面面平行的判定及性质一、直线与平面平行文字语言图形语言符号语言判定定理平面外一条直线与此平面内的一条直线平行,则直线与此平面平行.性质定理如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线就和交线平行.二、平面与平面平行文字语言图形语言符号语言判定定理一个平面内有两条相交直线与另一个平面平行,则这两个平面平行性质定理如果两个平行平面时与第三个平面相交,那么它们的交线平行A.一个平面内的一条直线平行于另一个平面B.一个平面内的两条直线平行于另一个平面C.一个平面内有无数条直线平行于另一个平面D.一个平面内任何一条直线都平行于另一个平面解:由面面平行的定义可知选D.例2:若直线a平行于平面α,则下列结论错误的是()A.a平行于α内的所有直线B.α内有无数条直线与a平行C.直线a上的点到平面α的距离相等D.α内存在无数条直线与a垂直解:A错误,a与α内的直线平行或异面.例3:已知不重合的直线a,b和平面α,①若a∥α,b⊂α,则a∥b;②若a∥α,b∥α,则a∥b;③若a∥b,b⊂α,则a∥α;④若a∥b,a∥α,则b∥α或b⊂α,上面命题中正确的是________(填序号)。

解:①中a与b可能异面;②中a与b可能相交、平行或异面;③中a可能在平面α内,④正确。

例4:已知α、β是平面,m 、n 是直线,给出下列命题:①若m ⊥α,m ⊂β,则α⊥β.②若m ⊂α,n ⊂α,m ∥β,n ∥β,则α∥β.③如果m ⊂α,n ⊄α,m 、n 是异面直线,那么n 与α相交.④若α∩β=m ,n ∥m ,且n ⊄α,n ⊄β,则n ∥α且n ∥β其中正确命题的个数是 ( ) A .1 B .2 C .3 D .4解:对于①,由定理“如果一个平面经过另一个平面的一条垂线,那么这两个平面垂直”得知,①正确;对于②,注意到直线m ,n 可能是两条平行直线,此时平面α,β可能是相交平面,因此②不正确;对于③,满足条件的直线n 可能平行于平面α,因此③不正确;对于④,由定理“如果平面外一条直线平行于平面内一条直线,那么这条直线平行于这个平面”得知,④正确.综上所述,其中正确的命题是①④,选B.例5:已知m ,n 表示两条不同直线,α,β,γ表示不同平面,给出下列三个命题:(1)⎩⎪⎨⎪⎧ m ⊥αn ⊥α⇒m ∥n ;(2)⎩⎪⎨⎪⎧ m ⊥αm ⊥n ⇒n ∥α (3)⎩⎪⎨⎪⎧m ⊥αn ∥α⇒m ⊥n 其中真命题的个数为 ( ) A .0 B .1 C .2 D .3 解:若⎩⎪⎨⎪⎧ m ⊥α,n ⊥α,则m ∥n ,即命题(1)正确;若⎩⎪⎨⎪⎧ m ⊥α,m ⊥n ,则n ∥α或n ⊂α,即命题(2)不正确;若⎩⎪⎨⎪⎧m ⊥αn ∥α,则m ⊥n ,即命题(3)正确;综上可得,真命题共有2个.选C例6:已知m 、n 、l 1、l 2表示直线,α、β表示平面.若m ⊂α,n ⊂α,l 1⊂β,l 2⊂β,l 1∩l 2=M ,则以下条件中,能推出α∥β的是 ( )A .m ∥β且l 1∥αB .m ∥β且n ∥βC .m ∥β且n ∥l 2D .m ∥l 1且n ∥l 2解:由定理“如果一个平面内有两条相交直线分别与另一个平面平行,那么这两个平面平行”可得,由选项D 可推知α∥β.例7:在下列条件中,可判断平面α与β平行的是( ).A. α、β都平行于直线lB. α内存在不共线的三点到β的距离相等C. l 、m 是α内两条直线,且l ∥β,m ∥βD. l 、m 是两条异面直线,且l ∥α,m ∥α,l ∥β,m ∥β 解:排除法,A中α、β可以是相交平面;B中三点可面平面两侧;C中两直线可以不相交.故选D,也可直接证明.例8:经过平面外的两点作该平面的平行平面可以作( ).A. 0个B. 1个C. 0个或1个D. 1个或2个解:这两点可以是在平面同侧或两侧.选C 。

线面平行练习题答案

线面平行练习题答案

线面平行练习题答案线面平行是几何学中的一个重要概念,指的是一条直线与一个平面没有交点,即直线在平面的两侧延伸。

以下是一些关于线面平行的练习题及其答案:1. 练习题1:在立方体ABCD-EFGH中,直线AB与平面EFGH平行吗?为什么?- 答案:是的,直线AB与平面EFGH平行。

因为直线AB是立方体的一条边,而平面EFGH是立方体的底面,它们之间没有交点。

2. 练习题2:如果直线l与平面α平行,直线m在平面α内,那么直线l与直线m平行吗?- 答案:不一定。

直线l与直线m平行的条件是直线m必须与直线l在同一个平面内,并且没有交点。

如果直线m不在直线l所在的平面内,它们就不一定平行。

3. 练习题3:在正方体中,如果直线AB与直线CD平行,并且直线AB 在平面EFGH内,直线CD在平面IJKL内,那么平面EFGH与平面IJKL 平行吗?- 答案:是的,平面EFGH与平面IJKL平行。

因为正方体的每个面都是平行的,所以当直线AB与直线CD平行时,它们所在的平面也必然平行。

4. 练习题4:如果直线a与直线b平行,直线b与平面α平行,那么直线a与平面α平行吗?- 答案:不一定。

直线a与平面α平行的条件是直线a必须在平面α内或者与平面α没有交点。

如果直线a不在平面α内,即使它与直线b平行,也不能直接得出直线a与平面α平行。

5. 练习题5:在一个三棱柱中,如果直线l是底面的一边,直线m是顶面的一边,且直线l与直线m平行,那么直线l与顶面平行吗?- 答案:是的,直线l与顶面平行。

因为直线l是底面的一边,直线m是顶面的一边,且它们平行,根据平行线的性质,直线l必然与顶面平行。

通过这些练习题,我们可以更好地理解线面平行的概念及其在几何问题中的应用。

希望这些答案能帮助你加深对线面平行的理解。

线面平行的判定与性质练习(整理)

线面平行的判定与性质练习(整理)

线面平行的判定与性质练习1.下列命题正确的是 ( )A 一直线与平面平行,则它与平面内任一直线平行B 一直线与平面平行,则平面内有且只有一个直线与已知直线平行C 一直线与平面平行,则平面内有无数直线与已知直线平行,它们在平面内彼此平行D 一直线与平面平行,则平面内任意直线都与已知直线异面2.若直线l 与平面α的一条平行线平行,则l 和α的位置关系是 ( )A α⊂lB α//lC αα//l l 或⊂D 相交和αl3.若直线a 在平面α内,直线a,b 是异面直线,则直线b 和α平面的位置关系是 ( )A .相交B 。

平行C 。

相交或平行D 。

相交且垂直4.下列各命题:(1) 经过两条平行直线中一条直线的平面必平行于另一条直线;(2) 若一条直线平行于两相交平面,则这条直线和交线平行;(3) 空间四边形中三条边的中点所确定平面和这个空间四边形的两条对角线都平行。

其中假命题的个数为 ( )A 0B 1C 2D 35.E 、F 、G 分别是四面体ABCD 的棱BC 、CD 、DA 的中点,则此四面体中与过E 、F 、G 的截面平行的棱的条数是A .0B 1C 2 D36.直线与平面平行的充要条件是A .直线与平面内的一条直线平行B 。

直线与平面内的两条直线不相交C .直线与平面内的任一直线都不相交D 。

直线与平行内的无数条直线平行7.若直线上有两点P 、Q 到平面α的距离相等,则直线l 与平面α的位置关系是 ( )A 平行B 相交C 平行或相交D 或平行、或相交、或在内8.a,b 为两异面直线,下列结论正确的是 ( )A 过不在a,b 上的任何一点,可作一个平面与a,b 都平行B 过不在a,b 上的任一点,可作一直线与a,b 都相交C 过不在a,b 上任一点,可作一直线与a,b 都平行D 过a 可以并且只可以作一个平面与b 平行9.判断下列命题是否正确:(1)过平面外一点可作无数条直线与这个平面平行 ( )(2)若直线α⊄l ,则l 不可能与α内无数条直线相交 ( )(3)若直线l 与平面α不平行,则l 与α内任一直线都不平行 ( )(4)经过两条平行线中一条直线的平面平行于另一条直线 ( )(5)若平面α内有一条直线和直线l 异面,则α⊄l ( )10.过直线外一点和这条直线平行的平面有 个。

线面平行练习题

线面平行练习题

线面平行练习题一、选择题1. 已知直线a与平面α平行,直线b在平面α内,下列说法正确的是:A. 直线a与直线b平行B. 直线a与直线b异面C. 直线a与直线b相交D. 直线a与直线b可能平行,也可能异面2. 若直线m与平面α平行,直线n在平面α内,且直线m与直线n不平行,则直线m与直线n:A. 平行B. 异面C. 相交D. 无法确定3. 直线l在平面β内,且与平面α平行,若直线m与平面α平行,直线m不在平面β内,则直线l与直线m:A. 平行B. 异面C. 相交D. 垂直二、填空题4. 若直线a与平面α平行,直线b与平面α垂直,则直线a与直线b_________。

5. 已知直线m平行于平面α内的直线n,若直线m在平面β内,且平面α与平面β相交于直线l,则直线m与直线l_________。

6. 若直线a与平面α平行,直线b在平面α内,且直线a与直线b不平行,则直线a与直线b_________。

三、判断题7. 若直线a与平面α平行,直线b在平面α内,则直线a与直线b一定平行。

()8. 若直线m与平面α平行,直线n在平面α内,且直线m与直线n平行,则直线m与直线n一定在同一平面内。

()9. 若直线a与平面α平行,直线b与平面α垂直,则直线a与直线b垂直。

()四、简答题10. 已知直线l平行于平面α,平面α与平面β相交于直线m,求证:直线l与直线m平行或异面。

11. 若直线a与平面α平行,平面α与平面β相交于直线l,直线b在平面β内且与直线l不平行,求证:直线a与直线b平行或异面。

五、证明题12. 已知平面α内的直线a与平面β平行,直线b在平面β内,且直线a与直线b不平行。

证明:直线a与直线b异面。

13. 已知直线m与平面α平行,直线n在平面α内,且直线m与直线n不相交。

证明:直线m与直线n异面。

14. 若直线a与平面α平行,直线b在平面α内,且直线a与直线b 垂直,求证:直线a与平面α垂直。

六、解答题15. 在正方体ABCD-A₁B₁C₁D₁中,已知直线AB₁与直线CD₁平行,求证:直线AB₁与平面ABCD平行。

高中数学立体几何之线面平行的判定与性质讲义及练习

高中数学立体几何之线面平行的判定与性质讲义及练习

线面平行的判定与性质练习一、基本内容 1.线面平行的判定2.线面平行的性质二、练习题题型一:概念性习题1.下列命题正确的是 ( ) A 一直线与平面平行,则它与平面内任一直线平行B 一直线与平面平行,则平面内有且只有一个直线与已知直线平行C 一直线与平面平行,则平面内有无数直线与已知直线平行,它们在平面内彼此平行D 一直线与平面平行,则平面内任意直线都与已知直线异面2.若直线l 与平面α的一条平行线平行,则l 和α的位置关系是 ( ) A. α⊂l B.α//l C.αα//l l 或⊂ D.相交和αl3.若直线a 在平面α内,直线a,b 是异面直线,则直线b 和α平面的位置关系是 ( ) A .相交 B.平行 C.相交或平行 D.相交且垂直4.下列各命题中假命题的个数为 ( )(1) 经过两条平行直线中一条直线的平面必平行于另一条直线; (2) 若一条直线平行于两相交平面,则这条直线和交线平行;(3) 空间四边形中三条边的中点所确定平面和这个空间四边形的两条对角线都平行。

A 0B 1C 2D 35.若直线上有两点P 、Q 到平面α的距离相等,则直线l 与平面α的位置关系是 ( ) A 平行 B 相交 C 平行或相交 D 或平行、或相交、或在内 6.a,b 为两异面直线,下列结论正确的是 ( ) A 过不在a,b 上的任何一点,可作一个平面与a,b 都平行 B 过不在a,b 上的任一点,可作一直线与a,b 都相交 C 过不在a,b 上任一点,可作一直线与a,b 都平行 D 过a 可以并且只可以作一个平面与b 平行 7.判断下列命题是否正确:(1)过平面外一点可作无数条直线与这个平面平行 ( )(2)若直线α⊄l ,则l 不可能与α内无数条直线相交 ( ) (3)若直线l 与平面α不平行,则l 与α内任一直线都不平行 ( ) (4)经过两条平行线中一条直线的平面平行于另一条直线 ( )(5)若平面α内有一条直线和直线l 异面,则α⊄l ( ) 题型二:证明题8.P 为平行四边形ABCD 外一点,E 是PA 的中点,O 是AC 和BD 的交点,求证:OE//平面PBC 。

线面平行判定定理测试题(含答案)

线面平行判定定理测试题(含答案)

线面平行判定定理测试题1.如图,四棱锥P-ABCD的底面是矩形,PA⊥平面ABCD,E,F分别是AB,PD的中点,且PA=AD.(1)求证:AF∥平面PEC;(2)求证:平面PEC⊥平面PCD.2.如图,在四棱锥P-ABCD中,底面ABCD是正方形.点E是棱PC的中点,平面ABE与棱PD交于点F.(1)求证:AB∥EF;(2)若PA=AD,且平面PAD⊥平面ABCD,求证:AF⊥平面PCD.3.如图,四棱锥P-ABCD中,PA⊥底面ABCD,AD//BC,AB=AD=AC=3,PA=BC=4,M为线段AD上一点,AM=2MD,N为PC的中点.(Ⅰ)证明MN//平面PAB;(Ⅱ)求四面体N-BCM的体积.4.如图,在四棱锥P-ABCD中,底面ABCD为矩形,平面PAD⊥平面ABCD,PA⊥PD,PA=PD,E,F分别为AD,PB的中点.(Ⅰ)求证:PE⊥BC;(Ⅱ)求证:平面PAB⊥平面PCD;(Ⅲ(Ⅱ))求证:EF∥平面PCD.5.如图:ABCD是平行四边形,AP⊥平面ABCD,BE∥AP,AB=AP=2,BE=BC=1,∠CBA=60°(1)求证:EC∥平面PAD;(2)求证:平面PAC⊥平面EBC;(3)求直线PC与平面PABE所成角的正弦值.AD.6.如图,在四棱锥P-ABCD中,PA⊥CD,AD∥BC,∠ADC=∠PAB=90°,BC=CD=12(I)M为PD的中点,试证明:直线CM∥平面PAB;(II)证明:平面PAB⊥平面PBD.7.如图,在直三棱柱ABC-A1B l C1中,AC=BC=√2,∠ACB=90°.AA1=2,D为AB的中点.(Ⅰ)求证:AC⊥BC1;(Ⅱ)求证:AC1∥平面B1CD:(Ⅲ)求异面直线AC1与B1C所成角的余弦值.答案和解析1.【答案】证明:(1)取PC的中点G,连结FG、EG,∴FG为△CDP的中位线,FG∥CD,FG=1CD.2∵四边形ABCD为矩形,E为AB的中点,∴AE∥CD,CD.AE=12∴FG=AE,FG∥AE,∴四边形AEGF是平行四边形,∴AF∥EG又EG⊂平面PCE,AF⊄平面PCE,∴AF∥平面PCE;(2)∵PA=AD.∴AF⊥PDPA⊥平面ABCD,∴PA⊥CD,又因为CD⊥AB,AP∩AB=A,∴CD⊥面APD∴CD⊥AF,且PD∩CD=D,∴AF⊥面PDC由(Ⅰ)得EG∥AF,∴EG⊥面PDC又EG⊂平面PCE,∴平面PEC⊥平面PCD.【解析】本题考查了空间线面平行、面面垂直的判定,属于中档题.(1)取PC的中点G,连结FG、EG,AF∥EG又EG⊂平面PCE,AF⊄平面PCE,AF∥平面PCE;(2)由(Ⅰ)得EG∥AF,只需证明AF⊥面PDC,即可得到平面PEC⊥平面PCD.2.【答案】解:(1)证明:∵底面ABCD是正方形,∴AB∥CD ,又∵AB⊄平面PCD,CD⊂平面PCD,∴AB∥平面PCD ,又∵A,B,E,F四点共面,且平面ABEF∩平面PCD=EF,∴AB∥EF ;(2)证明:在正方形ABCD中,CD⊥AD ,又∵平面PAD⊥平面ABCD,且平面PAD∩平面ABCD=AD,CD⊂平面ABCD,CD⊄平面PAD∴CD⊥平面PAD ,又∵AF⊂平面PAD ,∴CD⊥AF ,由(1)可知,AB∥EF,又∵AB∥CD,C,D,E,F在同一平面内,∴CD∥EF ,∵点E是棱PC中点,∴点F是棱PD中点,在△PAD中,∵PA=AD,∴AF⊥PD ,又∵PD∩CD=D,PD、CD⊂平面PCD,∴AF⊥平面PCD.【解析】(1)证明AB∥平面PCD,即可得AB∥EF;(2)利用平面PAD⊥平面ABCD,证明CD⊥AF,PA=AD,所以AF⊥PD,即可证明AF⊥平面PCD;本题考查线面平行的性质,平面与平面垂直的性质,考查线面垂直,考查学生分析解决问题的能力,属于中档题.3.【答案】证明:(Ⅰ)取BC中点E,连结EN,EM,∵N为PC的中点,∴NE是△PBC的中位线∴NE//PB,又∵AD//BC,∴BE//AD,∵AB=AD=AC=3,PA=BC=4,M为线段AD上一点,AM=2MD,∴BE=12BC=AM=2,∴四边形ABEM是平行四边形,∴EM//AB,∴平面NEM//平面PAB,∵MN⊂平面NEM,∴MN//平面PAB.解:(Ⅱ)取AC中点F,连结NF,∵NF是△PAC的中位线,∴NF//PA,NF=12PA=2,又∵PA⊥面ABCD,∴NF⊥面ABCD,如图,延长BC至G,使得CG=AM,连结GM,∵AM=//CG,∴四边形AGCM是平行四边形,∴AC=MG=3,又∵ME=3,EC=CG=2,∴△MEG的高h=√5,∴S△BCM=12×BC×ℎ=12×4×√5=2√5,∴四面体N-BCM的体积V N-BCM=13×S△BCM×NF=13×2√5×2=4√53.【解析】(Ⅰ)取BC中点E,连结EN,EM,得NE是△PBC的中位线,推导出四边形ABEM是平行四边形,由此能证明MN//平面PAB.(Ⅱ)取AC中点F,连结NF,NF是△PAC的中位线,推导出NF⊥面ABCD,延长BC至G,使得CG=AM,连结GM,则四边形AGCM是平行四边形,由此能求出四面体N-BCM的体积.本题考查线面平行的证明,考查四面体的体积的求法,是中档题,解题时要认真审题,注意空间思维能力的培养.4.【答案】证明:(Ⅰ)PA=PD,E为AD的中点,可得PE⊥AD,底面ABCD为矩形,可得BC∥AD,则PE⊥BC(Ⅱ)∵底面为矩形,∴.∵平面平面,∴平面PAD.∴.又,∵平面,PD平面PCD∴平面平面.(Ⅲ)如图,取中点,连接.分别为和的中点,∴,且.∵四边形为矩形,且为的中点,∴,∴,且,∴四边形为平行四边形,∴.又平面,平面,∴平面.【解析】(1)由等腰三角形的三线合一性质和矩形的对边平行性质,即可得证;(2)作出平面PAB和平面PCD的交线,注意运用公理4,再由面面垂直的性质和两个平面所成角的定义,即可得证;(3)取PC的中点H,连接DH,FH,运用中位线定理和平行四边形的判断和性质,结合线面平行的判定定理,即可得证.本题考查线面和面面的位置关系,考查线面平行、垂直的判定和性质,以及面面垂直的判断和性质,注意运用转化思想,考查推理能力和空间想象能力,属于中档题.5.【答案】(1)证明:因为BE∥PA,BE⊄平面PAD,PA⊂平面PAD,所以BE∥平面PAD,同理BC∥平面PAD,所以平面PAD∥平面EBC,因为EC⊂平面EBC,所以EC∥平面PAD…(4分)(2)证明:因为AB=2,BC=1,∠CBA=60°,由余弦定理得,AC=√3,所以由勾股定理逆定理∠BCA=90°,所以AC⊥BC,又因为BE⊥平面ABCD,所以BE⊥AC,则有AC⊥平面EBC,AC⊂平面PAC所以平面BEC⊥平面PAC.…(8分)(3)解:作CH⊥AB于H,连结PH,又因为CH⊥PA,所以CH⊥平面PABE,所以∠HPC即为线面角,∴sin∠HPC=HCPC =√2114.…(13分)【解析】(1)由已知条件推导出平面PAD∥平面EBC,由此能证明EC∥平面PAD.(2)由余弦定理得AC=,由勾股定理得AC⊥BC,由线面垂直得BE⊥AC,由此能证明平面BEC⊥平面PAC.(3)作CH⊥AB于H,连结PH,由题设知∠HPC即为线面角,由此能求出直线PC与平面PABE所成角的正弦值.本题考查直线与平面平行的证明,考查平面与平面垂直的证明,考查直线与平面所成角的正弦值的求法,解题时要注意空间思维能力的培养.6.【答案】证明:(I)M为PD的中点,直线CM∥平面PAB.取AD的中点E,连接CM,ME,CE,则ME∥PA,∵ME⊄平面PAB,PA⊂平面PAB,∴ME∥平面PAB.∵AD∥BC,BC=AE,∴ABCE是平行四边形,∴CE∥AB.∵CE⊄平面PAB,AB⊂平面PAB,∴CE∥平面PAB.∵ME ∩CE =E ,∴平面CME ∥平面PAB , ∵CM ⊂平面CME , ∴CM ∥平面PAB ;(II )∵PA ⊥CD ,∠PAB =90°,AB 与CD 相交, ∴PA ⊥平面ABCD , ∵BD ⊂平面ABCD , ∴PA ⊥BD ,由(I )及BC =CD =12AD ,可得∠BAD =∠BDA =45°, ∴∠ABD =90°,∴BD ⊥AB , ∵PA ∩AB =A , ∴BD ⊥平面PAB , ∵BD ⊂平面PBD ,∴平面PAB ⊥平面PBD . 【解析】(I )M 为PD 的中点,直线CM ∥平面PAB .取AD 的中点E ,连接CM ,ME ,CE ,则ME ∥PA ,证明平面CME ∥平面PAB ,即可证明直线CM ∥平面PAB ; (II )证明:BD ⊥平面PAB ,即可证明平面PAB ⊥平面PBD .本题主要考查了直线与平面平行的判定,平面与平面垂直的判定,考查空间想象能力、运算能力和推理论证能力,属于中档题.7.【答案】解:(I )证明:∵CC 1⊥平面ABC ,AC ⊂平面ABC ,∠ACB =90°, ∴CC 1⊥AC ,AC ⊥BC ,又BC ∩CC 1=C ,∴AC ⊥平面BCC 1,BC 1⊂平面BCC 1, ∴AC ⊥BC 1.(II )证明:如图,设CB 1∩C 1B =E ,连接DE , ∵D 为AB 的中点,E 为C 1B 的中点,∴DE ∥AC 1, ∵DE ⊂平面B 1CD ,AC 1⊄平面B 1CD , ∴AC 1∥平面B 1CD .(III )解:由DE ∥AC 1,∠CED 为AC 1与B 1C 所成的角,在△CDE 中,DE =12AC 1=12√AC 2+CC 12=√62, CE =12B 1C =12√BC 2+BB 12=√62,CD =12AB =12√AC 2+BC 2=1,cos ∠CED =CE 2+DE 2−CD 22×CE×DE=32+32−12×√62×√62=23,∴异面直线AC 1与B 1C 所成角的余弦值为23. 【解析】(I )先证线面垂直,再由线面垂直证明线线垂直即可;(II)作平行线,由线线平行证明线面平行即可;(III)先证明∠CED为异面直线所成的角,再在三角形中利用余弦定理计算即可.本题考查线线垂直的判定、线面平行的判定、异面直线及其所成的角.。

立体几何线面平行-题型全归纳(解析版)

立体几何线面平行-题型全归纳(解析版)

立体几何线面平行-题型全归纳题型一利用三角形中位线例题1、如图所示,在三棱柱ABC-111C B A 中,侧棱⊥1AA 底面ABC ,AB ⊥BC ,D 为AC 的中点。

求证:1AB //平面DBC 1证明:连接C B 1,交1BC 于点O,再连接OD,平面11B BCC 是平行四边形,∴O是1BC 的中点,又D是AC的中点,∴OD是1ACB ∆的中位线,1//AB OD ∴,⊂OD 平面D BC 1,⊄1AB 平面D BC 1,//OD ∴平面D BC 1。

解题步骤(1)把直线通过平移到平面上,得到线线平行的初步形状;(2)连接平行四边形的对角线,再连接两个中点,恰好为平移所得到的线段;(3)通过延长两条线段的端点,构成一个三角形,即可得到三角形的中位线。

变式训练1、如图,在直四棱柱ABCD-1111D C B A 中,底面ABCD 为菱形,E 为1DD 中点。

求证:1BD //平面ACE ;证明:连接BD,交AC于点O,再连接OE,在直四棱柱ABCD-1111D C B A 中,O为BD的中点,且E为1DD 的中点,∴OE是1BDD ∆的中位线,1//BD OE ∴,又OE⊂平面ACE,⊄1BD 平面ACE,∴1BD //平面ACE 。

变式训练2、如图,在斜三棱柱ABC-111C B A 中,CA=CB ,D 、E 分别是AB ,C B 1的中点,求证:DE//平面11A ACC ;证明:连接1BC ,连接1AC ,在斜三棱柱ABC-111C B A 中,∴点E在线段1BC 上,∴点E是1BC 的中点,又点D是AB的中点,∴DE是1ABC ∆的中位线,∴DE//1AC ,⊄DE 平面11A ACC ,⊂1AC 平面11A ACC ∴DE//平面11A ACC 变式训练3、如图所示,正三棱柱ABC-111C B A 的高为2,点D 是B A 1的中点,点E 是11C B 的中点,求证:DE//平面11A ACC证明:连接1AB ,连接1AC ,在正三棱柱ABC-111C B A 中,∴点D在线段1AB 上,∴点D是1AB 的中点,又点E是11C B 的中点,∴DE是11C AB ∆的中位线,∴DE//1AC ,⊄DE 平面11A ACC ,⊂1AC 平面11A ACC ∴DE//平面11A ACC题型二利用平行四边形的对边平行例题2、如图,在多面体ABCDE 中,AEB 为等边三角形,AD//BC ,BC AD 21=,F 为EB 的中点。

必修二立体几何线面平行、面面平行、线面垂直判定及性质练习

必修二立体几何线面平行、面面平行、线面垂直判定及性质练习

线面平行、面面平行、线面垂直判定及性质练习一、线面平行判定及性质1.如图,在三棱锥P-ABC中,点Ο、D分别是AC、PC的中点,求证: OD//平面PABDOCBAP2.如图,ABCD是平行四边形,S是平面ABCD外一点,M为SC的中点. 求证:SA∥平面MDB.3.如图在四棱锥P-ABCD中,M、N分别是AB,PC的中点,若ABCD是平行四边形,求证:MN//平面PAD4.已知E 、F 、G 、H 为空间四边形ABCD 的边AB 、BC 、CD 、DA 上的点,且EH∥平面BDC .求证:EH ∥BD .H G FE D BAC练习5.正方形ABCD 交正方形ABEF 于AB ,M 、N 在对角线AC 、FB 上,且M ,N 是对角线AC 、FB 的中点.求证://MN 平面BCE6.如图,S 是平行四边形ABCD 平面外一点,,M N 分别是,SA BD 上的点,且SM AM =NDBN, 求证://MN 平面SBC二、面面平行判定及性质1.2.PMN D 1C 1B 1A 1D CA三、线面垂直判定及性质1.已知E ,F 分别是正方形ABCD 边AD ,AB 的中点,EF 交AC 于M ,GC 垂直于ABCD 所在平面.求证:EF ⊥平面GMC .M E ABCD G2.在三棱锥P ABC -中,AC BC =,ABP 为正三角形,D AB 记是的中点.求证:AB PCD ⊥平面.3.如图AB 是圆O 的直径,C 是圆周上异于A 、B 的任意一点,⊥PA 平面ABC .求证:BC ⊥平面P AC .4.在长方体1111D C B A ABCD -中,底面ABCD 是边长为1的正方形,侧棱21=AA ,EAC B P是侧棱1BB 的中点。

求证:AE ⊥平面11A D E .A综合题:如图,在三棱柱111ABC A B C -中,侧棱垂直于底面,AB BC ⊥,12,1AA AC BC ===,E 、F 分别为11A C 、BC 的中点.(1)求证:AB ⊥平面11B BCC ;(2)求证:1//C F 平面ABE ;(3)求三棱锥E ABC -的体积. C 1B 1A 1FE C BA。

线面平行典型例题

线面平行典型例题

线面平行典型例题1.已知正方体ABCD-A1B1C1D1,O是底面ABCD对角线的交点。

需要证明:(1) C1O∥面AB1D1.证明:连接C1O,AB1,D1O,由于O是底面ABCD的对角线交点,所以AO=BO=CO=DO,又因为O是C1D1的中点,所以C1O=1/2D1O。

因此,三角形AB1D1和三角形C1O1D1中,∠AB1D1=∠C1O1D1,∠B1D1O1=∠D1C1O1,且AO=CO,所以根据AA准则,可以得出C1O∥面AB1D1.2.已知三棱柱ABC-D1A1D,其中D为线段A1C1中点。

需要证明:BC1∥平面AB1D。

证明:连接AC1,BD,因为D为线段A1C1中点,所以BD∥A1C1,又因为ABCD为平行六面体,所以AC1=BD,所以AC1∥BD。

又因为D1为平面ABC和平面A1B1C1的交点,所以D1在这两个平面的公共垂线上,所以D1在直线AC1和BD的公共垂线上,所以D1在平面AB1D的公共垂线上,所以BC1∥平面AB1D。

3.如图所示,正三棱柱ABC-AB1C1中,D是BC的中点,需要判断A1B与平面ADC1的位置关系,并证明结论。

解答:连接A1D,B1D,因为D是BC的中点,所以AD=B1D,又因为AB1C1为平行四边形,所以B1C1∥AB,所以∠A1B1C1=∠ABC=90°,所以A1B1垂直于平面ABC,所以A1B1与平面ADC1平行。

4.在正方体ABCD-A1B1C1D1中,P、Q分别是AD1、BD上的点,且AP=BQ,需要证明:PQ∥平面DCC1D1.证明:连接PQ,因为AP=BQ,所以APBQ是平行四边形,所以PQ∥AB,又因为AB∥平面DCC1D1,所以PQ∥平面DCC1D1.5.正方形ABCD与正方形ABEF所在平面相交于AB,在AE、BD上各有一点P、Q,且AP=DQ,需要证明:PQ∥平面BCE。

证明:连接PQ,因为AP=DQ,所以APDQ是平行四边形,所以PQ∥AD,又因为AD∥平面BCE,所以PQ∥平面BCE。

高考数学一轮经典例题直线与平面的平行判定和性质

高考数学一轮经典例题直线与平面的平行判定和性质

典型(diǎnxíng)例题一例1简述以下问题(wèntí)的结论,并画图说明:〔1〕直线(zhíxiàn)平面(píngmiàn),直线,那么和α的位置关系如何?〔2〕直线,直线,那么直线b和α的位置关系如何?分析:〔1〕由图〔1〕可知:或者;〔2〕由图〔2〕可知:或者αb.⊂说明:此题是考察直线与平面位置关系的例题,要注意各种位置关系的画法与表示方法.典型例题二例2是平行四边形所在平面外一点,是的中点,求证:平面.分析:要证明平面外的一条直线和该平面平行,只要在该平面内找到一条直线和直线平行就可以了.证明:如下图,连结,交于点,∵四边形ABCD是平行四边形∴,连结,那么OQ在平面BDQ内,且OQ是的中位线,∴.∵在平面BDQ外,∴//PC平面(píngmiàn)BDQ.说明(shuōmíng):应用线面平行的断定(duàndìng)定理证明线面平行时,关键是在平面内找一条直线与直线平行,怎样找这一直线呢?由于两条直线首先要保证一共面,因此常常设法过直线作一平面与平面相交,假如能证明直线和交线平行,那么就可以马上(mǎshàng)得到结论.这一个证明线面平行的步骤可以总结为:过直线作平面,得交线,假设线线平行,那么线面平行.典型例题三例3经过两条异面直线,b之外的一点P,可以作几个平面都与a,b平行?并证明你的结论.分析:可考虑P点的不同位置分两种情况讨论.解:〔1〕当P点所在位置使得a,P〔或者b,P〕本身确定的平面平行于b〔或者a〕时,过P点再作不出与a,b都平行的平面;〔2〕当P点所在位置a,P〔或者b,P〕本身确定的平面与b〔或者a〕不平行时,可过点P作,.由于a,b异面,那么,不重合且相交于P.由于,a',b'确定的平面α,那么由线面平行断定定理知:,αb.可作一个平面都与a,b平行.//故应作“0个或者1个〞平面.说明:此题解答容易无视对P点的不同位置的讨论,漏掉第〔1〕种情况而得出可作一个平面的错误结论.可见,考虑问题必须全面,应区别不同情形分别进展分类讨论.典型例题四例4平面外的两条平行(píngxíng)直线中的一条平行于这个平面,那么另一条直线也平行于这个平面.:直线(zhíxiàn),平面(píngmiàn)α,.求证(qiúzhèng):αb.//证明:如下图,过a及平面α内一点作平面.设,∵αa,//∴.又∵ba//,∴.∵α⊄b,,∴αb.//说明:根据断定定理,只要在α内找一条直线,根据条件αa,为了//利用直线和平面平行的性质定理,可以过a作平面β与α相交,我们常把平面β称为辅助平面,它可以起到桥梁作用,把空间问题向平面问题转化.和平面几何中添置辅助线一样,在构造辅助平面时,首先要确认这个平面是存在的,例如,本例中就是以“直线及直线外一点确定一个平面〞为根据来做出辅助平面的.典型例题五例5四面体的所有棱长均为a.求:〔1〕异面直线的公垂线段及EF的长;〔2〕异面直线EF和所成的角.分析:依异面直线的公垂线的概念求作异面直线ABSC、的公垂线段,进而求出其间隔;对于异面直线所成的角可采取平移构造法求解.解:〔1〕如图,分别(fēnbié)取ABSC、的中点(zhōnɡ diǎn),连结(liánjié).由,得≌.∴,是的中点(zhōnɡ diǎn),∴.同理可证∴EF是ABSC、的公垂线段.在中,,.∴.〔2〕取AC的中点,连结,那么.∴EF和所成的锐角或者直角就是异面直线EF和SA所成的角.连结,在中,,,.由余弦定理,得.∴.故异面直线EF和SA所成的角为.说明:对于立体几何问题要注意转化为平面问题来解决,同时要将转化过程简要地写出来,然后再求值.典型例题六例6 假如一条直线与一个平面(píngmiàn)平行,那么过这个平面内的一点且与这条直线平行的直线必在这个平面内.:直线(zhíxiàn)α//a ,,,a b //.求证(qiúzhèng):α⊂b .分析(f ēnx ī):由于过点与a 平行的直线是惟一存在的,因此,此题就是要证明,在平面α外,不存在过B 与a 平行的直线,这是否认性命题,所以使用反证法.证明:如下图,设α⊄b ,过直线a 和点B 作平面β,且.∵α//a ,∴.这样过B 点就有两条直线b 和同时平行于直线a ,与平行公理矛盾. ∴b 必在α内.说明:(1)本例的结论可以直接作为证明问题的根据. (2)本例还可以用同一法来证明,只要改变一下表达方式.如上图,过直线a 及点B 作平面β,设'b =αβ .∵α//a ,∴α//'b . 这样,'b 与b 都是过B 点平行于a 的直线,根据平行公理,这样的直线只有一条,∴b 与'b 重合.∵,∴α⊂b .典型例题七例7 以下命题正确的个数是〔〕.(1)假设直线上有无数个点不在平面α内,那么;(2)假设(jiǎshè)直线l平行(píngxíng)于平面α内的无数条直线(zhíxiàn),那么α//l;(3)假设(jiǎshè)直线l与平面α平行,那么l与平面α内的任一直线平行;(4)假设直线l在平面α外,那么α//l.A.0个B.1个C.2个D.3个分析:此题考察的是空间直线与平面的位置关系.对三种位置关系定义的准确理解是解此题的关键.要注意直线和平面的位置关系除了按照直线和平面公一共点的个数来分类,还可以按照直线是否在平面内来分类.解:(1)直线l上有无数个点不在平面α内,并没有说明是所在点都不在平面α内,因此直线可能与平面平行亦有可能与直线相交.解题时要注意“无数〞并非“所有〞.(2)直线l虽与α内无数条直线平行,但l有可能在平面α内,所以直线l不一定平行α.(3)这是初学直线与平面平行的性质时常见错误,借助教具我们很容易看到.当αl时,假设且,那么在平面α内,除了与平//行的直线以外的每一条直线与l都是异面直线.(4)直线l在平面α外,应包括两种情况:α//l和l与α相交,所以l与α不一定平行.应选A.说明:假如题中判断两条直线与一平面之间的位置关系,解题时更要注意分类要完好,考虑要全面.如直线l、m都平行于α,那么l与m的位置关系可能平行,可能相交也有可能异面;再如直线、αl,那么m与α的位置关系可//能是平行,可能是m在α内.典型例题八例8如图,求证:两条平行线中的一条和平面相交,那么另一条也与该平面相交.:直线ba//,.求证:直线b与平面α相交.分析(fēnxī):利用(lìyòng)ba//转化(zhuǎnhuà)为平面问题来解决,由a//可确定一辅助(fǔzhù)平面β,这样可以把题中相关元素集中使用,既创造b了新的线面关系,又将三维降至二维,使得平几知识可以运用.解:∵ba//,∴a和b可确定平面β.∵,∴平面α和平面β相交于过点P的直线l.∵在平面β内l与两条平行直线a、b中一条直线a相交,∴l必定与直线b也相交,不妨设,又因为b不在平面α内〔假设b 在平面α内,那么α和β都过相交直线b和l,因此α与β重合,a在α内,和矛盾〕.所以直线b和平面α相交.说明:证明直线和平面相交的常用方法有:证明直线和平面只有一个公一共点;否认直线在平面内以及直线和平面平行;用此结论:一条直线假如经过平面内一点,又经过平面外一点,那么此直线必与平面相交〔此结论可用反证法证明〕.典型例题九例9如图,求证:经过两条异面直线中的一条,有且仅有一个平面与另一条直线平行.:a与b是异面直线.求证:过b且与a平行的平面有且只有一个.分析:此题考察存在性与唯一性命题的证明方法.解题时要理解“有且只有〞的含义.“有〞就是要证明过直线b存在一个平面α,且αa,“只有〞就//是要证满足这样条件的平面是唯一的.存在性常用构造法找出〔或者作出〕平面,唯一性常借助于反证法或者其它唯一性的结论.证明(zhèngmíng):(1)在直线(zhíxiàn)b上任(shàng rèn)取一点A,由点A和直线(zhíxiàn)a可确定平面β.在平面β内过点A作直线,使,那么'a和b为两相交直线,所以过'a和b可确定一平面α.∵αb,a与b为异面直线,⊂∴.又∵,,∴αa.//故经过b存在一个平面α与a平行.(2)假如平面也是经过b且与a平行的另一个平面,由上面的推导过程可知γ也是经过相交直线b和'a的.由经过两相交直线有且仅有一个平面的性质可知,平面α与γ重合,即满足条件的平面是唯一的.说明:对于两异面直线a和b,过b存在一平面α且与a平行,同样过a也存在一平面β且与b平行.而且这两个平面也是平行的〔以后可证〕.对于异面直线a和b的间隔,也可转化为直线a到平面α的间隔,这也是求异面直线的间隔的一种方法.典型例题十例10 如图,求证:假如一条直线和两个相交平面都平行,那么这条直线和它们的交线平行.:,α//a ,,求证:.分析(f ēnx ī):此题考察综合运用线面平行的断定(duàndìng)定理和性质定理的才能.利用线面平行的性质定理,可以先证明直线a 分别和两平面的某些直线(zhíxiàn)平行,即线面平行可得线线平行.然后再用线面平行的断定定理和性质定理来证明a 与l 平行(píngxíng).证明:在平面α内取点P ,使,过P 和直线a 作平面γ交α于b .∵α//a ,,,∴b a //.同理过a 作平面交β于. ∵β//a ,,,∴c a //. ∴c b //. ∵,, ∴.又∵α⊂b ,l =βα , ∴.又∵b a //, ∴l a //.另证:如图,在直线l 上取点,过M 点和直线a 作平面和α相交于直线,和β相交于直线.∵α//a ,∴, ∵β//a ,∴,但过一点只能(zh ī nénɡ)作一条直线与另一直线平行. ∴直线(zhíxiàn)和2l 重合(chónghé). 又∵,,∴直线(zhíxiàn)1l 、2l 都重合于直线l , ∴l a //.说明:“线线平行〞与“线面平行〞在一定条件下是可以互相转化的,这种转化的思想在立体几何中非常重要.典型例题十一例11 正方形ABCD 与正方形所在平面相交于,在、BD 上各取一点P 、Q ,且.求证:面.分析:要证线面平行,可以根据断定定理,转化为证明线线平行.关键是在平面BCE 中如何找一直线与平行.可考察过PQ 的平面与平面BCE 的交线,这样的平面位置不同,所找的交线也不同.证明一:如图,在平面ABEF 内过P 作交于M , 在平面ABCD 内过Q 作交于,连结.∵ABPM//,∴.又∵,∴,即.∵正方形ABEF与ABCD有公一共(yīgòng)边AB,∴.∵DQAP ,∴.∴.又∵ABPM//,ABQN//,∴.∴四边形为平行四边形.∴.又∵面BCE,∴//PQ面BCE.证明(zhèngmíng)二:如图,连结(lián jié)并延长(yáncháng)交BC于,连结.∵,∴.又∵正方形ABEF 与正方形ABCD 有公一共边AB , ∴DB AE =, ∵DQ AP =,∴.∴.∴, 又∵面, ∴//PQ 面BEC .说明(shu ōmíng):从此题中我们可以看出,证线面平行的根本问题是要在平面内找一直线(zhíxiàn)与直线平行,此时常用中位线定理、成比例线段、射影法、平行挪动、补形等方法,详细用何种方法要视条件而定.此题中我们可以把“两个有公一共边的正方形〞这一条件(tiáojiàn)改为“两个(li ǎn ɡ ɡè)全等的矩形〞,那么题中的结论是否仍然成立?典型例题十二例12 三个平面两两相交于三条交线,证明这三条交线或者平行、或者相交于一点.:,,.求证:a 、b 、c 互相平行或者相交于一点.分析:此题考察的是空间三直线的位置关系,我们可以先从熟悉的两条交线的位置关系入手,根据一共面的两条直线平行或者相交来推论三条交线的位置关系.证明:∵a =βα ,b =γβ , ∴.∴a 与b 平行或者相交. ①假设b a //,如图∵,,∴.又∵c =αγ ,α⊂a ,∴c a //. ∴.②假设(ji ǎshè)a 与b 相交(xi āngji āo),如图,设,∴,. 又∵,.∴, 又∵,∴. ∴直线(zhíxiàn)a 、b 、c 交于同一点(y ī di ǎn)O .说明:这一结论常用于求一个几何体的截面与各面交线问题,如正方体ABCD 中, M 、N 分别是、的中点,画出点、M 、N 的平面与正方体各面的交线,并说明截面多边形是几边形?典型例题十三例13 空间四边形ABCD ,,AE 是的BC 边上的高,是的BC 边上的中线,求证:AE 和DF 是异面直线. 证法一:〔定理法〕如图由题设条件可知点E、不重合,设BCD∆所在平面α.∴AE和DF是异面直线(zhíxiàn).证法(zhènɡ fǎ)二:〔反证法〕假设(jiǎshè)AE和DF不是(bù shi)异面直线,那么AE和DF一共面,设过AE、DF的平面为β.(1)假设E、F重合,那么E是BC的中点,这与题设ACAB≠相矛盾.(2)假设E、F不重合,∵,,,∴.∵,,∴A、B、、D四点一共面,这与题设ABCD是空间四边形相矛盾.综上,假设不成立.故AE和DF是异面直线.说明:反证法不仅应用于有关数学问题的证明,在其他方面也有广泛的应用.首先看一个有趣的实际问题:“三十六口缸,九条船来装,只准装单,不准装双,你说怎么装?〞对于这个问题,同学们可试验做一做.也许你在试验几次后却无法成功时,觉得这种装法的可能性是不存在的.那么你怎样才能清楚地从理论上解释这种装法是不可能呢?用反证法可以轻易地解决这个问题.假设这种装法是可行的,每条船装缸数为单数,那么9个单数之和仍为单数,与36这个双数矛盾.只须两句话就解决了这个问题.典型例题十四例14AB、BC、是不在同一平面内的三条线段,E、F、G分别是AB、BC、CD的中点,求证:平面和AC平行,也和BD平行.分析(fēnxī):欲证明(zhèngmíng)AC平面(píngmiàn)EFG,根据直线(zhíxiàn)和平面平等的断定定理只须证明AC平行平面EFG内的一条直线,由图可知,只须证明.证明:如图,连结AE、EG、EF、.在ABC∆中,E、F分别是AB、BC的中点.∴EFAC//.于是AC//平面EFG.同理可证,BD//平面EFG.说明:到目前为止,断定直线和平面平行有以下两种方法:(1)根据直线和平面平行定义;(2)根据直线和平面平行的断定定理.典型例题十五例15空间四边形ABCD,P、Q分别是ABC∆的重心,∆和BCD求证:.分析:欲证线面平行,须证线线平行,即要证明PQ与平面中的某条直线平行,根据条件,此直线为,如图.证明:取BC的中点E.∵P 是ABC ∆的重心,连结AE , 那么,连结,∵Q 为BCD ∆的重心, ∴,∴在中,.又,,∴ACD PQ 平面//.说明(shu ōmíng):(1)本例中构造(gòuzào)直线AD 与PQ 平行,是充分借助于题目(tímù)的条件:P 、Q 分别(f ēnbié)是ABC ∆和BCD ∆的重心,借助于比例的性质证明AD PQ //,该种方法经常使用,望注意把握.(2)“欲证线面平行,只须证线线平行〞.断定定理给我们提供了一种证明线面平等的方法.根据问题详细情况要纯熟运用.典型例题十六例16 正方体中,E 、G 分别是BC 、的中点如以下图.求证:.分析:要证明D D BB EG 11//平面,根据线面平等的断定定理,需要在平面内找到与EG 平行的直线,要充分借助于E 、G 为中点这一条件. 证明:取BD 的中点F ,连结EF 、.∵E 为BC 的中点,∴EF 为BCD ∆的中位线,那么,且.∵G 为11D C 的中点, ∴且, ∴且,∴四边形为平行四边形, ∴,而,,∴.典型(di ǎnxíng)例题十七例17 假如(ji ǎrú)直线,那么(nà me)直线a 与平面(píngmiàn)α内的〔 〕.A .一条直线不相交B .两条相交直线不相交C .无数条直线不相交D .任意一条直线都不相交解:根据直线和平面平行定义,易知排除A 、B .对于C ,无数条直线可能是一组平行线,也可能是一共点线,∴C 也不正确,应排除C .与平面α内任意一条直线都不相交,才能保证直线a 与平面α平行,∴D 正确.∴应选D .说明:此题主要考察直线与平面平行的定义.典型例题十八例18 分别和两条异面直线平行的两条直线的位置关系是〔 〕. A .一定平行 B .一定相交 C .一定异面 D .相交或者异面解:如图中的甲图,分别与异面直线a、b平行的两条直线c、是相交关系;如图中的乙图,分别(fēnbié)与异面直线a、b平行(píngxíng)的两条直线c、d 是相交(xiāngjiāo)关系.综上,可知(kě zhī)应选D.说明:此题主要考察有关平面、线面平行等根底知识以及空间想象才能.典型例题十九例19a、b是两条异面直线,以下结论正确的选项是〔〕.A.过不在a、b上的任一点,可作一个平面与a、b平行B.过不在a、b上的任一点,可作一个直线与a、b相交C.过不在a、b上的任一点,可作一个直线与a、b都平行D.过a可以并且只可以作一平面与b平行解:A错,假设点与a所确定的平面与b平行时,就不能使这个平面与 平行了.B错,假设点与a所确定的平面与b平等时,就不能作一条直线与a,b相交.C错,假设这样的直线存在,根据公理4就可有ba//,这与a,b异面矛盾.D正确,在a上任取一点A,过A点做直线bc//,那么c与a确定一个平面与b平行,这个平面是惟一的.∴应选D.说明:此题主要考察异面直线、线线平行、线面平行等根本概念.典型例题二十例20 (1)直线b a //,α平面//a ,那么b 与平面α的位置关系是_____________.(2)A 是两异面直线a 、b 外的一点,过A 最多可作___________个平面同时与a 、b 平行.解:(1)当直线b 在平面α外时,α//b ;当直线b 在平面α内时,α⊂b . ∴应填:α//b 或者α⊂b .(2)因为过A 点分别作a ,b 的平行线只能作一条,〔分别称'a ,'b 〕经过'a ,'b 的平面也是惟一的.所以只能作一个平面; 还有不能作的可能,当这个平面(píngmiàn)经过a 或者(huòzhě)b 时,这个(zhè ge)平面就不满足条件了.∴应填:1.说明(shu ōmíng):考虑问题要全面,各种可能性都要想到,是解答此题的关键.典型例题二十一例21 如图,α//a ,A 是α的另一侧的点,,线段AB ,AC ,AD 交α于E ,F ,G ,假设,,,那么EG =___________.解:∵α//a ,.∴,即,∴.那么.∴应填:.说明:此题是一道综合题,考察知识主要有:直线与平面平行性质定理、相似三角形、比例性质等.同时也考察了综合运用知识,分析和解决问题的才能.内容总结(1)典型例题一例1 简述以下问题的结论,并画图说明:〔1〕直线平面,直线,那么和的位置关系如何。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

线面平行典型例题和练习直线与平面、平面与平面平行的判定与性质中,都隐含着直线与直线的平行,它成为联系直线与平面、平面与平面平行的纽带,成为证明平行问题的关键. 1.运用中点作平行线 例1.已知四棱锥P ABCD -的底面是距形,M、N分别是AD、PB的中点,求证MN∥平面PCD .2.运用比例作平行线 例2.四边形ABCD与ABEF是两个全等形,且AM=FN,其中M AC ∈,N BF ∈,求证:MN∥平面BCE3. 运用传递性作平行线例3.求证:一条直线与两个相交平面都平行,则这条直线和它们的交线平行4.运用特殊位置作平行线 例4.正三棱柱ABC-A1B1C1的底面边长为2,点E、F分别是C1C、B1B上的点,点M是线段AC上的动点,EC=2FB=2.问当点M在何位置时MB∥平面AEF?课堂强化:1. 1.棱长都相等的四面体称为正四面体.在正四面体A-BCD 中,点M ,N 分别是CD 和AD 的中点,给出下列命题:①直线MN ∥平面ABC ;A CNP D M BG图M FNC EA D BHm αβlγσn 图4k A B CE F N MB 1A 1 C 1 图5②直线CD⊥平面BMN;③三棱锥B-AMN的体积是三棱锥B-ACM的体积的一半.则其中正确命题的序号为2. (2012•)如图,几何体E-ABCD是四棱锥,△ABD为正三角形,CB=CD,EC⊥BD.(Ⅰ)求证:BE=DE;(Ⅱ)若∠BCD=120°,M为线段AE的中点,求证:DM∥平面BEC.3. .(2012•)如图,直三棱柱ABC-A′B′C′,∠BAC=90°,AB=AC= 2,AA′=1,点M,N分别为A′B和B′C′的中点.(Ⅰ)证明:MN∥平面A′ACC′;(Ⅱ)求三棱锥A′-MNC的体积.4. (2011•上城区)如图所示的几何体中,△ABC为正三角形,AE和CD都垂直于平面ABC,且AE=AB=2,CD=1,F为BE的中点.(1)若点G在AB上,试确定G点位置,使FG∥平面ADE,并加以证明;(2)求DB与平面ABE所成角的正弦值.5. .(2009•)如图,四棱锥S-ABCD的底面是形,每条侧棱的长都是底面边长的2倍,P为侧棱SD上的点.(1)求证:AC⊥SD;(2)若SD⊥平面PAC,求二面角P-AC-D的大小;(3)在(2)的条件下,侧棱SC上是否存在一点E,使得BE∥平面PAC.若存在,求SE:EC 的值;若不存在,试说明理由.6. 如图,在四棱锥P-ABCD中,∠ABC=∠ACD=90°,∠BAC=∠CAD=60°,PA⊥平面ABCD,E为PD的中点,AB=1,PA=2.(I)证明:直线CE∥平面PAB;(Ⅱ)求三棱锥E-PAC的体积.7. 如图,已知四边形ABCD是平行四边形,点P是平面ABCD外的一点,则在四棱锥P-ABCD中,M是PC的中点,在DM上取一点G,过G和AP作平面交平面BDM于GH.求证:AP∥GH.8. 已知平面α∥面β,AB、CD为异面线段,AB⊂α,CD⊂β,且AB=a,CD=b,AB与CD所成的角为θ,平面γ∥面α,且平面γ与AC、BC、BD、AD分别相交于点M、N、P、Q.且M、N、P、Q为中点,(1)若a=b,求截面四边形MNPQ的周长;(2)求截面四边形MNPQ面积的最大值.9. 如图,在正四棱柱ABCD-A1B1C1D1中,棱长AA1=2,AB=1,E是AA1的中点.(Ⅰ)求证:A1C∥平面BDE;(Ⅱ)求点A到平面BDE的距离.10. 如图,在三棱锥P-ABC中,已知AB=AC=2,PA=1,∠PAB=∠PAC=∠BAC=60°,点D、E 分别为AB、PC的中点.(1)在AC上找一点M,使得PA∥面DEM;(2)求证:PA⊥面PBC;(3)求三棱锥P-ABC的体积.11. 空间四边形ABCD的对棱AD,BC成60°的角,且AD=BC=a,平行于AD与BC的截面分别交AB,AC,CD,BD于E、F、G、H.(1)求证:四边形EFGH为平行四边形;(2)E在AB的何处时截面EFGH的面积最大?最大面积是多少?12. 如图,四棱锥P-ABCD中,PD⊥平面ABCD,底面ABCD为形,BC=PD=2,E为PC的中点,BG=2CG(I)求证:PC⊥BC;(II)求三棱锥C-DEG的体积;(III)AD边上是否存在一点M,使得PA∥平面MEG.若存在,求AM的长;否则,说明理由.13. 如图,在四棱锥P-ABCD中,∠ABC=∠ACD=90°,∠BAC=∠CAD=60°,PA⊥平面ABCD,E为PD的中点,AB=1,PA=2.(I)证明:直线CE∥平面PAB;(Ⅱ)求三棱锥E-PAC的体积14. 如图,四棱锥S-ABCD的底面是形,每条侧棱的长都是底面边长的2倍,P为侧棱SD上的点.(Ⅰ)求证:AC⊥SD;(Ⅱ)若PD:SP=1:3,侧棱SC上是否存在一点E,使得BE∥平面PAC.若存在,求SE:EC 的值;若不存在,试说明理由.15.如图,在五面体中,平面ABCD⊥平面BFEC,Rt△ACD、RtACB、Rt△FCB、Rt△FCE为全等直角三角形,AB=AD=FB=FE=1,斜边AC=FC=2.(Ⅰ)证明:AF∥DE;(Ⅱ)求棱锥D-BCEF的体积.课后作业一、选择题1.下列条件中,能判断两个平面平行的是( )A.一个平面的一条直线平行于另一个平面;B.一个平面的两条直线平行于另一个平面C.一个平面有无数条直线平行于另一个平面D.一个平面任何一条直线都平行于另一个平面2、已知直线a与直线b垂直,a平行于平面α,则b与α的位置关系是( )A.b∥αB.bαC.b与α相交D.以上都有可能3.直线,,及平面αβa b ca b成立的条件是(),,使//A .//,a b αα⊂B .//,//a b ααC .//,//a c b cD .//,a b ααβ=I 4.若直线m 不平行于平面α,且m ⊄α,则下列结论成立的是( )A .α的所有直线与m 异面B .α不存在与m 平行的直线C .α存在唯一的直线与m 平行D .α的直线与m 都相交 5.下列命题中,错误的个数是( )① 一条直线平行于一个平面,这条直线就和这个平面的任何直线不相交;② 过平面外一点有且只有一条直线和这个平面平行;③ 过直线外一点有且只有一个平面和这条直线平行;④ 平行于同一条直线的两条直线和同一平面平行;⑤ a 和b 异面,则经过b 存在唯一一个平面与α平行A .4B .3C .2D .1 6.已知空间四边形ABCD 中,,M N 分别是,AB CD 的中点,则下列判断正确的是( ) A .()12MN AC BC ≥+ B .()12MN AC BC ≤+C .()12MN AC BC =+ D .()12MN AC BC <+7 .α,β是两个不重合的平面,a ,b 是两条不同直线,在下列条件下,可判定α∥β的是( ) A .α,β都平行于直线a ,bB .α有三个不共线点到β的距离相等C .a ,b 是α两条直线,且a ∥β,b ∥βD .a ,b 是两条异面直线且a ∥α,b ∥α,a ∥β,b ∥β8.两条直线a ,b 满足a ∥b ,b α,则a 与平面α的关系是( )A .a ∥αB .a 与α相交C .a 与α不相交D .a α 9.设,a b 表示直线,,αβ表示平面,P 是空间一点,下面命题中正确的是( ) A .a α⊄,则//a α B .//a α,b α⊂,则//a bC .//,,a b αβαβ⊂⊂,则//a bD .,,//,//P a P a βααβ∈∈,则a β⊂10.一条直线若同时平行于两个相交平面,那么这条直线与这两个平面的交线的位置关系是( ) A.异面 B.相交 C.平行 D.不能确定 11.下列四个命题中,正确的是( )①夹在两条平行线间的平行线段相等;②夹在两条平行线间的相等线段平行;③如果一条直线和一个平面平行,那么夹在这条直线和平面间的平行线段相等;④如果一条直线和一个平面平行,那么夹在这条直线和平面间的相等线段平行 A .①③ B .①② C .②③ D .③④ 12.在下列命题中,错误的是 A. 若平面α的任一直线平行于平面β,则α∥β B. 若两个平面没有公共点,则两个平面平行C. 若平面α∥平面β,任取直线a ⊂α,则必有a ∥βD. 若两条直线夹在两个平行平面间的线段长相等,则两条直线平行二、填空题13.如下图所示,四个体中,A ,B 为体的两个顶点,M ,N ,P 分别为其所在棱的中点,能得到AB//面MNP 的图形的序号的是DCABB 1A 1C 1①②③④14.体ABCD-A 1B 1C 1D 1中,E 为DD 1中点,则BD 1和平面ACE 位置关系是 .15.a ,b ,c为三条不重合的直线,α,β,γ为三个不重合的平面,直线均不在平面,给出六个命题:.⇒⎭⎬⎫;⇒⎭⎬⎫⇒⎭⎬⎫⇒⎭⎬⎫⇒⎭⎬⎫⇒⎭⎬⎫αγγαβαγβγαααβαβαγγ∥∥∥⑥∥∥∥⑤∥∥∥④∥∥∥③∥∥∥②∥∥∥①a a a c a c c c b a b a b a c b c a ;;;;其中正确的命题是________________.16.如图,正四棱柱ABCD-A 1B 1C 1D 1中,E ,F ,G ,H 分别是棱CC 1,C 1D 1,DD 1,DC 中点,N 是BC 中点,点M 在四边形EFGH 及其部运动,则M 满足 时,有MN ∥平面B 1BD D 1. 三、解答题是3,D 是AC 的中17.如图,正三棱柱111C B A ABC -的底面边长是2,侧棱长点.求证://1C B 平面BD A 1.18、已知E 、F 、G 、H 为空间四边形ABCD 的边AB 、BC 、CD 、DA 上的点,且EH∥FG. 求证:EH ∥BD.证:;平面D BC AB 11//19、如图,在直三棱柱ABC-A 1B 1C 1中, D 为AC 的中点,求20.如图,在正四棱锥P ABCD -中,PA AB a ==,点E 在棱PC 上. 问点E 在何处时,//PA EBD 平面,并加以证明.EP AB CA1B 1C 1D H G FE D BAC21、已知体1111ABCD A B C D -,O 是底ABCD 对角线的交点. 求证:(1) C 1O ∥面11AB D ;(2)面111//D AB D OC 面.探究习题:1.平面两形ABCD 与ABEF ,点M ,N 分别在对角线AC,FB 上,且AM:MC=FN:NB ,沿AB 折起,使得∠DAF=900(1)证明:折叠后MN//平面CBE ;(2)若AM:MC=2:3,在线段AB 上是否存在一点G ,使平面MGN//平面CBE?若存在,试确定点G 的位置.2.设平面α∥平面β,AB 、CD 是两条异面直线,M ,N 分别是AB ,CD 的中点,且A ,C ∈α,B ,D ∈β,求证:MN ∥平面α.A BC D EMNαβD 1O DBA C 1B 1A 1C。

相关文档
最新文档