多目标非线性规划程序(Matlab)
如何使用Matlab进行最优化和多目标优化问题求解
如何使用Matlab进行最优化和多目标优化问题求解Matlab是一种强大的数学计算工具,广泛应用于各个领域的科学研究和工程实践中。
其中,最优化和多目标优化问题的求解是Matlab的一项重要功能。
本文将介绍如何使用Matlab进行最优化和多目标优化问题的求解,并提供一些实际应用案例。
一、最优化问题求解最优化问题求解是指在给定的约束条件下,寻找一个使得目标函数取得最大(或最小)值的变量组合。
Matlab提供了多种最优化算法,如线性规划、二次规划、非线性规划等。
下面以非线性规划为例,介绍如何使用Matlab进行最优化问题的求解。
1. 准备工作在使用Matlab进行最优化问题求解之前,需要先定义目标函数和约束条件。
目标函数是最优化问题的核心,可以是线性的或非线性的。
约束条件可以是等式约束或不等式约束。
同时,还需要确定变量的取值范围和初值。
2. 选择合适的算法Matlab提供了多个最优化算法,根据问题的特点选择合适的算法是非常重要的。
常用的算法有fmincon、fminunc、fminsearch等。
例如,fmincon函数适用于求解具有约束条件的非线性规划问题,而fminunc函数适用于求解无约束或有约束的非线性规划问题。
3. 调用相应的函数根据选择的算法,调用相应的函数进行求解。
以fmincon函数为例,其调用方式为:```[x, fval] = fmincon(fun,x0,A,b,Aeq,beq,lb,ub,nonlcon,options)```其中,fun为目标函数,x0为变量的初值,A、b为不等式约束矩阵和向量,Aeq、beq为等式约束矩阵和向量,lb、ub为变量的下界和上界,nonlcon为非线性约束函数,options为求解选项。
4. 解析结果求解完成后,可以通过解析结果来评估求解器的性能。
Matlab提供了fval和exitflag两个输出参数,其中fval表示最优解的目标函数值,exitflag表示求解器的退出标志。
MATLAB优化应用非线性规划
MATLAB优化应用非线性规划非线性规划是一类数学优化问题,其中目标函数和约束条件都是非线性的。
MATLAB作为一种强大的数值计算软件,提供了丰富的工具和函数,可以用于解决非线性规划问题。
本文将介绍如何使用MATLAB进行非线性规划的优化应用,并提供一个具体的案例来演示。
一、MATLAB中的非线性规划函数MATLAB提供了几个用于解决非线性规划问题的函数,其中最常用的是fmincon函数。
fmincon函数可以用于求解具有等式约束和不等式约束的非线性规划问题。
其基本语法如下:x = fmincon(fun,x0,A,b,Aeq,beq,lb,ub,nonlcon,options)其中,fun是目标函数,x0是变量的初始值,A和b是不等式约束的系数矩阵和右端向量,Aeq和beq是等式约束的系数矩阵和右端向量,lb和ub是变量的上下界,nonlcon是非线性约束函数,options是优化选项。
二、非线性规划的优化应用案例假设我们有一个工厂,需要生产两种产品A和B,目标是最大化利润。
产品A 和B的生产成本分别为c1和c2,售价分别为p1和p2。
同时,我们需要考虑两种资源的限制,分别是资源1和资源2。
资源1在生产产品A和B时的消耗分别为a11和a12,资源2的消耗分别为a21和a22。
此外,产品A和B的生产量有上下限限制。
我们可以建立以下数学模型来描述这个问题:目标函数:maximize profit = p1 * x1 + p2 * x2约束条件:c1 * x1 + c2 * x2 <= budgeta11 * x1 + a12 * x2 <= resource1a21 * x1 + a22 * x2 <= resource2x1 >= min_production_Ax2 >= min_production_Bx1 <= max_production_Ax2 <= max_production_B其中,x1和x2分别表示产品A和B的生产量,budget是预算,min_production_A和min_production_B是产品A和B的最小生产量,max_production_A和max_production_B是产品A和B的最大生产量。
Matlab求解非线性规划,fmincon函数的用法总结
Matlab求解⾮线性规划,fmincon函数的⽤法总结Matlab求解⾮线性规划,fmincon函数的⽤法总结1.简介在matlab中,fmincon函数可以求解带约束的⾮线性多变量函数(Constrained nonlinear multivariable function)的最⼩值,即可以⽤来求解⾮线性规划问题matlab中,⾮线性规划模型的写法如下min\ f(x) \\ s.t. \begin{equation} \left\{ \begin{array}{**lr**} A \cdot x \leq b \\ Aeq\cdot x =beq\\ c(x)\leq0 \\ ceq(x)=0 \\ lb \leq x \leq ub\end{array} \right. \end{equation} \\ ~\\ f(x)是标量函数,x,b,beq是向量,A,Aeq是矩阵 \\ c(x)和ceq(x)是向量函数2.基本语法[x,fval]=fmincon(fun,x0,A,b,Aeq,beq,lb,ub,nonlcon,options)x的返回值是决策向量x的取值,fval的返回值是⽬标函数f(x)的取值fun是⽤M⽂件定义的函数f(x),代表了(⾮)线性⽬标函数x0是x的初始值A,b,Aeq,beq定义了线性约束 ,如果没有线性约束,则A=[],b=[],Aeq=[],beq=[]lb和ub是变量x的下界和上界,如果下界和上界没有约束,则lb=[],ub=[],也可以写成lb的各分量都为 -inf,ub的各分量都为infnonlcon是⽤M⽂件定义的⾮线性向量函数约束options定义了优化参数,不填写表⽰使⽤Matlab默认的参数设置3.实例⽰例,求下列⾮线性规划:min\ f(x)=x_1^2+x_2^2+x_3^2+8\\ s.t. \begin{equation} \left\{ \begin{array}{**lr**} x_1^2-x_2+x_3^2\geq0\\ x_1+x_2^2+x_3^2\leq20\\ -x_1-x_2^2+2=0\\ x_2+2x_3^2=3\\ x_1,x_2,x_3\geq0 \end{array} \right. \end{equation}(1)编写M函数fun1.m 定义⽬标函数:function f=fun1(x);f=x(1).^2+x(2).^2+x(3).^2+8;(2)编写M函数fun2.m定义⾮线性约束条件:function [g,h]=fun2(x);g=[-x(1).^2+x(2)-x(3).^2x(1)+x(2).^2+x(3).^3-20];h=[-x(1)-x(2).^2+2x(2)+2*x(3).^2-3];(3)编写主程序函数[x,y]=fmincon('fun1',rand(3,1),[],[],[],[],zeros(3,1),[],'fun2')所得结果为:x_1=0.5522,x_2=1.2033,x_3=0.9478\\ 最⼩值y=10.651Processing math: 0%。
非线性规划的MATLAB解法
非线性规划问题通常具有多个局部最 优解,解的稳定性与初始条件有关, 需要使用特定的算法来找到全局最优 解。
非线性规划的应用场景
数据拟合、模型选择、参 数估计等。
生产计划、物流优化、设 备布局等。
投资组合优化、风险管理、 资本预算等。
金融
工业
科研
非线性规划的挑战与解决方法
挑战
非线性规划问题可能存在多个局部最优解,且解的稳定性与初始条件密切相关,需要使用特定的算法来找到全局 最优解。
共轭梯度法
总结词
灵活、适用于大型问题、迭代方向交替
详细描述
共轭梯度法结合了梯度下降法和牛顿法的思 想,通过迭代更新搜索方向,交替使用梯度 和共轭方向进行搜索。该方法适用于大型非 线性规划问题,具有较好的灵活性和收敛性。
04
非线性规划问题的约束 处理
不等式约束处理
处理方式
在Matlab中,可以使用 `fmincon`函数来求解非线性规划 问题,该函数可以处理不等式约 束。
要点二
详细描述
这类问题需要同时考虑多个目标函数,每个目标函数可能 有不同的优先级和权重。在Matlab中,可以使用 `gamultiobj`函数来求解这类问题。该函数可以处理具有 多个目标函数的约束优化问题,并允许用户指定每个目标 函数的权重和优先级。
谢谢观看
具体操作
将等式约束条件表示为线性方程组,并使用`Aeq`参 数指定系数矩阵,使用`beq`参数指定常数向量。
注意事项
等式约束条件需要在可行域内满足,否则会 导致求解失败。
边界约束处理
处理方式
边界约束可以通过在目标函数中添加惩罚项来处理,或者使用专门的优化算法来处理。
具体操作
在目标函数中添加惩罚项时,需要在目标函数中添加一个与边界约束相关的项,并调整 其权重以控制边界约束的重要性。
MATLAB优化工具箱--线性规划-非线性规划
linprog输入参数说明: f, A, b, Aeq, beq lb,ub 边界设置 说明: 如果x(i)无边界,则 lb(i) = -inf, ub(i) = inf
6
linprog 输出参数说明: x 决策变量取值 fval 目标函数最优值
exitflag > 0 成功找到最优解 0 达到最大迭代次数也没有找到最优解 < 0 该线性规划问题不可行或者linprog计
10
fmincon函数求解形如下面的有约束非线性规 划模型
一般形式:
min f ( X ) s.t. AX b
Aeq X beq l X u c(X ) 0 ceq ( X ) 0
Matlab求解有约束非线性最小化 1.约束中可以有等式约束 2.可以含线性、非线性约束均可
数学实验
输入参数语法:
例子:某农场种植两种作物A、B,需要甲、乙两种化肥。种植 每亩作物A和作物B分别需用的化肥数,可得利润及农场现有化
肥数量如下表所示:
问在现有条件下,如何安排种植,才能使利润最大?
作物
每亩所需化肥 (百公斤)
现有化肥
AB (百公斤)
化肥
甲
23
100) 6 4
数学实验
例题建模
[x,fval,exitflag,output,lambda]=fmincon(fun,x0,...)
数学实验
输入参数的几点说明
模型中如果没有A,b,Aeq,beq,lb,ub的限制,则以空矩阵[ ]作为 参数传入; nonlcon:如果包含非线性等式或不等式约束,则将这些函数
编写为一个Matlab函数, nonlcon就是定义这些函数的程序文件名;
3
遗传算法解决非线性规划问题的Matlab程序
遗传算法解决非线性规划问题的Matlab程序首先,让我们来了解一下什么是非线性规划问题。
非线性规划问题是指目标函数或约束条件中至少有一个是非线性函数的规划问题。
与线性规划问题不同,非线性规划问题的求解往往没有通用的解析方法,需要借助数值优化算法来找到最优解或近似最优解。
遗传算法是一种基于自然选择和遗传机制的随机搜索算法。
它模拟了生物进化的过程,通过对种群中个体的选择、交叉和变异操作,逐步优化个体,从而找到问题的最优解。
在解决非线性规划问题时,遗传算法将问题的解编码为染色体,通过适应度函数来评估染色体的优劣,然后通过遗传操作不断进化种群,直到找到满意的解。
接下来,我们开始介绍如何在 Matlab 中实现遗传算法来解决非线性规划问题。
首先,我们需要定义问题的目标函数和约束条件。
假设我们要解决的非线性规划问题是:\\begin{align}&\min f(x) = x_1^2 + x_2^2 2x_1x_2 + 2x_1 4x_2 + 5\\&\text{st } x_1 + x_2 \leq 5\\&-2 \leq x_1 \leq 2\\&-3 \leq x_2 \leq 3\end{align}\在 Matlab 中,我们可以定义目标函数如下:```matlabfunction f = objective(x)f = x(1)^2 + x(2)^2 2x(1)x(2) + 2x(1) 4x(2) + 5; end```约束条件可以通过定义一个函数来判断:```matlabfunction c, ceq = constraints(x)c =;ceq =;if x(1) + x(2) > 5c = x(1) + x(2) 5;endend```然后,我们需要设置遗传算法的参数。
这些参数包括种群大小、最大迭代次数、交叉概率、变异概率等。
```matlabpopSize = 50; %种群大小maxGen = 100; %最大迭代次数pc = 08; %交叉概率pm = 01; %变异概率```接下来,我们需要对个体进行编码。
多元非线性规划Matlab,非线性规划MATLAB代码
多元⾮线性规划Matlab,⾮线性规划MATLAB代码下⾯是三个⾮线性规划领域的算法。
课堂上给予了详细的讲解,在实践环节让学⽣编程实现,从⽽可以实验复杂⼀些的例⼦,加深对算法的理解。
下⾯共有四个程序grad,simplelinesearch,bfgs和phr,全部使⽤MATLAB语⾔编写。
这些代码远未完善,可修改余地很⼤,仅供教学之⽤。
function gradf=grad(hfun,x)%GRAD 数值法求函数在给定点处的导数值(⼀元函数)或梯度(多元函数)% gradf = grad(hfun,x0) hfun是函数句柄或内联函数,x0是⼀定点或⼀批点(按列);返回% 值gradf是函数在该点处的导数或梯度。
% 要求函数能对成批的点求函数值。
⽐如:feval(hfun,X)返回⼀个与X同列的⾏向量,对应于以% X每⼀列作为函数⾃变量⽽求得的函数值。
%% Reference: 《最优化计算原理与算法程序设计》, 粟塔⼭等编著, 国防科技⼤学出版社% (湖南), 2001.%% $Author: WBC $ $Date: 2003/10/25 $n = length(x);h=1e-3; % 数值法求梯度的步长w1=zeros(n,1);%h/2w2=w1; %-h/2w3=w1; %hw4=w1; %-hfor i=1:nx(i)=x(i)+h/2;w1(i)=hfun(x);x(i)=x(i)-h;w2(i)=hfun(x);x(i)=x(i)-h/2;w4(i)=hfun(x);x(i)=x(i)+2*h;w3(i)=hfun(x);x(i)=x(i)-h;endgradf=(8*(w1-w2)-(w3-w4))/(6*h);function [fv,x,lambda,exitflag]=simplelinesearch(hf,rho,l,u,lambda0,fv0,x0,g,d)%LINESEARCH 简单线搜索%输⼊参数:% hf -- 函数句柄,⽬标函数% rho -- 实标量,简单线搜索的参数,介于0到0.5之间的数% l -- 实标量,简单线搜索的参数,介于0到1之间的数% u -- 实标量,简单线搜索的参数,介于0到1之间的数,满⾜u>l% alpha0 -- 实标量,步长的初始值% fv0 -- 实标量,⼀维搜索的初始⽬标函数值,即 hf(x0+alpha_0*d)% x0 -- 实列向量,当前点% g -- 实列向量,函数hf在当前点处的梯度% d -- 实列向量,函数hf在当前点处的搜索⽅向%输出参数:% fv -- 实标量,⼀维搜索完成后的⽬标函数值,即 hf(x0+alpha*d)% x -- 实列向量,下⼀个点% lambda -- 实标量,可接受步长% exitflag -- 整型标量,等于0表⽰线搜索成功,等于-1表⽰线搜索失败(内部迭代次数⼤于iterMax) %参考⽂献:倪勤,最优化⽅法与程序设计,科学出版社% Date: 2009/12/20lambda = lambda0;x = x0;i = 0;imax = 30; % 最⼤迭代次数,⽤户可以修改% 主循环gd = dot(g, d);while i <= imaxfv = hf(x + lambda*d);i = i + 1;if fv < fv0 + lambda * rho * gd;x = x + lambda*d;exitflag = 0;return;endlambda_bar = -gd*lambda^2*0.5/(fv-fv0-lambda*gd);lambda = min(lambda_bar, u*lambda);endexitflag=0;if i >= imax && fv >= fv0fv = fv0;x = x0;lambda = 0;exitflag = -1;endfunction [fv, x, exitflag] = bfgs(hf, x0, epsi)%BFGS ⽆约束问题的BFGS算法%输⼊参数:% hf -- 函数句柄,⽬标函数% x0 -- 实列向量,初始点% epsi -- 实标量,终⽌误差%输出参数:% fv -- 实标量,⼀维搜索完成后的⽬标函数值,即 hf(x0+alpha*d)% x -- 实列向量,下⼀个点% exitflag -- 整型标量,等于0表⽰成功,等于-1表⽰失败(迭代次数⼤于iter_max) %参考⽂献:倪勤,最优化⽅法与程序设计,科学出版社% Date: 2009/12/20%%初始化%k = 0;rho = 0.01;l = 0.15;u = 0.85;x =x0;fv = hf(x);n = length(x);H = eye(n);iter_max = 100;%检查终⽌条件%g = grad(hf, x);while norm(g) > epsi && k<= iter_maxd = -H*g;lambda0 = 1.0;%%做线搜索,如果成功,则返回更新当前点%[fv, x, lambda, exitflag] = simplelinesearch(hf, rho, l, u, lambda0, fv, x, g, d); if exitflag == -1 %重开始H = eye(n);else%%更新H%g_old = g;g = grad(hf, x);p = lambda*d;q = g- g_old;Hq = H*q;pq = p'*q;qHq = q'*Hq;v = sqrt(qHq) * (p/pq-Hq/qHq);H = H + p*p'/pq - Hq*Hq'/qHq + v*v';endk = k+1;endexitflag = 0;if k > iter_maxexitflag = -1;endfunction [fv, x, exitflag] = phr(hf, cf, x0)%输⼊参数:% hf -- 函数句柄,⽬标函数% cf -- 函数句柄,约束条件,包含等式约束和不等式约束% x0 -- 实列向量,初始点%输出参数:% fv -- 实标量,⼀维搜索完成后的⽬标函数值,即 hf(x0+alpha*d)% x -- 实列向量,下⼀个点% exitflag -- 整型标量,等于0表⽰成功,等于-1表⽰失败(迭代次数⼤于iter_max) %参考⽂献:倪勤,最优化⽅法与程序设计,科学出版社% Date: 2009/12/20%%初始化%epsi = 1.0e-4;k = 0;sigma = 0.8;c = 1.5;theta = 0.8;x = x0;[ce, ci] = cf(x);l = length(ce);li = length(ci);lambda = ones(l+li, 1) * 0.1;iter_max = 100;phi = 0;if lphi = phi + ce'*ce;endif liphi = phi + sum(min(ci,lambda(l+1:end)/sigma).^2);endwhile phi > epsi && k <= iter_max%%hmf = @(x) mfun(x, hf, cf,lambda, sigma);[fv, x] = bfgs(hmf, x, epsi);[ce, ci] = cf(x);phi_old = phi;phi = 0;if lphi = phi + ce'*ce;endif liphi = phi + sum(min(ci,lambda(l+1:end)/sigma).^2); endif phi > epsi%%更新罚因⼦%if k >= 2 && phi/phi_old > thetasigma = c * sigma;end%%更新乘⼦%if llambda(1:l) = lambda(1:l) - sigma*ce;endif lilambda(l+1:end) = max(0, lambda(l+1:end) - sigma*ci); endendk = k+1;endexitflag = 0;fv = hf(x);exitflag = -1;end%%乘⼦罚函数%function fv = mfun(x, hf, cf, lambda, sigma)[ce, ci] = cf(x);l = length(ce);li = length(ci);fv = 0;fv = fv + hf(x);if lfv = fv - lambda(1:l)'*ce + 0.5*sigma*ce'*ce;endif lifv = fv + 0.5/sigma*sum(max(0,lambda(l+1:end) - sigma*ci).^2 - lambda(l+1:end).^2); end这⾥是演⽰代码:%% bfgs演⽰%教材P328.1-3hf1 = @(x) 100 * (x(2) - x(1).^2).^2 + (1 - x(1)).^2; %banana函数hf2 = @(x) (6 + x(1) + x(2)).^2 + (2 - 3*x(1) - 3*x(2) - x(1)*x(2)).^2;hf3 = @(x) x(1).^2 - 2*x(1)*x(2) + 4*x(2).^2 + x(1) - 3*x(2);[fv,x,exitflag]=bfgs(hf1,[0;0],0.001);fvxexitflag[fv,x,exitflag]=bfgs(hf2,[4;6],0.001);fvxexitflag[fv,x,exitflag]=bfgs(hf3,[1;1],0.001);fvexitflag%% phr算法%教材P414.5hf1 = @(x) x(1).^2 + x(2).^2;cf1 = @(x) deal([], x(1) - 1);hf2 = @(x) x(1) + (x(2) + 1).^2/3;cf2 = @(x) deal([],[x(1); x(2) - 1]);%教材P392.2hf3 = @(x) x(1).^2 + x(1).*x(2) + 2*x(2).^2 - 6*x(1) - 2*x(2) - 12*x(3);cf3 = @(x) deal(x(1)+x(2)+x(3)-2,...[x(1) - 2*x(2) + 3; x(1); x(2); x(3)]);%其它例⼦hf4 = @(x) 6*x(2)*x(5) + 7*x(1)*x(3) + 3*x(2)^2;cf4 = @(x) deal([3*x(2)^2*x(5) + 3*x(1)^2*x(3) - 20.875;x(1) - 0.3*x(2)],...[-x(1) + 0.2*x(2)*x(5) + 71-0.9*x(3) + x(4)^2 + 67x(3)x(5) - 1-x(3) + 20x(4) - 0.1*x(5)-x(4) + 0.5*x(5)x(3) - 0.9*x(5)]);hf5 = @(x) exp(x(1)) * (4*x(1)^2 + 2*x(2)^2 + 4*x(1)*x(2) + 2*x(2) + 1);cf5 = @(x) deal([], [x(1) + x(2) - x(1)*x(2) - 1.5; x(1)*x(2) + 10]);[fv, x, exitflag] = phr(hf1, cf1, [3;2]); fv x exitflag [fv, x, exitflag] = phr(hf2, cf2, [3;2]); fv x exitflag [fv, x, exitflag] =phr(hf3, cf3, [1;1;0]); fv x exitflag [fv, x, exitflag] = phr(hf4, cf4, [1; 4; 5; 2; 5]); fv x exitflag [fv, x, exitflag] = phr(hf5, cf5, [-1; 1]); fv x exitflag。
Matlab非线性规划
Matlab⾮线性规划⾮线性规划在matlab⾮线性规划数学模型可以写成⼀下形式:minf(x)\\ s.t.\begin{cases} Ax \le B \\ Aeq·x = Beq\\ C(x) \le 0\\ Ceq(x) = 0 \end{cases}f(x)为⽬标函数,A,B,Aeq,Beq为线性约束对应的矩阵和向量,C(x),Ceq(x)为⾮线性约束。
Matlab求解命令为:X = fmincon(fun, x0, A, B, Aeq, Beq, LB, UB, NONLCON, OPTIONS) fun为⽬标函数,x0为初值,A,B,Aeq,Beq为线性约束对应的矩阵和向量,LB,UB分别为x的下限和上限,NONLCON为⾮线性约束(需要写⾃定义函数),OPTIONS为优化参数。
【例】求下列⾮线性规划问题minf(x) = x^2_1+x^2_2+8\\ s.t.\begin{cases} x_1^2-x_2 \ge 0\\ -x_1-x_2^2+2=0\\ x_1,x_2 \ge 0 \end{cases}编写函数⽂件:fun1.m,fun2.mfunction f = fun1(x)f = x(1)^2 + x(2)^2 + 8;endfunction [g,h] = fun2(x)g = -x(1)^2 + x(2);%g代表不等式约束,即代表约束条件-x(1)^2 + x(2) <= 0。
matlab默认g<=0,所以题⽬中的条件被改成了相反数。
%如果有多个不等式约束,写成g(1) = 关于x的函数; g(2) = 关于x的函数;······h = -x(1) - x(2)^2 + 2;%h代表等式约束,即代表约束条件 -x(1) - x(2)^2 + 2 = 0。
%如果有多个等式约束,写成h(1) = 关于x的函数; h(2) = 关于x的函数;······end注:在写fun2时,可以把线性和⾮线性约束的等式和不等式约束都按照这种格式写到这个函数⾥⾯,这样的话fun2就包含了所有约束条件,在后⾯运⾏fmincon()时不需要再写A,B,Aeq,Beq,直接⽤[]略过。
遗传算法解决非线性规划问题的Matlab程序
非线性整数规划的遗传算法Matlab程序(附图)通常,非线性整数规划是一个具有指数复杂度的NP问题,如果约束较为复杂,Matlab 优化工具箱和一些优化软件比如lingo等,常常无法应用,即使能应用也不能给出一个较为令人满意的解。
这时就需要针对问题设计专门的优化算法。
下面举一个遗传算法应用于非线性整数规划的编程实例,供大家参考!模型的形式和适应度函数定义如下:这是一个具有200个01决策变量的多目标非线性整数规划,编写优化的目标函数如下,其中将多目标转化为单目标采用简单的加权处理。
function Fitness=FITNESS(x,FARM,e,q,w)%% 适应度函数% 输入参数列表% x 决策变量构成的4×50的0-1矩阵% FARM 细胞结构存储的当前种群,它包含了个体x% e 4×50的系数矩阵% q 4×50的系数矩阵% w 1×50的系数矩阵%%gamma=0.98;N=length(FARM);%种群规模F1=zeros(1,N);F2=zeros(1,N);for i=1:Nxx=FARM{i};ppp=(1-xx)+(1-q).*xx;F1(i)=sum(w.*prod(ppp));F2(i)=sum(sum(e.*xx));endppp=(1-x)+(1-q).*x;f1=sum(w.*prod(ppp));f2=sum(sum(e.*x));Fitness=gamma*sum(min([sign(f1-F1);zeros(1,N)]))+(1-gamma)*sum(mi n([sign(f2-F2);zeros(1,N)]));针对问题设计的遗传算法如下,其中对模型约束的处理是重点考虑的地方function [Xp,LC1,LC2,LC3,LC4]=MYGA(M,N,Pm)%% 求解01整数规划的遗传算法%% 输入参数列表% M 遗传进化迭代次数% N 种群规模% Pm 变异概率%% 输出参数列表% Xp 最优个体% LC1 子目标1的收敛曲线% LC2 子目标2的收敛曲线% LC3 平均适应度函数的收敛曲线% LC4 最优适应度函数的收敛曲线%% 参考调用格式[Xp,LC1,LC2,LC3,LC4]=MYGA(50,40,0.3)%% 第一步:载入数据和变量初始化load eqw;%载入三个系数矩阵e,q,w%输出变量初始化Xp=zeros(4,50);LC1=zeros(1,M);LC2=zeros(1,M);LC3=zeros(1,M);LC4=zeros(1,M);Best=inf;%% 第二步:随机产生初始种群farm=cell(1,N);%用于存储种群的细胞结构k=0;while k %以下是一个合法个体的产生过程x=zeros(4,50);%x每一列的1的个数随机决定for i=1:50R=rand;Col=zeros(4,1);if R<0.7RP=randperm(4);%1的位置也是随机的Col(RP(1))=1;elseif R>0.9RP=randperm(4);Col(RP(1:2))=1;elseRP=randperm(4);Col(RP(1:3))=1;endx(:,i)=Col;end%下面是检查行和是否满足约束的过程,对于不满足约束的予以抛弃 Temp1=sum(x,2);Temp2=find(Temp1>20);if length(Temp2)==0k=k+1;farm{k}=x;endend%% 以下是进化迭代过程counter=0;%设置迭代计数器while counter%% 第三步:交叉%交叉采用双亲双子单点交叉newfarm=cell(1,2*N);%用于存储子代的细胞结构Ser=randperm(N);%两两随机配对的配对表A=farm{Ser(1)};%取出父代AB=farm{Ser(2)};%取出父代BP0=unidrnd(49);%随机选择交叉点a=[A(:,1:P0),B(:,(P0+1):end)];%产生子代ab=[B(:,1:P0),A(:,(P0+1):end)];%产生子代bnewfarm{2*N-1}=a;%加入子代种群newfarm{2*N}=b;%以下循环是重复上述过程for i=1:(N-1)A=farm{Ser(i)};B=farm{Ser(i+1)};P0=unidrnd(49);a=[A(:,1:P0),B(:,(P0+1):end)];b=[B(:,1:P0),A(:,(P0+1):end)];newfarm{2*i-1}=a;newfarm{2*i}=b;endFARM=[farm,newfarm];%新旧种群合并%% 第四步:选择复制FLAG=ones(1,3*N);%标志向量,对是否满足约束进行标记%以下过程是检测新个体是否满足约束for i=1:(3*N)x=FARM{i};sum1=sum(x,1);sum2=sum(x,2);flag1=find(sum1==0);flag2=find(sum1==4);flag3=find(sum2>20);if length(flag1)+length(flag2)+length(flag3)>0FLAG(i)=0;%如果不满足约束,用0加以标记endendNN=length(find(FLAG)==1);%满足约束的个体数目,它一定大于等于N NEWFARM=cell(1,NN);%以下过程是剔除不满主约束的个体kk=0;for i=1:(3*N)if FLAG(i)==1kk=kk+1;NEWFARM{kk}=FARM{i};endend%以下过程是计算并存储当前种群每个个体的适应值SYZ=zeros(1,NN);syz=zeros(1,N);for i=1:NNx=NEWFARM{i};SYZ(i)=FITNESS2(x,NEWFARM,e,q,w);%调用适应值子函数endk=0;%下面是选择复制,选择较优的N个个体复制到下一代while k minSYZ=min(SYZ);posSYZ=find(SYZ==minSYZ);POS=posSYZ(1);k=k+1;farm{k}=NEWFARM{POS};syz(k)=SYZ(POS);SYZ(POS)=inf;end%记录和更新,更新最优个体,记录收敛曲线的数据minsyz=min(syz);meansyz=mean(syz);pos=find(syz==minsyz);LC3(counter+1)=meansyz;if minsyz Best=minsyz;Xp=farm{pos(1)};endLC4(counter+1)=Best;ppp=(1-Xp)+(1-q).*Xp;LC1(counter+1)=sum(w.*prod(ppp));LC2(counter+1)=sum(sum(e.*Xp));%% 第五步:变异for i=1:Nif Pm>rand%是否变异由变异概率Pm控制AA=farm{i};%取出一个个体POS=unidrnd(50);%随机选择变异位R=rand;Col=zeros(4,1);if R<0.7RP=randperm(4);Col(RP(1))=1;elseif R>0.9RP=randperm(4);Col(RP(1:2))=1;elseRP=randperm(4);Col(RP(1:3))=1;end%下面是判断变异产生的新个体是否满足约束,如果不满足,此次变异无效 AA(:,POS)=Col;Temp1=sum(AA,2);Temp2=find(Temp1>20);if length(Temp2)==0farm{i}=AA;endendendcounter=counter+1end%第七步:绘收敛曲线图figure(1);plot(LC1);xlabel('迭代次数');ylabel('子目标1的值');title('子目标1的收敛曲线'); figure(2);plot(LC2);xlabel('迭代次数');ylabel('子目标2的值');title('子目标2的收敛曲线'); figure(3);plot(LC3);xlabel('迭代次数');ylabel('适应度函数的平均值');title('平均适应度函数的收敛曲线'); figure(4);plot(LC4);xlabel('迭代次数');ylabel('适应度函数的最优值');title('最优适应度函数的收敛曲线');贴出一幅运行得到的收敛曲线。
MATLAB求解非线性规划
MATLAB求解非线性规划非线性规划是一类涉及非线性目标函数或非线性约束条件的数学规划问题。
MATLAB是一种强大的数学计算软件,可以用来求解非线性规划问题。
本文将介绍MATLAB中求解非线性规划问题的方法。
1. 目标函数和约束条件在MATLAB中,非线性规划问题可以表示为以下形式:minimize f(x)subject to c(x)≤0ceq(x)=0lb≤x≤ub其中f(x)是目标函数,c(x)和ceq(x)是不等式和等式约束条件,lb和ub是变量的下限和上限。
2. 求解器MATLAB提供了多种求解器可以用来求解非线性规划问题。
其中常用的有fmincon和lsqnonlin。
lsqnonlin可以用来求解非线性最小二乘问题。
它使用的是Levenberg-Marquardt算法,能够有效地求解非线性最小二乘问题,并且具有较好的收敛性。
3. 示例下面我们来看一个求解非线性规划问题的示例。
假设我们要求解以下非线性规划问题:首先,我们需要定义目标函数和约束条件。
在MATLAB中,我们可以使用anonymous function来定义目标函数和约束条件。
代码如下:f = @(x)x(1)^2+2*x(2)^2+3*x(3)^2;c = @(x)[x(1)+x(2)+x(3)-4, x(1)*x(2)+x(1)*x(3)+x(2)*x(3)-3];ceq = [];lb = [0,0,0];接下来,我们使用fmincon求解非线性规划问题。
代码如下:[x,fval,exitflag,output] = fmincon(f,[1,1,1],[],[],[],[],lb,[],@(x)c(x));其中,第一个参数是目标函数,第二个参数是变量的初值,第三个参数是不等式约束条件,第四个参数是等式约束条件,第五个参数是变量的下限,第六个参数是变量的上限,第七个参数是非线性约束条件,最后一个参数是opts,可以设置其他求解参数。
多目标规划MATLABwgx
二、多目标规划的MATLAB求解
x = fgoalattain(@myfun,x0,goal,weight) where myfun is a MATLAB function such as function F = myfun(x) F = ... % Compute function values at x.
ceq = ...
% Nonlinear equalities at x
if nargout > 2 % Nonlcon called with 4 outputs
GC = ...
% Gradients of the inequalities
GCeq = ... % Gradients of the equalities
End
注意:一般 weight=abs(goal)
二、举例---有关循环控制系统优化问题
模型:x’=(A+BKC)x+Bu,设计K满足目标:
Y=Cx
1)循环系统的特征值(由命令eig(A+B*K*C)确定)的目标为goal = [-5,-3,-1] 2)K中元素均在[-4,4]中; 设特征值的weight= abs(goal),定义目标函数F如下: function F = eigfun(K,A,B,C) F = sort(eig(A+B*K*C)); % Evaluate objectives,由小到大排列
if nargout > 1 % Two output arguments
G = ... % Gradients evaluated at x
End
The gradient consists of the partial derivative dF/dx of each F at the point x.
多目标非线性规划程序Matlab完整版
多目标非线性规划程序M a t l a bDocument serial number【NL89WT-NY98YT-NC8CB-NNUUT-NUT108】f u n c t i o n[e r r m s g,Z,X,t,c,f a i l]=BNB18(fun,x0,xstat,xl,xu,A,B,Aeq,Beq,nonlcon,setts,options1,options2,maxSQPit,varargin );%·Dêy1£Díóa·§¨μü′ú·¨£úDê1ó£DèOptimization toolbox §3% Minimize F(x)%subject to: xlb <= x <=xub% A*x <= B% Aeq*x=Beq% C(x)<=0% Ceq(x)=0%% x(i)éaáD±á£êy£ò1ì¨μ% ê1óê%[errmsg,Z,X]=BNB18('fun',x0,xstat,xl,xu,A,B,Aeq,Beq,'nonlcon',setts)%fun£o Mt£±íê×Dˉ±êoˉêyf=fun(x)%x0: áDòᣱíê±á3μ%xstat£o áDòá£xstat(i)=0±íêx(i)aáD±á£1±íêêy£2±íê1ì¨μ%xl£o áDòᣱíê±á%xu: áDòᣱíê±áé%A: ó, ±íêD2μèêêμêy%B: áDòá, ±íêD2μèêêé%Aeq: ó, ±íêDμèêêμêy%Beg: áDòá, ±íêD2μèêêóòμ%nonlcon: Mt£±íê·Dêoˉêy[C,Ceq]=nonlin(x),DC(x)a2μèêê,% Ceq(x)aμèêê%setts: ·¨éè%errmsq: ·μ′íóìáê%Z: ·μ±êoˉêy×Dμ%X: ·μ×óa%%àyìa% max x1*x2*x3% -x1+2*x2+2*x3>=0% x1+2*x2+2*x3<=72% 10<=x2<=20% x1-x2=10% èD′ Moˉêy% function f=discfun(x)% f=-x(1)*x(2)*x(3);%óa% clear;x0=[25,15,10]';xstat=[1 1 1]';% xl=[20 10 -10]';xu=[30 20 20]';% A=[1 -2 -2;1 2 2];B=[0 72]';Aeq=[1 -1 0];Beq=10;% [err,Z,X]=BNB18('discfun',x0,xstat,xl,xu,A,B,Aeq,Beq);% XMAX=X',ZMAX=-Z%% BNB18 Finds the constrained minimum of a function of several possibly integer variables.% Usage: [errmsg,Z,X,t,c,fail] =%BNB18(fun,x0,xstatus,xlb,xub,A,B,Aeq,Beq,nonlcon,settings,options1,options2,maxSQPiter ,P1,P2,...)%% BNB solves problems of the form:% Minimize F(x) subject to: xlb <= x0 <=xub% A*x <= B Aeq*x=Beq% C(x)<=0 Ceq(x)=0% x(i) is continuous for xstatus(i)=0% x(i) integer for xstatus(i)= 1% x(i) fixed for xstatus(i)=2%% BNB uses:% Optimization Toolbox Version (R11) 09-Oct-1998% From this toolbox is called. For more info type help fmincon.%% fun is the function to be minimized and should return a scalar. F(x)=feval(fun,x).% x0 is the starting point for x. x0 should be a column vector.% xstatus is a column vector describing the status of every variable x(i).% xlb and xub are column vectors with lower and upper bounds for x.% A and Aeq are matrices for the linear constrains.% B and Beq are column vectors for the linear constrains.% nonlcon is the function for the nonlinear constrains.% [C(x);Ceq(x)]=feval(nonlcon,x). Both C(x) and Ceq(x) should be column vectors.%% errmsg is a string containing an error message if BNB found an error in the input.% Z is the scalar result of the minimization, X the values of the accompanying variables.% t is the time elapsed while the algorithm BNB has run, c is the number of BNB cycles and% fail is the number of unsolved leaf sub-problems.%% settings is a row vector with settings for BNB:% settings(1) (standard 0) if 1: use phase 1 by relaxation. This sometimes makes the algorithm% faster, because phase 1 means the algorithm first checks if there is a feasible solution% for a sub-problem before trying to find a best solution. If there is no feasible solution BNB% will not try to find a best solution.% settings(2) (standard 0) if 1: if the sub-problem did not converge do not branch. If a sub-% problem did not converge this means BNB did not find a solution for it. Normally BNB will% branch the problem so it can try again to find a solution.% A sub-problem that is a leaf of the branch-and-bound-three can not be branched. If such% a problem does not converge it will be considered unfeasible and the parameter fail will be% raised by one.% settings(3) (standard 0) if 1: if 1 a sub-problem that did not converge but did return a feasible% point will be considered convergent. This might be useful if fmincon is having a hard time with% a certain problem but you do want some results.% options1 and options2 are options structures for phase 1 and phase 2.% For details about the options structure type help optimset.% maxSQPiter is a global variable used by fmincon (if modified as described in .% maxSQPiter is 1000 by default.% P1,P2,... are parameters to be passed to fun and nonlcon.% F(x)=feval(fun,x,P1,P2,...). [C(x);Ceq(x)]=feval(nonlcon,x,P1,P2,...).% Type edit BNB18 for more info.% . Kuipers% e-mail% FI-Lab% Applied Physics% Rijksuniversiteit Groningen% To get rid of bugs and to stop fmincon from hanging make the following chances:%% In optim/private/ ($Revision: $ $Date: 1998/08/24 13:46:15 $):% Get EXITFLAG independent of verbosity.% After the lines: disp(' less than 2* but constraints are not satisfied.')% end% EXITFLAG = -1;% end% end% status=1;% add the line: if (strncmp(howqp, 'i',1) & mg > 0), EXITFLAG = -1; end;%% In optim/private/ ($Revision: $ $Date: 1998/09/01 21:37:56 $):% Stop qpsub from hanging.% After the line: % Andy Grace 7-9-90. Mary Ann Branch 9-30-96.% add the line: global maxSQPiter;% and changed the line: maxSQPiters = Inf;% to the line: if exist('maxSQPiter','var'), maxSQPiters = maxSQPiter; else maxSQPiters=inf; end;% I guess there was a reason to put maxSQPiters at infinity, but this works fine for me.global maxSQPiter;% STEP 0 CHECKING INPUTZ=[]; X=[]; t=0; c=0; fail=0;if nargin<2, errmsg='BNB needs at least 2 input arguments.'; return; end;if isempty(fun), errmsg='No fun found.'; return; end;if isempty(x0), errmsg='No x0 found.'; return;elseif size(x0,2)>1, errmsg='x0 must be a column vector.'; return; end;xstatus=zeros(size(x0));if nargin>2 & ~isempty(xstat)if all(size(xstat)<=size(x0))xstatus(1:size(xstat))=xstat;else errmsg='xstatus must be a column vector the same size as x0.'; return;end;if any(xstatus~=round(xstatus) | xstatus<0 | 2<xstatus)errmsg='xstatus must consist of the integers 0,1 en 2.'; return;end;end;xlb=zeros(size(x0));xlb(find(xstatus==0))=-inf;if nargin>3 & ~isempty(xl)if all(size(xl)<=size(x0))xlb(1:size(xl,1))=xl;else errmsg='xlb must be a column vector the same size as x0.'; return;end;end;if any(x0<xlb)errmsg='x0 must be in the range xlb <= x0.'; return;elseif any(xstatus==1 & (~isfinite(xlb) | xlb~=round(xlb)))errmsg='xlb(i) must be an integer if x(i) is an integer variabele.'; return;end;xlb(find(xstatus==2))=x0(find(xstatus==2));xub=ones(size(x0));xub(find(xstatus==0))=inf;if nargin>4 & ~isempty(xu)if all(size(xu)<=size(x0))xub(1:size(xu,1))=xu;else errmsg='xub must be a column vector the same size as x0.'; return;end;end;if any(x0>xub)errmsg='x0 must be in the range x0 <=xub.'; return;elseif any(xstatus==1 & (~isfinite(xub) | xub~=round(xub)))errmsg='xub(i) must be an integer if x(i) is an integer variabale.'; return;end;xub(find(xstatus==2))=x0(find(xstatus==2));if nargin>5if ~isempty(A) & size(A,2)~=size(x0,1), errmsg='Matrix A not correct.'; return; end; else A=[]; end;if nargin>6if ~isempty(B) & any(size(B)~=[size(A,1) 1]), errmsg='Column vector B not correct.'; return; end;else B=[]; end;if isempty(A) & ~isempty(B), errmsg='A and B should only be nonempty together.'; return; end;if isempty(B) & ~isempty(A), B=zeros(size(A,1),1); end;if nargin>7 & ~isempty(Aeq)if size(Aeq,2)~=size(x0,1), errmsg='Matrix Aeq not correct.'; return; end;else Aeq=[]; end;if nargin>8if ~isempty(Beq) & any(size(Beq)~=[size(Aeq,1) 1]), errmsg='Column vector Beq not correct.'; return; end;else Beq=[]; end;if isempty(Aeq) & ~isempty(Beq), errmsg='Aeq and Beq should only be nonempty together'; return; end;if isempty(Beq) & ~isempty(Aeq), Beq=zeros(size(Aeq,1),1); end;if nargin<10, nonlcon=''; end;settings = [0 0 0];if nargin>10 & ~isempty(setts)if all(size(setts)<=size(settings))settings(setts~=0)=setts(setts~=0);else errmsg='settings should be a row vector of length 3.'; return; end;end;if nargin<12, options1=[]; end;options1=optimset(optimset('fmincon'),options1);if nargin<13, options2=[]; end;options2=optimset(optimset('fmincon'),options2);if nargin<14, maxSQPiter=1000;elseif isnumeric(maxSQPit) & all(size(maxSQPit))==1 & maxSQPit>0 &round(maxSQPit)==maxSQPitmaxSQPiter=maxSQPit;else errmsg='maxSQPiter must be an integer >0'; return; end;eval(['z=',fun,'(x0,varargin{:});'],'errmsg=''fun caused error.''; return;');if ~isempty(nonlcon)eval(['[C, Ceq]=',nonlcon,'(x0,varargin{:});'],'errmsg=''nonlcon caused error.''; return;');if size(C,2)>1 | size(Ceq,2)>1, errmsg='C en Ceq must be column vectors.'; return; end;end;% STEP 1 INITIALISATIONcurrentwarningstate=warning;warning off;tic;lx = size(x0,1);z_incumbent=inf;x_incumbent=inf*ones(size(x0));I = ceil(sum(log2(xub(find(xstatus==1))-xlb(find(xstatus==1))+1))+size(find(xstatus==1),1)+1);stackx0=zeros(lx,I);stackx0(:,1)=x0;stackxlb=zeros(lx,I);stackxlb(:,1)=xlb;stackxub=zeros(lx,I);stackxub(:,1)=xub;stacksize=1;xchoice=zeros(size(x0));if ~isempty(Aeq)j=0;for i=1:size(Aeq,1)if Beq(i)==1 & all(Aeq(i,:)==0 | Aeq(i,:)==1)J=find(Aeq(i,:)==1);if all(xstatus(J)~=0 & xchoice(J)==0 & xlb(J)==0 & xub(J)==1) if all(xstatus(J)~=2) | all(x0(J(find(xstatus(J)==2)))==0)j=j+1;xchoice(J)=j;if sum(x0(J))==0, errmsg='x0 not correct.'; return; end;end;end;end;end;end;errx=optimget(options2,'TolX');errcon=optimget(options2,'TolCon');fail=0;c=0;% STEP 2 TERMINIATIONwhile stacksize>0c=c+1;% STEP 3 LOADING OF CSPx0=stackx0(:,stacksize);xlb=stackxlb(:,stacksize);xub=stackxub(:,stacksize);x0(find(x0<xlb))=xlb(find(x0<xlb));x0(find(x0>xub))=xub(find(x0>xub));stacksize=stacksize-1;% STEP 4 RELAXATION% PHASE 1con=BNBCON(x0,A,B,Aeq,Beq,xlb,xub,nonlcon,varargin{:});if abs(con)>errcon & settings(1)~=0[x1 dummyfeasflag]=fmincon('0',x0,A,B,Aeq,Beq,xlb,xub,nonlcon,options1,varargin{:});if settings(3) & feasflag==0con=BNBCON(x1,A,B,Aeq,Beq,xlb,xub,nonlcon,varargin{:});if con<errcon, feasflag=1; end;end;else x1=x0; feasflag=1; end;% PHASE 2if feasflag>0[x z convflag]=fmincon(fun,x1,A,B,Aeq,Beq,xlb,xub,nonlcon,options2,varargin{:});if settings(3) & convflag==0con=BNBCON(x,A,B,Aeq,Beq,xlb,xub,nonlcon,varargin{:});if con<errcon, convflag=1; end;end;else convflag=feasflag; end;% STEP 5 FATHOMINGK = find(xstatus==1 & xlb~=xub);separation=1;if convflag<0 | (convflag==0 & settings(2))% FC 1separation=0;elseif z>=z_incumbent & convflag>0% FC 2separation=0;elseif all(abs(round(x(K))-x(K))<errx) & convflag>0% FC 3z_incumbent = z;x_incumbent = x;separation = 0;end;% STEP 6 SELECTIONif separation == 1 & ~isempty(K)dzsep=-1;for i=1:size(K,1)dxsepc = abs(round(x(K(i)))-x(K(i)));if dxsepc>=errx | convflag==0xsepc = x; xsepc(K(i))=round(x(K(i)));dzsepc = abs(feval(fun,xsepc,varargin{:})-z);if dzsepc>dzsepdzsep=dzsepc;ixsep=K(i);end;end;end;% STEP 7 SEPARATIONif xchoice(ixsep)==0% XCHOICE==0branch=1;domain=[xlb(ixsep) xub(ixsep)];while branch==1xboundary=(domain(1)+domain(2))/2;if x(ixsep)<xboundarydomainA=[domain(1) floor(xboundary)];domainB=[floor(xboundary+1) domain(2)];elsedomainA=[floor(xboundary+1) domain(2)];domainB=[domain(1) floor(xboundary)];end;stacksize=stacksize+1;stackx0(:,stacksize)=x;stackxlb(:,stacksize)=xlb;stackxlb(ixsep,stacksize)=domainB(1);stackxub(:,stacksize)=xub;stackxub(ixsep,stacksize)=domainB(2);if domainA(1)==domainA(2)stacksize=stacksize+1;stackx0(:,stacksize)=x;stackxlb(:,stacksize)=xlb;stackxlb(ixsep,stacksize)=domainA(1);stackxub(:,stacksize)=xub;stackxub(ixsep,stacksize)=domainA(2);branch=0;elsedomain=domainA;branch=1;end;end;else% XCHOICE~=0L=find(xchoice==xchoice(ixsep));M=intersect(K,L);[dummy,N]=sort(x(M));part1=M(N(1:floor(size(N)/2))); part2=M(N(floor(size(N)/2)+1:size(N))); stacksize=stacksize+1;stackx0(:,stacksize)=x;O = (1-sum(stackx0(part1,stacksize)))/size(part1,1);stackx0(part1,stacksize)=stackx0(part1,stacksize)+O;stackxlb(:,stacksize)=xlb;stackxub(:,stacksize)=xub;stackxub(part2,stacksize)=0;stacksize=stacksize+1;stackx0(:,stacksize)=x;O = (1-sum(stackx0(part2,stacksize)))/size(part2,1);stackx0(part2,stacksize)=stackx0(part2,stacksize)+O;stackxlb(:,stacksize)=xlb;stackxub(:,stacksize)=xub;stackxub(part1,stacksize)=0;if size(part2,1)==1, stackxlb(part2,stacksize)=1; end;end;elseif separation==1 & isempty(K)fail=fail+1;end;end;% STEP 8 OUTPUTt=toc;Z = z_incumbent;X = x_incumbent;errmsg='';eval(['warning ',currentwarningstate]);function CON=BNBCON(x,A,B,Aeq,Beq,xlb,xub,nonlcon,varargin); if isempty(A), CON1=[]; else CON1 = max(A*x-B,0); end;if isempty(Aeq), CON2=[]; else CON2 = abs(Aeq*x-Beq); end; CON3 = max(xlb-x,0);CON4 = max(x-xub,0);if isempty(nonlcon)CON5=[]; CON6=[];else[C Ceq]=feval(nonlcon,x,varargin{:});CON5 = max(C,0);CON6 = abs(Ceq);end;CON = max([CON1; CON2; CON3; CON4; CON5; CON6]);。
非线性规划与多目标规划模型及其求解
非线性规划与多目标规划模型及其求解一、实验目的及意义[1] 学习非线性规划模型的标准形式和建模方法;[2] 掌握建立非线性规划模型的基本要素和求解方法;[3] 熟悉MATLAB 软件求解非线性规划模型的基本命令;[4] 通过范例学习,了解建立非线性规划模型的全过程,与线性规划比较其难点何在。
通过该实验的学习,使学生掌握最优化技术,认识面对什么样的实际问题,提出假设和建立优化模型,并且使学生学会使用MATLAB 软件进行非线性规划模型求解的基本命令,并进行灵敏度分析。
解决现实生活中的最优化问题是本科生学习阶段中一门重要的课程,因此,本实验对学生的学习尤为重要。
二、实验内容1.建立非线性规划模型的基本要素和步骤;2.熟悉使用MATLAB 命令对非线性规划模型进行计算与灵敏度分析;3.学会计算无约束优化问题和有约束优化问题的技巧。
三、实验步骤1.开启MATLAB 软件平台,开启MATLAB 编辑窗口;2.根据问题,建立非线性规划模型,并编写求解规划模型的M 文件;3.保存文件并运行;4.观察运行结果(数值或图形),并不断地改变参数设置观察运行结果;5.根据观察到的结果和体会,写出实验报告。
四、实验要求与任务根据实验内容和步骤,完成以下实验,要求写出实验报告(实验目的→问题→数学模型→算法与编程→计算结果→分析、检验和结论)基础实验1求解无约束优化1) 画出该曲面图形, 直观地判断该函数的最优解;2) 使用fminunc 命令求解, 能否求到全局最优解?120.5(cos(2)cos(2))12min (,)2022.713..55,1,2x x i f x x e e s t x i ππ-+=--+-≤≤=2. 求解非线性规划,试判定你所求到的解是否是最优?应用实验3.贷款方案某服装连锁店老板希望开办三家新商店:一家在北京,一家在上海.开办这些商店分别需要170万,250万, 100万元.为对此计划融资,该老板与三家银行进行了联系.见表6.1 三家银行对各个项目的贷款利率根据商店的位置和对相关风险的评估,每家银行都决定至多提供8年期总值为300万元的贷款,但对不同商店项目的利率各不相同(见表6.1).请制定从这些银行进行贷款的方案,以使每个商店都能得到所需的资金,并使总支出最小.4. 组合投资问题设有8种投资选择:5支股票,2种债券,黄金. 投资者收集到这些投资项目的年收益率的历史数据 (见表6.1), 投资者应如何分配他的投资资金,即需要确定这8种投资的最佳投资分配比例.421237212221371230.201max 10..67500.419010036,05,0125x x x z s t x x x x x x x =-≥-≥≤≤≤≤≤≤注: 基础实验全做, 应用实验4.下面的是2016年经典励志语录,需要的朋友可以欣赏,不需要的朋友下载后可以编辑删除!!谢谢!!1、有来路,没退路;留退路,是绝路。
Matlab中的多目标决策与多目标规划方法
Matlab中的多目标决策与多目标规划方法在工程和科学领域中,我们经常需要做出多个决策来解决一个问题。
而在现实中,这些决策可能有不同的目标或要求。
为了解决这个问题,我们可以利用Matlab中的多目标决策和多目标规划方法。
首先,让我们了解一下什么是多目标决策。
在传统的决策模型中,我们通常只有一个目标,在决策过程中我们优化这个目标。
然而,在实际问题中,往往存在多个目标,这些目标之间可能是相互矛盾的。
例如,在设计一个产品时,我们可能要同时考虑成本、品质和交货时间等多个目标。
这时,我们就需要多目标决策方法来找到一个最优解。
在Matlab中,我们可以利用多种多目标决策方法来解决这个问题。
其中一种常用的方法是多目标遗传算法(MOGA)。
遗传算法是一种模拟自然选择和遗传机制的优化算法。
它从一个初始的种群开始,通过模拟自然进化的过程,逐渐优化目标函数。
而多目标遗传算法则是在遗传算法的基础上进行了改进,使其能够同时优化多个目标。
多目标遗传算法的基本思想是通过保留当前种群中的一些非支配个体,并利用交叉和变异操作产生新的个体。
通过不断迭代,逐渐逼近最优解的非支配解集。
这样,我们就可以得到一系列的解,这些解都是在多个目标下都是最优的。
除了遗传算法外,Matlab还支持其他多目标决策方法,如多目标粒子群算法(MOPSO)和多目标蚁群算法(MOACO)。
这些方法在原理上有所不同,但都能够有效地解决多目标决策问题。
与多目标决策密切相关的是多目标规划。
多目标规划是一种数学优化方法,用于解决存在多个目标的问题。
在多目标规划中,我们需要同时优化多个目标函数,而不是简单地将它们合并成一个目标函数。
这使得我们可以获得一系列的最优解,而不是一个单一的最优解。
在Matlab中,我们可以使用多种多目标规划方法来解决这个问题。
其中一种常用的方法是帕累托前沿方法(Pareto Front)。
帕累托前沿是指在多目标问题中,不能通过改变一个目标而改善其他目标的解。
MATLAB非线性规划问题
MATLAB⾮线性规划问题⼀.⾮线性规划课题实例1 表⾯积为36平⽅⽶的最⼤长⽅体体积。
建⽴数学模型:设x、y、z分别为长⽅体的三个棱长,f为长⽅体体积。
max f = x y (36-2 x y)/2 (x+y)实例2 投资决策问题某公司准备⽤5000万元⽤于A、B两个项⽬的投资,设x1、x2分别表⽰配给项⽬A、B的投资。
预计项⽬A、B的年收益分别为20%和16%。
同时,投资后总的风险损失将随着总投资和单位投资的增加⽽增加,已知总的风险损失为2x12+x22+(x1+x2)2.问应如何分配资⾦,才能使期望的收益最⼤,同时使风险损失为最⼩。
建⽴数学模型:max f=20x1+16x2-λ[2x12+x22+(x1+x2)2]s.t x1+x2≤5000x 1≥0,x2≥0⽬标函数中的λ≥0是权重系数。
由以上实例去掉实际背景,其⽬标函数与约束条件⾄少有⼀处是⾮线性的,称其为⾮线性问题。
⾮线性规划问题可分为⽆约束问题和有约束问题。
实例1为⽆约束问题,实例2为有约束问题。
⼆.⽆约束⾮线性规划问题:求解⽆约束最优化问题的⽅法主要有两类:直接搜索法(Search method)和梯度法(Gradient method),单变量⽤fminbnd,fminsearch,fminunc;多变量⽤fminsearch,fminnuc 1.fminunc函数调⽤格式:x=fminunc(fun,x0)x=fminunc(fun,x0,options)x=fminunc(fun,x0,options,P1,P2)[x,fval]=fminunc(…)[x,fval, exitflag]=fminunc(…)[x,fval, exitflag,output]=fminunc(…)[x,fval, exitflag,output,grad]=fminunc(…)[x,fval, exitflag,output,grad,hessian]=fminunc(…)说明:fun为需最⼩化的⽬标函数,x0为给定的搜索的初始点。
MATLAB非线性规划
MATLAB⾮线性规划MATLAB求解⾮线性规划可以使⽤ fmincon 函数,其数学模型可以写成如下形式:x = fmincon(fun,x0,A,b,Aeq,beq,lb,ub,nonlcon,options)其中,fun是⽬标函数,x0是初始值,A,b 规定线性不等式约束条件,Aeq,beq 规定线性等式约束条件,lb 规定可⾏解的数值下限,ub规定可⾏解的数值上限。
nonlcon是包含⾮线性约束条件(C(x),Ceq(x))的函数。
使⽤options所指定的优化选项执⾏最⼩化。
例如,使⽤MATLAB计算如下⾮线性规划。
x0 = [0.5,0];A = [1,-2];b = 1;Aeq = [2,1];beq = 1;x = fmincon(fun,x0,A,b,Aeq,beq)带有边界约束的,例如:fun = @(x)1+x(1)/(1+x(2)) - 3*x(1)*x(2) + x(2)*(1+x(1));lb = [0,0];ub = [1,2];% 没有线性约束,因此将这些参数设置为 []。
A = [];b = [];Aeq = [];beq = [];% 尝试使⽤⼀个位于区域中部的初始点。
x0 = (lb + ub)/2;x = fmincon(fun,x0,A,b,Aeq,beq,lb,ub)带有⾮线性约束的,例如:%% 主函数options=optimset('largescale','off');x = fmincon(@fun,rand(3,1),[],[],[],[],zeros(3,1),[], @nonlcon, options)%% ⽬标函数function f=fun(x)f=sum(x.^2)+8;end%% ⾮线性约束条件function [c,ceq]=nonlcon(x)c=[-x(1)^2+x(2)-x(3)^2x(1)+x(2)^2+x(3)^3-20]; %⾮线性不等式约束ceq=[-x(1)-x(2)^2+2x(2)+2*x(3)^2-3]; %⾮线性等式约束end特别注意:⽬标函数为最⼩化函数,fun是⼀个函数,fun接受向量或数组 x,并返回实数标量 f,即在 x 处计算的⽬标函数值。
MATLAB求解非线性规划
经济管理学院:李继红
1 Matlab简介及操作环境
1.1 Matlab简介
由美国 DOCTORCLEVER MOLER 于 1980 年 开始研制并于1984年推出正式版本。以后陆续推 出了4.0,4.2和5.0版本,1999年初推出了功能更 为强大的5.3版本,2001年推出6.1版本,2003年 推出了6.5版本。2004年6月正式推出7.0版本。 MATLAB是建立在 C 语言基础上的高级语言, 并建立了自已独特的语言环境。
plot3(x,y,z,’s’)
plot3(x1,y1,z1,’s1’,x2,y2,z2,’s2’,·· ·) plot3例命:令t将=绘0制:二pi维/5图0形:1的0函*p数i;plot的特性扩展到三维空间。函 数格式除p了lo包t括3(第s三in维(t的),信co息s((t)比,t如);Z方向)之外,与二维函数
1、for循环
li1_6_1.m
• For循环可以按指定的次数重复执行一系列语 句。For循环的常见结构:
• for 变量 =表达式 循环语句
end
这里循环语句可以是一条或 多条,并且可以是变量的函 数
• 如:for k=初值: 增值: 终值
例:
% mzmfor.m
clear all
N=input('请输入矩阵的维数 N:');
6.4 switch-case语句
一般switch-case语句格式为: switch num case n1 command case n2 command case n3 command . . .otherwise Command
li1_6_4.m
7 数据的可视化
用Matlab求解非线性规划
用Matlab 求解非线性规划1.无约束优化问题)(min x f n Rx ∈,其中向量x 的n 个分量i x 都是决策变量,称)(x f 目标函数。
用Matlab 求解:先建立函数文件mbhs.m ,内容是)(x f 的表达式;再回到Matlab 命令区输入决策变量初值数据x0,再命令[x,fmin]=fminunc(@mbhs,x0) 如:)32(m in 22212x x R x +∈的最优解是.)0,0(T x = 用Matlab 计算,函数文件为 function f=mbhs(x)f=2*x(1)^2+3*x(2)^2;再输入初值 x0=[1;1]; 并执行上述命令,结果输出为 x =? fmin =? 略。
2.约束优化问题.),,...,2,1(,0)(),,...,2,1(,0)(..)(min U x L m i x h p i x g t s x f i i Rx n ≤≤===≤∈其中:向量x 的n 个分量i x 都是决策变量,称)(x f 目标函数、)(x g i 等式约束函数、)(x h i 不等式约束函数、L 下界、U 上界。
用Matlab 求解:先把模型写成适用于Matlab 的标准形式.,0)(,0)(,,..)(min U x L x h x g beq x Aeq b Ax t s x f n Rx ≤≤=≤=≤∈ 约束条件中:把线性的式子提炼出来得前两个式子;后三个式子都是列向量。
(如:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡===⨯⨯)()()([],[],,,11262x g x g x g beq Aeq b A p )再建立两个函数文件:目标函数mbhs.m ;约束函数yshs.m再回到Matlab 命令区,输入各项数据及决策变量初值数据x0,执行命令[x,fmin]=fmincon(@mbhs,x0,A,b,Aeq,beq,L,U,@yshs)例:单位球1222≤++z y x 内,曲面xy y x z 1.05.022--+=的上方,平面008.0=-++z y x 之上(不是上面),满足上述三个条件的区域记为D ,求函数)1cos()sin(2-+-+-z e z y x e xy xyz 在D 上的最大值、最大值点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
function [errmsg,Z,X,t,c,fail] =BNB18(fun,x0,xstat,xl,xu,A,B,Aeq,Beq,nonlcon,setts,options1,options2,ma xSQPit,varargin);%·ÇÏßÐÔÕûÊý¹æ»®Ä£ÐÍÇó½â·ÖÖ§¶¨½çµü´úËã·¨¡£ÔÚMATLAB5.3ÖÐʹÓã¬ÐèOptimizat ion toolbox 2.0Ö§³Ö?% Minimize F(x)%subject to: xlb <= x <=xub% A*x <= B% Aeq*x=Beq% C(x)<=0% Ceq(x)=0%% x(i)¿ÉΪÁ¬Ðø±äÁ¿£¬ÕûÊý£¬»ò¹Ì¶¨Öµ% ʹÓøñʽ%[errmsg,Z,X]=BNB18('fun',x0,xstat,xl,xu,A,B,Aeq,Beq,'nonlcon',setts)%fun£º MÎļþÃû£¬±íʾ×îС»¯Ä¿±êº¯Êýf=fun(x)%x0: ÁÐÏòÁ¿£¬±íʾ±äÁ¿³õÖµ%xstat£º ÁÐÏòÁ¿£¬xstat(i)=0±íʾx(i)ΪÁ¬Ðø±äÁ¿£¬1±íʾÕûÊý£¬2±íʾ¹Ì¶¨Öµ%xl£º ÁÐÏòÁ¿£¬±íʾ±äÁ¿Ï½ç%xu: ÁÐÏòÁ¿£¬±íʾ±äÁ¿ÉϽç%A: ¾ØÕó, ±íʾÏßÐÔ²»µÈʽԼÊøϵÊý%B: ÁÐÏòÁ¿, ±íʾÏßÐÔ²»µÈʽԼÊøÉϽç%Aeq: ¾ØÕó, ±íʾÏßÐÔµÈʽԼÊøϵÊý%Beg: ÁÐÏòÁ¿, ±íʾÏßÐÔ²»µÈʽԼÊøÓÒ¶ËÖµ%nonlcon:MÎļþÃû£¬±íʾ·ÇÏßÐÔÔ¼Êøº¯Êý[C,Ceq]=nonlin(x),ÆäÖÐC(x)Ϊ²»µÈʽԼÊø,% Ceq(x)ΪµÈʽԼÊø%setts: Ëã·¨ÉèÖÃ%errmsq: ·µ»Ø´íÎóÌáʾ%Z: ·µ»ØÄ¿±êº¯Êý×îСֵ%X: ·µ»Ø×îÓŽâ%%ÀýÌâ% max x1*x2*x3% -x1+2*x2+2*x3>=0% x1+2*x2+2*x3<=72% 10<=x2<=20% x1-x2=10% ÏÈд Mº¯Êýdiscfun.m% function f=discfun(x)% f=-x(1)*x(2)*x(3);%Çó½â% clear;x0=[25,15,10]';xstat=[1 1 1]';% xl=[20 10 -10]';xu=[30 20 20]';% A=[1 -2 -2;1 2 2];B=[0 72]';Aeq=[1 -1 0];Beq=10;% [err,Z,X]=BNB18('discfun',x0,xstat,xl,xu,A,B,Aeq,Beq);% XMAX=X',ZMAX=-Z%% BNB18 Finds the constrained minimum of a function of several possibly integer variables.% Usage: [errmsg,Z,X,t,c,fail] =%BNB18(fun,x0,xstatus,xlb,xub,A,B,Aeq,Beq,nonlcon,settings,options1,opti ons2,maxSQPiter,P1,P2,...)%% BNB solves problems of the form:% Minimize F(x) subject to: xlb <= x0 <=xub% A*x <= B Aeq*x=Beq% C(x)<=0 Ceq(x)=0% x(i) is continuous for xstatus(i)=0% x(i) integer for xstatus(i)= 1% x(i) fixed for xstatus(i)=2%% BNB uses:% Optimization Toolbox Version 2.0 (R11) 09-Oct-1998% From this toolbox fmincon.m is called. For more info type help fmincon. %% fun is the function to be minimized and should return a scalar.F(x)=feval(fun,x).% x0 is the starting point for x. x0 should be a column vector.% xstatus is a column vector describing the status of every variable x(i). % xlb and xub are column vectors with lower and upper bounds for x.% A and Aeq are matrices for the linear constrains.% B and Beq are column vectors for the linear constrains.% nonlcon is the function for the nonlinear constrains.% [C(x);Ceq(x)]=feval(nonlcon,x). Both C(x) and Ceq(x) should be column vectors.%% errmsg is a string containing an error message if BNB found an erro r in the input.% Z is the scalar result of the minimization, X the values of the accompanying variables.% t is the time elapsed while the algorithm BNB has run, c is the number of BNB cycles and% fail is the number of unsolved leaf sub-problems.%% settings is a row vector with settings for BNB:% settings(1) (standard 0) if 1: use phase 1 by relaxation. This sometimes makes the algorithm% faster, because phase 1 means the algorithm first checks if there is a feasible solution% for a sub-problem before trying to find a best solution. If there is no feasible solution BNB% will not try to find a best solution.% settings(2) (standard 0) if 1: if the sub-problem did not converge do not branch. If a sub-% problem did not converge this means BNB did not find a solution for it. Normally BNB will% branch the problem so it can try again to find a solution.% A sub-problem that is a leaf of the branch-and-bound-three can not be branched. If such% a problem does not converge it will be considered unfeasible and the parameter fail will be% raised by one.% settings(3) (standard 0) if 1: if 1 a sub-problem that did not converge but did return a feasible% point will be considered convergent. This might be useful if fmincon is having a hard time with% a certain problem but you do want some results.% options1 and options2 are options structures for phase 1 and phase 2.% For details about the options structure type help optimset.% maxSQPiter is a global variable used by fmincon (if modified as described in bnb18.m).% maxSQPiter is 1000 by default.% P1,P2,... are parameters to be passed to fun and nonlcon.% F(x)=feval(fun,x,P1,P2,...). [C(x);Ceq(x)]=feval(nonlcon,x,P1,P2,...). % Type edit BNB18 for more info.% E.C. Kuipers% e-mail E.C.Kuipers@cpedu.rug.nl% FI-Lab% Applied Physics% Rijksuniversiteit Groningen% To get rid of bugs and to stop fmincon from hanging make the following chances:%% In optim/private/nlconst.m ($Revision: 1.20 $ $Date: 1998/08/24 13:46:15 $):% Get EXITFLAG independent of verbosity.% After the lines: disp(' less than 2*options.TolFun but constraints are not satisfied.')% end% EXITFLAG = -1;% end% end% status=1;% add the line: if (strncmp(howqp, 'i',1) & mg > 0), EXITFLAG = -1; end; %% In optim/private/qpsub.m ($Revision: 1.21 $ $Date: 1998/09/01 21:37:56 $):% Stop qpsub from hanging.% After the line: % Andy Grace 7-9-90. Mary Ann Branch 9-30-96.% add the line: global maxSQPiter;% and changed the line: maxSQPiters = Inf;% to the line: if exist('maxSQPiter','var'), maxSQPiters = maxSQPiter; else maxSQPiters=inf; end;% I guess there was a reason to put maxSQPiters at infinity, but this works fine for me.global maxSQPiter;% STEP 0 CHECKING INPUTZ=[]; X=[]; t=0; c=0; fail=0;if nargin<2, errmsg='BNB needs at least 2 input arguments.'; return; end; if isempty(fun), errmsg='No fun found.'; return; end;if isempty(x0), errmsg='No x0 found.'; return;elseif size(x0,2)>1, errmsg='x0 must be a column vector.'; return; end; xstatus=zeros(size(x0));if nargin>2 & ~isempty(xstat)if all(size(xstat)<=size(x0))xstatus(1:size(xstat))=xstat;else errmsg='xstatus must be a column vector the same size as x0.'; return;end;if any(xstatus~=round(xstatus) | xstatus<0 | 2<xstatus)errmsg='xstatus must consist of the integers 0,1 en 2.'; return;end;end;xlb=zeros(size(x0));xlb(find(xstatus==0))=-inf;if nargin>3 & ~isempty(xl)if all(size(xl)<=size(x0))xlb(1:size(xl,1))=xl;else errmsg='xlb must be a column vector the same size as x0.'; return;end;end;if any(x0<xlb)errmsg='x0 must be in the range xlb <= x0.'; return;elseif any(xstatus==1 & (~isfinite(xlb) | xlb~=round(xlb)))errmsg='xlb(i) must be an integer if x(i) is an integer variabele.'; return;end;xlb(find(xstatus==2))=x0(find(xstatus==2));xub=ones(size(x0));xub(find(xstatus==0))=inf;if nargin>4 & ~isempty(xu)if all(size(xu)<=size(x0))xub(1:size(xu,1))=xu;else errmsg='xub must be a column vector the same size as x0.'; return;end;end;if any(x0>xub)errmsg='x0 must be in the range x0 <=xub.'; return;elseif any(xstatus==1 & (~isfinite(xub) | xub~=round(xub)))errmsg='xub(i) must be an integer if x(i) is an integer variabale.'; return;end;xub(find(xstatus==2))=x0(find(xstatus==2));if nargin>5if~isempty(A) & size(A,2)~=size(x0,1), errmsg='Matrix A not correct.'; return; end;else A=[]; end;if nargin>6if~isempty(B) & any(size(B)~=[size(A,1) 1]), errmsg='Column vector B not correct.'; return; end;else B=[]; end;if isempty(A) & ~isempty(B), errmsg='A and B should only be nonempty together.'; return; end;if isempty(B) & ~isempty(A), B=zeros(size(A,1),1); end;if nargin>7 & ~isempty(Aeq)if size(Aeq,2)~=size(x0,1), errmsg='Matrix Aeq not correct.'; return; end;else Aeq=[]; end;if nargin>8if ~isempty(Beq) & any(size(Beq)~=[size(Aeq,1) 1]), errmsg='Column vector Beq not correct.'; return; end;else Beq=[]; end;if isempty(Aeq) & ~isempty(Beq), errmsg='Aeq and Beq should only be nonempty together'; return; end;if isempty(Beq) & ~isempty(Aeq), Beq=zeros(size(Aeq,1),1); end;if nargin<10, nonlcon=''; end;settings = [0 0 0];if nargin>10 & ~isempty(setts)if all(size(setts)<=size(settings))settings(setts~=0)=setts(setts~=0);else errmsg='settings should be a row vector of length 3.'; return; end; end;if nargin<12, options1=[]; end;options1=optimset(optimset('fmincon'),options1);if nargin<13, options2=[]; end;options2=optimset(optimset('fmincon'),options2);if nargin<14, maxSQPiter=1000;elseif isnumeric(maxSQPit) & all(size(maxSQPit))==1 & maxSQPit>0 &round(maxSQPit)==maxSQPitmaxSQPiter=maxSQPit;else errmsg='maxSQPiter must be an integer >0'; return; end;eval(['z=',fun,'(x0,varargin{:});'],'errmsg=''fun caused error.''; return;');if ~isempty(nonlcon)eval(['[C, Ceq]=',nonlcon,'(x0,varargin{:});'],'errmsg=''nonlcon caused error.''; return;');if size(C,2)>1 | size(Ceq,2)>1, errmsg='C en Ceq must be column vectors.'; return; end;end;% STEP 1 INITIALISATIONcurrentwarningstate=warning;warning off;tic;lx = size(x0,1);z_incumbent=inf;x_incumbent=inf*ones(size(x0));I =ceil(sum(log2(xub(find(xstatus==1))-xlb(find(xstatus==1))+1))+size(find (xstatus==1),1)+1);stackx0=zeros(lx,I);stackx0(:,1)=x0;stackxlb=zeros(lx,I);stackxlb(:,1)=xlb;stackxub=zeros(lx,I);stackxub(:,1)=xub;stacksize=1;xchoice=zeros(size(x0));if ~isempty(Aeq)j=0;for i=1:size(Aeq,1)if Beq(i)==1 & all(Aeq(i,:)==0 | Aeq(i,:)==1)J=find(Aeq(i,:)==1);if all(xstatus(J)~=0 & xchoice(J)==0 & xlb(J)==0 & xub(J)==1) if all(xstatus(J)~=2) | all(x0(J(find(xstatus(J)==2)))==0)j=j+1;xchoice(J)=j;if sum(x0(J))==0, errmsg='x0 not correct.'; return; end;end;end;end;end;end;errx=optimget(options2,'TolX');errcon=optimget(options2,'TolCon');fail=0;c=0;% STEP 2 TERMINIATIONwhile stacksize>0c=c+1;% STEP 3 LOADING OF CSPx0=stackx0(:,stacksize);xlb=stackxlb(:,stacksize);xub=stackxub(:,stacksize);x0(find(x0<xlb))=xlb(find(x0<xlb));x0(find(x0>xub))=xub(find(x0>xub));stacksize=stacksize-1;% STEP 4 RELAXATION% PHASE 1con=BNBCON(x0,A,B,Aeq,Beq,xlb,xub,nonlcon,varargin{:});if abs(con)>errcon & settings(1)~=0[x1 dummyfeasflag]=fmincon('0',x0,A,B,Aeq,Beq,xlb,xub,nonlcon,options1,varargin{ :});if settings(3) & feasflag==0con=BNBCON(x1,A,B,Aeq,Beq,xlb,xub,nonlcon,varargin{:});if con<errcon, feasflag=1; end;end;else x1=x0; feasflag=1; end;% PHASE 2if feasflag>0[x zconvflag]=fmincon(fun,x1,A,B,Aeq,Beq,xlb,xub,nonlcon,options2,varargin{ :});if settings(3) & convflag==0con=BNBCON(x,A,B,Aeq,Beq,xlb,xub,nonlcon,varargin{:});if con<errcon, convflag=1; end;end;else convflag=feasflag; end;% STEP 5 FATHOMINGK = find(xstatus==1 & xlb~=xub);separation=1;if convflag<0 | (convflag==0 & settings(2))% FC 1separation=0;elseif z>=z_incumbent & convflag>0% FC 2separation=0;elseif all(abs(round(x(K))-x(K))<errx) & convflag>0% FC 3z_incumbent = z;x_incumbent = x;separation = 0;end;% STEP 6 SELECTIONif separation == 1 & ~isempty(K)dzsep=-1;for i=1:size(K,1)dxsepc = abs(round(x(K(i)))-x(K(i)));if dxsepc>=errx | convflag==0xsepc = x; xsepc(K(i))=round(x(K(i)));dzsepc = abs(feval(fun,xsepc,varargin{:})-z);if dzsepc>dzsepdzsep=dzsepc;ixsep=K(i);end;end;end;% STEP 7 SEPARATIONif xchoice(ixsep)==0% XCHOICE==0branch=1;domain=[xlb(ixsep) xub(ixsep)];while branch==1xboundary=(domain(1)+domain(2))/2;if x(ixsep)<xboundarydomainA=[domain(1) floor(xboundary)];domainB=[floor(xboundary+1) domain(2)];elsedomainA=[floor(xboundary+1) domain(2)];domainB=[domain(1) floor(xboundary)];end;stacksize=stacksize+1;stackx0(:,stacksize)=x;stackxlb(:,stacksize)=xlb;stackxlb(ixsep,stacksize)=domainB(1);stackxub(:,stacksize)=xub;stackxub(ixsep,stacksize)=domainB(2);if domainA(1)==domainA(2)stacksize=stacksize+1;stackx0(:,stacksize)=x;stackxlb(:,stacksize)=xlb;stackxlb(ixsep,stacksize)=domainA(1);stackxub(:,stacksize)=xub;stackxub(ixsep,stacksize)=domainA(2);branch=0;elsedomain=domainA;branch=1;end;end;else% XCHOICE~=0L=find(xchoice==xchoice(ixsep));M=intersect(K,L);[dummy,N]=sort(x(M));part1=M(N(1:floor(size(N)/2)));part2=M(N(floor(size(N)/2)+1:size(N)));stacksize=stacksize+1;stackx0(:,stacksize)=x;O = (1-sum(stackx0(part1,stacksize)))/size(part1,1);stackx0(part1,stacksize)=stackx0(part1,stacksize)+O;stackxlb(:,stacksize)=xlb;stackxub(:,stacksize)=xub;stackxub(part2,stacksize)=0;stacksize=stacksize+1;stackx0(:,stacksize)=x;O = (1-sum(stackx0(part2,stacksize)))/size(part2,1);stackx0(part2,stacksize)=stackx0(part2,stacksize)+O;stackxlb(:,stacksize)=xlb;stackxub(:,stacksize)=xub;stackxub(part1,stacksize)=0;if size(part2,1)==1, stackxlb(part2,stacksize)=1; end;end;elseif separation==1 & isempty(K)fail=fail+1;end;end;% STEP 8 OUTPUTt=toc;Z = z_incumbent;X = x_incumbent;errmsg='';eval(['warning ',currentwarningstate]);function CON=BNBCON(x,A,B,Aeq,Beq,xlb,xub,nonlcon,varargin); if isempty(A), CON1=[]; else CON1 = max(A*x-B,0); end;if isempty(Aeq), CON2=[]; else CON2 = abs(Aeq*x-Beq); end; CON3 = max(xlb-x,0);CON4 = max(x-xub,0);if isempty(nonlcon)CON5=[]; CON6=[];else[C Ceq]=feval(nonlcon,x,varargin{:});CON5 = max(C,0);CON6 = abs(Ceq);end;CON = max([CON1; CON2; CON3; CON4; CON5; CON6]);。