化工原理:气液传质设备
【2019年整理】板式塔与填料塔
安装检修
材质 造价
较易
常用金属材料 大直径时较低
较难
金属及非金属材料均可 新型填料投资较大
新型填料及规整填料塔竞争力较强。
塔型选择
塔径在0.6~0.7米以上的塔,过去一般优先选用板式塔。
随着低压降高效率轻材质填料的开发,大塔也开始采用各种 新型填料作为传质构件,显示了明显的优越性。
塔型选择主要需考虑以下几个方面的基本性能指标: (1) 生产能力 即为单位时间单位塔截面上的处理量;
浮阀塔板的流体力学性能 浮阀塔板上的气、液流程 浮阀塔板的板面结构: 鼓泡区(有效区、开孔区) 降液管区 受液盘区 液体安定区 边缘区 溢流堰
塔板 塔身 溢流堰板 降液管 安定区 受液盘区 鼓 泡 区
受液盘
降液管区
液体从上一塔板的降液管流入板面上的受液盘区,经进口安 定区进入鼓泡区与浮阀吹出的气体进行质、热交换后,再由 溢流堰溢出进入降液管流入下一塔板。
浮阀塔板( Valve Tray)
自1950 年代问世后,很快在石油、化工行业得到推广,至今 仍为应用最广的一种塔板。
结构:以泡罩塔板和筛孔塔板为基础基础。有多种浮阀形式, 但基本结构特点相似,即在塔板上按一定的排列开若干孔, 孔的上方安置可以在孔轴线方向上下浮动的阀片。阀片可随 上升气量的变化而自动调节开启度。在低气量时,开度小; 气量大时,阀片自动上升,开度增大。因此,气量变化时, 通过阀片周边流道进入液体层的气速较稳定。同时,气体水 平进入液层也强化了气液接触传质。 优点:结构简单,生产能力和操作弹性大,板效率高。综合 性能较优异。
气体
溶剂
板式塔
DJ 塔盘
新型塔板、填料
填料塔和板式塔的主要对比
填料塔和板式塔都可用于吸收或蒸馏操作。
化工原理课件 第十一章 气液传质设备
比表面积 填料特性 空隙率
填料因子
类型: 个体填料
规整填料
在选择填料时,一般要求:
比表面积及空隙率要大,
填料的润湿性要好,
气体通过能力大,阻力小,
液体滞留量小,
单位体积填料的重量轻, 造价低,并有足够的机械强度。
《化工原理》电子教案/第十一章
六、塔板负荷性能图
设计出的塔板结构是否合理,是否能满足上述各项流 体力学性能良好的要求,需要检验。
检验的方法就是绘制塔板负荷性能图(理论上,每块 塔板都有一个负荷图)。
《化工原理》电子教案/第十一章
29/58
VG
操作弹性=气量上限 气量下限
液相下限线
六、塔板负荷性能图
过量液沫夹带线
液泛线
操作点1
了不少于80种的各 种类型塔板。
缺点:结构复杂,制造成本高,压降大,液泛气速
筛 孔 型
低,故生产能力较小。
浮 阀 型
喷 射 型 :
其 它 型 :
10/58
《化工原理》电子教案/第十一章
二、板式塔类型
泡 罩 型
筛 孔 型
特点:结构简单、造价低、压降小、生产能
浮 阀 型 喷 射 型 :
1、漏液
2、液沫夹带
3、液泛
4、气泡夹带
5、塔板上的液面落差
6、塔板上液体的返混
7、气体通过塔板的压降
8、液体停留时间
23/58
《化工原理》电子教案/第十一章
四、塔板的流体力学性能
1、漏液 ----- 一定存在,不可避免。
严重漏液----不允许,是塔的不良操作现象之一。
不良后果:降低板效,严重时使板上不能积液。 产生的原因:气速过小,或液体分布严重不均。
陈敏恒《化工原理》(第3版)笔记和课后习题(含考研真题)详解(气液传质设备 课后习题详解)
10.2 课后习题详解(一)习题板式塔10-1 某筛板塔在常压下以苯-甲苯为试验物系,在全回流下操作以测定板效率。
今测得由第9、第10两块板(自上向下数)下降的液相组成分别为0.652与0.489(均为苯的摩尔分数)。
试求第10块板的默弗里湿板效率。
解:已知:常压苯-甲苯系统,,求:第十块板的默弗里板效率E MV全回流下,y n+1=x n∴y11=x10=0.489 y10=x9=0.653苯-甲苯系统α=2.4810-2 甲醇-水精馏塔在设计时规定原料组成X F=0.40,塔顶产品组成为0.90,塔釜残液组成为0.05(均为甲醇的摩尔分数),常压操作。
试用0’connell关联图估计精馏塔的总塔效率。
解:已知:常压,甲醇-水系统,x f=0.4,x D=0.9,x w=0.05,求:用O´connell关联图估计E T由教材附录相平衡数据查得再查t=80℃时,汽液共存查O,connell关联图得10-3 一板式吸收塔用NaOH水溶液吸收氯气。
氯气的摩尔分数为2%,要求出塔摩尔分数低于0.002%。
各块塔板的默弗里板效率均为50%,不计液沫夹带,求此塔应有多少块实际板。
NaOH溶液与氯气发生不可逆化学反应,可设相平衡常数m=0。
解:已知:求:∵m=0每板逐推得实际板数为10。
10-4 某厂常压操作下的甲苯-邻二甲苯精馏塔拟采用筛板塔。
经工艺计算知某塔板的气相流量为2900m3/h,液相流量为9.2m3/h。
试用弗尔的泛点关联图以估计塔径。
有关物性数据:气相密度为3.85kg/m3,液相密度为770kg/m3.液体的表面张力为17.5mN/m。
根据经验选取板间距为450mm、泛点百分率为80%,单流型塔板,溢流堰长度为75%塔径。
解:已知:P=101.3kPa,甲苯-邻二甲苯系统,,求:用弗尔泛点关联图估计塔径查弗尔泛点关联图,得由教材图10-40查得圆整取D=1.2m此时泛点半分率填料塔10-5 某填料精馏塔用以分离氯仿-1,1-二氯乙烷,在全回流下测得回流液组成x D=8.05×10-3,残液组成x w=8.65×10-4(均为1,1-二氯乙烷的摩尔分数)。
化工原理第十章 气液传质设备
对于生产能力(塔径)大,或分离要求较高,压降有限制的塔, 选用孔板波纹填料较宜,如苯乙烯—乙苯精馏塔、润滑油减压塔等。
对于一些要求持液量较高的吸收体系中,一般用乱堆填料。乱堆填料 中,综合技术性能较优越是金属鞍环、阶梯环、其次是鲍尔环,再次 是矩鞍填料。
12
2、 液体分布器 (1)管式喷淋器
2024/3/27
BA
BA
A- A
(a)
(c)
B- B
(d)
(b)
图10-6 管式喷淋器
13
(2)莲蓬式喷淋器 (3)盘式喷淋器
4. 堆积密度
5. 干填料因子及填料因子
6. 机械强度及化学稳定性
此外,性能优良的填料还必须满足制造容易、造价低廉等多方面的 要求。
2024/3/27
3
常用的填料可分为两大类:个体填料与规整填料。个体填料由实心
的固体块、中空的环形填料、表面开口的鞍形填料等,其常用的构造 材料包括陶瓷、金属、塑料(聚丙烯、聚氯乙烯等)、玻璃、石墨。 陶瓷填料耐腐蚀,但易碎,空隙率小;金属填料比表面积及空隙率大, 通量大,效率高,但不锈钢价贵,普通钢易腐蚀;塑料填料比表面积 大,空隙率较高,但不耐高温。工业上常用的一些个体填料如下。
2024/3/27
2
二、填料
填料式填充于填料塔中的材料,它是填料塔的主要内构件,其作用 是增加气、液两相的接触面积,并提高液体的湍动程度以利于传质、 传热的进行。因此填料应能使气、液接触面积大、传质系数高,同时 通量大而阻力小。表征填料特性的主要参数有:
化工原理第五章(填料塔)
2013-7-14
(3)填料因子 【定义】比表面积a与空隙率所组成的复合量a/3。 ①干填料因子 填料未被液体润湿时的a/3称为干填 料因子,它反映了填料的几何特性; ②湿填料因子 填料被液体润湿后,填料表面覆盖了 一层液膜,空隙率变小,此时的a/ 3称为湿填料因 子,用φ表示。其单位为1/m。 湿填料因子反映了填料的流体力学性能,空隙率
2013-7-14
二、填料层内气液两相的流体力学特性
填料塔的流体力学性能主要包括填料层的持液量、 填料层的压降、液泛等。 1、填料层的持液量 在一定操作条件下,由于液膜与填料表面的摩擦
以及液膜与上升气体的摩擦,有部分液体停留在填
料表面及其缝隙中。
【定义】单位体积填料层内所积存的液体体积,以
(m3液体)/(m3填料)表示。
2013-7-14
6、填料的性能评价 【评价依据】填料性能的优劣通常根据效率、通量 及压降三要素衡量。 (1)效率要高。在相同的操作条件下,填料的比表 面积越大,气液分布越均匀,表面的润湿性能越好 ,则传质效率越高; (2)通量(处理量)要大,压降要小。填料的空隙 率越大,结构越开敞,则通量越大,压降亦越低。
(3)极大的增大了气液两相的传质速率。
【波纹填料的材料】碳钢、不锈钢、铝、陶瓷、玻
璃钢及纸浸树脂等。
2013-7-14
【波纹填料的优点】波纹填料与板式塔、散堆填料 相比,具有以下优异的性能: (1)流通量大。新塔设计可缩小直径,老塔改造可 大幅度增加处理量; (2)分离效率高,较散堆填料有大得多的比表面积;
)更加连续,可使气体向上流动时主要沿弧形通道
流动。
【性能特点】空隙率大,压降和传质单元高度低,
泛点高、汽液接触充分、比重小、传质效率高、通
化工原理-第10章-气液传质设备
化⼯原理-第10章-⽓液传质设备化⼯原理-第10章-⽓液传质设备知识要点⽤于蒸馏和吸收塔的塔器分别称为蒸馏塔和吸收(解吸)塔。
通称⽓液传质设备。
本章应重点掌握板式塔和填料塔的基本结构、流体⼒学与传质特性(包括板式塔的负荷性能图)。
1. 概述⾼径⽐很⼤的设备叫塔器。
蒸馏与吸收作为分离过程,基于不同的物理化学原理,但其均属于⽓液两相间的传质过程,有共同的特点可在同样的设备中进⾏操作。
(1) 塔设备设计的基本原则①使⽓液两相充分接触,以提供尽可能⼤的传质⾯积和传质系数,接触后两相⼜能及时完善分离。
②在塔内⽓液两相最⼤限度地接近逆流,以提供最⼤的传质推动⼒。
(2) ⽓液传质设备的分类①按结构分为板式塔和填料塔②按⽓液接触情况分为逐级式与微分式通常板式塔为逐级接触式塔器,填料塔为微分接触式塔器。
2. 板式塔(1) 板式塔的设计意图:总体上使两相呈逆流流动,每⼀块塔板上呈均匀的错流接触。
(2) 筛孔塔板的构造①筛孔——塔板上的⽓体通道,筛孔直径通常为3~8mm 。
②溢流堰——为保证塔板上有液体。
③降液管——液体⾃上层塔板流⾄下层塔板的通道。
(3) 筛板上的⽓液接触状态筛板上的⽓液接触状态有⿎泡接触、泡沫接触、喷射接触,⽐较见表10-1。
表10-1 ⽓液接触状态⽐较项⽬⿎泡接触状态泡沫接触状态喷射接触状态孔速很低较⾼⾼两相接触⾯⽓泡表⾯液膜液滴外表⾯两相接触量少多多传质阻⼒较⼤⼩⼩传质效率低⾼⾼连续相液体液体⽓体分散相⽓体⽓体液体适⽤物系重轻σσ<(正系统)重轻σσ>(负系统)⼯业上经常采⽤的两种接触状态是泡沫接触与喷射接触。
由泡沫状态转为喷射状态的临界点称为转相点。
(4) ⽓体通过塔板的压降包括塔板本⾝的⼲板阻⼒(即板上各部件所造成的局部阻⼒)、⽓体克服板上充⽓液层的静压⼒所产⽣的压⼒降、⽓体克服液体表⾯张⼒所产⽣的压⼒降(⼀般较⼩,可忽略不计)。
(5) 筛板塔内⽓液两相的⾮理想流动①空间上的反向流动(与主体流动⽅向相反的液体或⽓体的流动):液沫夹带与⽓泡夹带。
西北大学化工原理 第十章第一节 气液传质设备-板式塔
工作录像
西北大学化工原理课件
五、板式塔的不正常操作现象
1. 夹带液泛
液沫夹带使塔板上液层厚度增加,相当于板间距的减小, 因此夹带量将进一步增加,这样可能会产生恶性循环破坏塔的 正常操作。 夹带液泛经常因气速过高引起,塔板上开始出现恶性循环 工作录像 的气速成为液泛气速。
2. 溢流液泛
因降液管通过液体能力限制而引起的液泛称为溢流液泛。 通常是由于液量过大引起。 工作录像
① 结构:
动画演示
② 特点与应用:
工作录像1 工作录像2
弹性大、操作稳定可靠;但结构复杂,成本高,压降大。
西北大学化工原理课件
2. 浮阀塔
① 结构:
动画演示 工作录像
② 特点与应用: 结构上较泡罩简单,操作 弹性大,可有效防止漏液,生 产能力大。
动画演示
西北大学化工原理课件
3. 筛板塔
① 结构: 由筛孔、溢流堰和降 液管等主要部分组成。 制作:wang 单位:西北大学 盗版投诉邮箱: iquygnaw@
西北大学化工原理课件
八、塔板类型
评价塔设备性能的指标
① 生产能力大 即:单位塔截面能处理的气液负荷高; ② 塔板效率高 ③ 板压降低,两相流动阻力小 ④ 操作弹性大 即:上、下操作极限通过的气量之比大; ⑤ 满足工业对生产设备的一般要求 结构简单、造价低、安装维修方便等。
西北大学化工原理课件
1. 泡罩塔板
西北大学化工原理课件
2. 塔板负荷性能图
由五条线组成,分别为: 1——过量液沫夹带线 2——(溢流)液泛线 3——液相上限线 4——漏液线 5——液相下限线 操作液气比下两相流量的关系
A B C
OLeabharlann 塔板负荷性能图① OA线(低L/V):塔的生产能力由1线控制; ② OB线(中L/V):塔的生产能力由2线控制; ③ OC线(高L/V):塔的生产能力由3线控制;
合成塔的设计 化工原理
化工原理课程设计一、塔设备简介塔设备是炼油、化工、石油化工、生物化工与制药等生产中广泛应用的气液传质设备。
根据塔内气液接触的部件的结构形式,可分为板式塔和填料塔两大类。
板式塔内置一定数量的塔板,气体以鼓泡或喷射形式穿过板上液层进行质、热传递,气液相组成呈阶梯变化,属逐级接触逆流操作过程。
填料塔内装有一定高度的填料层,液体自塔顶沿填料表面下流,气体逆流向上与液体接触进行质热传递,气液相组成沿塔高连续变化,属微分接触操作过程。
二、板式精馏塔的设计板式塔种类很多,但其设计原则基本相同,通常按如下的步骤进行设计:(1)根据设计任务和工艺要求,确定设计方案;(2)确定塔高,塔径等工艺尺寸;(3)确定塔板类型,设计塔板工艺尺寸(溢流装置,塔板布置,升气道排列等);(4)进行流体力学验算,绘制负荷性能图;(5)附属设备及管道的计算与选型。
三、设计题目:酒精生产过程精馏塔的设计四、原始数据及条件生产能力:年处理量乙醇—水混合液18500吨(按7200小时计算)原料:乙醇含量为55%(质量分数,下同)的常温液体分离要求:塔顶乙醇含量不低于91.5%塔底乙醇含量不高于1%化工原理设计过程一、精馏塔全塔物料衡算: 原料组成(摩尔分数,下同)F: 进料量(kmol/s)D: 塔顶产品流量(kmol/s)W:塔底残夜流量(kmol/s)原料乙醇组成:塔顶组成:塔底组成:=3600)=0.02638 物料衡算式:F=D+WF =D +W联立解得W=0.01590(kmol/s)D=0.01048(kmol/s)二、常压下乙醇-水气液平衡组成(摩尔)与温度关系1、温度利用表中数据由插入法可求得、=解得=81.4℃=解得℃=解得℃2、密度已知:混合液的密度:=+(为平均相对分子质量)混合气体密度:①塔顶温度℃气相组成=解得=82.54%②进料温度=81.4℃气相组成= 解得=58.45%③(1)精馏段液相组成:==0.5658气相组成:==70.50%所以=46kg/kmol=46kg/kmol(2)提馏段液相组成: = =16.37%kg/kmol气相组成:= =31.49%所以kg/kmol=46kg/kmol由不同温度下乙醇和水的密度可求得、的乙醇和水的密度(单位:kg/)塔顶温度℃=733.6=970.90+=824.26塔顶温度℃W=736.79=972.78+=952.30=717.01p ww=959.27+p w=956.04因为===888.28===890.15======33.85kg/kmol===22.59kg/kmol==45kg/kmol====37.33kg/kmol==26.41kg/kmol==1.33==1.85==0.751V ρ==1.592V ρ==1.043、 混合液体的表面张力二元有机物-水溶液表面张力可用下列公式计算以下公式中,下角标w,0,s 分别代表水,有机物及表面积部分;w x 、0x 指主体部分的分子数,w v 、0v 指主体部分的分子体积;w σ、0σ为纯水、有机物的表面张力;对乙醇q=2.cDccD m V ρ===62.43cWccW m V ρ===64.15ml==cFccF m Vρ=62.70ml==wFwwF m Vρ=18.54ml==wWwwW m Vρ=18.76ml由不同温度下的乙醇和水的表面张力,求得wF Dt t t ,,下的乙醇和水的便面张力(单位:N/m )乙醇表面张力=cFσ=17.02=cD σ=17.29=cW σ=15.33(1)水的表面张力=wF σ=62.33= wD σ=62.88=wW σ=59.04(2)塔顶表面张力cD D wD D cD D wD D V x V x V x V x +--=)1[(])1[(cD2wD ϕϕ==4.626)log(cD2wD ϕϕ=B =log (4.626) =-2.3348])[(441.03/23/2wDwD cDcD V qV Tq Q σσ-⨯==0.441[-62.88]=- 0.7622Q B A +==-2.3348- 0.7622=-3.0970联立方程组),log(cD2wD ϕϕ=A 1scD swD =+ϕϕ解得=scDϕ0.9721,swD ϕ=0.02794/1Dσ=0.0279+0.9721=2.0608 D σ=18.0369(3)原料表面张力cF2wF ϕϕ=cFF wF F cF F wF F V x V x V x V x +--)1[(])1[(==0.2363)log(cF2wF ϕϕ=B =log (0.2363)=-0.6265])[(441.03/23/2wFwF cFcF V qV Tq Q σσ-⨯==0.441[-62.33]=-0.7520Q B A +==-0.6265-0.7520=-1.3786联立方程组)log(scF2swF ϕϕ=A ,1scF swF =+ϕϕ解得swF ϕ=0.1847sc Fϕ=0.81534/1Fσ=0.1847+0.8153=2.1750 F σ=22.3788(4)塔底表面张力:scW2swW ϕϕ=cWW wW W cW W wW W V x V x V x V x +--)1[(])1[(==73.0007cW2wW log(ϕϕ=B )=l og (73.0007) =1.8633])[(441.03/23/2wWwWcWcW V qV Tq Q σσ-⨯==0.441[-59.04]= -0.6973Q B A +==1.8633 -0.6973=1.1660联立方程组 1),log(scW swW ScW2SwW =+=ϕϕϕϕA解得swWϕ=0.9397 scW ϕ=0.060264/1wσ=0.9397+0.=2.724w σ=55.0590(一) 精馏段的平均表面张力1σ==20.7079(二) 提馏段的平均表面张力2σ==38.71894、 混合物的黏度1t =79.89查表水μ=0. 3556mPa.s 醇μ=1.11mPa.s2t =90.07查表45.90 .31480==’’醇水μμ 精馏段黏度:=+=)-1111x x (水醇μμμ1.11mPa.s提馏段的黏度:=+=)-1''222x x (水醇μμμ0.9450.4180mPa.s5、 相对挥发度由F x =0.3235,F y =0.5845得F α==2.9418由D x =0.8081,D y =0.8254D α==1.1226由Wx =0.003937 , W y =0.04539W α===12.0297精馏段的平均相对挥发度: 1α==2.0322提馏段的平均相对挥发度: 2α==7.48586、 气液相体积流量计算根据x-y图查图计算或由解析法求得=0.5352min R =1.15取R=2min R =2.30精馏段 L=RD=2.30=0.02410kmol/s V=(R+1)D=(2.30+1)=0.03458kmol/s 已知1L M =33.85kg/kmol,=37.33kg/kmol1L ρ =888.28kg/,1V ρ=1.59 kg/则质量流:L1=∙L=33.84×0.02410=0.8155 kg/sV1=∙V=0.37.74×0.03458=1.3050 kg/s体积流量:LS1=L1/PL1=0.8155/888.28=9.1807×10-4 m3/sVs1=V1/Pv1=1.3050/1.59=0.8208 m3/s(1) 提馏段,因本设计为饱点液体进料 q=1L ’=L+qF=0.02410+1×0.02638=0.05048 kmol/s V’=V+(q-1)F=0.03458 kmol/s已知:=22.59kg/kmol,=26.41kg/kmo,=890.15 kg/,ρ v 2 =1.04 kg/则质量流:L2=∙L’=22.59×0.05408=1.1403 kg/sV2=∙V ’=26.41×0.03458=0.9133/s体积流量:LS2=L2/PL2=1.1403/890.15=1.281×10-3 m3/sVs2=V2/Pv2=0.9133/1.04=0.8782 m3/s三、 理论塔板的计算理论板:指离开此板的气液相平衡,而且塔板上液相组成均匀。
化工原理汽液传质设备考试题目
单项选择题 (每题2分,共30题) 成绩查询第十章气液传质设备1. 填料吸收塔空塔的速度应_______液泛速度。
A:大于B:小于C:等于D:-2. 对吸收操作影响较大的填料特性是_______。
A:比表面积和空隙率B:机械强度C:对气体阻力要小D:几何尺寸3. 选择吸收设备时,综合考虑吸收率大,阻力小,稳定性好,结构简单,造价小,一般应选_______。
A:填料吸收塔B:板式吸收塔C:喷淋吸收塔D:其他传质设备4. 气液两相在塔板上有四种接触状态,从减小雾沫夹带考虑,大多数塔操作控制在_______下操作。
A:鼓泡接触状态B:蜂窝接触状态C:泡沫接触状态D:喷射接触状态5. 筛板塔、泡罩塔、浮阀塔相比较,操作弹性最大的是_______。
A:筛板塔B:浮阀塔C:泡罩塔D:基本相当6. 筛板塔、泡罩塔、浮阀塔相比较,造价最便宜的是_______。
A:筛板塔B:浮阀塔C:泡罩塔D:基本相当7. 筛板塔、泡罩塔、浮阀塔相比较,单板压力降最小的是_______。
A:筛板塔B:浮阀塔C:泡罩塔D:基本相当8. 板式塔塔板的漏液与_______无关。
A:空塔气速B:液体流量C:板间距D:板上液面落差塔9. _______对板式塔塔板的液沫夹带量影响不大。
A:板上液面落差塔B:空塔气速C:液体流量D:板间距10. 板式塔塔板的液泛与下列因素有关:①空塔气速;②液体流量;③溢流堰的堰高;④板间距A:①、②对B:②、③对C:①、②、③对D:①、②、③、④对11. 下述说法中错误的是_______。
A:板式塔内气液逐级接触,填料塔内气液连续接触;B:精馏用板式塔,吸收用填料塔;C:精馏既可以用板式塔,也可以用填料塔;D:吸收既可以用板式塔,也可以用填料塔。
12. 指出下列_______参数不属于筛板精馏塔的塔板参数。
A:HT(板间距)B:Af(降液管面积)C:u0(孔速)D:hw(堰高)13. 下列判断不正确的是_______。
陈敏恒《化工原理》(第3版)(下册)章节题库-气液传质设备(圣才出品)
第10章气液传质设备一、选择题1.以下参数中,属于板式塔结构参数的是();属于操作参数的是()。
A.板间距B.孔数C.孔速D.板上清液层高度【答案】AB;CD2.设计筛板塔时,若改变某一结构参数,会引起负荷性能图的变化。
下面叙述中正确的一组是()。
A.板间距降低,使雾沫夹带线上移B.板间距降低,使液泛线下移C.塔径增大,使液泛线下移D.降液管面积增加,使雾沫夹带线下移【答案】D3.塔板上设置入口安定区的目的是(),设置出口安定区的目的是()。
A.防止气体进入降液管B.避免严重的液沫夹带C.防止越堰液体的气体夹带量过大D.避免板上液流不均匀【答案】A;C4.填料的静持液量与()有关,动持液量与()有关。
A.填料特性B.液体特性C.气相负荷D.液相负荷【答案】AB;ABCD5.用填料吸收塔分离某气体混合物,以下说法正确的是()。
A.气液两相流动参数相同,填料因子增大,液泛气速减小B.气液两相流动参数相同,填料因子减小,液泛气速减小C.填料因子相同,气液两相流动参数增大,液泛气速减小D.填料因子相同,气液两相流动参数减小,液泛气速减小【答案】AC6.以下说法正确的是()。
A.等板高度是指分离效果相当于1m填料的塔板数B.填料塔操作时出现液泛对传质无影响C.填料层内气体的流动一般处于层流状态D.液泛条件下单位高度填料层的压降只取决于填料种类和物系性质二、填空题1.在传质设备中,塔板上的气液两相之间可能的接触状态有:______、______和______。
板式塔操作的转相点是指______。
【答案】鼓泡;泡沫;喷射;由泡沫状态转为喷射状态的临界点2.在设计或研制新型气液传质设备时,要求设备具有______ 、______、______。
【答案】传质效率高;生产能力大;操作弹性宽;塔板压降小;结构简单(以上答案中任选三个)3.对逆流操作的填料塔,液体自塔______部进入,在填料表面呈______状流下。
福州大学化工原理教案气液传质设备
10 气液传质设备10.1 板式塔10.1.1 概述板式塔是一种应用极为广泛的气液传质设备,它由一个通常呈圆柱形的壳体及其中按一定间距水平设置的若干塔板所组成。
如图10-1所示,板式塔正常工作时,液体在重力作用下自上而下通过各层塔板后由塔底排出;气体在压差推动下,经均布在塔板上的开孔由下而上穿过各层塔板后由塔顶排出,在每块塔板上皆贮有一定的液体,气体穿过板上液层时,两相接触进行传质。
为有效地实现气液两相之间的传质,板式塔应具有以下两方面的功能:①在每块塔板上气液两相必须保持密切而充分的接触,为传质过程提供足够大而且不断更新的相际接触表面,减小传质阻力;②在塔内应尽量使气液两相呈逆流流动,以提供最大的传质推动力。
由吸收章可知,当气液两相进、出塔设备的浓度一定时,两相逆流接触时的平均传质推动力最大。
在板式塔内,各块塔板正是按两相逆流的原则组合起来的。
但是,在每块塔板上,由于气液两相的剧烈搅动,是不可能达到充分的逆流流动的。
为获得尽可能大的传质推动力,目前在塔板设计中只能采用错流流动的方式,即液体横向流过塔板,而气体垂直穿过液层。
由此可见,除保证气液两相在塔板上有充分的接触之外,板式塔的设计意图是,在塔内造成一个对传质过程最有利的理想流动条件,即在总体上使两相呈逆流流动,而在每一块塔板上两相呈均匀的错流接触。
10.1.2 筛板上的气液接触状态塔板上气液两相的接触状态是决定板上两相流流体力学及传质和传热规律的重要因素。
如图片3-8所示,当液体流量一定时,随着气速的增加,可以出现四种不同的接触状态。
(1)鼓泡接触状态当气速较低时,气体以鼓泡形式通过液层。
由于气泡的数量不多,形成的气液混合物基本上以液体为主,气液两相接触的表面积不大,传质效率很低。
(2)蜂窝状接触状态随着气速的增加,气泡的数量不断增加。
当气泡的形成速度大于气泡的浮升速度时,气泡在液层中累积。
气泡之间相互碰撞,形成各种多面体的大气泡,板上为以气体为主的气液混合物。
化工原理-第10章 气液传质设备 (1)
Ea 考虑了液沫夹带的影响即 eV 。一般据修正平衡线的概念,实验经常考(设各板 EmV 均相等为 0.6,
全回流求实际塔板数)。 (4)全塔效率(设计时最常用)
ET
=
NT N
式中 NT ——理论板数;
N ——实际板数。
P164 精馏与吸收 ET 关联图,已出现许多关联式
10.1.6 提高板效率的措施
10.1.2 筛板上的气液接触状态
塔板上气液两相的接触状态是决定板上两相流流体力学及传质和传热规律的重要因素。如图片 3-8 所示,当液体流量一定时,随着气速的增加,可以出现四种不同的接触状态。
(1)鼓泡接触状态 当气速较低时,气体以鼓泡形式通过液层。由于气泡的数量不多,形成的气液混合物基本上以液体为 主,气液两相接触的表面积不大,传质效率很低。 (2)蜂窝状接触状态 随着气速的增加,气泡的数量不断增加。当气泡的形成速度大于气泡的浮升速度时,气泡在液层中累 积。气泡之间相互碰撞,形成各种多面体的大气泡,板上为以气体为主的气液混合物。由于气泡不易破裂, 表面得不到更新,所以此种状态不利于传热和传质。 (3)泡沫接触状态 当气速继续增加,气泡数量急剧增加,气泡不断发生碰撞和破裂,此时板上液体大部分以液膜的形式 存在于气泡之间,形成一些直径较小,扰动十分剧烈的动态泡沫,在板上只能看到较薄的一层液体。由于 泡沫接触状态的表面积大,并不断更新,为两相传热与传质提供了良好的条件,是一种较好的接触状态。 (4)喷射接触状态 当气速继续增加,由于气体动能很大,把板上的液体向上喷成大小不等的液滴,直径较大的液滴受重 力作用又落回到板上,直径较小的液滴被气体带走,形成液沫夹带。此时塔板上的气体为连续相,液体为 分散相,两相传质的面积是液滴的外表面。由于液滴回到塔板上又被分散,这种液滴的反复形成和聚集, 使传质面积大大增加,而且表面不断更新,有利于传质与传热进行,也是一种较好的接触状态。 如上所述,泡沫接触状态和喷射状态均是优良的塔板接触状态。因喷射接触状态的气速高于泡沫接触 状态,故喷射接触状态有较大的生产能力,但喷射状态液沫夹带较多,若控制不好,会破坏传质过程,所 以多数塔均控制在泡沫接触状态下工作。
陈敏恒《化工原理》(第3版)笔记和课后习题(含考研真题)详解(气液传质设备 复习笔记)
10.1 复习笔记一、板式塔1.概述(1)板式塔的功能①在每块塔板上气液两相必须保持密切而充分的接触,为传质过程提供足够大而且不断更新的相际接触表面,减小传质阻力;②在塔内应尽量使气液两相呈逆流流动,以提供最大的传质推动力。
板式塔的设计意图是,在塔内造成一个对传质过程最有利的理想流动条件,即在总体上使两相呈逆流流动,而在每一块塔板上两相呈均匀的错流接触。
(2)筛孔塔板的构造①塔板上的气体通道——筛孔为保证气液两相在塔板上能够充分接触并在总体上实现两相逆流。
塔板上均匀地开有一定数量的供气体自下而上流动的通道。
图10-1 板式塔结构简图筛孔塔板的气体通道最为简单,它是在塔板上均匀地冲出或钻出许多圆形小孔供气体上升之用。
这些圆形小孔称为筛孔。
上升的气体经筛孔分散后穿过板上液层,造成两相间的密切接触与传质。
筛孔的直径通常是3~8mm,但直径为12~25mm的大孔径筛板也应用得相当普遍。
②溢流堰为保证气液两相在塔板上有足够的接触表面,塔板上必须贮有一定量的液体。
为此,在塔板的出口端设有溢流堰。
③降液管作为液体自上层塔板流至下层塔板的通道,每块塔板通常附有一个降液管。
图10-2 筛板塔的构造在塔板上的流动更为均匀,当采用圆形溢流管时,仍需设置平直溢流堰。
同理,在圆形降液管的出口附近也应设置堰板,称为入口堰。
2.筛板上的气液接触状态实验观察发现,气体通过筛孔的速度不同,两相在塔板上的接触状态亦不同。
如图10-3所示,气液两相在塔板上的接触情况可大致分为三种状态。
图10-3 塔板上的气液接触状态(1)鼓泡接触状态当孔速很低时,通过筛孔的气流断裂成气泡在板上液层中浮升,塔板上两相呈鼓泡接触状态。
(2)泡沫接触状态随着孔速的增加,气泡数量急剧增加,气泡表面连成一片并且不断发生合并与破裂。
此时,板上液体大部分是以液膜的形式存在于气泡之间,仅在靠近塔板表面处才能看到少许清液。
这种接触状况称为泡沫接触状态。
在泡沫接触状态,液体仍为连续相,而气体仍为分散相。
陈敏恒《化工原理》(第3版)(下册)名校考研真题-气液传质设备(圣才出品)
第10章气液传质设备一、选择题1.浮阀塔、泡罩塔及筛板塔三种板式塔的板效率比较()。
[华南理工大学2012年研]A.浮阀塔>泡罩塔>筛板塔B.浮阀塔=泡罩塔=筛板塔C.浮阀塔>泡罩塔=筛板塔D.浮阀塔>筛板塔>泡罩塔【答案】D【解析】泡罩塔应用最早,效率是最低的,浮阀塔应用最广泛,兼有泡罩塔和筛板塔的优点,效率是最高的。
2.浮阀塔与泡罩塔比较,其最主要的改进是()。
[中南大学2012年研]A.简化塔板结构B.形成可变气道,扩宽高效操作区域C.提高塔板效率D.增大气液负荷【答案】B【解析】浮阀塔具有较大的操作弹性,由于阀片可以自由升降以适应气量的变化,故维持正常操作所允许的负荷波动范围比泡罩塔宽。
二、填空题1.当填料塔操作气速达到泛点气速时,______充满全塔空隙,并在塔顶形成液体层,因而______急剧升高。
[北京化工大学2012年研]【答案】液相;压降【解析】当气速过大时,使降液管内的液体不能顺利下流,管内液体必然积累。
气体穿过板上液层时造成的两板间的压降增大。
2.通常填料塔的泛速是依据______经验关联图算出的,其中体现不同尺寸的各种填料操作特性的参量是______。
[南京理工大学2010年研]【答案】埃克特泛点;填料因子φ【解析】埃克特通用关联图适用各种散装填料,如拉西环,鲍尔环等,但需确知填料的φ值。
填料因子φ代表实际操作时填料的流体力学性能,填料的流体力学性能也集中体现在填料因子上。
3.试写出浮阀塔的三种不正常操作情况:(1)______;(2)______;(3)______。
[四川大学2009年研]【答案】严重漏液;严重气泡夹带;降液管液泛;严重雾沫夹带;液相不足(任选三)【解析】浮阀塔属于板式塔,板式塔的异常操作现象包括:漏液、雾沫夹带、液泛等。
化工原理气液传质设备
化工原理气液传质设备气液传质设备在化工领域中具有重要的作用。
它们能够实现气体和液体之间的传质过程,从而满足不同化工过程中的需要。
本文将介绍气液传质设备的基本原理以及它们在化工领域的应用。
一、气液传质设备的基本原理气液传质设备是利用不同相之间的质传扩散来实现物质传递的过程。
其中,气液传质设备主要包括吸收塔、吸附塔、萃取塔和蒸馏塔等。
这些设备通过充分接触气体和液体,利用相对浓度差异和溶解度差异来实现物质传递。
在气液传质设备中,气体和液体以不同的形式相互接触。
其中,气体一般以气泡、气液分散剂或气体流动的形式存在,而液体则以滴状、薄膜、湍流或静态的形式存在。
通过增加界面积和减少传质阻力,气液传质设备能够提高传质效率。
二、气液传质设备的应用1. 吸收塔吸收塔是一种常用的气液传质设备,主要用于气体中有害成分的去除。
在吸收塔中,废气与吸收剂通过充分接触,有害成分会被吸收剂吸收,从而净化废气。
2. 吸附塔吸附塔是利用吸附剂对气体中的有害物质进行去除的设备。
吸附剂通常具有很大的比表面积,通过与气体接触,吸附剂上的孔隙能够吸附气体中的有害成分,从而实现气体的净化。
3. 萃取塔萃取塔主要用于分离液体混合物中的组分。
在萃取塔中,液体混合物与萃取剂接触,通过溶质在两相之间的传输来实现组分的分离。
4. 蒸馏塔蒸馏塔是一种常见的气液传质设备,用于将液体混合物分离成为较纯的组分。
蒸馏塔通过液体的汽化和冷凝过程,将液体混合物中的组分按照其沸点的差异进行分离。
三、气液传质设备的优化与发展随着化工行业的发展,气液传质设备也在不断优化和发展。
目前,一些新型的气液传质设备如微滴反应器、微通道装置等开始得到应用。
这些新型设备能够提高传质效率、降低能耗,并满足高效、精细化生产的需求。
此外,化工原理气液传质设备的设计和运行也越来越注重安全性和环保性。
在设计上,需要考虑到设备的稳定性、材料的选择以及操作的方便性。
在运行过程中,需要确保气体和液体的流动平稳,避免泄漏和废液的排放。
精馏塔结构
10. 气液传质设备精馏和吸收都属气液传质过程,过程进行的主要设备是塔设备。
它广泛用于各种化工生产中。
本章主要讨论其设计和应用、操作情况。
塔设备可按气液接触部件的结构形式分为:板式塔和填料塔。
无论哪一种塔设备,其基本功能都在于提供气、液两相充分接触的机会,使热质两种传递过程能够有效的进行,还要使接触后两相及时分开,互不夹带。
评价塔设备的基本指标主要包括:1、生产能力:即单位塔截面上单位时间的物料处理量;2、分离效率:对板式塔是指每层塔板可达到的分离程度;对填料塔是指单位高度填料层所能达到的分离程度;3、适应能力及操作弹性:指对各种物料性质的适应性以及在负荷波动时维持稳定操作而且保持较高分离效率的能力;4、流动阻力:即气相通过每层塔板或单位高度填料层的压强降;5 造价和安装、维修的难易。
在实际生产中,一个塔的性能不仅与其结构因素有关,还与设计是否合理、使用是否得当、操作范围是否在适宜范围之内等因素有关。
10.1 板式塔10.1.1 概述板式塔的设计意图 板式塔的结构简图见图10-1。
塔体是圆柱形,塔内每隔一定间距装一块塔板。
液体由上部进入流过每层塔板,气体由下部进入穿过每层塔板,板上有一定液层,以保持气液接触。
在总体上汽液呈逆流,在每块塔板上汽液成错流。
筛孔塔板的构造 塔板是板式塔的主要部件。
塔板的形式有许多种,此处以筛孔塔板为例进行介绍。
塔板的主要构件或结构包括:1、塔板上的气体通道,主要是使气体通过并与板上液体接触。
对筛板塔、筛孔就是按一定排列方式钻出的小孔,孔径一般3~8mm,也有大孔径12~25mm。
2、溢流堰为使塔板上保留一定液层,板出口处装置溢流堰,大液量采用平直堰,小液量采用齿形堰,高用hw,长度用lw表示。
3、降液层每层塔板下流的液体经降液管流入下层塔板。
对小塔采用管式降液管,对稍大一点的塔都采用弓形降液管。
降液层下部必须液封,以防止气体短路,从降液管进入上层塔板。
液封的方法有两种:一是在降液管前安装进口堰,但进口堰高度必须小于出口堰高,另一种是采用凹形受液盘,即如图所示。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
塔内逐板接触进行质、热交换,故两相
的组成沿塔高呈阶跃式变化。
气体
DJ 塔盘
新型塔板
板式塔
板式塔
第一节 概 述(Introduction)
三、评价塔设备的基本性能指标
1.生产能力:单位塔截面单位时间的处理量
2.分离效率: 板式塔:每层塔板的分离程度 填料塔:单位高度填料层所能达到的分离程度
3.操作弹性:塔的最大处理量与最小处理量之比,通常 以最大气速负荷与最小气速负荷之比表示; 4.压强降:指气相通过每层塔板或单位高度填料 的压强降;
为保证塔的正常操作,漏液量应不大于液体流量的10%。 漏液量达到10%的气体速度称为漏液速度,它是板式塔操作 气速的下限。
当板上结构均匀、各处干板阻力相等时,板上液层阻力即液 层厚度的均匀程度将直接影响气体的分布。
板上液层厚度不均匀:液层波动和液面落差。
液层波动:波峰处液层厚,阀孔气量小、易漏液。由此引起 的漏液是随机的。可在设计时适当增大干板阻力。
冲击或气泡破裂时获得了足够的向上初速度而被弹溅到 上层塔板。夹带量与板间距有关。
后果:过量的液沫夹带常造成液相在塔板间的返混,进而导 致板效率严重下降。为维持正常操作,需将液沫夹带限制在 一定范围。
3.气泡夹带 液体在降液管中停留时间太短,大量气泡被液体卷进下层
塔板。
后果:液沫夹带是液体的返混,气泡夹带是气体的返混,均对 传质不利。严重时可诱发液泛,完全破坏塔的正常操作。 液沫夹带和气泡夹带是不可避免的,但夹带量必需严格地控制 在最大允许值范围内。
⒉使接触后的汽液两相及时分开,互不夹带。
第一节 概 述(Introduction) 二、塔设备的分类
板式塔
填料塔
填料塔
在圆柱形壳体内装填一定高度的填料,
液体经塔顶喷淋装置均匀分布于填料层
顶部上,依靠重力作用沿填料表面自上
溶剂
而下流经填料层后自塔底排出;气体则
在压强差推动下穿过填料层的空隙,由
塔的一端流向另一端。气液在填料表面
操作时,气体经筛孔分散成小股气 流鼓泡通过液层,气液间密切接触 而进行传热和传质。在正常的操作 条件下,通过筛孔上升的气流,应 能阻止液体经筛孔向下泄漏。 优点:结构简单、造价低,板上液 面落差小,气体压降低,生产能力 大,传质效率高。 缺点:筛孔易堵塞,不宜处理易结 焦、粘度大的物料。
第二节 板式塔 Plate (tra板的最新进展
由于浮阀塔板的气体流通面积能随气体负荷变 动自动调节,因而能在较宽的气体负荷下保持稳 定操作;同时气液接触时间长,雾沫夹带少,具有 良好的操作弹性和较高的塔板效率,在工业中得 到了较为广泛地应用。下面重点介绍一下浮阀 塔板的最新进展。
传统的F1型浮阀塔板存在的不足:
F1型浮阀塔板依然存在着不足:(1)浮阀阀盖上 方无鼓泡区,其上方气液接触状况较差,造成塔板 传质效率降低;(2)塔板上液面梯度较大,气体在 液体流动方向上分布不均匀;(3)从阀孔出来的气 体向四周吹出,导致塔板上液体返混程度较大;(4) 在操作中,浮阀和阀孔易被磨损,浮阀易脱落。
鼓泡区:气液两相传热、传质 降液区:液体通道,小气泡聚合成大气泡再返回 受液区:接受降液管的液体 安定区:减少降液管气泡夹带量 边缘区:支撑塔板及塔板上液体
第二节 板式塔 Plate (tray) tower
2.主要构件
气体通道 鼓泡元件:形成气液两相传热传质的主要构件, 型式有筛板型、泡罩型、浮阀型、喷射型等等 溢流堰
过程的顺利进行,再者将降液管出口封在液面以 下,以免汽体短路从降液管中上升,影响传质过 程的进行。 形式:平形、齿形
平形
齿形
第二节 板式塔 Plate (tray) tower
(4) 溢流型式
单溢流
双溢流
U型溢流
三、塔板的工作情况
液体从上层塔板经
降液管进入塔板后,
在板工作区与气相接
触,充满气泡,成为泡沫
层,离开工作区后变成
清液,夹带少量泡沫越
过溢流堰顶流入降液
C
管.
气体从下层板进入
板面,通过液层鼓泡而
出,离开液面时夹带出
一些小液滴,一部分可
能随气流进入上层板,
称为雾沫夹带.
第二节 板式塔 Plate (tray) tower
四、板式塔常见的不正常操作
1.气泡夹带 2.过量漏液 3.雾沫夹带 4.液泛(淹塔)
液面落差:塔板入口侧的液层厚于塔板出口侧,使气流偏向 出口侧,入口侧的阀孔则因气量小而发生漏液。塔板上设入 口安定区可缓解此现象。
2.液沫夹带
气体鼓泡通过板上液层时,将部分液体分散成液滴,而部 分液滴被上升气流带入上层塔板。
原因: (1) 小液滴的沉降速度小于液层上方空间上升气流的速度,
夹带量与板间距无关; (2) 较大液滴的沉降速度虽大于气流速度,但它们在气流的
第二节 板式塔 Plate (tray) tower
气相鼓泡元件:泡罩(泡帽)
第二节 板式塔 Plate (tray) tower
优点:低气速下也不致 产生严重的漏液现象,故 弹性大。操作稳定,不易 堵塞。
缺点:生产能力小、 结构复杂,造价高、压降 大、 效率低。
泡罩塔
2筛孔塔板
早期对其性能认识不足,为易漏液、操作弹性小、难以稳定 操作等问题所困扰。无升气管和泡罩.
(二)塔板类型
塔板是板式塔的基本构件,决定塔的性能。
1、逆流塔板(穿流式塔板)
塔板间没有降液管,气、液两相同时由 塔板上的孔道或缝隙逆向穿流而过,板 上液层高度靠气体速度维持。
优点:塔板结构简单,板上无液面差, 板面充分利用,生产能力较大;
缺点:板效率及操作弹性不及溢流塔板。
液相 气相
与溢流式塔板相比,逆流式塔板应用范 围小得多,常见的板型有筛孔式、栅板 式、波纹板式等。
舌型塔板特点:
优点:气液并流避免了返混和液面落差,塔板上液层较 低,塔板压降较小。
气流方向近于水平。相同的液气比下,舌形塔板的液沫 夹带量较小,故可达较高的生产能力。
缺点:张角固定,在气量较小时,经舌孔喷射的气速低, 塔板漏液严重,操作弹性小。
液体在同一方向上加速,有可能使液体在板上的停留时间 太短、液层太薄,板效率降低。
条形浮阀
条形浮阀的特点为:条形浮阀不会旋转,因而不易 磨损,阀片不会卡死、脱落;由于条形浮阀的气体 从两侧喷出,不像圆形浮阀从四周喷出,所以塔板 上的液体返混小于圆形类浮阀塔板,效率相对较 高;可以排出较圆孔形更大的开孔率,从而提高处 理能力。
条形浮阀存在的不足
①与传统圆形浮阀类似,阀盖上方无鼓泡区,造成 塔板传质效率降低; ②液面落差较大 ③长条形阀孔的四个锐角会形成严重的应力集 中,易引起塔板的机械损坏。 因此近年来国内不仅对条形浮阀的性能进行大 量研究,还针对条形浮阀的不足,开发出多种形式 的条形浮阀。
1、漏液
漏液:部分液体不是横向流过塔板后经降液管流下,而是从 阀孔直接漏下。
原因:气速较小时,气体通过阀孔的速度压头小,不足以抵 消塔板上液层的重力;气体在塔板上的不均匀分布也 是造成漏液的重要原因。
后果:导致气液两相在塔板上的接触时间减少,塔板效率下 降,严重的漏液使塔板上不能形成液层,气液无法进 行传热、传质,塔板将失去其基本功能。
降液管
受液盘
第二节 板式塔 Plate (tray) tower
液体通道 (1)降液管 作用:液体通道,让液体在其中停留一段时间,使
液体所夹带的汽泡有充分的时间得以从液体中溢出。 型式:弓形、圆形、矩形;
圆形
弓形
矩形
第二节 板式塔 Plate (tray) tower
(2)受液盘 作用:接受由降液管下来的液体,缓冲液体流下时的冲击作用,
2、溢流塔板 (错流式塔板)
塔板间有专供液体溢流的降液管 (溢流管),横向流过塔板的流体与由 下而上穿过塔板的气体呈错流流动。 板上液体的流径与液层的高度可通过 堰 适当安排降液管的位置及堰的高度给 予控制,从而可获得较高的板效率, 但降液管将占去塔板的传质有效面积, 影响塔的生产能力。
降液管
液
相
ADV微分浮阀
ADV微分浮阀在阀盖上开小阀孔, 充分利用浮阀上部的传质空间,使 气体分散更细密均匀,气液接触更 充分,提高了气液分布的均匀度; 阀脚采用新的结构设计,使浮阀安 装快捷方便,操作时浮阀不易旋转, 不会脱落。与F1型浮阀相比,微分 浮阀的塔板效率提高了10%~ 20%,塔板处理能力提高约40%。
第二节 板式塔
(一)板式塔的主要部件
受液区
1、降液管:板上的液体通过降 液管流至下一层塔板
溢流堰
2、出口堰(溢流堰):用来保 持塔板上有一定厚度的液层
3、入口堰:对进入塔板的液体 起分布和缓冲作用,有的塔不 设入口堰
开孔区
降液管
4、鼓泡构件:形成气液两相传质、传热的主要构件 (是对板式塔研究最多的元件)。所用鼓泡构件不同 导致塔板类型有多种。
导向圆浮阀
导向圆浮阀在阀盖上开设导向孔,增大 了气体通道的有效面积,气体分布较为 均匀,有效地降低了气速,减少了雾沫夹 带量,同时降低了液面梯度和塔板压力 降,提高了传质效果。另外,它同时在阀 孔内设置槽孔,避免了阀体的旋转、磨 损、脱落。与F1型浮阀相比,塔板压降 降低了100~200Pa,处理能力提高 15%~35%,塔板效率提高10%~20%。
第七章
气液传质设备
(Mass Transfer Equipments)
第七章 气液传质设备
主要内容
第一节 第二节 第三节 第四节
概述 板式塔 填料塔 填料塔与板式塔的比较
第一节 概 述(Introduction)
一、气、液传质设备(塔设备)的作用 基本作用有两个:
⒈提供气、液两相充分接触的场所,使传热、 传质两种传递过程能够迅速有效地进行;